
Using and Managing GDM

Jiri (George) Lebl

Abstract

GDM does many things, however it contains almost
no documentation. This talk (and paper) is an at-
tempt to correct this situation. GDM was written
as a simpler alternative to XDM and is in fact a
complete rewrite and does not use any XDM code.
It is simpler in places and more advanced in oth-
ers, so it may not perhaps replace all the applica-
tions of XDM, but it aspires to be good enough to
replace most, while having some other neat features
that XDM doesn’t have and overall being more user
friendly. This paper will guide users and sysadmins
through the design of GDM and the more advanced
setups, such as running multiple servers, customiz-
ing the login, setting up XDMCP (with a complete
explanation of how XDMCP works), running X ter-
minal labs with GDM, communicating with GDM us-
ing the socket/pipe protocol. Also tips and solutions
for problems in setups that users have encountered
are interspersed throughout the discussion. Future
planned enhancements are also given some attention.

1 Introduction

GDM, the GNOME Display Manager, is the login
manager that is by now familiar to most GNOME
users. It does a lot more than logging you in, it
starts the X server, manages remote connections us-
ing XDMCP, allows users to shut down, reboot or
suspend the machine and basically has to do all the
behind the scenes stuff so that GNOME (or any other
desktop) has an X server to start on. This is basi-
cally what the XDM software does, however GDM is
a complete rewrite and shares no code with XDM.
The KDE Display Manager on the other hand is ba-
sically XDM retrofitted with a KDE style login box
and setup program.

GDM was originally written by Martin K. Pe-
tersen, but he has since stopped maintaining it. He
has for a while worked on GDM3, which was to be a
cleaner rewrite of GDM2, but this rewrite never hap-
pened. GDM2 is really the second version of GDM
and this is the GDM currently in use and the one I
am describing. Around the spring of 2001, GNOME

2.0 was around the corner (or it seemed more around
the corner than it actually was), and we didn’t have a
working display manager. The problem with GDM2
was that it was not finished and was basically not
working at all. Various distributions had their own
very large patches which made it work in various
ways, but mostly broke it in various different ways.
So I started applying the distribution patches and
later took over maintaining GDM2 and it became
my pet project to add features and easter eggs to (of
course the panel still has the best easter eggs, and
if you haven’t played ”gegls from outer space”, you
have not lived). Lately I have however concentrated
a lot more on school and actually finishing a degree
and perhaps one day becoming a productive mem-
ber of society. If you can be productive with a pure
mathematics degree is another question.

2 GDM Design

The basic design of GDM stresses security, modular-
ity, robustness and user friendliness much more than
XDM. GDM runs as a series of different processes,
with different privileges. The main GDM daemon
process is the behind the scenes puppet master. It
doesn’t by itself manage any sessions, however it has
information about all the other processes. This mas-
ter process is run as asynchronously and should never
run operations which could cause it to hang even for
a short while. It also handles communicating using
the XDMCP protocol and using the local socket pro-
tocol, but it delegates all the the work of starting
and managing an X server and a session to a slave
process. A separate slave process is started for each
X server. This slave process can run synchronously,
thus can hang when for example waiting on the X
server, this makes the design a lot simpler, but is
also the source of many design headaches and thus
this may be changed later. After a session ends, the
slave has two options. It either resets the X server and
puts up another login box, or it kills the X server and
lets the master process run another slave for this dis-
play. The latter is now the default setup and should
be preferred because of security issues even though it

1

Using and Managing GDM

is a little dirtier (there will be a short flicker between
sessions). The former is still left as a possibility since
some X servers are very buggy tend to lock the ma-
chine on such a complete restart. The slave sends all
pids about its subprocesses to the master and so if the
slave crashes, the master can clean up and try again.
Of course crashing is considered very bad form, but
GDM can handle crashes somewhat cleanly, and per-
haps let the user log in. For a picture of how this all
looks see Figure 1.

Master process

slaveslave

X :0 X :1

user
session login

Figure 1: Structure of GDM Processes.

In the XDM design, the login dialog runs with
the same privileges as XDM itself, that is root. So
a potential security hole in the GUI could compro-
mise the system. GDM on the other hand sets up
an unprivileged user and the login dialog is run as
this user. It can only communicate with the slave
that started it using it’s standard input and output.
The basic design is that the slave just gives it a series
of questions and the login dialogs asks these ques-
tions of the user. When the user selects some action
which is not an answer to a question, such as when
the user selects the configurator, the login dialog can
interrupt the question. However it is important to
understand that the login dialog has very little infor-
mation about the user and has almost no privileges.
This can sometimes cause problems in the design, for
example with the face browser. The problem here
is that the pictures are only accessible to root since
they are in users directories. So the slave has to read
in the .png file and send it over the standard input
to the greeter. But despite these problems this is a
much safer and much more secure design than XDM.
The login dialog is really in the position of the user, it
can only answer questions, so it would be very tough

to exploit. Even if the user would somehow, perhaps
through some bug in GTK+, run perhaps a shell as
the GDM user, he could not do much damage be-
yond perhaps shutting down GDM or making GDM
unusable, but he could do no worse to the system
itself. Another example of why this is safer are for
example the Shutdown, Reboot Suspend and Con-
figure menus. Usually you would not want these on
remote connections, however perhaps there might be
a bug (or an exploit) and the menu item would show
up and a remote user might think he could shut down
the server. But all the login dialog can do is relay this
information to the master process and then the mas-
ter process sees if this display is even allowed to do a
shutdown.

GDM manages three different types of displays
(X servers). The first type is the static X server
which comes from the configuration file. Usually this
is the X server set up for the :0 display slot, and
it will always run. You can run several different X
servers this way if you want. The second type of dis-
play is the flexible (or flexi for short) X server. This
X server is run on request by running the program
gdmflexiserver or by clicking on the appropriate
icon that is installed with GDM. The flexi server lets
a user log in once and then quits. This is for example
useful if you are logged in as user A, and user B wants
to log in quickly but you don’t wish to log out. The
X server takes care of the virtual terminal switching
so it works quite transparently in fact. There is also a
flexi server as an Xnest, that is an X server in a win-
dow. This is requested by running gdmflexiserver
--xnest or again clicking on the appropriate icon.
The last display type is an XDMCP connection. In
this case there really isn’t any local X server run. The
X server runs on some remote machine and just re-
quests that it be managed for one session by the local
GDM.

All the configuration for GDM is stored in a file
called gdm.conf and usually this is in the directory
/etc/X11/gdm. The directory depends on the local
installation of course. This is a plain text file with
an ini style syntax. One of the many reasons that
this is text only is that it is even possible to read
from shell scripts. The standard distributed con-
figuration file has many comments which document
how to work with this file. The file isn’t reread as
soon as it’s modified. You must tell GDM to restart
for changes to take affect (see also Section 6). Al-
ternatively GDM can reread certain keys on the fly
without being restarted, but you must use the socket
protocol to tell GDM about this. This is what is
used by the gdmsetup program to alert GDM to

2

Using and Managing GDM

changes. You will probably want to use the com-
mand gdm-safe-restart which is usually installed
in /usr/sbin/. This will restart GDM after all the
users have logged out.

You will also notice that the GUI setup program
does not contain all the options of the configuration
file. This is partly on purpose as the GUI program
is designed for the things most normal desktop users
would wish to change, while many configuration op-
tions are left just in the configuration file for advanced
setups only. Some more options are likely to appear
in the GUI setup program, but definitely not all. De-
sign goal here is that the graphical setup program
should not allow you to completely hose your setup,
to do that you should edit the text configuration file
by hand.

There is also the possibility of having several dif-
ferent login dialogs with this setup, and in fact two
are distributed with GDM. The first is the standard
greeter, which uses only standard GTK+ widgets, is
low-weight on network performance, and will be the
one that will have the accessibility framework plugged
in. This is your low fat, conservative and not very
glitzy login box that does just that, log you in. On the
other hand we also have the graphical greeter which
is this über themable, very graphical, non-accessible,
but very cool looking login ”dialog” (you can’t really
call it a dialog since it takes over the entire screen).
While GDM is by default shipped with the standard
greeter turned on, people like Red Hat have made
the graphical greeter default for local connection and
made very cool looking login screen theme. It is the-
oretically possible to write third party login dialogs,
but the protocol is still subject to change, and it
hasn’t really been designed this way.

3 Initialization Scripts

The setup of the X servers and of the user sessions is
handled by scripts, so that local installations can cus-
tomize their setup appropriately. The base setup di-
rectory is /etc/X11/gdm. Before I discuss the differ-
ent sessions let’s discuss the setup scripts. These are
stored in the Init/, PostLogin/, PreSession/ and
PostSession/ directories. Note that the PostLogin/
is a very new addition which at the time of writing
is only in CVS. It will be available in versions 2.4.2.x
and higher. There can be several different files in each
directory and the first one found according to the fol-
lowing rule is executed. First the display name (e.g
:0 or remotehost:0) is tried, then the hostname of
the connecting host (useful for remote connections),
then XDMCP is tried for all XDMCP remote connec-

tions, then Flexi is tried for all flexible servers and
finally Default is tried if no other file was found.

The Init script is run as root when GDM sets up
the login display. It is run when the greeter is started
and can be used to initialize the display further, per-
haps run some other programs to run on the login
screen. The PostLogin script is run just after the
user has successfully entered the login information,
but before any session setup is done. This script is
useful for perhaps doing some setup on the home di-
rectory, something that must be done before the user
is actually logged in. The PreSession script is run
when the user is actually being logged in and some
setup has already been done, this script is for ex-
ample used to register the session with utmp/wtmp.
The PostSession script is run after the session ends
and is used for example to unregister the session with
utmp/wtmp.

Fairly standard environment is set for these
scripts. The PostLogin, PreSession and
PostSession scripts have the USER variable set
to the user who is logging in. If this is a remote
XDMCP session then REMOTE HOST is set to the
host from which the user is connecting from. HOME
will be set to the user’s home directory as set in the
password file.

Once the user has logged in, then one of the ses-
sion scripts is run. These are in /etc/X11/gdm/
Sessions/. Either the default one (named Default
or having a symbolic link named default pointing to
it) or the one the user picked is run. This is normally
run in a login shell so login stuff need not be read in
again. The contents of this file is different depending
on which session is selected, and different distribu-
tions have their own session scripts usually. This is
one part of the design likely to change at some point
in the future. Both GDM and KDM lack a very good
session setup and it would be good if such a setup
were in fact common to both. It would seem bet-
ter to have one script to do the most common setup
and then just run the desktop or window manager
selected. However the existing setup makes it very
simple to add new sessions. You just drop in a session
script in the /etc/X11/gdm/Sessions/ directory.

4 Multiple X Servers

As I mentioned before, GDM can manage a lot more
than just your one console display. In can manage
several local and remote connections as well. We will
focus on the remote connections in Section 5, so for
now let’s concentrate on the local case, that is on the
static and the flexible servers.

3

Using and Managing GDM

As I said before not all the configuration options
are in the graphical setup program, and this is one
area where you have to get your hands dirty and edit
the text configuration file. First GDM has definitions
of X server types. Normally you would really have
only one server type, the Standard. This server type
is defined by default as follows:

Definition of the standard X server.
[server-Standard]
name=Standard server
command=/usr/X11R6/bin/X
flexible=true

The name is what you want GDM to tell the user if
there is a choice of servers somewhere, and flexible
means that this server is available as a flexible server,
that is a local user may start a new login at any
time by running gdmflexiserver (or selecting the
appropriate icon from the GNOME menu). If there
is more than one server defined with flexible=true,
then the user is given a dialog with those choices upon
running gdmflexiserver.

Now that we have some servers defined, we need
to define some static servers, that is servers that run
all the time, and if they ever are killed, they are
respawned again. This is done in the [servers] sec-
tion in the configuration file. This section just lists all
the servers with keys being the display numbers. For
example to run two Standard servers, one on display
:0 and one on display :1, you would have:

[servers]
0=Standard
1=Standard

You can also pass an extra command line argument
here just by putting it after the Standard. You could
also create a new server type for this, but that’s not
necessary. So for example if we want to run the stan-
dard server on :0 but with bell volume 0, then we
could do

[servers]
0=Standard -f 0

Some people have a tendency to want to put the
virtual terminal argument on the server command
line. This should not be done for Linux as GDM al-
ready takes care of that if you have VTAllocation=
true in the [daemon] section of the configuration file
(which is the default as shipped). You could also tell
GDM which virtual terminal to start with by using
FirstVT=7 in the same section. The default is 7,
which will start X servers on the first available vir-
tual terminal from vt7 up. The X server can really

do this by itself, but there are cases where it gets it
wrong and you could end up with an unusable con-
sole. Again this only works on Linux currently, but of
course patches are welcome to make it work on other
systems as well.

5 XDMCP

As you know, X11 was designed with network in
mind, and so it makes sense to be able to run a
graphical session remotely on another computer. For
example you may have one large server with lots of
power, and thin clients which just manage the graph-
ics and input hardware, but all the programs run on
the server. Most of the time clients don’t really do
anything intensive, reading email and browsing the
web really doesn’t use up too much processing power.
So as long as you have fast network, since all the
graphics display must be passed through, it makes
sense to have only one powerful computer to do all
this.

XDMCP is the X Display Manager Control Pro-
tocol and was designed to allow client to run a login
remotely on another machine. Since the terminology
client and server gets all weird at this point, we’ll use
the following terminology. We’ll use X server for the
actual X server, we’ll use machine A for the machine
with the user at the keyboard (the machine running
the X server) and we’ll use machine B for the machine
with GDM that the user is trying to connect to. For
all this to work of course GDM must have XDMCP
enabled by setting Enable=true in the [xdmcp] sec-
tion, and this can in fact be done through the GUI
setup program. The protocol uses UDP packets on
port 177, but you should refrain from allowing this
over the internet, because of possible DoS attacks.
GDM takes great care to try to prevent these, but
there is no need for this to be open on the internet
anyway. GDM normally compiles with tcp wrappers
support and so you could just have tcp wrappers not
allow connections on port 177 from untrusted servers.

So the basically the way this works is that the
user runs an X server on machine A and gives it an
argument of -query hostname, which results in this
server sending a QUERY opcode of the XDMCP pro-
tocol to GDM running on machine B. Then GDM re-
sponds and tells the X server if it is OK or not to try
to connect. Then the X server works out the details
with the GDM running on machine B to set up a ses-
sion. After the user logs in and quits (or just quits
the login dialog), the corresponding slave is killed.
Usually the X server then resets and tries to connect
again, so it may seem to work in the same sort of

4

Using and Managing GDM

manner as static X servers.
You may notice that I said the user on machine

A runs an X server and this may not seem like some-
thing you’d want your users to have to do. You could
write a script or some such to start this automati-
cally, but the best way would be to also run GDM on
machine A (here, XDMCP can be disabled) and have
it manage the X server for you. However normally
when GDM runs a server it will want to take it over
and run a login dialog on it, so you must stop it from
doing that by putting handled=false in the server
definition. So let’s define a server type Terminal for
this

[server-Terminal]
name=Terminal server
command=/usr/X11R6/bin/X -terminate
flexible=false
handled=false

And in your [servers] section you would have

[servers]
0=Terminal -query machineB

The -terminate option is not strictly necessary here,
but without it GDM will always assume a logged in
state (since it can’t tell what machine B’s GDM is do-
ing) and then soft restarts and other things like that
won’t work at all without the user zapping the server
with Ctrl-Alt-Backspace. With -terminate, the
X server will kill itself on every reset and give GDM
a chance to catch up.

You could even have this available for flexible
servers. There however you would need to add the
-query argument in the server definition. So let’s say
we normally don’t connect to machine B, but some-
times we wish to run a flexible login there. You could
define a server called MachineB as follows, note the
flexible=true. Then when you wish to connect to
machine B, you run gdmflexiserver.

[server-MachineB]

name=Connection to Machine B

command=/usr/X11R6/bin/X -terminate -query machineB

flexible=true

handled=false

Sometimes however you have many machines to
connect to and you don’t want to change the setup
of every thin client to update this list of machines.
So what you want is run a chooser. This is han-
dled by the INDIRECT QUERY opcode, which cor-
responds to running the X server with an argument of
-indirect machineB. Machine B must have indirect
connections turned on by setting HonorIndirect=
true. What happens here is that GDM on machine B

will run a chooser application instead of a login box.
This chooser application in turn sends a QUERY to
the network, usually by broadcasting, though this can
be changed to a hardwired list of hosts. The ma-
chines that send a WILLING opcode, meaning they
are willing to accept a connection, will be listed in the
chooser dialog. When the user chooses a machine to
connect to, say machine C, the chooser dies and the
connection closes, but machine B remembers where
machine A wanted, and will remember it for about
30 seconds. Next the X server on machine A restarts
and sends another INDIRECT QUERY to machine
B. By this time machine B knows where machine A
wants to go and forwards the query to machine C.
This design is a little bit weird, and that’s because
originally it was supposed to work differently and the
X server itself was supposed to provide a chooser.
But that’s not the case (at least not with XFree86).
GDM actually extends the protocol here by adding
another two opcodes by which the machine C will
tell machine B to forget about the choice once the
connection succeeds. This way if the user picked the
wrong machine, he doesn’t keep getting machine C
login box for the next 30 seconds.

Again you’d probably want GDM on machine A to
again manage the X servers. But there is a small snag
as it is not easy to use the indirect setup with flexible
servers (it works just fine with static servers). The
problem is that if you have -terminate in the com-
mand line, the flexi server will end after the choice has
been made but will never run the actual login con-
nection to machine C. You could remove -terminate
from the command line, but in that case you would
have to kill the X server with Ctrl-Alt-Backspace,
since the local GDM has no clue when to terminate
the server.

Sometimes it would be nice to run an XDMCP
session in Xnest. And for this you don’t really need
GDM on machine A, you could just run Xnest your-
self. But running X nest is a little involved and
so GDM provides the gdmXnestchooser command.
This runs Xnest with -indirect localhost by de-
fault. If you supply a hostname on the command line
it will connect to that server instead. If you want
to run a direct session then supply a -d argument.
So to connect to machine B directly you would run
gdmXnestchooser -d machineB. Of course this all
assumes you have Xnest installed.

One thing about XDMCP that comes up quite
often is that the GDM on machine B has no way of
knowing that for example the user on machine A hit
the reset switch. It will just think that the user is
not doing anything. This is why GDM on machine

5

Using and Managing GDM

B periodically pings the X server on machine A. The
interval is controlled by the PingInterval setting on
current GDM versions and PingIntervalSeconds on
future versions of GDM (version 2.4.2.x and later).
The problem was that PingInterval was in minutes
with a default of 5, and this is way too long. If your
connectivity goes out for 5 minutes at a time, you re-
ally don’t want to use X over such a connection any-
way. Unfortunately this was copied from XDM which
was designed in the 80’s when such occurrences were
common and people had more patience. A reasonable
time is in fact a couple of seconds. In CVS and in
new releases of GDM version 2.4.2.x and up, you will
have only the PingIntervalSeconds with a default
of 15 seconds. GDM will then try to ping every 15
seconds and if it doesn’t get a response before the
next time it tries to ping the X server it assumes the
connection is down and shuts down the user’s session.
The default may still be fine tuned in the future as
perhaps a ping every 15 seconds may be too taxing
on the network. If you set this ping interval to 0 no
pings will be done.

You can also run a machine with no local static
servers just by having an empty [servers] section in
the configuration file. In this case XDMCP must be
turned on since it wouldn’t really make sense to run
GDM otherwise. If you don’t have any static servers
defined and XDMCP is off, GDM will run a single
local server and report an error as it considers this
a misconfiguration. Running only XDMCP and no
local X servers is again useful for those big machines
that serve entire labs of thin clients, but you don’t
want a local X server taking up memory since perhaps
it’s never used.

6 Communicating with GDM

GDM provides a unix socket protocol in /tmp/.gdm_
socket for communication. Basically you give com-
mands to GDM and it responds to you. Each com-
mand is given on a separate line and each command
(except CLOSE) should have a one line response from
GDM. The arguments just come space separated af-
ter the command. All of this is case sensitive so make
sure you use upper case. The client should first give
the VERSION command to check that the connec-
tion is working and get the version of GDM to see
if the command you desire is supported. Some com-
mands may require that they be run from a user that
is logged in on the console, only FLEXI XSERVER
requires that right now. The way to do that is to
first run the AUTH LOCAL command with the X
cookie that the user got for his console session. From

then on the connection is authenticated as local. Of
particular interest here is the CONSOLE SERVERS
command which lists all the servers running on the
machine. This should be useful to anyone wishing to
write some virtual console switcher or manager.

The gdmflexiserver command actually provides
a way to send arbitrary commands to GDM with-
out writing any code and could be used to debug
or perhaps in scripts (however gdmflexiserver does
require X to be running). Arbitrary command is
run with the --command=COMMAND option. If you
wish to run AUTH LOCAL first you would also add
--authenticate, although only FLEXI XSERVER
uses this currently. You can also pass --debug so
that you get line by line output from the connec-
tion. As an example we get a list of the console X
servers with the following (see description of CON-
SOLE SERVERS command below)

$ gdmflexiserver --command=CONSOLE_SERVERS
OK :0,jirka,7

Following is a reference for communicating with
GDM through the /tmp/.gdm_socket socket.

Command: VERSION

Description: Query version

Supported since: Supported since: 2.2.4.0

Arguments: None

Answers: GDM gdm version

Command: AUTH LOCAL

Description: Setup this connection as authenticated
for running FLEXI XSERVER, because
all full blown (non-Xnest) servers can be
started only from users logged in locally,
and here GDM assumes only users logged
in from GDM. They must pass the xauth
MIT-MAGIC-COOKIE-1 that they were
passed before the connection is authenticated.

Supported since: 2.2.4.0

Arguments: xauth cookie
xauth cookie is in hex form without a 0x prefix

Answers: OK
ERROR err number description

0 = Not implemented

100 = Not authenticated

999 = Unknown error

6

Using and Managing GDM

Command: FLEXI XSERVER

Description: Start a new X flexible server. Only supported
on connection that passed AUTH LOCAL.

Supported since: 2.2.4.0

Arguments: xserver type
If no arguments, start the standard X server.

Answers: OK display
ERROR err number description

0 = Not implemented

1 = No more flexi servers

2 = Startup errors

3 = X failed

4 = X too busy

6 = No server binary

100 = Not authenticated

999 = Unknown error

Command: FLEXI XNEST

Description: Start a new flexible Xnest server

Supported since: 2.3.90.4
Note: supported on an older version
from 2.2.4.0, but since 2.3.90.4 you must
supply 4 arguments or ERROR 100 will be
returned. This will start Xnest using the
XAUTHORITY file supplied and as the uid
same as the owner of that file (and same as
you supply). You must also supply the cookie
as the third argument for this display, to
prove that you indeed are this user. Also this
file must be readable ONLY by this user, that
is have a mode of 0600. If this all is not met,
ERROR 100 is returned.

Arguments: display uid xauth cookie xauth file
The display is the display the Xnest should run
on, the uid is the user id of the requesting user,
the xauth cookie should be the MIT-MAGIC-
COOKIE-1, the first one gdm can find in the X
authority file for this display, and the xauth file
is the X authority file for that display. If that’s
not what you use you should generate a cookie
first. The cookie should be in hex form.

Answers: OK display
ERROR err number description

0 = Not implemented

1 = No more flexi servers

2 = Startup errors

3 = X failed

4 = X too busy

5 = Xnest can’t connect

6 = No server binary

100 = Not authenticated

999 = Unknown error

Command: CONSOLE SERVERS

Description: List all console servers, useful for Linux
mostly. Doesn’t list XDMCP and Xnest
non-console servers.

Supported since: 2.2.4.0

Arguments: None

Answers: OK server;server;...
Note: The format for server is display,user,vt.
user can be empty in case no one logged in
yet, and vt can be -1 if it’s not known or not
supported (on non-Linux for example). If the
display is an Xnest display and is a console one
(that is, it is an Xnest inside another console
display) it is listed and instead of vt, it lists
the parent display in standard form.

Command: UPDATE CONFIG

Description: Tell the daemon to update configuration of
some key. Any user can really request that
values are re-read but the daemon caches the
last date of the configuration file and a user
can’t actually change any values unless they
can write the configuration file. The keys that
are currently supported in version 2.3.90.2
and later are: security/AllowRoot,
security/AllowRemoteRoot,
security/AllowRemoteAutoLogin,
security/RetryDelay, daemon/Greeter,
daemon/RemoteGreeter, xdmcp/Enable,
xdmcp/Port and xdmcp/PARAMETERS (this
updates all the XDMCP parameters).
Keys that are supported in 2.3.90.3
and later are: xdmcp/TimedLogin,
xdmcp/TimedLoginEnable, xdmcp/

TimedLoginDelay, greeter/SystemMenu and
greeter/ConfigAvailable.

Supported since: 2.3.90.2

Arguments: key
key is just the base part of the key such as
security/AllowRemoteRoot.

Answers: OK
ERROR err number description

0 = Not implemented

50 = Unsupported key

999 = Unknown error

Command: GREETERPIDS

Description: List all greeter pids so that one can send
SIGHUP to them for configuration file
rereading. Of course one must be root to do
that.

Supported since: 2.3.90.2

Arguments: None

Answers: OK pid;pid;...

7

Using and Managing GDM

Command: CLOSE

Description: Close the connection.

Supported since: 2.2.4.0

Arguments: None

Answers: None

There is also a fifo protocol which is in the server
authorization directory (usually /var/gdm) and this
is called .gdmfifo. Only root can access this file and
it is mostly used for internal GDM chatter between
the slave and the main process. It can however be
useful for controlling GDM in various ways as well,
and it is possible to do this from scripts with a sim-
ple echo command. What follows is a list of useful
commands

Command: SOFT RESTART

Description: Restart GDM but only after everyone has
logged out. This has been supported as long
as there was a fifo protocol.

Command: DIRTY SERVERS

Description: All X servers should be restarted rather than
regenerated. Useful if you have updated the
X configuration. Note that this happens only
when the user logs out or when we otherwise
would have restarted a server, nothing imme-
diate is done by this command. This is sup-
ported since 2.4.0.6.

Command: SOFT RESTART SERVERS

Description: Restart all X servers that people aren’t logged
in on. Maybe you may not want to do this on
every change of X server configuration since
this may cause flicker on screen and jumping
around on the vt. Perhaps useful to do by
asking the user if they want to do that. Note
that this will not kill any logged in sessions.
This is supported since 2.4.0.6.

Command: SUSPEND MACHINE

Description: Have the master run the suspend command
if possible. Note that this command is only
available in CVS currently and will only be
available in version 2.4.2.x and higher.

Command: HUP ALL GREETERS

Description: Tell all the greeters to reread their configura-
tion files by signaling them with a HUP. This
has been available since 2.3.90.2.

An example might be in a script that modifies the
X server configuration and wants all the X servers to
actually restart next time they reset. So you would
run

echo DIRTY_SERVERS > /var/gdm/.gdmfifo

Some things can be achieved by sending signals
or running scripts. For example to tell GDM to stop
itself you can run gdm-stop or send SIGTERM to
the main process. To tell it to immediately restart
you can run gdm-restart or send SIGHUP to the
main process. You can also run gdm-safe-restart
or send SIGUSR1 which is the same as sending
SOFT RESTART in the fifo protocol and will
restart GDM once everyone logs out.

7 Future

There are of course many future plans for GDM. Be-
sides general cleanup and minor feature work, it is
planned to improve the accessibility and scalability
of GDM. GDM is already good for small desktop in-
stallations, but it currently isn’t all that good for very
large installations. It also lacks any accessibility sup-
port. Sun is one company that is investing developer
time in improving GDM in both of these directions.
Some specific things that are planned that are user
visible are things like smart card access support, bet-
ter face browser (plus face browser for the graphi-
cal greeter), better PAM support, better support for
multihead environments, RandR support, better lan-
guage selection support, better session script setup
common with KDM, etc...

While GDM development has slowed down re-
cently, it really doesn’t need all that much more to
gain all, or most, of the above. I think most focus
will be in cleaning up existing features and generally
stabilizing GDM. Of course one thing that is still on
the TODO list is to actually document GDM prop-
erly. And I hope that this talk and this paper has
been at least helpful in this regard.

8

