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Definition
Let S ⊂ ℝ be a set. A function f : S → ℝ has a relative maximum at c ∈ S if there exists a
𝛿 > 0 such that for all x ∈ S where |x − c| < 𝛿, we have f (x) ≤ f (c).

The definition of relative
minimum is analogous.

Lemma
Suppose f : (a, b) → ℝ is differentiable at c ∈ (a, b), and f has a relative minimum or a relative
maximum at c. Then f ′(c) = 0.

Remark: Point c where f ′(c) = 0 is called a critical point.

Idea of proof:

2H

slope = 5 (H)− 5 (2)
H−2 ≥ 0

G

slope = 5 (G)− 5 (2)
G−2 ≤ 0
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Lemma
Suppose f : (a, b) → ℝ is differentiable at c ∈ (a, b), and f has a relative minimum or a relative
maximum at c. Then f ′(c) = 0.

Proof: Let c be a relative maximum of f (if minimum, look at −f ).

∃ 𝛿 > 0 such that if x ∈ (a, b) and |x − c| < 𝛿, then f (x) − f (c) ≤ 0.

If c < x < c + 𝛿, then
f (x) − f (c)

x − c
≤ 0.

If c − 𝛿 < y < c, then
f (y) − f (c)

y − c
≥ 0.

As a < c < b, ∃ {xn}∞n=1 and {yn}∞n=1 in (a, b) ∩ (c − 𝛿, c + 𝛿),
such that xn > c, yn < c for all n ∈ ℕ,
and lim

n→∞ xn = lim
n→∞ yn = c.

As f is differentiable at c, 0 ≥ lim
n→∞

f (xn) − f (c)
xn − c

= f ′(c) = lim
n→∞

f (yn) − f (c)
yn − c

≥ 0.

⇒ f ′(c) = 0. □
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Theorem (Rolle)
Let f : [a, b] → ℝ be continuous and differentiable on (a, b) such that f (a) = f (b). Then there exists
a c ∈ (a, b) such that f ′(c) = 0.

20
1

Example: It is necessary for f ′ to exist for all x ∈ (a, b).
Consider f (x) B |x| on [−1, 1]. f (−1) = f (1), but at no c does f ′(c) = 0.
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a c ∈ (a, b) such that f ′(c) = 0.

Proof: f is continuous on [a, b] ⇒ attains an absolute min/max on [a, b].
Let K B f (a) = f (b).
If ∃ x ∈ (a, b) where f (x) > K,
then ∃ c ∈ (a, b) where f attains a maximum.

If ∃ x ∈ (a, b) where f (x) < K,
then ∃ c ∈ (a, b) where f attains a minimum.

If f (x) = K for all x ∈ (a, b),
then ∃ c ∈ (a, b) where f attains a max and a min.

In any case, the lemma applies, and f ′(c) = 0. □
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Theorem (Mean value theorem)
Let f : [a, b] → ℝ be continuous and differentiable on (a, b). Then there exists c ∈ (a, b) such that
f (b) − f (a) = f ′(c)(b − a).

2

(0, 5 (0))

(1, 5 (1))f (b) − f (a)
b − a

is the slope of the secant line
between

(
a, f (a)) and

(
b, f (b)) .

The slope of the secant line is
the mean value of f ′ (hence the name).

So the average derivative is attained at c:

f ′(c) = f (b) − f (a)
b − a

.
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Theorem (Mean value theorem (MVT))
Let f : [a, b] → ℝ be continuous and differentiable on (a, b). Then there exists c ∈ (a, b) such that
f (b) − f (a) = f ′(c)(b − a).

Proof: Define g : [a, b] → ℝ by

g(x) B f (x) − f (b) − f (b) − f (a)
b − a

(x − b).

g is differentiable on (a, b),
continuous on [a, b],
and g(a) = 0, g(b) = 0.

⇒ (by Rolle) ∃ c ∈ (a, b) such that g′(c) = 0.

0 = g′(c) = f ′(c) − f (b) − f (a)
b − a

or f (b) − f (a) = f ′(c)(b − a). □
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Theorem (Cauchy’s mean value theorem)
Let f : [a, b] → ℝ and 𝜑 : [a, b] → ℝ be continuous functions differentiable on (a, b). Then there
exists a point c ∈ (a, b) such that(

f (b) − f (a))𝜑′(c) = f ′(c)(𝜑(b) − 𝜑(a)) .

Proof: Exercise. Hint: Consider g(x) B f (x) − f (b) − f (b) − f (a)
𝜑(b) − 𝜑(a)

(
𝜑(x) − 𝜑(b)) .
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MVT is useful by getting rid of a limit. Let’s see some applications.

First, let’s solve a differential equation:

Proposition
Let I be an interval and f : I → ℝ be differentiable such that f ′(x) = 0 for all x ∈ I.
Then f is constant.

Proof: Take arbitrary x, y ∈ I with x < y.

As I is an interval, [x, y] ⊂ I.

f |[x,y] satisfies the mean value theorem.

⇒ ∃ c ∈ (x, y) such that f (y) − f (x) = f ′(c)(y − x).
f ′(c) = 0 ⇒ f (y) = f (x) ⇒ f is constant. □
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f : I → ℝ is increasing (resp. strictly increasing) if x < y implies f (x) ≤ f (y) (resp. f (x) < f (y)).

decreasing and strictly decreasing is similar.

Proposition
Let I be an interval and let f : I → ℝ be a differentiable function.
(i) f is increasing if and only if f ′(x) ≥ 0 for all x ∈ I.

(ii) f is decreasing if and only if f ′(x) ≤ 0 for all x ∈ I.

Proof: (i) ⇒) Suppose f is increasing.

For all x, c ∈ I with x ≠ c,
f (x) − f (c)

x − c
≥ 0. Take limit x → c to get f ′(c) ≥ 0.

⇐) suppose f ′(x) ≥ 0 for all x ∈ I.
Take any x, y ∈ I where x < y. (note that [x, y] ⊂ I).

By the mean value theorem, ∃ c ∈ (x, y) s.t. f (y) − f (x) = f ′(c)(y − x).
f ′(c) ≥ 0 and y − x > 0 ⇒ f (y) − f (x) ≥ 0 or f (x) ≤ f (y) (so f is increasing).

(ii) is an exercise. □
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Proposition
Let I be an interval and let f : I → ℝ be a differentiable function.

(i) If f ′(x) > 0 for all x ∈ I, then f is strictly increasing.
(ii) If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing.

Proof: Exercise.

Example: Converse not true: f (x) B x3 is strictly increasing, but f ′(0) = 0.
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Proposition (First derivative test)
Let f : (a, b) → ℝ be continuous. Let c ∈ (a, b) and suppose f is differentiable on (a, c) and (c, b).
(i) If f ′(x) ≤ 0 whenever x ∈ (a, c) and at c.

(ii) If f ′(x) ≥ 0 whenever x ∈ (a, c) and at c.

Remark: To apply to find relative minima and maxima, restrict f to an interval (c− 𝛿, c+ 𝛿).
Proof: (i) Take x ∈ (a, c) and {yn}∞n=1 such that x < yn < c ∀ n and lim

n→∞ yn = c.
f is decreasing on (a, c) so f (x) ≥ f (yn) ∀ n.
f is continuous at c, so take limit as n → ∞ to get f (x) ≥ f (c).
Similarly, take x ∈ (c, b) and {yn}∞n=1 such that c < yn < x and lim

n→∞ yn = c.
f is increasing on (c, b) so f (x) ≥ f (yn) ∀ n ⇒ f (x) ≥ f (c).
⇒ f (x) ≥ f (c) ∀ x ∈ (a, b).
(ii) left as exercise. □

The converse of the proposition does not hold (example later).
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The converse of the proposition does not hold (example later).
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Theorem (Darboux)
Let f : [a, b] → ℝ be differentiable. Suppose y ∈ ℝ is such that f ′(a) < y < f ′(b) or
f ′(a) > y > f ′(b).

Then there exists a c ∈ (a, b) such that f ′(c) = y.

Idea is to reduce to case of a function g such that g′(a) > 0 > g′(b).
g increases at a, and decreases at b.

So it should attain a maximum where g′(c) = 0.

0

6′(0) > 0

2

6′(2) = 0

1

6′(1) < 0
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Theorem (Darboux)
Let f : [a, b] → ℝ be differentiable. Suppose y ∈ ℝ is such that f ′(a) < y < f ′(b) or
f ′(a) > y > f ′(b). Then there exists a c ∈ (a, b) such that f ′(c) = y.

Proof: Suppose f ′(a) < y < f ′(b). Define g(x) B yx − f (x).
g is continuous on [a, b], and so g attains a maximum at some c ∈ [a, b].
g is differentiable on [a, b] and g′(x) = y − f ′(x) ⇒ g′(a) > 0.

⇒ ∃ x > a such that
g(x) − g(a)

x − a
> 0.

⇒ g(x) > g(a) ⇒ g does not have a maximum at a.

Similarly, g′(b) < 0, so ∃ x < b such that
g(x) − g(b)

x − b
< 0 or g(x) > g(b),

⇒ g does not have a maximum at b.

⇒ c ∈ (a, b) and the lemma applies ⇒ g′(c) = 0 ⇒ f ′(c) = y.

If f ′(a) > y > f ′(b), consider g(x) B f (x) − yx. □
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Example: Define f : ℝ → ℝ by

f (x) B
{(

x sin(1/x))2 if x ≠ 0,
0 if x = 0.

Claim 1: f is differentiable, but f ′ : ℝ → ℝ is not continuous at 0.

Claim 2: f has a min at 0, but f ′ changes sign infinitely often near 0.

The graph of f and f ′. The dashed line represents f (x) ≤ x2.
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f (x) = (
x sin(1/x))2 if x ≠ 0, and f (0) = 0.

Claim 1: f is differentiable, but f ′ : ℝ → ℝ is not continuous at 0.

Claim 2: f has a min at 0, but f ′ changes sign infinitely often near 0.

Proof of claims: f clearly has min at 0 (as f (x) ≥ 0 for all x).

For x ≠ 0, f is differentiable and f ′(x) = 2 sin(1/x)(x sin(1/x) − cos(1/x)) .
Exercise: lim

x→0
f ′(x) DNE (switches sign infinitely often)

For x ≠ 0, consider���� f (x) − f (0)
x − 0 − 0

���� = ����x2 sin2(1/x)
x

���� = ��x sin2(1/x)�� ≤ |x|.

|x| → 0 as x → 0 ⇒ f ′(0) exists and f ′(0) = 0. □
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Remark: If f : I → ℝ is differentiable and f ′ continuous, then f is continuously differentiable.

Write C1(I) for the set of continuously differentiable functions on I.
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Exercise: Prove the following version of L’Hôpital’s rule:

Suppose f : (a, b) → ℝ, g : (a, b) → ℝ are differentiable and c ∈ (a, b). Suppose that f (c) = 0,
g(c) = 0, g′(x) ≠ 0 when x ≠ c, and that the limit of f ′(x)/g′(x) as x goes to c exists. Show that

lim
x→c

f (x)
g(x) = lim

x→c

f ′(x)
g′(x) .

Compare to the simpler version from before.
Note: Before you do anything else, prove that g(x) ≠ 0 when x ≠ c.

Exercise: Prove the theorem Rolle actually proved in 1691:

If f is a polynomial, f ′(a) = f ′(b) = 0 for some a < b, and there is no c ∈ (a, b) such that f ′(c) = 0,
then there is at most one root of f in (a, b), that is at most one x ∈ (a, b) such that f (x) = 0.

I.e., between any two consecutive roots of f ′ is at most one root of f .
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