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Second order linear differential equation:

A(x)y′′ + B(x)y′ + C(x)y = F(x).

Or
y′′ + p(x)y′ + q(x)y = f (x).

Linear means that the equation contains no powers nor functions of y, y′, and y′′.

If f (x) = 0, then the equation is homogeneous:

y′′ + p(x)y′ + q(x)y = 0.

Examples:

y′′ + k2y = 0 Two solutions are: y1 = cos(kx), y2 = sin(kx).
y′′ − k2y = 0 Two solutions are: y1 = ekx , y2 = e−kx.
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Theorem (Superposition)
Suppose y1 and y2 are two solutions of the homogeneous equation y′′ + p(x)y′ + q(x)y = 0.

Then

y(x) = C1y1(x) + C2y2(x)

also solves the equation for arbitrary constants C1 and C2.

We call C1y1 + C2y2 a linear combination of y1 and y2.

Proof: Let y = C1y1 + C2y2. Then

y′′ + py′ + qy = (C1y1 + C2y2)′′ + p(C1y1 + C2y2)′ + q(C1y1 + C2y2)
= C1y′′1 + C2y′′2 + C1py′1 + C2py′2 + C1qy1 + C2qy2
= C1(y′′1 + py′1 + qy1) + C2(y′′2 + py′2 + qy2)
= C1 · 0 + C2 · 0 = 0. □
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An operator is a thing that eats functions and spits out functions.

Define the operator L by
Ly = y′′ + py′ + qy.

The homogeneous differential equation becomes Ly = 0.

The operator L is linear if

L(C1y1 + C2y2) = C1Ly1 + C2Ly2 (almost like multiplying by L)

Nicer proof of the theorem:

Suppose that Ly1 = 0 and Ly2 = 0. Then

Ly = L(C1y1 + C2y2) = C1Ly1 + C2Ly2 = C1 · 0 + C2 · 0 = 0.
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Example: y′′ − k2y = 0 has solutions y1 = ekx and y2 = e−kx.

Recall that cosh t = et + e−t

2 , sinh t = et − e−t

2

So cosh(kx) = ekx + e−kx

2 = (1/2)ekx + (1/2)e−kx = (1/2)y1 + (1/2)y2 is a solution

And sinh(kx) = ekx − e−kx

2 = (1/2)ekx + (−1/2)e−kx = (1/2)y1 + (−1/2)y2 is a solution

sinh and cosh are sometimes more convenient than the exponential.

Exercise: Verify that

cosh 0 = 1, sinh 0 = 0,
d
dt

[
cosh t

]
= sinh t, d

dt

[
sinh t

]
= cosh t,

cosh2 t − sinh2 t = 1.
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Theorem (Existence and uniqueness)
Suppose p, q, f are continuous functions on some interval I, a is a number in I, and b0 , b1 are
constants.

Then the equation
y′′ + p(x)y′ + q(x)y = f (x),

has exactly one solution y(x) defined on the interval I satisfying the initial conditions

y(a) = b0 , y′(a) = b1.

Example: y′′ + k2y = 0 with y(0) = b0 and y′(0) = b1 has the solution

y(x) = b0 cos(kx) + b1
k

sin(kx).

Verify IC: y(0) = b0 cos(0) + b1
k

sin(0) = b0.

y′(x) = −kb0 sin(kx) + b1 cos(kx) ⇒ y′(0) = −kb0 sin(0) + b1 cos(0) = b1.
Similarly, y′′ − k2y = 0 with y(0) = b0 and y′(0) = b1 has the solution

y(x) = b0 cosh(kx) + b1
k

sinh(kx).
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k
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Two functions y1 and y2 are linearly independent if one is not a constant multiple of the other.

Theorem
Let p, q be continuous functions. Let y1 and y2 be two linearly independent solutions to the
homogeneous equation y′′ + p(x)y′ + q(x)y = 0. Then every other solution is of the form

y = C1y1 + C2y2. (i.e., that’s the general solution)

Example: y1 = sin x and y2 = cos x solve y′′ + y = 0.

sin and cos are linearly independent: If sin x = A cos x for some constant A, then let x = 0
to get A = 0. But then sin x = 0 for all x, that’s nonsense.

y1 and y2 are linearly independent and

y = C1 cos x + C2 sin x

is the general solution to y′′ + y = 0.
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Example: y′′ − 2x−2y = 0 has solutions y1 = x2 and y2 =
1
x

.

To see y1 and y2 are linearly independent, suppose y1 = Ay2.

Solve for A =
y1

y2
= x3. That’s not a constant! ⇒ y1 and y2 are linearly independent.

⇒ y = C1x2 + C2
1
x

is the general solution.
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If you have one solution we can find the second via the reduction of order method.

Suppose y1 solves y′′ + p(x)y′ + q(x)y = 0.
Try to find a second solution of the form y2(x) = y1(x)v(x). Plug in:

0 = y′′2 + p(x)y′2 + q(x)y2 = y′′1 v + 2y′1v′ + y1v′′︸                 ︷︷                 ︸
y′′2

+p(x) (y′1v + y1v′)︸        ︷︷        ︸
y′2

+q(x) y1v︸︷︷︸
y2

= y1v′′ + (2y′1 + p(x)y1)v′ +
����������: 0(

y′′1 + p(x)y′1 + q(x)y1
)
v.

So y1v′′ + (2y′1 + p(x)y1)v′ = 0.

Write w = v′ and we have a first order ODE y1w′ + (2y′1 + p(x)y1)w = 0.

Solve for w, and find v by antidifferentiating.

Example: y1 = x is a solution to y′′ + x−1y′ − x−2y = 0, let’s find y2.

⇒ xw′ + 3w = 0 ⇒ w = Cx−3 ⇒ v =
−C
2x2 ⇒ y2 = y1v =

−C
2x

Any C works, e.g., C = −2 for y2 =
1
x

. ⇒ The general solution is y = C1x + C2
1
x

.
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We can even just write down a formula

y2(x) = y1(x)
∫

e−
∫

p(x) dx(
y1(x)

)2 dx



A useful warm-up for next time:

Exercise: For x2y′′ − xy′ = 0, find two solutions, show that they are linearly independent
and find the general solution.

Hint: Try y = xr.

Equations of the form ax2y′′ + bxy′ + cy = 0 are called Euler’s equations or Cauchy–Euler
equations.
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