2. Introduction to differential equations
(Notes on Diffy Qs, 0.2)

Jit{ Lebl

Oklahoma State University

The textbook: https://www.jirka.org/diffyqs/


https://www.jirka.org/diffyqs/

Mathematics is the language of science, and differential equations are the most basic and
important part of it.



Mathematics is the language of science, and differential equations are the most basic and
important part of it.

You've already solved differential equations in calculus: You found antiderivatives.



Mathematics is the language of science, and differential equations are the most basic and
important part of it.

You've already solved differential equations in calculus: You found antiderivatives.

Example you may not have seen:
(Newton’s law of cooling with variable ambient temperature)

dx

I +x =2cost.



Mathematics is the language of science, and differential equations are the most basic and
important part of it.

You've already solved differential equations in calculus: You found antiderivatives.

Example you may not have seen:
(Newton’s law of cooling with variable ambient temperature)

dx +x =2cost
7 '
x is the dependent variable

t is the independent variable



Mathematics is the language of science, and differential equations are the most basic and
important part of it.

You've already solved differential equations in calculus: You found antiderivatives.

Example you may not have seen:
(Newton’s law of cooling with variable ambient temperature)

d—x+x—2cost
dt B '

x is the dependent variable
t is the independent variable

It is a first order differential equation.
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Finding solutions is hard: No completely general method.
For simple cases we find exact analytic solutions.

For complicated cases we may have to be satisfied with approximate, numerical solutions.
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Real-world problem

abstract’/ \interpret
solve

Mathematical — . Mathematical
model solution
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Example: (Exponential growth model)
P population of bacteria in a Petri dish.

At time 0, there is 100 bacteria, 10 seconds later there are 200.
Question: How many bacteria will there be at time 60 (1 minute)?

Assume enough food and space.

Rate of growth is proportional to the population, so our model is:

P
d— = kP (k > 0 constant),
dt
Solutionis P(t) = Ce®* (C a constant).

Check: ‘;—I; =Ckét =kP
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Typically k is known and we solve one initial condition such as P(0) = 100 to get C.
Example: Suppose P’ = P is the equation.

P(t) = Ce!  (giving all solutions) is called the general solution.

Given the initial condition P(0) = 100 the solution

P(t) =100¢' is called the particular solution.
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Four fundamental equations: (y dependent variable, x independent variable)
dy
1. ==ky, k>0
ax YK
General solution:  y(x) = Ce®
dy
2. —=-—
e ky, k>0
General solution:  y(x) = Ce™**
d?y
dx?
General solution:  y(x) = Cq cos(kx) + C; sin(kx)
second order differential equation so two unknown constants C; and Co.

=Ky, k>0

d?y
=Ky, k>0
dx? v

General solution:  y(x) = C1é + Coe™  or  y(x) = D; cosh(kx) + D, sinh(kx)
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For those that have not seen sinh and cosh, the hyperbolic sine and hyperbolic cosine:

e +e™ . X —e*
sinhx =

hx =
cosh x B >

Some properties:

cosh0=1, sinh0=0, i coshx = sinhx, i sinh x = cosh x.
dx dx

Remark: The shape of the graph of cosh is called a catenary. The arch in Saint Louis is an
inverted cosh:
y = —127.7 ft - cosh(x/127.7 ft) + 757.7 ft.
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Compare with the graphs of exponential growth ¢* and exponential decay ¢™

150

125

100

—exp(x)

150

125

100



Just for completeness here are the graphs of sin and cos:




