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An ordered set is a set S together with a relation < such that

(i) (trichotomy) For all x,y € S, exactly one of x <y, x =y, or y < x holds.
(ii) (tramsitivity) If x,y,z € S are such that x <y and y < z, then x < z.
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Examples:
Z is an ordered set by letting x < y if and only if y —x = p where p € N.
Q is an ordered set by letting x < y if and only if y — x = ¢/ where p, g € N.

The set of words is an ordered set by using lexicographic ordering.
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the greatest lower bound or the infimum of E. Write

inf E := bo.

If E is bounded above and bounded below, we say that E is bounded.
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upper bounds, so b =1,

Example:

S:={a,b,c,d,e}orderedasa<b<c<d<e. E = {a,c}.
¢, d, and e are upper bounds of E,

c is the least upper bound or supremum of E.

Example: E := {x € Q: x < 1}  Q has a least upper bound 1, but 1 ¢ E.
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Notation sup E and inf E is justified as the supremum (or infimum) is unique (if it exists):

If b and b’ are suprema of E, then b < b’ and I’ < b, because both b and b’ are the least
upper bounds, so b =1,

Example:

S:={a,b,c,d,e}orderedasa<b<c<d<e. E = {a,c}.
¢, d, and e are upper bounds of E,

c is the least upper bound or supremum of E.

Example: E := {x € Q: x < 1}  Q has a least upper bound 1, but 1 ¢ E.
Example: P := {x € Q : x > 0} C Q has no upper bound.
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An ordered set S has the least-upper-bound property if every nonempty E C S that is
bounded above has a least upper bound (sup E exists in S).

Also called the completeness property or the Dedekind completeness property.
Example: Q does not have the least-upper-bound property.

{x € Q@ : x? < 2} does not have a supremum in Q.

We will show later that the supremum would be V2, but V2 ¢ Q:

Suppose x € Q such that x* = 2.

x = m/y in lowest terms.

So (m/n)? = 2 or m? = 2n2.

Hence, m? is divisible by 2, and so m is divisible by 2.
Write m = 2k and so (2k)* = 2n2.

Thus 2k? = n?, and hence 7 is divisible by 2.
Contradiction as as ™/x is in lowest terms.

This is the main reason why analysis needs R and not just Q.
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(M4) There exists 1 € F (and 1 # 0) such that 1x = x for all x € F.
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(D) (distributive law) x(y + z) = xy + xz for all x, y,z € F.
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Example: Q is a field.
Example: Z is not a field: No x € Z such that 2x = 1, so (M5) not satisfied.

This is not an algebra class, so we’ll just assume basic properties that follow directly from
the axioms without proofs.

Definition
A field F is said to be an ordered field if F is also an ordered set such that
(i) Forx,y,z€ F,x <yimpliesx +z <y +z.

(if) Forx,y € F,x > 0 and y > 0 implies xy > 0.
If x > 0, we say x is positive.

If x < 0, we say x is negative.

We say x is nonnegative if x > 0,

and x is nonpositive if x < 0.

Example: Not hard to check that Q is an ordered field.
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Example: The complex numbers C (numbers x + iy where x,y € R and i =
ordered field: In every ordered field -1 < 0.

—1) is not an
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Let x,y € F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0and y < 0.
Multiply y < 0 by x to get xy < Ox = 0. ]
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Let F be an ordered field with the least-upper-bound property. Let A C F be a nonempty set that is
bounded below. Then inf A exists.

Proof: Let B := {—x:x € A}

Let b € F be a lower bound for A: If x € A, then x > b. In other words, —x < -b.

So —b is an upper bound for B.

F has the least-upper-bound property = ¢ := sup B exists, and ¢ < -b.

Asy < cforally € B, then —c < x for all x € A.

So —c is a lower bound for A.

As —c > b, —cis the greatest lower bound of A. m]



