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Definition
Let S € R be a set. A function f: S — R has a relative maximum at c € S if there exists a
0 > 0 such that for all x € S where |x — c| < 9, we have f(x) < f(c).
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Example: It is necessary for f” to exist for all x € (a, b).
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Let f: [a,b] — R be continuous and differentiable on (a, b). Then there exists ¢ € (a, b) such that
fb) —f(a) =f' ()b —a).

JLJ;(H) is the slope of the secant line
between (a,f(a)) and (b, f(b)).

The slope of the secant line is T
the mean value of f’ (hence the name).

So the average derivative is attained at c:

f()_f(b) f(a) __ﬂ,f(ﬂ))

—a
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Theorem (Mean value theorem (MVT))

Let f: [a,b] — R be continuous and differentiable on (a,b). Then there exists ¢ € (a, b) such that
f) = f(a) = f'(c)(b - a).

Proof: Define g: [4,b] — R by

§(x) = ) - ) - LT

(x D).

g is differentiable on (g, b),
continuous on [a, b],

and g(a) =0, g(b) =
= (by Rolle) 3 ¢ € (a,b) such that g’(c) =0

0= (0 =) - {010

v f(b)=f(a) = f'(c)(b - a).
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Theorem (Cauchy’s mean value theorem)

Letf: [a,b] = Rand ¢: [a,b] — R be continuous functions differentiable on (a, b). Then there
exists a point ¢ € (a, b) such that

(f0) = f@)@’(c) = f () (p(b) = p(a)).

f(b) - f(a)

Proof: Exercise. Hint: Consider g(x) := f(x) — f(b) — M

(@) - @(b)).
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MVT is useful by getting rid of a limit. Let’s see some applications.
First, let’s solve a differential equation:
Proposition

Let I be an interval and f: I — R be differentiable such that f'(x) = 0 for all x € I.
Then f is constant.

Proof: Take arbitrary x,y €  with x < y.

AsIis aninterval, [x,y] C L.

fljx,y) satisfies the mean value theorem.

= dc e (x,y)such that f(y) — f(x) = f'(c)(y — x).
fflc)=0 = f(y)=f(x) = fisconstant.
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Proposition

Let I be an interval and let f: I — R be a differentiable function.
() Iff'(x) > 0 for all x € I, then f is strictly increasing.

(ii) Iff’(x) <O forall x € I, then f is strictly decreasing.

Proof: Exercise.

Example: Converse not true: f(x) := x> is strictly increasing, but '(0) = 0.
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Proposition (First derivative test)

Let f: (a,b) — R be continuous. Let c € (a,b) and suppose f is differentiable on (a, c) and (c, b).
(i) Iff'(x) < 0 whenever x € (a, c) and at c.

(i) Iff’(x) = 0 whenever x € (a, c) and at c.

Remark: To apply to find relative minima and maxima, restrict f to an interval (c — 0, c + 0).
Proof: (i) Take x € (a,c) and {y, o, suchthatx <y, <cVnand limy, =c.
= n—00
f is decreasing on (a, ¢) so f(x) > f(y,) V n.
f is continuous at ¢, so take limit as n — oo to get f(x) > f(c).

Similarly, take x € (c,b) and {y,},, such thatc <y, < x and nh_r)rolo Yn =C.

fisincreasing on (c,b) so f(x) = f(y,) Vn = f(x) = f(c).

= f(x)=f(c)Vxelab).
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The converse of the proposition does not hold (example later).
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Then f is differentiable at a and f'(a) = L.
(i) Supposef: (a,b] — R is continuous, differentiable in (a, b), and ,1(13; f'(x) =L.
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(i) Supposef: (a,b] — R is continuous, differentiable in (a, b), and Jl(li’l% f'(x) = L.
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Proposition
(i) Supposef: [a,b) — R is continuous, differentiable in (a, b), and J1(11}1; f'(x) = L.
Then f is differentiable at a and f'(a) = L.
(i) Supposef: (a,b] — R is continuous, differentiable in (a, b), and 31(13% f'(x) = L.
Then f is differentiable at b and f'(b) = L.

Proof: Exercise.



Theorem (Darboux)
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f@ >y > f'b).
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Remark: If f: I — R is differentiable and f’ continuous, then f is continuously differentiable.
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Write C!(I) for the set of continuously differentiable functions on I.
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If f is a polynomial, f'(a) = f'(b) = 0 for some a < b, and there is no c € (a, b) such that f'(c) = 0,
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Le., between any two consecutive roots of f” is at most one root of f.



