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We will simply assume that real numbers exist, that is, we won’t prove:

Theorem
There exists a unique ordered field ℝ with the least-upper-bound property such that ℚ ⊂ ℝ.

We’ll simply assume simple properties that follow from the definition.

E.g.:

1 > 0, 2 > 0, ..., n > 0 for all n ∈ ℕ ⊂ ℝ.
1
n > 0 for all n ∈ ℕ.

etc.
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Analysis is proving inequalities.

Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0,

then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.

If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.

𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:

If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.

E.g., c = a+b
2 .



3 / 17

Analysis is proving inequalities.
Here is how an analyst proves a nonstrict inequality:

Proposition
If x ∈ ℝ is such that x ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then x ≤ 0.

Proof: Either x ≤ 0 or x > 0.
If x > 0, then 0 < x/2 < x.
𝜖 = x/2 gives a contradiction. □

Equivalently: If x ≥ 0 is such that x ≤ 𝜖 for all 𝜖 > 0, then x = 0.

Or the very common: If |x| ≤ 𝜖 for all 𝜖 > 0, then x = 0.

(To prove x ≥ 0, you could prove −x ≤ 0 with the proposition).

We’ll see many variations on the above idea.

Generalizing the idea of the proof:
If a < b are real numbers, then there exists c ∈ ℝ such that a < c < b.
E.g., c = a+b

2 .



4 / 17

For analysis, the least-upper-bound property is absolutely key (allows limits).

Let’s use it to show that
√

2 ∈ ℝ exists (it does not exist in ℚ).

Example: ∃ a unique positive r ∈ ℝ such that r2 = 2.

Proof: Let A B {x ∈ ℝ : x2 < 2}.
We claim that A is bounded above and nonempty.

x2 ≥ 4 when x ≥ 2 ⇒ x < 2 when x2 < 2 (x ∈ A) ⇒ A is bounded above.

1 ∈ A, so A ≠ ∅.

So sup A exists. Let r B sup A.

Immediate: r ≥ 1 > 0 as 1 ∈ A.

WTS r2 = 2.

This is analysis, we’ll show r2 ≥ 2 and r2 ≤ 2.
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Claim: r2 ≥ 2.

Proof of claim: Take s > 0 such that s2 < 2. Want h > 0 such that (s + h)2 < 2.

2 − s2 > 0 ⇒ 2−s2

2s+1 > 0.

Take h ∈ ℝ such that 0 < h < 2−s2

2s+1 and h < 1.

(s + h)2 − s2 = h(2s + h)
< h(2s + 1) (

since h < 1
)

< 2 − s2 (
since h < 2−s2

2s+1
)

⇒ (s + h)2 < 2 ⇒ s + h ∈ A

but s + h > s as h > 0 ⇒ s < r = sup A

s was arbitrary positive s such that s2 < 2 ⇒ r2 ≥ 2.

Claim is proved.
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0 < s < r would imply s2 < r2 0 < r < s would imply r2 < s2 ⇒ s = r. □
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r2 ≥ 2 and r2 ≤ 2 ⇒ r2 = 2. Existence is done.

Uniqueness: Suppose s > 0 such that s2 = 2

⇒ s2 = r2.

0 < s < r would imply s2 < r2 0 < r < s would imply r2 < s2 ⇒ s = r. □
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x1/n exists for any n ∈ ℕ and all x > 0 (proof harder).

√
2 ∉ ℚ so ℝ \ℚ ≠ ∅

(In fact, we’ll see ℝ \ℚ is much bigger than ℚ.)

ℝ \ℚ is called the set of irrational numbers.
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Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i):

Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x.

(i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1

⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



8 / 17

Theorem

(i) (Archimedean property) If x, y ∈ ℝ and x > 0, then ∃ n ∈ ℕ such that nx > y.

(ii) (ℚ is dense in ℝ) If x, y ∈ ℝ and x < y, then ∃ r ∈ ℚ such that x < r < y.

Remark: The two parts are actually equivalent.

Proof: (i): Divide by x. (i) says that ∀ real t B y/x ∃ n ∈ ℕ such that n > t.

So (i) says that ℕ ⊂ ℝ is not bounded above.

Suppose ℕ is bounded (for contradiction).

Let b B supℕ.

b − 1 is not an upper bound as b − 1 < b.

⇒ ∃m ∈ ℕ such that m > b − 1 ⇒ m + 1 > b (⇒⇐)

(i) is proved.



9 / 17

Idea for (ii) (density of ℚ):

Find n such that y − x > 1/n,

then find least m such that m/n > x.

m−1
n

m
n

1
n

m+1
n

yx

(ii): First assume x ≥ 0.

y − x > 0 (using (i))⇒ ∃n ∈ ℕ such that n(y − x) > 1 or y − x > 1/n.

A B {k ∈ ℕ : k > nx} is nonempty by (i).

Well ordering property ⇒ ∃ a least element m of A.

m ∈ A ⇒ m > nx ⇒ x < m/n.

m is the least element ⇒ m − 1 ∉ A.

If m > 1, then m − 1 ∈ ℕ and m − 1 ∉ A so m − 1 ≤ nx.
If m = 1, then m − 1 = 0 and so also m − 1 ≤ nx (as x ≥ 0).

n(y − x) > 1 ⇒ ny > 1 + nx ⇒ ny > 1 + nx ≥ m ⇒ y > m/n So r = m/n works.

Now assume x < 0. If y > 0, then r = 0 works.

If y ≤ 0, then 0 ≤ −y < −x. Find q ∈ ℚ s.t. −y < q < −x. r = −q works. □
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Corollary
inf{1/n : n ∈ ℕ} = 0.

11
2
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1
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1
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1
7

1
8· · ·0

Proof: A B {1/n : n ∈ ℕ} is nonempty.
1/n > 0 for all n ∈ ℕ ⇒ 0 is a lower bound

⇒ b B inf A exists and b ≥ 0.

Let a > 0 be arbitrary.

Archimedean property ⇒ ∃n ∈ ℕ such that na > 1 ⇒ a > 1/n ∈ A

⇒ a is not a lower bound ⇒ b = 0. □
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For A ⊂ ℝ, x ∈ ℝ define x + A B {x + y ∈ ℝ : y ∈ A} xA B {xy ∈ ℝ : y ∈ A}.

E.g., if A = {1, 2, 3}, then 5 + A = {6, 7, 8} and 3A = {3, 6, 9}.
Proposition
Let A ⊂ ℝ be nonempty.
(i) If x ∈ ℝ and A is bounded above, then sup(x + A) = x + sup A.

(ii) If x ∈ ℝ and A is bounded below, then inf(x + A) = x + inf A.
(iii) If x > 0 and A is bounded above, then sup(xA) = x(sup A).
(iv) If x > 0 and A is bounded below, then inf(xA) = x(inf A).
(v) If x < 0 and A is bounded below, then sup(xA) = x(inf A).

(vi) If x < 0 and A is bounded above, then inf(xA) = x(sup A).

Note that if x < 0, then for multiplication supremum and infimum switch.
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Proof: Let’s prove (i):
“If x ∈ ℝ and A is bounded above, then sup(x + A) = x + sup A”,
rest are exercises.

Suppose b is an upper bound for A.

⇒ y ≤ b for all y ∈ A ⇒ x + y ≤ x + b for all y ∈ A

⇒ x + b is an upper bound for x + A.

If b = sup A, then sup(x + A) ≤ x + b = x + sup A.

Opposite inequality is similar: Suppose c is an upper bound for x + A.

⇒ x + y ≤ c for all y ∈ A ⇒ y ≤ c − x for all y ∈ A

⇒ c − x is an upper bound for A.

If c = sup(x + A), then sup A ≤ c − x = sup(x + A) − x. □
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Proposition
Let A, B ⊂ ℝ be nonempty sets such that x ≤ y whenever x ∈ A and y ∈ B.

Then A is bounded above, B is bounded below, and sup A ≤ inf B.

Proof: Any x ∈ A is a lower bound for B.

⇒ x ≤ inf B for all x ∈ A

⇒ inf B is an upper bound for A

⇒ sup A ≤ inf B. □

Care must be taken with suprema and infima and strict inequalities.

“x < y for all x ∈ A and y ∈ B” still only implies sup A ≤ inf B (nonstrict).

E.g., A B {0} and B B {1/n : n ∈ ℕ} ⇒ 0 < 1/n for all n ∈ ℕ.

However, sup A = 0 and inf B = 0.
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Proposition
If S ⊂ ℝ is nonempty and bounded above, then for every 𝜖 > 0 there exists an x ∈ S such that
(sup S) − 𝜖 < x ≤ sup S.

Proof is an exercise.
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Definition
Let A ⊂ ℝ be a set.

(i) If A is empty, then sup A B −∞.
(ii) If A is not bounded above, then sup A B ∞.

(iii) If A is empty, then inf A B ∞.
(iv) If A is not bounded below, then inf A B −∞.

Remark: ∞ and −∞ are sometimes treated as numbers.

ℝ∗ B ℝ ∪ {−∞,∞} (extended real numbers) is an ordered set
(−∞ < ∞ and −∞ < x and x < ∞ for all x ∈ ℝ).

Some (but not all) arithmetic can be done in the obvious way,

leave ∞−∞, 0 · (±∞), and ±∞
±∞ undefined.

We avoid using this arithmetic; ℝ∗ is not a field!
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If A ≠ ∅ is finite, then inf A ∈ A and sup A ∈ A.

We then usually write

min A B inf A (minimum)

max A B sup A (maximum)

E.g., max{1, 2.4,𝜋, 100} = 100 min{1, 2.4,𝜋, 100} = 1.
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Some exercises with useful conclusions.

Exercise: Prove that if t ≥ 0 (t ∈ ℝ), then there exists an n ∈ ℕ such that n − 1 ≤ t < n.

Exercise: Let x, y ∈ ℝ. Suppose x2 + y2 = 0. Prove that x = 0 and y = 0.

Exercise: Let A and B be two nonempty bounded sets of real numbers. Let
C B {a + b : a ∈ A, b ∈ B}. Show that C is a bounded set and that

sup C = sup A + sup B and inf C = inf A + inf B.

Exercise: Prove the so-called Bernoulli’s inequality: If 1 + x > 0, then for all n ∈ ℕ, we have
(1 + x)n ≥ 1 + nx.
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