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Definition
LetS c Rand f: S — R be a function. Suppose for every € > 0 there exists a 6 > 0 such

that whenever x,c € S and |x — ¢| < 6, we have |f(x) — f(c)| < €. Then we say f is uniformly
continuous.
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Theorem

Let f: [a,b] — R be a continuous function. Then f is uniformly continuous.

Proof: Suppose f is not uniformly continuous.

Je>0and {x,};",, {yu},, in [a,b] such that |x, — yu| < Y/nand |f(xn) - f(yn)| > €.
By Bolzano-Weierstrass, 3 a convergent subsequence {xy, }}” ;.

Letc:=limx,. a<c<basa<x, <bforallk,

k—o0

|ynk - c| = |ynk — Xpy + Xy — C| < |ynk - x,,,(| + \xnk - c| <1m + |xnk - c|.
e — 0 and |xnk—c| —0ask— o0 = y, ocask— co.
fCen) =@ = Ifen) = F(yn) +f ) £

> |f(n) = fn)| = ) = f(©)] 2 € = |f(yne) = £()]
Or [f(xnk) —f(c)| + [f(ynk) —f(c)| > €.
Either f(x,,) £ f(c) or f(yn,) 7> f(c), otherwise the LHS would — 0.
= fisnotcontinuousatc = f isnot continuous.

Remark: See how closed and bounded is important again.



Uniformly continuous functions preserve Cauchy sequences:

Lemma

Letf: S — R be uniformly continuous. Let {x,}* | be a Cauchy sequence in S. Then {f (xn)}::)=1
is Cauchy.
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Proof: Let € > 0 be given.
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Find M € N such that for all n, k > M, we have |x,; — x¢| < 6.



Uniformly continuous functions preserve Cauchy sequences:

Lemma

Letf: S — R be uniformly continuous. Let {x,}* | be a Cauchy sequence in S. Then {f (xn)}:’=1
is Cauchy.

Proof: Let € > 0 be given.

36 > 0 such that |f(x) — f(y)| < € whenever x,y € Sand |x —y| < 6.
Find M € N such that for all n, k > M, we have |x,; — x¢| < 6.

= Vn k=M |f(x,)—flxp)| <e.



The lemma gives extension to endpoints for uniformly continuous functions:

Proposition

f:(a,b) = Ris uniformly continuous if and only if the limits

L, = limf(x) and Ly := limf(x)
x—a x—b
exist and?: [a,b] — R defined by

f(x) ifxe(ab),
f(x) =4L, ifx=a,
Lb ifx=b

is continuous.




The lemma gives extension to endpoints for uniformly continuous functions:

Proposition

f:(a,b) = Ris uniformly continuous if and only if the limits
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The lemma gives extension to endpoints for uniformly continuous functions:

Proposition
f:(a,b) = Ris uniformly continuous if and only if the limits

L, = limf(x) and Ly := limf(x)
x—a x—b

exist and?: [a,b] — R defined by

fx) ifxe(ab),
f(x) =1L, ifx=a,
Lb ifx =b

is continuous.

Proof: <) Iffis continuous, then it is uniformly continuous by the theorem.

f is the restriction of]7 to (a,b), so f is also uniformly continuous (exercise).



=) Suppose f is uniformly continuous.
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Take {x,},, in (a,b) such that x, — a (and so also Cauchy).
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Take {x,},, in (a,b) such that x, — a (and so also Cauchy).

Lemma says {f (xn)}zo=1 is Cauchy and thus convergent, so let L1 := lim f(x;).
Take another {y,} ", in (a,b) s.t. y, — a. Similarly, L, := lim f(y,) exists. WTS L; = Lo.
n—o0
Givene >0, findé > 0s.t. |[x —y| < 6 implies |[f(x) — f(y)| < ¢/3.
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= |L1 = La| = |L1 = f(xn) + f(xn) = f(Yn) + f(yn) — L2
< Ly = fOe)l + |f(xn) = f(y)l + [f(yn) — L2| < €3 +€¢3+¢f3=€.
= Li=L,. = L,=limy,f(x)exists. Ly isalmost the same.
As limf(x) = L, exists, limj?(x) exists and equals L, (Proposition 3.1.15)  (similarly for b).
X—a X—a

= fis continuous at 2 and b.

As f is continuous at any ¢ € (g, b), then f is continuous at ¢ € (4, b) (Proposition 3.1.15). O

Typical application: if f: (-1,0) U (0, 1) — R is uniformly continuous, then lin(l) f(x) exists
X—

and f has a remouvable singularity: it can be continuously extended to (-1, 1).
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A function f: S — R is Lipschitz continuous, if there exists a K € R, such that

[f(x) - f(y)| <K|x-y|  forallxandyinS.

Example: sin and cos are Lipschitz with K =1 as
[sin(x) — sin(y)| < |x -y and |cos(x) — cos(y)| < |x —y|.

Proposition

A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f: S — R and K are such that
If(x) - f(y)] < K|x —y| forall x,yin S.

Let € > Obe given. Take 6 := ¢/k.
Forallx,y € Ssuch that |x—y| <65, [f(x)—f(y)| <Klx—y| <K& = K% —e.

= fis uniformly continuous.
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Geometric interpretation of Lipschitz:

Suppose f is Lipschitz with constant K.

If x # y, then

[0 (x) f ® is the slope of the line between
(x f(x)) and (y,f(y)), the secant line.

f is Lipschitz
=

slope = [ 1y)

x)-f(y)
x=y

every secant line has ’slope| <K
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Example: g: [0, 0) — R given by g(x) := /x is not Lipschitz continuous.
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Proof: [vx — | = \/;Kg =\gzz'@ x>landy>1 = ———<i

Therefore, |vx - | = ‘\/;f@. <tlx-yl

Example: g: [0, 0) — R given by g(x) := /x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t. \\/E - \/y| <Klx-y|Vx,y=0.

Sety=0 = +x<Kx in other words, 1/k < yx or 1/k? < x.
Cannot be true forallx >0 = noKexists = g¢not Lipschitz.

i/ /

Remark: g is uniformly continuous (exercise), but not Lipschitz.



