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For a < b, define the intervals:

[a, b] B {x ∈ ℝ : a ≤ x ≤ b} (closed interval)
(a, b) B {x ∈ ℝ : a < x < b} (open interval)
(a, b] B {x ∈ ℝ : a < x ≤ b} (half-open interval)
[a, b) B {x ∈ ℝ : a ≤ x < b} (half-open interval)

Those were bounded intervals. Also define unbounded intervals:

[a,∞) B {x ∈ ℝ : a ≤ x}
(a,∞) B {x ∈ ℝ : a < x}
(−∞, b] B {x ∈ ℝ : x ≤ b}
(−∞, b) B {x ∈ ℝ : x < b}
(−∞,∞) B ℝ

Proposition
A set I ⊂ ℝ is an interval if and only if I contains at least 2 points and for all a, c ∈ I and b ∈ ℝ

such that a < b < c, we have b ∈ I.

Proof is an exercise.
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Set theoretically intervals have the same size.

f (x) B 2x is a bĳection from [0, 1] to [0, 2]

f (x) B tan(x) is a bĳection from (−𝜋/2, 𝜋/2) to ℝ

Bĳection from [0, 1] to (0, 1) is harder but possible.

We saw that uncountable sets exist: e.g., 𝒫(ℕ).

Theorem (Cantor)
ℝ is uncountable.

So any interval is uncountable.

Also, the set ℝ \ℚ is uncountable.

We’ll give essentially Cantor’s original 1874 proof.
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Proof: Suppose X ⊂ ℝ is countably infinite such that
for every pair of real numbers a < b, there is an x ∈ X such that a < x < b.

Were ℝ countable, we could take X = ℝ. We’ll show X ⊊ ℝ.

Write X = {x1 , x2 , x3 , . . .} (X is countably infinite).
We construct two sequences a1 , a2 , a3 , . . . and b1 , b2 , b3 , . . .

Let a1 B x1 and b1 B x1 + 1.
Note that a1 < b1 and x1 ∉ (a1 , b1).
Suppose for some k > 1, aj and bj have been defined for j = 1, 2, . . . , k − 1,
for each such j, suppose xℓ ∉ (aj , bj) for ℓ = 1, 2, . . . , j,
and suppose a1 < a2 < · · · < ak−1 < bk−1 < · · · < b2 < b1.

Set ak B xn, where n is the smallest n ∈ ℕ such that xn ∈ (ak−1 , bk−1).
xn exists by assumption on X. n ≥ k by assumption on (ak−1 , bk−1).
Define bk to be any real number in (ak , bk−1).

Note ak−1 < ak < bk < bk−1, and
xk ∉ (ak , bk) and hence xj ∉ (ak , bk) for xj for j = 1, 2, . . . , k.
The two sequences are now defined.
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We have two sequences such that
for each j, suppose xℓ ∉ (aj , bj) for ℓ = 1, 2, . . . , j,
and a1 < a2 < · · · < ak < bk < · · · < b2 < b1 (for every k).

Claim: an < bm for all n and m in ℕ.
Proof of claim: Suppose n < m ⇒ an < an+1 < · · · < am−1 < am < bm.
Similarly for n > m. The claim follows.

Let A B {an : n ∈ ℕ} and B B {bn : n ∈ ℕ}.
By the claim, sup A ≤ inf B.
Define y B sup A.
y ∉ A: If y = an for some n, then y < an+1, which is impossible.
y ∉ B: Similar.
So an < y < bn for all n ∈ ℕ or y ∈ (an , bn) for all n ∈ ℕ.
For every n ∈ ℕ, xn ∉ (an , bn), so y ≠ xn.
⇒ y ∉ X ⇒ X ⊊ ℝ ⇒ ℝ is uncountable. □
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We have two sequences such that
for each j, suppose xℓ ∉ (aj , bj) for ℓ = 1, 2, . . . , j,
and a1 < a2 < · · · < ak < bk < · · · < b2 < b1 (for every k).

Claim: an < bm for all n and m in ℕ.
Proof of claim: Suppose n < m ⇒ an < an+1 < · · · < am−1 < am < bm.
Similarly for n > m. The claim follows.
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By the claim, sup A ≤ inf B.
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y ∉ B: Similar.
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For every n ∈ ℕ, xn ∉ (an , bn), so y ≠ xn.
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Remark: Cantor’s paper was (perhaps oddly) about algebraic numbers:

x ∈ ℝ is algebraic if x is a root of a polynomial with integer coefficients:
anxn + an−1xn−1 + · · · + a1x + a0 = 0 where a0 , a1 , . . . , an ∈ ℤ.

There are only countably many algebraic numbers (exercise).

Cantor’s theorem shows ∃ non-algebraic (transcendental) numbers.
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