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It is often hard to find closed form solutions to y′ = f (x, y), y(x0) = y0.

But we want answers!
Enter numerical methods:
Given a function f (x, y) and numbers x0, y0, and x1, get (approximately) y(x1).

Not ideal, but sometimes best that we got.
We need to know f (x, y), x0, y0, x1 exactly, we can’t have parameters.
Hard to get qualitative understanding from a numerical solution.
It is only approximate, so we’d better understand the errors.
Must choose the right method.

We will cover the simplest method of all: Euler’s method.
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Euler’s method for y′ = f (x, y), y(x0) = y0.

1. Pick a step size h.
2. Compute the slope k = f (x0 , y0) at (x0 , y0).
3. Follow the line of slope k for x from x0 to x0 + h.
4. That is, the new point (x1 , y1) is x1 = x0 + h y1 = y0 + hk.
5. Compute k = f (x1 , y1).
6. Let x2 = x1 + h y2 = y1 + hk.
7. Compute k = f (x2 , y2).
8. Let x3 = x2 + h y3 = y2 + hk.
9. Rinse, repeat!

Essentially, keep repeating : xi+1 = xi + h, yi+1 = yi + h f (xi , yi).
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Example: y′ = y2/3, y(0) = 1, h = 1.

x0 = 0, y0 = 1

k = f (0, 1) = 12/3 = 1/3
x1 = x0 + h = 0 + 1 = 1
y1 = y0 + hk = 1 + 1 · (1/3) = 4/3 ≈ 1.333

k = f (1, 4/3) = (4/3)2
3 = 16

27
x2 = x1 + h = 1 + 1 = 2
y2 = y1 + hk = 4/3 + 1 · (16/27) = 52/27 ≈ 1.926
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Let’s do a few more hs.
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Let’s do a few more hs.
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Actual solution at x = 2 is y(2) = 3.

The absolute value of difference between the actual solution and the approximate solution
is called the error.

With h = 1, x2 = 2 so y(2) ≈ y2 = 1.926 Error = |3 − y2 | ≈ 1.074

With h = 1/2 = 0.5, x4 = 2 so y(2) ≈ y4 = 2.209 Error = |3 − y4 | ≈ 0.791

h Approximate y(2) Error Error
Previous error

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385

0.015625 2.95035 0.04965 0.51779
0.0078125 2.97472 0.02528 0.50913

Note: It seems like error halves when we halve h.
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0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385

0.015625 2.95035 0.04965 0.51779
0.0078125 2.97472 0.02528 0.50913

Note: It seems like error halves when we halve h.
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Euler’s method is a first order method: When we halve h, error reduces by 1/2.

A second order method reduces the error by (1/2)2 = 1/4 each time you halve h.

A fourth order method reduces the error by (1/2)4 = 1/16 each time you halve h.

To be within 0.1 we needed to do 64 steps of Euler.

To get within 0.01, we’d need another 2–3 halvings: so 512 to 1024 steps.

If starting with one step, 10 halvings = 210 = 1024 steps.

A second order method requires half as many halvings for same reduction of error.

5 halvings = 25 = 32 steps.

That can be a huge difference if we need to run this many times.
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In practice we don’t know the error, we must estimate it.

By successive halvings, and assuming it halves each time we can estimate the error.

Exercise: Take the last two approximate values, and (assume they are less than y(2))
assuming that the error halves each time, approximate y(2), and hence the error. Is it close?

h Approximate y(2) Error Error
Previous error

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385

0.015625 2.95035 0.04965 0.51779
0.0078125 2.97472 0.02528 0.50913

The trick in practice is to estimate the error so that we can pick the right h.
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Keep considering y′ = y2/3, y(0) = 1.

Suppose we attempt to find y(3):

h Approximate y(3)
1 3.16232

0.5 4.54329
0.25 6.86079

0.125 10.80321
0.0625 17.59893

0.03125 29.46004
0.015625 50.40121

0.0078125 87.75769

What is going on? y(3) does not exist, y → ∞ as x → 3.
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In real applications, methods used are similar to Euler but better (e.g., the fourth order
Runge–Kutta, see next slide).

Choosing h is very tricky. A couple of things to consider:
Computational time: Each step takes computer time.
Roundoff errors: Computers only compute with a certain number of significant digits.
Stability: Certain equations may be numerically unstable, sometimes called stiff
problems. Halvings may not seemingly improve things.

In worst case, the computer might be giving us bogus numbers as if they are correct.

Numerical methods are still a current research topic.
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The simplest method used in practice is the Runge–Kutta method.
Consider dy

dx = f (x, y), y(x0) = y0, and a step size h.

The idea is the same as Euler except each step looks like

k1 = f (xi , yi),
k2 = f

(
xi + h/2, yi + k1(h/2)

)
, xi+1 = xi + h,

k3 = f
(
xi + h/2, yi + k2(h/2)

)
, yi+1 = yi +

k1 + 2k2 + 2k3 + k4
6 h,

k4 = f (xi + h, yi + k3h).
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