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Example: Solve Y +2xy = o, y(0) =-1

So p(x) = 2x and f(x) = e

The integrating factor is r(x) = of PRI = o2, Compute:
2

2 2 )
Yy +2xe"y =" e

216 -
e"zy:ex+C

42 42
y=e"" +Ce

Solve for the initial condition: =1 = y(0) =1+ C,so C = -2.
So

y= e _ 2
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Remark 2: I find it is easiest to remember just the formula for r(x) and how to repeat the
process instead of memorizing the final formula.

Remark 3: Can't always solve in closed form. A formula with a definite integral is useful.
Consider ¥ +p(x)y =f(x), y(xo) = yo.

We have an explicit formula for the solution:

y(x) = e /’f; pl)ds (/xe/x; p(s)dsf(t) dt + yo (*)

Note all the “dummy” variables to write it correctly.

Exercise: Write the solutionof ' +y = e, y(0) =10 as a definite integral
(no closed form solution exists).

Remark 4: There is a stronger version of Picard’s theorem for linear equations: Formula (*)
says that if f(x) and p(x) are continuous on an interval (g, b), the solution also exists and is
continuous on (4, b). Nothing like that weird nonlinear i’ = y*> we saw before.
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Let x = kg of salt in tank. Let t be time in minutes.
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Ax =~ (rate in X concentration in)At — (rate out X concentration out)At
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The tank is well stirred and solution flows out at 3L/min.
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Let x = kg of salt in tank. Let t be time in minutes.

For small change At in t, x changes approx. as
Ax = (rate in X concentration in)At — (rate out X concentration out)Af 3L/min

Divide by At and take the limit At — 0:

dx . . .
T3 = (rate in X concentration in) — (rate out X concentration out)

Here rate in = 5, concentration in = 0.1, rate out = 3, concentration out =

So
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I x=0.5

x ) dx+ 3
60 + 2t dt 60 +2t
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Att=0,x=10: 10=x(0) =8 +C(60)>*=6+C(60) > = C=4(60°?)~ 1859.03.

Here’s a graph:
So when is the tank full?

The tank is full when 60 + 2f = 100, or t = 20.

What is x when tank is full?

4
x(20) = 601+0 0 4 (60 + 40)3"2

~ 10 + 1859.03(100) /% ~ 11.86

The concentration when the tank is full is
approx. 11:86/100 = 0.1186 kg/liter.

(we started with 1/6 or 0.1667 kg/liter.)
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