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The absolute value is the size of x € R:

x ifx>0,
|x| = .
—-x ifx<0.
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(i) |x| =0, moreover, |x| =0 & x=0.
(i) |-x| =|x| forallx € R.
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Proof: (i):
Casex>0: |x|=x>0 alsolx]=x=0 & x=0.
Casex<0: |x]=-x>0 and x| #0.
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(i) “|-x| = |x| for all x € R”:

Casex>0: -x<0 = |-x=-(—x)=x=|x]
Cases x < 0 and x = 0 similar.

(iif) “|xy| = |x| ly| for all x, y € R":

Case x = 0 or y = 0: immediate.

Casex>0&y>0: xy>0 = |xy|=xy=I|x||y|

Casex < 0&y<0: xy=(-x)(-y)>0 = |xy|=xy=(-x)(-y) = x|yl

Casex>0&y<0: xy<0 = |xy|=—-(xy)=x(-y) = |x||y|.
Case x < 0 &y > 0 is similar.

(iv) “|x|* = 22 for all x € R":

Case x > 0: immediate.



(i) “|-x| = |x| for all x € R”:

Casex>0: -x<0 = |-x=-(—x)=x=|x]
Cases x < 0 and x = 0 similar.

(iif) “|xy| = |x| ly| for all x, y € R":

Case x = 0 or y = 0: immediate.

Casex>0&y>0: xy>0 = |xy|=xy=I|x||y|
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Case x < 0 &y > 0 is similar.

(iv) “|x|* = 22 for all x € R":
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(i) “|-x| = |x| for all x € R”:

Casex>0: -x<0 = |-x=-(—x)=x=|x]
Cases x < 0 and x = 0 similar.

(iif) “|xy| = |x| ly| for all x, y € R":

Case x = 0 or y = 0: immediate.

Casex>0&y>0: xy>0 = |xy|=xy=I|x||y|

Casex < 0&y<0: xy=(-x)(-y)>0 = |xy|=xy=(-x)(-y) = x|yl

Casex>0&y<0: xy<0 = |xy|=—-(xy)=x(-y) = |x||y|.
Case x < 0 &y > 0 is similar.

(iv) “|x|* = 22 for all x € R":
Case x > 0: immediate.
Casex <0: |x> = (—x)* = x2.
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W“xl<y o -y<x<y”

Suppose |x| <y. As|x| >0 = y=0.
Casex > 0:
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Casex<0: -x=[x|<y = x2-y , y=0



W) “Ix|<y & —-y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex<0: —x=x<y = x2-y , y20>x = -y<x<uy.
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W) “Ix|<y & —-y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex<0: —x=x<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex > 0:



W) “Ix|<y & —-y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex<0: —x=x<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex>0: y=>x



W) “Ix|<y & —-y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex<0: —x=x<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|



W) x|y & —-y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Case x < 0:



W) “Ix| <y & —-y<x<y”n

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Casex <0: -y<x



W) “Ix| <y & —-y<x<y”n

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Casex<0: -y<x = y>-x



W) xl<sy & -y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Casex<0: -y<x = y2>-x=|x|



W) xl<sy & -y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Casex<0: -y<x = y2>-x=|x|

(vi) “—|x| £ x < |x| forall x € R”:



W) xl<sy & -y<x<y”

Suppose |x| <y. As|x| 20 = y=0.
Casex>0: x<y , y=20 = -y<0<x = -y<x<y.
Casex <0: —-x=x|<y = x2-y , y=20>x = -y<x<y.

Now suppose —y < x < .
Casex >20: y=x-=|x|
Casex<0: -y<x = y2>-x=|x|

(vi) “—|x| £ x < |x| forall x € R”:
(v) withy = |x|.
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Proposition (Triangle Inequality)
lx +y| < |x| + |y| forall x,y € R.

Proof: By the previous proposition —|x| <x < |x|and —|y| <y < |y|.
Add the two:  —(|x| + |y]) < x+y < |x| + [y|.
By the proposition again  |x +y| < |x| + |y|.

E.g.,
3=]1+2|<|1|+[2]=1+2



Proposition (Triangle Inequality)
lx +y| < |x| + |y| forall x,y € R.

Proof: By the previous proposition —|x| <x < |x|and —|y| <y < |y|.
Add the two:  —(|x| + |yl) <x+y < |x| + [yl

By the proposition again  |x +y| < |x| + |y|.

E.g.,

3=]1+2|<|1|+[2]=1+2
1=1-2/=[1+(=2)|<|1|+]|-2/=1+2=3



Corollary
Letx,y € R.
(i) (reverse triangle inequality) |(|x| - |y|)| < |x -yl
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Corollary
Let x,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x -yl
(i) |x =yl < fx| + |yl

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
la| = |a—b+Db| <|a—Db|+ b



Corollary
Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x -yl
(i) x =yl < |x[ + [yl

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
la| =la-b+b| <|a-bl+|b] = |a|—|b|] <|a—Db



Corollary
Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x—yl
(i) x =yl < |x[ + [yl

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
la| =la-b+b| <|a-bl+|b] = |a|—|b|] <|a—Db

Switch roles of 2 and b:

bl = la] < |b~af = |a - b



Corollary
Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x—yl
(i) x =yl < |x[ + [yl

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
la| =la-b+b| <|a-bl+|b] = |a|—|b|] <|a—Db

Switch roles of 2 and b:

bl — la] < |b~al = |a - D]

(i) follows.



Corollary
Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x—yl
(i) |x =yl < fx| + |yl

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
laj=ja-b+b <|la-b|+|b] = l|a|-|b] <|a-1D|

Switch roles of 4 and b:

|b| = |a| < |b—a| = |a—Db|

(i) follows.

(ii): Replace y with —y in standard triangle inequality.



Corollary
Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x—yl
(i) [x =yl < |x] + yl.

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
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Letx,y € R.

(i) (reverse triangle inequality) |(|x| - |y|)| < |x—yl
(i) [x =yl < |x] + yl.

Proof: (i) Plug x = a — b and y = b into the standard triangle inequality:
la| =la-b+b| <|a-bl+|b] = |a|—|b|] <|a—Db

Switch roles of 4 and b:

bl — la] < |b~al = |a - D]

(i) follows.

(ii): Replace y with —y in standard triangle inequality.

E.g.,
2=3-1=13|-111<13-1]=2
2=3-1=|-3|-]1|<|-3-1|=4
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Corollary

Let x1,%2,...,x, € R. Then

X1 +x2 + x| < x| + x| + o0+ x|

Proof: Induction!
Trivial if n = 1.

Suppose conclusion holds for n numbers.
Consider n + 1 numbers x1, x>, ..., Xu41.

|1 + 20 + -+ xy + Xpp1| < X1+ 20+ -+ x| F X4

< x|+ fxaf + -+ x| + x4
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Example: Find a number M such that [x> —=9x + 1| < M forall -1 < x < 5.
[x2 = 9x + 1] < [x%] + |9x| + |1] = |x|> + 9]x| + 1.

|x|?> + 9|x| + 1 is largest when |x| is largest (why?).

|x| is largest when |x| = 5.

So a possible M = 52 +9(5) + 1 = 71.

Other M work. E.g.,, M = 100 works.
A little calculus shows M = 77/4 = 19.25 would also work (least such M).

We didn't ask for the best M, any M that works will do.

That sort of point comes up often in analysis.
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Definition
f: D — Ris bounded if 3 M such that |[f(x)] < M for all x € D.

We proved x% — 9x + 1 is bounded when the domainis D = {x: -1 < x < 5}.
If we make D = R, then x% — 9x + 1 is not bounded.

We write:  supf(x) := sup f(D) inlg f(x) = inf f(D)
x€D xe

We also write: sup (®-9x+1)=11 1inf 5(x2 —9x+1)=-77/4.
~1<x<

—-1<x<5
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Iff:D > R,g: D — R (D # 0) are bounded and f(x) < g(x) for all x € D, then

supf(x) <supg(x)  and inf f(x) < inf g(x).
xeD xeD xeD xeD

Caution: The x on the LHS is different than the x on the RHS. Perhaps think

supf(x) < sup g).
xeD yeD

Proof: We prove the sup, leave the inf as exercise.
Suppose b is an upper bound for g(D).
= f(x)<gx)<bforallxe D = bisan upperbound for f(D).
Taking the LUB of g(D) gets f(x) < supg(y) for any x € D.
yeD
So the LUB of g¢(D) is an upper bound for f(D).
= supf(x) < sup 8y)

xeD yeD
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Caution: f(x) < g(x) for all x € D does NOT imply sup f(x) < ing g().
xeD ye

For this you need every value of g(y) to be a bound for f:
That is, f(x) < g(y) for all x, y € D does imply sup f(x) < inlg ).
xeD ye

Proof is an exercise.
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Exercise: Let D be nonempty andf: D — R, g: D — R be bounded.
a) Show
sup (f(x) + g(x)) < supf(x) + sup g(x)

xeD xeD xeD

and
inf (f(x) + g(0)) > inf f(x) + inf g(v).

b) Find examples where we obtain strict inequalities.



