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There are many types of differential equations.

Most broadly:

o Ordinary differential equations (ODE):
Only one independent variable.

o Partial differential equations (PDE):
Several independent variables, using partial derivatives.
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(Exponential growth)
(Newton’s law of cooling)

(Mechanical vibrations)

(Transport equation)

(Heat equation)

(Wave equation in 2 dimensions)
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If there is more than one equation it is a system of differential equations.
Examples:
A system of ordinary differential equations (system of ODE):

/ /

Y =x, X =y.

Maxwell’s equations for electromagnetics are a system of partial differential equations
(system of PDE):
V-D=p, V-B=0,
- OB N
VXE=—-——, VXH=]+ —.
ot J ot

(Note: divergence V- and curl VX are written in partial derivatives in x, y, z.)
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The highest order derivative that appears is the order of the equation (or system).

d

d_]Z =ky is a first order ODE equation.

dy d

T Z + d—y + y = sin(x) is a second order ODE equation.
WPy Py . :

a* o + = Froi =0 is a fourth order PDE equation.

Remark: The most common equations in physics are first and second order.
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An equation is linear if the dependent variable(s) and their derivatives appear linearly.
(“linearly”: only first powers, not multiplied together, divided, or composed with
functions such as sin or exp.)

An ODE of order n can be put into the form:

an(x) 4"y +a71 1(x) "

y +ot al(x)j—z +ag(x)y = b(x).

E.g., linear 2nd grder ODE: ”

Xd >
Note: The dependence on x need not be linear, only the dependence on y.

1
+sm(x)— +x%y = p

E.g., nonlinear 2" order PDE (Burger’s equation):
dy Iy _ Py
ot Vo TV o

E.g., nonlinear 1% order ODE:

dx 5
—_— = x
dt

Remark: Nonlinear equations are notoriously difficult to handle.
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A linear equation is homogeneous if all terms depend on the dependent variable.
Otherwise, it is nonhomogeneous or inhomogeneous.

Examples:
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Homogeneous:
+ sm(x)— +x? y=0
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Inhomogeneous: 1
- +s1n(x)— +x2 Yy == .

dx
— +x+t=0

dt

The inhomogeneity is often some “outside input” into the physical system.

We solve an inhomogeneous equation using the solution to the corresponding
homogeneous equation.
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A linear equation has constant coefficients if the coefficients are constants (except for
perhaps the inhomogeneity). A general constant coefficient linear ODE:

dy
S + - +a1— +apy = b(x),
Jon1 17, Haoy (x)
aop,ai, ... ,a, are constants, b may depend on x.

Finally, an equation (or system) is aufonomous if the equation does not depend on the
independent variable at all.

dx . dx .
Eg., E =22 is autonomous, but E = xt is not.

Autonomous equations often appear when the setup is independent of time.



Examples: (see if you can guess the properties before they are revealed)



Examples: (see if you can guess the properties before they are revealed)

dy
o



Examples: (see if you can guess the properties before they are revealed)

dy
a =

First order, autonomous, linear, homogeneous, constant coefficient ODE equation.



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.
d
o F=kA-y, (A%0)

dt



Examples: (see if you can guess the properties before they are revealed)
dy
ok
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

d
o TekA-y,  (A%0)

First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.



Examples: (see if you can guess the properties before they are revealed)

dy
ok
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.
d
o Yoka-y, (A#0)
dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dZx  dx

ﬁ+$+x=5in(t)



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

° d—y:k(A—y), (A#0)

dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dx + ax + x = sin(f)
R —_ = S1.
a2 dt

Second order, linear, inhomogeneous, constant coefficient ODE equation.



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

° d—y:k(A—y), (A#0)

dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dx + ax + x = sin(f)
R —_ = S1.
a2 dt

Second order, linear, inhomogeneous, constant coefficient ODE equation.

e 0" +sin(0)=0



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

° d—y:k(A—y), (A#0)

dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dx + ax + x = sin(f)
N R = 81
a2 dt

Second order, linear, inhomogeneous, constant coefficient ODE equation.
e 0" +sin(0)=0

Second order, autonomous, nonlinear ODE equation.



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

° d—y:k(A—y), (A#0)

dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dx + ax + x = sin(f)
N R = 81
a2 dt

Second order, linear, inhomogeneous, constant coefficient ODE equation.
e 0" +sin(0)=0
Second order, autonomous, nonlinear ODE equation.

du dv _ , du Jdv _

FTIA " TR M



Examples: (see if you can guess the properties before they are revealed)

dy
o —k
ar Y
First order, autonomous, linear, homogeneous, constant coefficient ODE equation.

° d—y:k(A—y), (A#0)

dt
First order, autonomous, linear, inhomogeneous, constant coefficient ODE equation.
dx + ax + x = sin(f)
N R = 81
a2 dt

Second order, linear, inhomogeneous, constant coefficient ODE equation.
e 0" +sin(0)=0
Second order, autonomous, nonlinear ODE equation.

du dv _ , du Jdv _

ETR R T

First order, linear, inhomogeneous, constant coefficient PDE system.
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