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Definition
Let S ⊂ ℝ and f : S → ℝ be a function. Suppose for every 𝜖 > 0 there exists a 𝛿 > 0 such
that whenever x, c ∈ S and |x − c| < 𝛿, we have |f (x) − f (c)| < 𝜖. Then we say f is uniformly
continuous.

Here 𝛿 does not depend on c, only on 𝜖.

uniformly continuous ⇒ continuous (but not the other way around)

Example: f : [0, 1] → ℝ defined by f (x) B x2 is uniformly continuous.

Proof: Suppose 0 ≤ x, c ≤ 1. Then��x2 − c2
�� = |x + c| |x − c| ≤ (|x| + |c|) |x − c| ≤ (1 + 1) |x − c|.

Given 𝜖 > 0, let 𝛿 B 𝜖/2.
If |x − c| < 𝛿, then

��x2 − c2
�� < 𝜖. □
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Theorem
Let f : [a, b] → ℝ be a continuous function. Then f is uniformly continuous.

Proof: Suppose f is not uniformly continuous.
∃ 𝜖 > 0 and {xn}∞n=1, {yn}∞n=1 in [a, b] such that |xn − yn | < 1/n and |f (xn) − f (yn)| ≥ 𝜖.
By Bolzano–Weierstrass, ∃ a convergent subsequence {xnk}∞k=1.
Let c B lim

k→∞
xnk . a ≤ c ≤ b as a ≤ xnk ≤ b for all k,��ynk − c

�� = ��ynk − xnk + xnk − c
�� ≤ ��ynk − xnk

�� + ��xnk − c
�� < 1/nk +

��xnk − c
��.

1/nk → 0 and
��xnk − c

�� → 0 as k → ∞ ⇒ ynk → c as k → ∞.��f (xnk) − f (c)�� = ��f (xnk) − f (ynk) + f (ynk) − f (c)��
≥ ��f (xnk) − f (ynk)

�� − ��f (ynk) − f (c)�� ≥ 𝜖 − ��f (ynk) − f (c)��
Or

��f (xnk) − f (c)�� + ��f (ynk) − f (c)�� ≥ 𝜖.

Either f (xnk) ̸→ f (c) or f (ynk) ̸→ f (c), otherwise the LHS would → 0.

⇒ f is not continuous at c ⇒ f is not continuous. □

Remark: See how closed and bounded is important again.
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Uniformly continuous functions preserve Cauchy sequences:

Lemma
Let f : S → ℝ be uniformly continuous. Let {xn}∞n=1 be a Cauchy sequence in S. Then

{
f (xn)

}∞
n=1

is Cauchy.

Proof: Let 𝜖 > 0 be given.

∃ 𝛿 > 0 such that |f (x) − f (y)| < 𝜖 whenever x, y ∈ S and |x − y| < 𝛿.

Find M ∈ ℕ such that for all n, k ≥ M, we have |xn − xk | < 𝛿.

⇒ ∀ n, k ≥ M |f (xn) − f (xk)| < 𝜖. □
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The lemma gives extension to endpoints for uniformly continuous functions:

Proposition
f : (a, b) → ℝ is uniformly continuous if and only if the limits

La B lim
x→a

f (x) and Lb B lim
x→b

f (x)

exist and f̃ : [a, b] → ℝ defined by

f̃ (x) B


f (x) if x ∈ (a, b),
La if x = a,
Lb if x = b

is continuous.

Proof: ⇐) If f̃ is continuous, then it is uniformly continuous by the theorem.

f is the restriction of f̃ to (a, b), so f is also uniformly continuous (exercise).
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⇒) Suppose f is uniformly continuous.

WTS that La and Lb exist.
Take {xn}∞n=1 in (a, b) such that xn → a (and so also Cauchy).
Lemma says

{
f (xn)

}∞
n=1 is Cauchy and thus convergent, so let L1 B lim

n→∞ f (xn).
Take another {yn}∞n=1 in (a, b) s.t. yn → a. Similarly, L2 B lim

n→∞ f (yn) exists. WTS L1 = L2.
Given 𝜖 > 0, find 𝛿 > 0 s.t. |x − y| < 𝛿 implies |f (x) − f (y)| < 𝜖/3.
∃ M ∈ ℕ s.t. for n ≥ M, |a − xn | < 𝛿/2, |a − yn | < 𝛿/2, |f (xn) − L1 | < 𝜖/3, and |f (yn) − L2 | < 𝜖/3.
⇒ for n ≥ M, |xn − yn | = |xn − a + a − yn | ≤ |xn − a| + |a − yn | < 𝛿/2 + 𝛿/2 = 𝛿.
⇒ |L1 − L2 | = |L1 − f (xn) + f (xn) − f (yn) + f (yn) − L2 |

≤ |L1 − f (xn)| + |f (xn) − f (yn)| + |f (yn) − L2 | ≤ 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.
⇒ L1 = L2. ⇒ La = limx→a f (x) exists. Lb is almost the same.

As lim
x→a

f (x) = La exists, lim
x→a

f̃ (x) exists and equals La (Proposition 3.1.15) (similarly for b).

⇒ f̃ is continuous at a and b.
As f is continuous at any c ∈ (a, b), then f̃ is continuous at c ∈ (a, b) (Proposition 3.1.15). □

Typical application: if f : (−1, 0) ∪ (0, 1) → ℝ is uniformly continuous, then lim
x→0

f (x) exists
and f has a removable singularity: it can be continuously extended to (−1, 1).
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Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.

Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given.

Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿,

|f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)|

≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y|

< K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿

= K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



8 / 10

Definition
A function f : S → ℝ is Lipschitz continuous, if there exists a K ∈ ℝ, such that

|f (x) − f (y)| ≤ K |x − y| for all x and y in S.

Example: sin and cos are Lipschitz with K = 1 as
|sin(x) − sin(y)| ≤ |x − y| and |cos(x) − cos(y)| ≤ |x − y|.
Proposition
A Lipschitz continuous function is uniformly continuous.

Proof: Suppose f : S → ℝ and K are such that
|f (x) − f (y)| ≤ K |x − y| for all x, y in S.

Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/K.

For all x, y ∈ S such that |x − y| < 𝛿, |f (x) − f (y)| ≤ K |x − y| < K𝛿 = K 𝜖
K

= 𝜖.

⇒ f is uniformly continuous. □



9 / 10

Geometric interpretation of Lipschitz:

Suppose f is Lipschitz with constant K.

If x ≠ y, then
���� f (x) − f (y)

x − y

���� ≤ K.

G H

slope = 5 (G)− 5 (H)
G−H

f (x)−f (y)
x−y is the slope of the line between(

x, f (x)) and
(
y, f (y)) , the secant line.

f is Lipschitz
⇔

every secant line has
��slope

�� ≤ K.
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��slope

�� ≤ K.
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Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

��

=
��� x−y√

x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

���

= |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y .

x ≥ 1 and y ≥ 1 ⇒ 1√
x+√y ≤ 1

2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

��

=
��� x−y√

x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

���

≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx

in other words, 1/K ≤ √
x or 1/K2 ≤ x.

Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.

Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists

⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.



10 / 10

Example: f : [1,∞) → ℝ given by f (x) B √
x is Lipschitz continuous.

Proof:
��√x − √y

�� = ��� x−y√
x+√y

��� = |x−y|√
x+√y . x ≥ 1 and y ≥ 1 ⇒ 1√

x+√y ≤ 1
2 .

Therefore,
��√x − √y

�� = ��� x−y√
x+√y

��� ≤ 1
2 |x − y|. □

Example: g : [0,∞) → ℝ given by g(x) B √
x is not Lipschitz continuous.

Proof: Suppose K exists (assume K > 0), s.t.
��√x − √y

�� ≤ K |x − y| ∀ x, y ≥ 0.

Set y = 0 ⇒ √
x ≤ Kx in other words, 1/K ≤ √

x or 1/K2 ≤ x.
Cannot be true for all x > 0 ⇒ no K exists ⇒ g not Lipschitz. □

Remark: g is uniformly continuous (exercise), but not Lipschitz.


