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Definition
Let S ⊂ ℝ be a set. A number x ∈ ℝ is called a cluster point of S if for every 𝜖 > 0, the set
(x − 𝜖, x + 𝜖) ∩ S \ {x} is not empty.

I.e., x ∈ ℝ is a cluster point of S if ∀ 𝜖 > 0 ∃ y ∈ S s.t. y ≠ x and |x − y| < 𝜖.

Note: A cluster point of S need not lie in S.

Examples:
(i) {1/n : n ∈ ℕ} has a unique cluster point: 0.

(ii) The set of cluster points of (0, 1) is [0, 1].
(iii) The set of cluster points of ℚ is ℝ.
(iv) The set of cluster points of [0, 1) ∪ {2} is [0, 1].
(v) ℕ has no cluster points.
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Proposition
Let S ⊂ ℝ. Then x ∈ ℝ is a cluster point of S if and only if there exists a convergent sequence of
numbers {xn}∞n=1 such that xn ≠ x and xn ∈ S for all n, and lim

n→∞
xn = x.

Proof: Suppose x is a cluster point of S.
For every n ∈ ℕ, pick xn to be an arbitrary point of (x − 1/n, x + 1/n) ∩ S \ {x}.
(xn exists as x is a cluster point of S).
xn is within 1/n of x: |x − xn | < 1/n.
{1/n}∞n=1 converges to zero, {xn}∞n=1 converges to x.

On the other hand,
suppose {xn}∞n=1 is a seq. in S \ {x} converging to x.
⇒ for every 𝜖 > 0 ∃ M such that |xM − x| < 𝜖.
⇒ xM ∈ (x − 𝜖, x + 𝜖) ∩ S \ {x}. □
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Definition
Consider f : S → ℝ where c is a cluster point of S ⊂ ℝ.

Suppose ∃ L ∈ ℝ and ∀ 𝜖 > 0, ∃ 𝛿 > 0 such that whenever x ∈ S \ {c} and |x − c| < 𝛿, we
have |f (x) − L| < 𝜖.

We then say f (x) converges to L as x goes to c.
We say L is the limit of f (x) as x goes to c.

We write lim
x→c

f (x) B L, or f (x) → L as x → c.

If no such L exists, we say the limit does not exist or that f diverges at c.

Cheating again: The notation assumes the limit is unique,
we’ll prove that momentarily.

Remark: It is irrelevant whether f (c) is defined or not.
The limit may not equal f (c), even if f (c) is defined.
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Proposition
Let c be a cluster point of S ⊂ ℝ and let f : S → ℝ be such that f (x) converges as x goes to c.

Then
the limit of f (x) as x goes to c is unique.

Proof: Let both L1 and L2 satisfy the definition.
Let 𝜖 > 0 be given.
Find 𝛿1 > 0 such that |f (x) − L1 | < 𝜖/2 for all x ∈ S \ {c} with |x − c| < 𝛿1.
Find 𝛿2 > 0 such that |f (x) − L2 | < 𝜖/2 for all x ∈ S \ {c} with |x − c| < 𝛿2.
Put 𝛿 B min{𝛿1 , 𝛿2}.
Suppose x ∈ S, |x − c| < 𝛿, and x ≠ c.
(such an x exists as c is a cluster point).

|L1 − L2 | = |L1 − f (x) + f (x) − L2 | ≤ |L1 − f (x)| + |f (x) − L2 | <
𝜖
2 + 𝜖

2 = 𝜖.

⇒ L1 = L2. □
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Example: Consider f : ℝ → ℝ given by f (x) B x2. Then for any c ∈ ℝ,

lim
x→c

f (x) = lim
x→c

x2 = c2.

Proof: Fix c ∈ ℝ, and let 𝜖 > 0 is given.

Let 𝛿 B min
{
1, 𝜖

2 |c| + 1

}
.

Take x ≠ c such that |x − c| < 𝛿 (in particular, |x − c| < 1).
By reverse triangle inequality, |x| − |c| ≤ |x − c| < 1.
⇒ |x| + |c| < 2 |c| + 1.

Then��f (x) − c2
�� = ��x2 − c2

�� = |(x + c)(x − c)| = |x + c| |x − c|

≤ (|x| + |c|) |x − c| < (2 |c| + 1) |x − c| < (2 |c| + 1) 𝜖

2 |c| + 1
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Example: Define f : [0, 1) → ℝ by f (x) B
{

x if x > 0,
1 if x = 0.

Then lim
x→0

f (x) = 0, even though f (0) = 1.

Proof: Let 𝜖 > 0 be given.
Let 𝛿 B 𝜖.
For x ∈ [0, 1), x ≠ 0, and |x − 0| < 𝛿, we get |f (x) − 0| = |x| < 𝛿 = 𝜖. □
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Lemma
Let S ⊂ ℝ, let c be a cluster point of S, let f : S → ℝ be a function, and let L ∈ ℝ.

Then f (x) → L as x → c if and only if for every sequence {xn}∞n=1 in S \ {c} such that lim
n→∞

xn = c,
we have that the sequence {f (xn)}∞n=1 converges to L.

Proof: Suppose f (x) → L as x → c, and {xn}∞n=1 is a seq. in S \ {c} and lim
n→∞

xn = c.
Let 𝜖 > 0 be given.
Find 𝛿 > 0 such that if x ∈ S \ {c} and |x − c| < 𝛿, then |f (x) − L| < 𝜖.
Find an M such that for n ≥ M, we have |xn − c| < 𝛿.
⇒ for n ≥ M, |f (xn) − L| < 𝜖 ⇒ {f (xn)}∞n=1 converges to L.

Now suppose it is not true that f (x) → L as x → c.
(i.e., ∃𝜖 > 0 s.t.∀𝛿 > 0 ∃x ∈ S \ {c} where |x − c| < 𝛿 and |f (x) − L| ≥ 𝜖.)
⇒ ∃ 𝜖 > 0 s.t. ∀ n ∈ ℕ, ∃ xn ∈ S \ {c}, where |xn − c| < 1/n and |f (xn) − L| ≥ 𝜖.
{xn}∞n=1 converges to c, but {f (xn)}∞n=1 does not converge to L. □

Exercise: It is possible to strengthen the ⇐: It is enough to suppose that {f (xn)}∞n=1
converges for every {xn}∞n=1 without requiring a specific limit.
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Example: lim
x→0

sin(1/x) does not exist, but lim
x→0

x sin(1/x) = 0.

Graphs of sin(1/x) and x sin(1/x):

Proof: Define xn B
1

𝜋n+𝜋/2
, so that xn → 0 ⇒ sin(1/xn) = sin(𝜋n + 𝜋/2) = (−1)n

⇒
{
sin(1/xn)

}∞
n=1 does not converge ⇒ lim

x→0
sin(1/x) does not exist.

Let {xn}∞n=1 a sequence in ℝ \ {0} such that lim
n→∞

xn = 0.
|sin(t)| ≤ 1 for all t ∈ ℝ ⇒ |xn sin(1/xn) − 0| = |xn | |sin(1/xn)| ≤ |xn |.
xn → 0 ⇒ |xn | → 0 ⇒ xn sin(1/xn) → 0 ⇒ lim

x→0
x sin(1/x) = 0. □

Remark: Keep in mind the “for every sequence”:
If xn B 1/𝜋n, then {sin(1/xn)}∞n=1 = {0}∞n=1, but lim

x→0
sin(1/x) DNE.
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Corollary
Let S ⊂ ℝ and let c be a cluster point of S. Suppose f : S → ℝ and g : S → ℝ are functions such
that the limits of f (x) and g(x) as x goes to c both exist, and

f (x) ≤ g(x) for all x ∈ S \ {c}.

Then
lim
x→c

f (x) ≤ lim
x→c

g(x).

Proof: Take {xn}∞n=1 be a sequence in S \ {c} converging to c.

Let L1 B lim
x→c

f (x) and L2 B lim
x→c

g(x).

By the lemma above, {f (xn)}∞n=1 converges to L1 and {g(xn)}∞n=1 converges to L2.

We also have f (xn) ≤ g(xn) for all n ∈ ℕ.

⇒ L1 ≤ L2 (by lemma about sequence limits) □
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Proofs of the next corollaries are exercises.

Corollary
Let S ⊂ ℝ and let c be a cluster point of S. Suppose f : S → ℝ is such that the limit of f (x) as x → c
exists. Suppose ∃ a, b ∈ ℝ such that a ≤ f (x) ≤ b for all x ∈ S \ {c}.

Then a ≤ lim
x→c

f (x) ≤ b.

Corollary
Let S ⊂ ℝ and let c be a cluster point of S. Suppose f : S → ℝ, g : S → ℝ, and h : S → ℝ are such
that f (x) ≤ g(x) ≤ h(x) for all x ∈ S \ {c}.

Suppose lim
x→c

f (x) = lim
x→c

h(x) (in particular, the limits exist).

Then the limit of g(x) as x goes to c exists and lim
x→c

g(x) = lim
x→c

f (x) = lim
x→c

h(x).
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Corollary
Let S ⊂ ℝ and let c be a cluster point of S. Suppose f : S → ℝ and g : S → ℝ are such that the
limits of f (x) and g(x) as x goes to c both exist.

Then

(i) lim
x→c

(
f (x) + g(x)

)
=

(
lim
x→c

f (x)
)
+
(
lim
x→c

g(x)
)
.

(ii) lim
x→c

(
f (x) − g(x)

)
=

(
lim
x→c

f (x)
)
−
(
lim
x→c

g(x)
)
.

(iii) lim
x→c

(
f (x)g(x)

)
=

(
lim
x→c

f (x)
) (

lim
x→c

g(x)
)
.

(iv) If lim
x→c

g(x) ≠ 0, and g(x) ≠ 0 for all x ∈ S \ {c}, then lim
x→c

f (x)
g(x) =

limx→c f (x)
limx→c g(x) .

Corollary
Let S ⊂ ℝ and let c be a cluster point of S. Suppose f : S → ℝ is such that lim

x→c
f (x) exists.

Then lim
x→c

|f (x)| =
���lim
x→c

f (x)
���.
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Definition
Let f : S → ℝ be a function and A ⊂ S. Define the function f |A : A → ℝ by

f |A(x) B f (x) for x ∈ A.

The function f |A is called the restriction of f to A.

The function f |A is simply the function f taken on a smaller domain.

Be careful, e.g., f : ℝ → ℝ defined by say f (x) B x2

and f |[0,1] : [0, 1] → ℝ really are different functions.

E.g., it is not true that f |[0,1](2) = 22.XXXXXXXX f |[0,1](2) is not defined. But f (2) = 22
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Proposition
Let S ⊂ ℝ, c ∈ ℝ, and let f : S → ℝ be a function.

Suppose A ⊂ S is such that there is some 𝛼 > 0
such that (A \ {c}) ∩ (c − 𝛼, c + 𝛼) = (S \ {c}) ∩ (c − 𝛼, c + 𝛼).
(i) The point c is a cluster point of A if and only if c is a cluster point of S.

(ii) Let c be a cluster point of S. f (x) → L as x → c ⇔ f |A(x) → L as x → c.

Proof: First, let c be a cluster point of A, and note that A ⊂ S.
(A \ {c}) ∩ (c − 𝜖, c + 𝜖) ≠ ∅ ∀ 𝜖 > 0 ⇒ (S \ {c}) ∩ (c − 𝜖, c + 𝜖) ≠ ∅ ∀ 𝜖 > 0.
⇒ c is a cluster point of S.

Second, suppose c is a cluster point of S.
For 𝜖 > 0 s.t. 𝜖 < 𝛼, we get (A \ {c}) ∩ (c − 𝜖, c + 𝜖) = (S \ {c}) ∩ (c − 𝜖, c + 𝜖) ≠ ∅.
As it is true for all 𝜖 < 𝛼, (A \ {c}) ∩ (c − 𝜖, c + 𝜖) ≠ ∅ for all 𝜖 > 0.
⇒ c is a cluster point of A.
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Suppose c is a cluster point of S and therefore also a cluster point of A.

Suppose f (x) → L as x → c:
∀ 𝜖 > 0 ∃ 𝛿 > 0 such that if x ∈ S \ {c} and |x − c| < 𝛿, then |f (x) − L| < 𝜖.
If x ∈ A \ {c}, then x ∈ S \ {c}.
⇒ f |A(x) → L as x → c.

Finally, suppose f |A(x) → L as x → c and let 𝜖 > 0 be given.
∃ 𝛿′ > 0 such that if x ∈ A \ {c} and |x − c| < 𝛿′, then

��f |A(x) − L
�� < 𝜖.

Take 𝛿 B min{𝛿′, 𝛼}.
Suppose x ∈ S \ {c} and |x − c| < 𝛿.
|x − c| < 𝛼 ⇒ x ∈ A \ {c},
|x − c| < 𝛿′ ⇒ |f (x) − L| =

��f |A(x) − L
�� < 𝜖. □

Remark: The hypothesis on A in the proposition is necessary.
Without it, we only get one implication (exercise):
Assume c is a cluster point of A, then
f (x) → L as x → c ⇒ f |A(x) → L as x → c.

Notation: lim
x→c
x∈A

f (x) B lim
x→c

f |A(x).
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Definition (One sided limits)
Let f : S → ℝ be function and c ∈ ℝ.

If c is a cluster point of S ∩ (c,∞) and the limit of f |S∩(c,∞) as x → c exists, define

lim
x→c+

f (x) B lim
x→c

f |S∩(c,∞)(x).

If c is a cluster point of S ∩ (−∞, c) and the limit of f |S∩(−∞,c) as x → c exists, define

lim
x→c−

f (x) B lim
x→c

f |S∩(−∞,c)(x).

Many common notations:

For lim
x→c−

f (x) one sees lim
x→c
x<c

f (x), lim
x↑c

f (x), or lim
x↗c

f (x).

For lim
x→c+

f (x) one sees lim
x→c
x>c

f (x), lim
x↓c

f (x), or lim
x↘c

f (x).
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The proposition above does not apply to one-sided limits.

Example: Define f : ℝ → ℝ by f (x) B 1 for x < 0 and f (x) B 0 for x ≥ 0. Then

lim
x→0−

f (x) = 1, lim
x→0+

f (x) = 0, lim
x→0

f (x) does not exist.

But we do have:

Proposition
Let S ⊂ ℝ be such that c is a cluster point of both S ∩ (−∞, c) and S ∩ (c,∞), let f : S → ℝ be a
function, and let L ∈ ℝ. Then c is a cluster point of S and

lim
x→c

f (x) = L if and only if lim
x→c−

f (x) = lim
x→c+

f (x) = L.

Proof: Exercise.

Hint:
(
S ∩ (−∞, c)

)
∪
(
S ∩ (c,∞)

)
= S \ {c}.
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Composition also plays nice with limits if one is careful:

Exercise: Let c1 be a cluster point of A ⊂ ℝ and c2 be a cluster point of B ⊂ ℝ.
Suppose f : A → B and g : B → ℝ are such that f (x) → c2 as x → c1 and g(y) → L as y → c2.
If c2 ∈ B, also suppose that g(c2) = L (important).
Let h(x) B g

(
f (x)

)
. Show h(x) → L as x → c1.

Hint: Note that f (x) could equal c2 for many x ∈ A.
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