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Note: D = 0 givesy = x + 2, butno D gives y = x.
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Substitution in differential equations is the same idea as for integrals. You guess.

Some patterns to look for:

When you see  Try substituting

2

vy v=y
yzy/ v = ]/3
(cosy)y’ v =siny
(siny)y’ v =cosy
ye¥ v=¢Y

Try to substitute in the “most complicated” part.

Nothing wrong with making many guesses.
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Otherwise v = y!~"
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Bernoulli equations:  y’ + p(x)y = g(x)y".
Ifn=00orn=1 = linear, we can solve.

Otherwise v = y!~"

will result in a linear eq.
Example: Solve xy’ +y(x+ 1) +xy° =0, y(1) =1.
Note: p(x) = (x + 1)/x and g(x) = —1. (eq. isy’ + Xy = —1)
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We just need to solve this linear equation.
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1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x
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v - @v =4 (v + P(x)v = F(x) where P(x) = —@ and F(x) = 4)
y=1 = ol)=@E1)*=1

Assume x > 0 (OK as initial condition is where x = 1)

x X
Solution is: v(x) = ¢~ P (/ eflt PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4



v - @v =4 (v + P(x)v = F(x) where P(x) = —@ and F(x) = 4)
y=1 = ol)=@E1)*=1

Assume x > 0 (OK as initial condition is where x = 1)

x X
Solution is: v(x) = ¢~ P (/ eflt PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4

X -ated
= o(x) =" ! (/ & g+ 1)
1 t




v - @v =4 (v + P(x)v = F(x) where P(x) = —@ and F(x) = 4)
yh=1 = o) =@E1) =1

Assume x > 0 (OK as initial condition is where x = 1)

X x t
Solution is: v(x) = ¢~ P (/ eh PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4

X -dt+d
= o(x) =Pt ( / 46 t4 dt + 1) (no closed form expression, that’s OK)
1



v - @v =4 (v + P(x)v = F(x) where P(x) = —‘@ and F(x) = 4)

yH=1 = o1)=@y1)*=1

Assume x > 0 (OK as initial condition is where x = 1)

X x t
Solution is: v(x) = ¢~ P (/ eh PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4

X -dt+d
= o(x) =Pt ( / 46 t4 dt + 1) (no closed form expression, that’s OK)
1

Unsubstitute:

yt=v



v - @v =4 (v + P(x)v = F(x) where P(x) = —‘@ and F(x) = 4)

yH=1 = o1)=@y1)*=1

Assume x > 0 (OK as initial condition is where x = 1)

X x t
Solution is: v(x) = ¢~ P (/ eh PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4

X -dt+d
= o(x) =Pt ( / 46 t4 dt + 1) (no closed form expression, that’s OK)
1

Unsubstitute:

-4 _

yr=v = y:v_1/4



v - @v =4 (v + P(x)v = F(x) where P(x) = —‘@ and F(x) = 4)

yH=1 = o1)=@y1)*=1

Assume x > 0 (OK as initial condition is where x = 1)

X x t
Solution is: v(x) = ¢~ P (/ eh PEYASE(F) dt + 1
1

—4x+4

e PO — axp / A+ ds| = emtr-ainHe _ —dvra 4 _ €
1 5 x

X
e [ Pls)ds _ PArraln(0-4 _ 4r-4,4

X -dt+d
= o(x) =Pt ( / 46 t4 dt + 1) (no closed form expression, that’s OK)
1

Unsubstitute:

14 _ e—x+1

-4 _ _
e 1/4
x(4f1xe§4dt+1)

yr=v = y=vu
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Homogeneous equations:
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Homogeneous equations: y' =F(£) Tryov=

< Yy =v+x0



1 — — ’
Homogeneous equations: y' =F (%) Tryov=1 Y =v+xo

yY=F() = v+x'=F0)



Homogeneous equations: y' =F (%) Tryov=1 Y =0+ x0

yY=F() = v+x'=Fo) = x'=F0)-v



Homogeneous equations: ' =F (¥ Tryov=1Y ' =v+xv
8 q Y b y x y
v 1

F(v)—vzx

yY=F() = v+x'=Fo) = x'=Fo)-v =



Homogeneous equations: y' =F (%) Try v = % Y =0+xv
/

1

y=F() = v+x/=Fov) = x'=Fov)-v = P(v?)]—v ==

1
F(v)-v

Implicit solution: / dv=In|x|+C



Homogeneous equations: y' =F (%) Tryov=1 Y =0+ x0

y=F() = v+x/=Fov) = x'=Fov)-v = P(vz)]—v = 91?
Implicit solution: / F(v)l— ” dv=1Inl|x|+C

In the solution, we assume x > 0 or x < 0 depending on the initial condition.



Example: Solve x%y' =y?>+xy, y(1)=1.
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Assume x > 0 due to the initial condition.



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: /F(v)—v /—dv—1n|x|+C




Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: / ! dv:/ldv:1n|x|+C = _—1:1nx+C
F(v)—v 02 v



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0

Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

-1
Inx+C

Solve: / L dv:/ldv:ln|x|+C = _—1:1nx+C = 0v=
F(v)—v 02 v



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0

Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

-1
Inx+C

Solve: / L dv:/ldv:ln|x|+C = _—1:1nx+C = 0v=
F(v)—v 02 v
y -1

= x=1nx+C



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: /F(v)l_vdv:/z%dvzlnlx|+C = %zlnx+C = Uzln;1+C
Y -1 =X
- YT hx+C

x=1nx+C



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: /F(v)l_vdv:/z%dvzlnlx|+C = %zlnx+C = Uzln;1+C
- ¥y 1 -
x Inx+C Y x+C

1=y(1)



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
Solve: /F(v)_vdv—/;dv—ln|x|+C = 7—lnx+C = U_lnx+C
o Yo 1 __ X
x Inx+C Y= TxtcC
-1

In1+C



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
Solve: /F(v)_vdv—/;dv—ln|x|+C = 7—lnx+C = U_lnx+C
o Yo 1 __ X
x Inx+C Y= TxtcC
-1 -1
1=y(1)= —

1+C C



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1

Solve: /F(v)_vdv—/;dv—ln|x|+C = 7—lnx+C = U_lnx+C
o Yo 1 __ X
x Inx+C Y= TxtcC
1=y(1)= 1 _—1 = C=-

nl+C C



Example: Solve x?y =y*+xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v) =v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: /F(v)l_vdv:/z%dvzlnlx|+C = %zlnx+C = Uzln;1+C
o Yo 1 __ X
x Inx+C Y= TxtcC
-1 -1
1=y = nitCc _C €=-
—x
= y=

Inx-1



