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Theorem (Superposition)

Ify1, Y2, . .., yn are solutions of the homogeneous equation
Y + o1 )y + -+ pr()Y + po(x)y =0,
then the linear combination
y(x) = Cya(x) + Cayz(x) + -+ - + Cuyn(x)

is also a solution for arbitrary constants C1,Cy, ..., Cy.




Theorem (Existence and uniqueness)

Suppose pg through p,—1, and f are continuous functions on some interval I, a is a number in I, and
bo, b1, ..., by—1 are constants. Then the equation

Y + P @y + -+ 0y + po@)y = £(x)
has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y@) =by, v@=b, ..., y" V@) =b,.
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To use superposition, we need enough linearly independent solutions.

The functions y1, v, . .., yn are linearly independent if the equation
ayir+coy2+---+cuy, =0

has only the trivial solutionc; =c; =---=¢, =0.

If there is a solution where, e.g., c; # 0, then we can solve for y; as a linear combination of
the others. The functions are then linearly dependent.

3x

Example: Show that ¥, ¢?*, ¢3* are linearly independent.

Consider
c16* + ce®™ + 3¢’ = 0.

Writez=¢* = z2=¢andz®=¢* =
1z + 0222 + c32° = 0.

This polynomial must be zero for any positive number z = ¢* = itis identically zero
= c=c=c=0 = thefunctions are linearly independent.
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Let’s show that ¢, %, ¢** are linearly independent in another way:

Start with
c1e +ch +C3e3 =0.

Divide by &3
cie X + e +c3=0.

Trueforallx,soletx > 0 = ¢3=0.
So ¢1e* + cpe® = 0. Rinse, repeat!

A third way: Suppose
c165 + 6™ + 3> = 0.

This has to be true for all x, so pluginx =0,x =1, and x =2

We must have
_ 2 3 _ 2 4 6 _
c1+c+c3=0 and cie+ce”+c3e’ =0 and cie” + ce” +cze” = 0.

Solving the three equations yields c; = c; = c3 = 0.

A so-called Wronskian can also be used, but let’s skip it.
The main thing to understand is the meaning of linear independence!
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Example: The functions e, e™*, and cosh x are linearly dependent:

X +e™

5 or 2coshx—e* —e™* =0.

coshx =

Note: You must consider all the functions at once. The functions e* and ¢™ are linearly
independent.

Theorem
Ify1, yo, ..., yn are linearly independent solutions of the homogeneous equation

Y+ pra @y + -+ p1@)Y + po(x)y =0,
then the general solution can be written as

y(x) = Cry1(x) + Caya(x) + - - + Cpryn(x).
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Example: Solve v —3y” —y + 3y =0 subjectto y(0) =1,y (0) =2, and y”(0) = 3.
Try: y = ™

rPe* =3 r%e™ — e +3 ¢* =0.

—— —_——  —— ——

yll/ y// yl y

We divide by e'*: =3 —r+3=0.
Find the roots! By trial and error r = -1, 1, 3.
So solutionsare y; =€, Yy =€, yz=e".

The general solution is
y=Cie "+ Coe* + Cse™.

Initial conditions say
1= y(O) =C1+C+C3, 2= y’(O) =—-C1+C,+3C3, 3= y"(O) =C1+Cy+9Cs.
We solve these to find C; = -1/, C; =1, and C3 = 1/4.

So the particular solution to our problem is:

- 1
— -X X = 3%
y= 48 +e +4e .
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The real trick is finding the roots.
There are complicated formulas for degree 3 and 4 polynomials.
There is no formula for degree 5 or higher.

But there are always 7 roots for an n'" degree polynomial, though they can be repeated,
and they may be complex.

One often uses a computer, but a good strategy to do it by hand is to plug in some easy
numbers to start with: Start with 0, then try 1 and —1, then try other integers.

E.g., for® —3r> —r+3 =0, we find r; = 1 and r, = —1 are roots by trying.
The third root r3 is easy to find:
P =3 —r+3=(—r)r—r)r-rs)
So the constant term is
3 = (-r1)(-r2)(-13).
So 3 = (-1)(1)(-r3) orr3 = 3.
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If a real root r is repeated k times, then we have solutions

erx, xerx, x2erxl o, xk—lerx'

Example: Solve y®) — 3y + 3y” —y = 0.

The characteristic equationis  * —3r3 +3r2 —r = 0.
By inspection 1 — 313 + 32 —r = r(r — 1)°.

The rootsarer =0,1,1,1.  (r = 1 has multiplicity 3)

The general solution is

y= (C1 + Cox + C3x2) e+ Cy
——
terms coming from r=1 from r=0
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= (P-2+27=0 = (r-17+1)"=0.

Roots are 1 + i, both with multiplicity 2.



Complex roots come in pairs ¥ = @ + if3.

If we have such a pair each repeated k times, the corresponding solution is
(Co+ Crx + - - - + Gy x* 1) e cos(Bx) + (Do + Dix + - + Dy_1x*71) e sin(Bx).

Example: Solve y®) — 4y + 8y” — 8y’ + 4y = 0.

The characteristic equationis * —4r° + 82 —8r+4 =0
= (P-2+27=0 = (r-17+1)"=0.

Roots are 1 =+ i, both with multiplicity 2.

The general solution is

y = (C1 + Cax)e* cos x + (C3 + Cyx) e sin x.



