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We will simply assume that real numbers exist, that is, we won't prove:

Theorem
There exists a unique ordered field R with the least-upper-bound property such that Q C R.

We'll simply assume simple properties that follow from the definition.
Eg.

1>0,2>0,..,n>0foralln e N CR.

% > 0foralln € N.

etc.
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Proposition

If x € R is such that x < € for all € € R where € > 0, then x < 0.

Proof: Either x < 0 orx > 0.
If x >0, then 0 < ¥/2 < x.
€ = ¥/2 gives a contradiction.

Equivalently:  Ifx > 0is such that x < € for all € > 0, then x = 0.
Or the very common:  If |x| < € forall € > 0, then x = 0.

(To prove x > 0, you could prove —x < 0 with the proposition).
We'll see many variations on the above idea.

Generalizing the idea of the proof:

If a < b are real numbers, then there exists ¢ € R such thata < ¢ < b.
a+b

Eg., c=%.
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For analysis, the least-upper-bound property is absolutely key (allows limits).
Let’s use it to show that V2 € R exists (it does not exist in Q).

Example: 3 a unique positive r € R such that r* = 2.

Proof: Let A := {x e R: x? < 2}.

We claim that A is bounded above and nonempty.

x> >4whenx>2 = x<2whenx?><2(x€A) = Aisbounded above.
1eA,soA+0.

Sosup Aexists. Letr :=sup A.

Immediate: ¥ >1>0as 1 € A.

WTS 72 = 2.

This is analysis, we’ll show r?>2and > < 2.
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Take h € R such that0 < h < 2S+1 “and < 1.
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R\ Q is called the set of irrational numbers.
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Proof: Let’s prove (i):
“If x € R and A is bounded above, then sup(x + A) = x + sup A”,
rest are exercises.

Suppose b is an upper bound for A.

= y<bforalyeA = x+y<x+bforallycA

= x+bisan upper bound for x + A.

Ifb=sup A, then sup(x+A) <x+b=x+supA.

Opposite inequality is similar: ~ Suppose c is an upper bound for x + A.
= x+y<cforalyeA = y<c-—xforallyeA

= ¢ —xisan upper bound for A.

If c =sup(x + A), then sup A <c—-x=sup(x+A)-x.



Proposition
Let A, B C R be nonempty sets such that x < y whenever x € Aand y € B.
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Proposition

Let A, B C R be nonempty sets such that x < y whenever x € Aand y € B.
Then A is bounded above, B is bounded below, and sup A < inf B.

Proof: Any x € A is a lower bound for B.
= x<infBforallxe€ A
= inf B is an upper bound for A

= sup A <inf B.

Care must be taken with suprema and infima and strict inequalities.

“x < yforall x € Aand y € B” still only implies sup A < inf B (nonstrict).
Eg,A={0andB:={/n:neN} = O0<luforallneN.

However, sup A = 0 and inf B = 0.



Proposition

If S C R is nonempty and bounded above, then for every € > O there exists an x € S such that
(sup S)—e <x <sup S.
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Proposition

If S C R is nonempty and bounded above, then for every € > O there exists an x € S such that
(sup S) —e <x <sup S.

Proof is an exercise.



Definition
Let A C R be a set.
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Definition
Let A C R be a set.
(i) If Ais empty, then sup A = —co.
(ii) If A is not bounded above, then sup A := co.
(iii) If A is empty, then inf A := co.
(iv) If A is not bounded below, then inf A := —co.

Remark: co and —oo are sometimes treated as numbers.

R* := R U {—00, 00} (extended real numbers) is an ordered set
(-0 <0 and —co<xandx < oo forall x € R).

Some (but not all) arithmetic can be done in the obvious way,
leave 0o — 00, 0 - (+00), and £2 undefined.

We avoid using this arithmetic; R* is not a field!



If A # 0 is finite, then inf A € Aand sup A € A.
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If A # 0 is finite, theninf A € Aand sup A € A.
We then usually write

min A :=inf A (minimum)

max A =sup A (maximum)

Eg., max{1,2.4, 7,100} = 100 min{1,2.4, 7,100} = 1.
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Some exercises with useful conclusions.
Exercise: Prove thatif t > 0 (t € R), then there existsann € N such thatn —1 <t <n.
Exercise: Let x,yy € R. Suppose x> + %> = 0. Prove thatx = 0 and y = 0.

Exercise: Let A and B be two nonempty bounded sets of real numbers. Let
C:={a+b:aecA,be B}. Show that C is a bounded set and that

sup C =sup A +sup B and inf C = inf A +inf B.

Exercise: Prove the so-called Bernoulli’s inequality: If 1 + x > 0, then for all n € N, we have
1+x)">1+nx.



