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Consider the problem y' =5y +6y=0,

y0 =1 y0O)=7

It’s a second order linear homogeneous equation with constant coefficients.
(Constant coefficients means that in y” + p(x)y’ + g(x)y = f(x), the p and g are constants.)

Let’s guess a solution. What function stays more or less the same when differentiated?

The exponential!

Wetry y=¢™ (Germans call this “ansatz”)

y' =5y +6y=0,

e -5 re* +6 €* =0,
S~ S~ S~

v’ v y
P =5r+6=0
(r-=2)r-3)=0.

Sor=2orr=3. Lety; =e*andy, =¢€*.

Exercise: Check that y; and y, are solutions.
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Still considering Yy’ =5y +6y=0, y(0) =1, y(©0)=7.

e?* and €** are linearly independent: If not, >* = Ce?* for a constant C. So ¢ = C. Nonsense!
The general solutionis  y = C1e* + Cpe>* Y = 2Cae% + 3Cpe>*

1=y(0)=C1+Cy,

7=vy(0) =2Cq + 3C,.

Solve!
e.g.,2=2C1+2C2 = (7—2)2(2—2)C1+(3—2)C2 = (=5 = (C=-4

So the solution is:  y = —4e®* + 5¢3*
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ar?> +br+c=0.
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Solve for the r: 7,7 =

Theorem
Suppose that r1 and ry are the roots of the characteristic equation.

(i) If r1 and ry are distinct and real (when b? — 4ac > 0), the general solution is
y = C1e""" + Cpe™*.
(ii) Ifry = ry (when b? — 4ac = 0), the general solution is

y=(C1 + Cox)e™.
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Example: Solve y” —k%y = 0.
Characteristic equation is ¥ — k> = 0 or (r — k)(r + k) = 0.

= ¢ and ¢ are the two linearly independent solutions, and the general solution is

y= C16 + Cpe™*,

Example: Solve y” — 8y’ + 16y = 0.
Characteristic equation is ¥ — 87 + 16 = (r — 4)2 =0.

We have a double root 1 = 1, = 4. The general solution is

y=(C1+Cxx) ¥ = Cre* + Coxe™™.
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In a sense, a doubled root rarely happens for a randomly chosen equation,
but it does occur in real-world problems (e.g., critically damped mass-spring system).

Why does xe’* work if we the root is doubled?
Think of two distinct roots 71 and r; very close.
e?’zx _ erlx
_— is a solution.
r—n

Doubled root is like taking the limit r; — 7.

So we are taking the derivative of ¢™* as if  is the variable:

X

% [e’x] = xe

Voila!



