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Definition
A sequence (in ℝ) is a function x : ℕ → ℝ. Instead of x(n), we write xn. For the whole
sequence we write

{xn}∞n=1.

{xn}∞n=1 is bounded if ∃ a B ∈ ℝ such that |xn | ≤ B for all n ∈ ℕ.

Example: {1/n}∞n=1 stands for 1, 1/2, 1/3, 1/4, 1/5, . . ..
{1/n}∞n=1 is a bounded sequence (B = 1 suffices).

{n}∞n=1 stands for 1, 2, 3, 4, . . ., and this sequence is not bounded (why?).

If c ∈ ℝ is a constant, then {c}∞n=1 is the constant sequence c, c, c, c, . . .

Be careful to distinguish sets and sequences:
{(−1)n}∞n=1 is the sequence −1, 1,−1, 1,−1, 1, . . ., whereas the set of its values, the range of
the sequence, is the set {−1, 1}.
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Definition
A sequence {xn}∞n=1 is said to converge to x ∈ ℝ if for every 𝜖 > 0, there exists an M ∈ ℕ such
that |xn − x| < 𝜖 for all n ≥ M.

Call x a limit of {xn}∞n=1 and (if unique) write

lim
n→∞ xn B x.

A sequence that converges is convergent. Otherwise, it diverges, or is divergent.

We will prove momentarily that the limit, if it exists, is always unique.

Limits do not always exist. Writing down “ lim
n→∞ xn = x” means two things:

1) The limit exists.
2) It equals x.

Remark: The limit x may or may not be one of the numbers in the sequence.

Note the dependence: M may depend on 𝜖. We only need to pick M once we know 𝜖.
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Example: {1}∞n=1 converges to 1.

Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.

Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.

Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).

Then for all n ≥ M, |xn − x| = �� 1
n − 0

�� = �� 1
n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x|

=
�� 1
n − 0

�� = �� 1
n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
��

=
�� 1
n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
��

= 1
n ≤ 1

M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n

≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M

< 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.

Proof: Suppose x is a limit. Find M for 𝜖 = 1
2 .

For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .

For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x|

= |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x|

and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x|

= |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.

But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)|

≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x|

< 1/2 + 1/2 = 1.
A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.

A contradiction. □



5 / 21

Example: {1}∞n=1 converges to 1.
Proof: Given 𝜖 > 0, let M = 1.
Then for n ≥ M = 1, |xn − x| = |1 − 1| = 0 < 𝜖. □

Example: {1/n}∞n=1 converges to 0.
Proof: Given 𝜖 > 0, find M such that 0 < 1/M < 𝜖 (Archimedean property).
Then for all n ≥ M, |xn − x| = �� 1

n − 0
�� = �� 1

n
�� = 1

n ≤ 1
M < 𝜖. □

Example: {(−1)n}∞n=1 is divergent.
Proof: Suppose x is a limit. Find M for 𝜖 = 1

2 .
For even n ≥ M, 1/2 > |xn − x| = |1 − x| and 1/2 > |xn+1 − x| = |−1 − x|.
But 2 = |1 − x − (−1 − x)| ≤ |1 − x| + |−1 − x| < 1/2 + 1/2 = 1.
A contradiction. □



6 / 21

Proposition
A convergent sequence has a unique limit.

Proof: Suppose {xn}∞n=1 has limits x and y.
Take an arbitrary 𝜖 > 0.
Find an M1 such that for all n ≥ M1, |xn − x| < 𝜖/2.
Find an M2 such that for all n ≥ M2, |xn − y| < 𝜖/2.
Consider n such that n ≥ M1 and n ≥ M2.
|y − x| = |xn − x − (xn − y)| ≤ |xn − x| + |xn − y| < 𝜖

2 + 𝜖
2 = 𝜖.

|y − x| < 𝜖 ∀ 𝜖 > 0 ⇒ |y − x| = 0 ⇒ y = x.
Hence the limit (if it exists) is unique. □

Remark: Note the technique. A quantity to be shown as zero is written as a sum of two
things that are small.
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Proposition
A convergent sequence {xn}∞n=1 is bounded.

Proof: Suppose {xn}∞n=1 converges to x.
⇒ ∃ an M ∈ ℕ such that for all n ≥ M, |xn − x| < 1.

For n ≥ M, |xn | = |xn − x + x| ≤ |xn − x| + |x| < 1 + |x|.{|x1 | , |x2 | , . . . , |xM−1 | , 1 + |x|} is a finite set,
so let B B max

{|x1 | , |x2 | , . . . , |xM−1 | , 1 + |x|}.

Then for all n ∈ ℕ, |xn | ≤ B. □

Converse does not hold: {(−1)n}∞n=1 is bounded but not convergent.
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Example: We claim
{

n2+1
n2+n

}∞
n=1

converges and lim
n→∞

n2 + 1
n2 + n

= 1.

Proof: Given 𝜖 > 0, find M ∈ ℕ such that 1
M < 𝜖.

For all n ≥ M,����n2 + 1
n2 + n

− 1
���� = ����n2 + 1 − (n2 + n)

n2 + n

���� = ���� 1 − n
n2 + n

���� = n − 1
n2 + n

≤ n
n2 + n

=
1

n + 1 ≤ 1
n
≤ 1

M
< 𝜖.

⇒ lim
n→∞

n2 + 1
n2 + n

= 1. □

Remark: Sometimes you throw something away to make things simpler.
Just don’t throw away too much.
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Definition
A {xn}∞n=1 is monotone increasing if xn ≤ xn+1 for all n ∈ ℕ.

A {xn}∞n=1 is monotone decreasing if xn ≥ xn+1 for all n ∈ ℕ.
If it is one of the two, but doesn’t matter which, just say it is monotone.

Monotone sequences are easier to handle.

Examples:
{n}∞n=1 is monotone increasing,
{1/n}∞n=1 is monotone decreasing,
{1}∞n=1 (constant) is both monotone increasing and monotone decreasing,
{(−1)n}∞n=1 is not monotone.
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Example: Monotone increasing sequence:

1 2 3 4 5 6 7 8 9 10
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Theorem (Monotone convergence theorem)
A monotone sequence {xn}∞n=1 is bounded if and only if it is convergent.

If {xn}∞n=1 is monotone increasing and bounded, then lim
n→∞ xn = sup{xn : n ∈ ℕ}.

If {xn}∞n=1 is monotone decreasing and bounded, then lim
n→∞ xn = inf{xn : n ∈ ℕ}.

Proof: Consider a monotone increasing {xn}∞n=1. First suppose it is bounded.
The set {xn : n ∈ ℕ} is bounded, so let x B sup{xn : n ∈ ℕ}.
Let 𝜖 > 0 be arbitrary.
∃ M ∈ ℕ such that xM > x − 𝜖 (as x is the supremum).
As {xn}∞n=1 is monotone increasing (by induction), xn ≥ xM for all n ≥ M.
⇒ for all n ≥ M, |xn − x| = x − xn ≤ x − xM < 𝜖. ⇒ {xn}∞n=1 converges to x.

On the other hand, we already proved a convergent sequence is bounded.

Monotone decreasing left as exercise. □

Note: monotone increasing {xn}∞n=1 is bounded from below by x1, so enough to check if
bounded from above.

Similarly for monotone decreasing, enough to check if bounded from below.
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Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?)

⇒ 1√
n + 1

≤ 1√
n

⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n

⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}

0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0

⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound

⇒ lim
n→∞

1√
n = 0.



12 / 21

Example: Consider
{ 1√

n

}∞
n=1.

1√
n > 0 for all n ∈ ℕ, so bounded below.

∀ n ∈ ℕ,
√

n + 1 ≥ √
n (why?) ⇒ 1√

n + 1
≤ 1√

n
⇒ monotone decreasing

⇒ convergent (by proposition) and

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ ℕ

}
0 is a lower bound ⇒ the infimum is ≥ 0.

Suppose b ≥ 0 such that b ≤ 1√
n for all n ∈ ℕ.

⇒ b2 ≤ 1
n for all n ∈ ℕ.

We proved before that this means b2 ≤ 0 (Archimedean property).

As b2 ≥ 0 as well ⇒ b2 = 0 ⇒ b = 0.

So b = 0 is the greatest lower bound ⇒ lim
n→∞

1√
n = 0.



13 / 21

Example: {1 + 1/2 + · · · + 1/n}∞n=1 is monotone and seems to grow very slowly.

1 + 1/2 + 1/3 + · · · + 1/10 ≈ 2.92897

1 + 1/2 + 1/3 + · · · + 1/100 ≈ 5.18738

1 + 1/2 + 1/3 + · · · + 1/1000 ≈ 7.48547

1 + 1/2 + 1/3 + · · · + 1/1001 ≈ 7.48647

1 + 1/2 + 1/3 + · · · + 1/1002 ≈ 7.48747

So once we’re up to n ≈ 1000, we’re only changing in the third decimal place.

However, we’ll see later that it does not converge. It is unbounded!
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Monotone sequences appear naturally in computing superma/infima:

Proposition
Let S ⊂ ℝ be a nonempty bounded set. Then ∃ monotone sequences {xn}∞n=1 and {yn}∞n=1 such that
xn , yn ∈ S and

sup S = lim
n→∞ xn and inf S = lim

n→∞ yn.

Proof is an exercise.
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Definition
For a sequence {xn}∞n=1, the K-tail (where K ∈ ℕ), or just the tail, of {xn}∞n=1 is the sequence
starting at K + 1, usually written as

{xn+K}∞n=1 or {xn}∞n=K+1.

Example: The 4-tail of {1/n}∞n=1 is
1/5, 1/6, 1/7, 1/8, . . ..

The 0-tail of a sequence is the sequence itself.

The reason for studying tails is that convergence only depends on the tail.
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Proposition
Let {xn}∞n=1 be a sequence. Then the following statements are equivalent:

(i) The sequence {xn}∞n=1 converges.

(ii) The K-tail {xn+K}∞n=1 converges for all K ∈ ℕ.

(iii) The K-tail {xn+K}∞n=1 converges for some K ∈ ℕ.
Furthermore, if any (and hence all) of the limits exist, then for all K ∈ ℕ

lim
n→∞ xn = lim

n→∞ xn+K .

Proof: (ii) ⇒(iii) is immediate.

The logic of the proof is
(ii)

(i) (iii)
to prove

to prove

We will also show that the limits are equal.
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Start with “(i) ⇒(ii).”

Suppose {xn}∞n=1 converges to x ∈ ℝ, and let K ∈ ℕ be arbitrary.
Given an 𝜖 > 0, ∃ M ∈ ℕ such that |x − xn | < 𝜖 for all n ≥ M.
Note that n ≥ M implies n + K ≥ M.
⇒ for all n ≥ M, |x − xn+K | < 𝜖.
⇒ The K-tail converges to x.

Let us prove “(iii) ⇒(i).”
Let K ∈ ℕ be given and suppose {xn+K}∞n=1 converges to x ∈ ℝ.
Given an 𝜖 > 0, ∃ M′ ∈ ℕ such that |x − xn+K | < 𝜖 for all n ≥ M′.
Let M B M′ + K.
n ≥ M ⇒ n − K ≥ M′.
⇒ for all n ≥ M, |x − xn | = |x − x(n−K)+K | < 𝜖.
⇒ {xn}∞n=1 converges to x. □
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So the limit does not care how the sequence begins.

Example:{ n
n2+16

}∞
n=1 = 1/17, 1/10, 3/25, 1/8, 5/41, 3/26, 7/65, 1/10, 9/97, 5/58, . . .

1/17 < 1/10 < 3/25 < 1/8 > 5/41 > 3/26 > 7/65 > 1/10 > 9/97 > 5/58 > . . .{ n
n2+16

}∞
n=1 is monotone decreasing (exercise) if we start with n = 4.

So the 3-tail is monotone.

It is also bounded below (all terms are positive).

So it is convergent.
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Definition
Let {xn}∞n=1 be a sequence.

Let {ni}∞i=1 be a strictly increasing sequence of natural numbers, that is, ni < ni+1 for all i (in
other words n1 < n2 < n3 < · · · ).
The sequence {xni}∞i=1 is a subsequence of {xn}∞n=1.

The subsequence is the sequence xn1 , xn2 , xn3 , . . ..

Example: {1/n}∞n=1{1/3i}∞i=1 = 1/3, 1/6, 1/9, 1/12 . . . is a subsequence.
Use ni = 3i in the definition.

1, 0, 1/3, 0, 1/5, . . . is not a subsequence of {1/n}∞n=1.

1, 1/3, 1/2, 1/5, . . . is not a subsequence of {1/n}∞n=1.
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A tail of a sequence is a subsequence.

For general subsequences we have the following proposition on convergence.

Proposition
If {xn}∞n=1 is a convergent sequence, then every subsequence {xni}∞i=1 is also convergent, and

lim
n→∞ xn = lim

i→∞
xni .

Proof: Let x B lim
n→∞ xn.

Given 𝜖 > 0, ∃ M ∈ ℕ such that for all n ≥ M, |xn − x| < 𝜖.

By induction (try it), ni ≥ i.

So i ≥ M ⇒ ni ≥ M.

⇒ for all i ≥ M, |xni − x| < 𝜖. □
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Example: Existence of a convergent subsequence does not imply convergence of the
sequence itself.

Consider 0, 1, 0, 1, 0, 1, . . . (xn = 0 if n is odd, and xn = 1 if n is even)

{xn}∞n=1 is divergent.

{x2i}∞i=1 converges to 1.

{x2i+1}∞i=1 converges to 0.
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