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[2,b] ={xeR:a<x<b} (closed interval)

(a,b) ={xeR:a<x<b} (openinterval)

(a,b] ={xeR:a<x<b} (half-open interval)

[a,b) ={xeR:a<x<b} (half-open interval)

Those were bounded intervals. Also define unbounded intervals:
[a,00) ={xeR:a<x}

(a,0) ={xeR:a<ux}

(—o0,b] ={xeR:x<b}

(—o0,b) ={xeR:x<b}

(=00, 0) =R

Proposition

A set I C R is an interval if and only if I contains at least 2 points and for alla,c € [ and b € R
such thata < b < ¢, we have b € 1.

Proof is an exercise.
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Set theoretically intervals have the same size.

f(x) == 2x is a bijection from [0, 1] to [0, 2]

f(x) := tan(x) is a bijection from (-7/2,7/2) to R
Bijection from [0, 1] to (0, 1) is harder but possible.
We saw that uncountable sets exist: e.g., P(N).

Theorem (Cantor)

R is uncountable.

So any interval is uncountable.
Also, the set R \ Q is uncountable.

We'll give essentially Cantor’s original 1874 proof.
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x € R is algebraic if x is a root of a polynomial with integer coefficients:
X" 4+ ap XL+ +mx+ag=0 whereag,a,...,a, € Z.

There are only countably many algebraic numbers (exercise).

Cantor’s theorem shows 3 non-algebraic (transcendental) numbers.



