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Lemma
A continuous function f : [a, b] → ℝ is bounded.

Proof: Suppose f is not bounded: ∀ n ∈ ℕ, ∃ xn ∈ [a, b], such that |f (xn)| ≥ n.

{xn}∞n=1 is bounded as a ≤ xn ≤ b.

By Bolzano–Weierstrass, ∃ a convergent subsequence {xni}∞i=1.

Let x B lim
i→∞

xni . a ≤ xni ≤ b for all i ⇒ a ≤ x ≤ b.

{f (xni)}∞i=1 is not bounded as |f (xni)| ≥ ni ≥ i for all i.

f (x) = f
(
lim
i→∞

xni

)
, but lim

i→∞
f (xni) does not exist.

⇒ f is not continuous at x. □

Boundedness of [a, b] allows Bolzano–Weierstrass,
closedness of [a, b] says the limit is back in [a, b].
Common technique: Find a sequence with a certain property, then
use Bolzano–Weierstrass to make a convergent sequence.
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f : S → ℝ achieves an absolute minimum at c ∈ S if

f (x) ≥ f (c) for all x ∈ S.

f achieves an absolute maximum at c ∈ S if

f (x) ≤ f (c) for all x ∈ S.

If such c ∈ S exists,
then f achieves an absolute minimum (resp. absolute maximum) on S,
and f (c) is called the absolute minimum (resp. absolute maximum).

absolute maximum of 5 = 5 (2)

absolute minimum of 5 = 5 (3)
0 1

3
2
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Theorem (Min-max theorem / Extreme value theorem)
A continuous f : [a, b] → ℝ on a closed and bounded interval [a, b] achieves both an absolute
minimum and an absolute maximum on [a, b].

Proof: By lemma, f is bounded, so f
([a, b]) is bounded.

⇒ ∃ seqs.
{
f (xn)

}∞
n=1 and

{
f (yn)

}∞
n=1, where xn and yn are in [a, b], and

lim
n→∞ f (xn) = inf f

([a, b]) and lim
n→∞ f (yn) = sup f

([a, b]) .
{xn}∞n=1 and {yn}∞n=1 may not converge.
By Bolzano–Weierstrass, ∃ convergent subsequences {xni}∞i=1 and {ymi}∞i=1.

Let x B lim
i→∞

xni and y B lim
i→∞

ymi .

a ≤ xni ≤ b for all i ⇒ a ≤ x ≤ b. Similarly, a ≤ y ≤ b.

inf f
([a, b]) = lim

n→∞ f (xn) = lim
i→∞

f (xni) = f
(
lim
i→∞

xni

)
= f (x).

sup f
([a, b]) = lim

n→∞ f (yn) = lim
i→∞

f (ymi) = f
(
lim
i→∞

ymi

)
= f (y).

f achieves an absolute minimum at x and an absolute maximum at y. □
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Example: f (x) B x2 + 1 defined on the interval [−1, 2]
achieves a minimum at x = 0 when f (0) = 1.

f achieves a maximum at x = 2 where f (2) = 5.

Domain of definition matters:
If domain is [−10, 10], then the maximum of f is no longer at x = 2.
Instead the maximum would be achieved at either x = 10 or x = −10.

Example: f (x) B x defined on ℝ

achieves neither a minimum, nor a maximum.

That [a, b] in the theorem is bounded is important.
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Example: f (x) B 1/x defined on (0, 1)
achieves neither a minimum, nor a maximum.

f (x) is unbounded as x → 0.
If x → 1, then f (x) approaches 1, but f (x) > 1 for any x ∈ (0, 1).
That [a, b] in the theorem is closed is important.

Example: Define f : [0, 1] → ℝ by f (x) B 1/x for x > 0 and let f (0) B 0.
f does not achieve a maximum.
f is discontinuous at 0.

That f is continuous in the theorem is important.
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Lemma
Let f : [a, b] → ℝ be continuous. Suppose f (a) < 0 and f (b) > 0.

Then there exists c ∈ (a, b) such that f (c) = 0.

Proof: Define two sequences {an}∞n=1 and {bn}∞n=1 inductively:
(i) Let a1 B a and b1 B b.

(ii) If f
(

an+bn
2

)
≥ 0,

let an+1 B an and bn+1 B
an+bn

2 .

(iii) If f
(

an+bn
2

)
< 0,

let an+1 B
an+bn

2 and bn+1 B bn.
01 11
02 12
03 13

04 14
05 15

2

If an < bn, then an < an+bn
2 < bn.

So an+1 < bn+1.
By induction an < bn for all n.

Also an ≤ an+1 and bn ≥ bn+1 for all n.
{an}∞n=1 and {bn}∞n=1 are monotone.
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As an < bn ≤ b1 = b and bn > an ≥ a1 = a for all n,

{an}∞n=1 and {bn}∞n=1 are bounded.

Thus convergent. Let c B lim
n→∞ an, d B lim

n→∞ bn, (note a ≤ c ≤ d ≤ b).

bn+1 − an+1 = bn−an
2 for all n. Induction ⇒ bn − an = b1−a1

2n−1 = 21−n(b − a).
d − c = lim

n→∞(bn − an) = lim
n→∞ 21−n(b − a) = 0.

⇒ d = c.

By construction, for all n, f (an) < 0 and f (bn) ≥ 0.

As f is continuous:

f (c) = f
(

lim
n→∞ an

)
= lim

n→∞ f (an) ≤ 0 and f (c) = f
(

lim
n→∞ bn

)
= lim

n→∞ f (bn) ≥ 0.

⇒ f (c) = 0.

Note that c ≠ a and c ≠ b as f (c) = 0, so a < c < b. □
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Theorem (Bolzano’s intermediate value theorem)
Let f : [a, b] → ℝ be continuous. Suppose y ∈ ℝ is such that f (a) < y < f (b) or f (a) > y > f (b).

Then there exists a c ∈ (a, b) such that f (c) = y.

Proof: If f (a) < y < f (b), then define g(x) B f (x) − y.
If f (a) > y > f (b), then define g(x) B y − f (x).
Then g(a) < 0 and g(b) > 0.
Apply the lemma to find c ∈ (a, b) such that g(c) = 0.
⇒ f (c) = y. □

If f : S → ℝ is continuous,
we often apply the theorem to f |[a,b] if [a, b] ⊂ S.
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The proof of the lemma tells us how to find the root c.

Example: (Bisection method)
f (x) B x3 − 2x2 + x − 1 has a real root in (1, 2):
Notice that f (1) = −1 and f (2) = 1.
By Bolzano, ∃ c ∈ (1, 2) such that f (c) = 0.

For better approximation, follow proof:
Note f (1.5) = −0.625, ⇒ there is a root in (1.5, 2).
Note f (1.75) ≈ −0.016, ⇒ there is a root in (1.75, 2).
Note f (1.875) ≈ 0.44, ⇒ there is a root in (1.75, 1.875).
Keep going (note that the root is approx 1.7549)

Bisection method works reasonably quickly (1 bit of precision per step) for any continuous
function (once you find initial interval).

Faster techniques for nicer functions such as polynomials (e.g., Newton’s).

The theorem/technique gives one root. Must work harder if there are more.
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Even degree polynomials may not have roots, e.g., x2 + 1.

However,

Proposition
Let f (x) be a polynomial of odd degree. Then f has a real root.

Proof: Suppose f (x) = adxd + ad−1xd−1 + · · · + a1x + a0 for odd d (ad ≠ 0).
Divide by ad to get a monic polynomial: g(x) B xd + bd−1xd−1 + · · · + b1x + b0.

Consider g(n) for n ∈ ℕ.����bd−1nd−1 + · · · + b1n + b0

nd

���� = ��bd−1nd−1 + · · · + b1n + b0
��

nd

≤ |bd−1 | nd−1 + · · · + |b1 | n + |b0 |
nd ≤ |bd−1 | nd−1 + · · · + |b1 | nd−1 + |b0 | nd−1

nd

=
nd−1 (|bd−1 | + · · · + |b1 | + |b0 |

)
nd =

1
n
(|bd−1 | + · · · + |b1 | + |b0 |

)
.

⇒ lim
n→∞

bd−1nd−1 + · · · + b1n + b0

nd = 0.
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⇒ ∃ M ∈ ℕ such that
����bd−1Md−1 + · · · + b1M + b0

Md

���� < 1.

⇒ −(bd−1Md−1 + · · · + b1M + b0) < Md ⇒ g(M) > 0.

Exercise: ∃ K ∈ ℕ such that bd−1(−K)d−1 + · · · + b1(−K) + b0 < Kd ⇒ g(−K) < 0

Hint: Make sure you use that d is odd: If d is odd, then (−n)d = −(nd).
Intermediate value theorem implies ∃ c ∈ (−K,M), such that g(c) = 0.

As g(x) = f (x)
ad

, then f (c) = 0. □
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Example: Remember how hard it was to show
√

2 exists?

Bolzano does it with no effort at all.

Claim: For any k ∈ ℕ and y > 0, there exists x > 0 such that xk = y.

Proof: y = 1 is clear. So assume y ≠ 1.

Let f (x) B xk − y.

f (0) = −y < 0.

If y < 1, then f (1) = 1k − y > 0.
If y > 1, then f (y) = yk − y = y(yk−1 − 1) > 0.

In either case, Bolzano finds x > 0 such that f (x) = 0. I.e., xk = y □
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Example: There exist discontinuous functions with the intermediate value property.

E.g.,

f (x) B
{

sin(1/x) if x ≠ 0,
0 if x = 0,

is not continuous at 0; however, f has the intermediate value property:

If a < b and y is such that f (a) < y < f (b) or f (a) > y > f (b),
then ∃ c ∈ (a, b) such that f (c) = y.

Proof is an exercise.
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Combining theorems of this section:

Corollary
If f : [a, b] → ℝ is continuous, then the direct image f

([a, b]) is a closed and bounded interval or a
single number.

a b

y = f (x)
f
([a, b])

Proof: Exercise.
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