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Elements of sets can have relations.
E.g., 1 < 2 for natural numbers, or 1/2 = 2/4 for rational numbers, or {a, c} ⊂ {a, b, c} for sets.
The ‘<’, ‘=’, and ‘⊂’ are examples of relations.

Definition
Given a set A, a binary relation on A is a subset ℛ ⊂ A × A, which are those pairs where the
relation is said to hold. Instead of (a, b) ∈ ℛ, we write aℛ b.

Example: Take A B {1, 2, 3}. Consider ‘<’.

The corresponding set of pairs is
{
(1, 2), (1, 3), (2, 3)

}
.

1 < 2 holds as (1, 2) is in the corresponding set of pairs,
3 < 1 does not hold as (3, 1) is not in the set.

The relation ‘=’ is defined by
{
(1, 1), (2, 2), (3, 3)

}
.

Any subset of A × A is a relation.
E.g., define the relation † via

{
(1, 2), (2, 1), (2, 3), (3, 1)

}
,

then 1 † 2 and 3 † 1 are true, but 1 † 3 is not.
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Definition
Let ℛ be a relation on a set A.

Then ℛ is
(i) Reflexive if aℛ a for all a ∈ A.

(ii) Symmetric if aℛ b implies bℛ a.
(iii) Transitive if aℛ b and bℛ c implies aℛ c.
If ℛ is reflexive, symmetric, and transitive, then it is an equivalence relation.

Example: Consider A B {1, 2, 3}.

Relation ‘<’ given by
{
(1, 2), (1, 3), (2, 3)

}
is transitive, but neither reflexive nor symmetric.

Relation ‘≤’ given by
{
(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)

}
is reflexive and transitive, but

not symmetric.

Relation ‘=’ given by
{
(1, 1), (2, 2), (3, 3)

}
is an equivalence relation.

Relation ‘★’ given by
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)

}
is an equivalence relation.
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Definition
Let A be a set and ℛ an equivalence relation. An equivalence class of a ∈ A, denoted by [a], is
the set {x ∈ A : aℛ x}.

Example: For A B {1, 2, 3} and ‘★’ defined by
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)

}
, there are

two equivalence classes, [1] = [2] = {1, 2} and [3] = {3}.

Reflexivity ⇒ a ∈ [a].
Symmetry ⇒ if b ∈ [a], then a ∈ [b].
Transitivity ⇒ if a ∈ [b] and b ∈ [c], then a ∈ [c].

Proposition
If ℛ is an equivalence relation on a set A, then every a ∈ A is in exactly one equivalence class.
Moreover, aℛ b ⇔ [a] = [b].

Proof is an exercise.

Example: ℚ can be defined as the set of equivalence classes on ℤ × ℕ under the relation
(a, b) ∼ (c, d) when ad = bc (exercise). We write

[
(a, b)

]
as a/b.
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Reflexivity ⇒ a ∈ [a].
Symmetry ⇒ if b ∈ [a], then a ∈ [b].
Transitivity ⇒ if a ∈ [b] and b ∈ [c], then a ∈ [c].

Proposition
If ℛ is an equivalence relation on a set A, then every a ∈ A is in exactly one equivalence class.
Moreover, aℛ b ⇔ [a] = [b].

Proof is an exercise.

Example: ℚ can be defined as the set of equivalence classes on ℤ × ℕ under the relation
(a, b) ∼ (c, d) when ad = bc (exercise). We write

[
(a, b)

]
as a/b.
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What is the “size” of sets?

Definition
Let A and B be sets. A and B have the same cardinality if ∃ a bĳection f : A → B. Denote by
|A| the equivalence class of all sets with the same cardinality as A and we call |A| the
cardinality of A.

Existence of a bĳection really is an equivalence relation:
f : A → A, f (x) B x, is a bĳection ⇒ reflexivity.
If f : A → B is a bĳection, then so is f−1 : B → A ⇒ symmetry.
If f : A → B and g : B → C are bĳections, then g ◦ f : A → C is a bĳection ⇒ transitivity.

Example: {1, 2, 3} has the same cardinality as {a, b, c}.
Example bĳection: f (1) B a, f (2) B b, f (3) B c. The bĳection is not unique.

Example: The set E of even natural numbers has the same cardinality as ℕ.
Proof: Given k ∈ E, write k = 2n for some n ∈ ℕ. So f (n) B 2n defines a bĳection f : ℕ → E.
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Definition
Write |A| ≤ |B| if there exists an injection from A to B.

Write |A| < |B| if |A| ≤ |B|, but |A| ≠ |B|.

Remark: It is not a trivial theorem (Cantor–Bernstein–Schröder theorem) that |A| = |B| if
and only if |A| ≤ |B| and |B| ≤ |A|.

Remark: If A and B are any two sets, we can always write |A| ≤ |B| or |B| ≤ |A|. But this is
very subtle.

|A| = |∅| ⇔ A = ∅ If B ≠ ∅, no f : B → ∅ can exist.
Write |∅| = 0.

If |A| = |{1, 2, 3, . . . , n}| for n ∈ ℕ, write |A| = n (exercise: such n is unique).

Definition
A is finite if |A| ∈ ℕ or |A| = 0, otherwise A is infinite.
A is countably infinite if |A| = |ℕ |. (often denoted |ℕ | = ℵ0)
A is countable if A is finite or countably infinite.
If A is not countable, then it is uncountable.
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Example: |ℕ × ℕ | = |ℕ |.

Sketch of proof: Arrange ℕ × ℕ as
(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) . . .

(3, 1) (3, 2) . . .

(4, 1) . . .

Define a bĳection by f (1) B (1, 1), f (2) B (1, 2), etc.

Example: |ℚ| = |ℕ |.

Sketch of proof: For positive ℚ, as for ℕ × ℕ, write 1/1, 1/2, 2/1, etc., then cross out any pair
such as 2/2 that has already appeared as a rational number.
For all ℚ, also include 0 and the negatives: 0, 1/1, −1/1, 1/2, −1/2, 2/1, −2/1, etc.
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Definition
The power set of a set A, denoted by 𝒫(A), is the set of all subsets of A.

E.g., if A B {1, 2}, then 𝒫(A) =
{
∅, {1}, {2}, {1, 2}

}
.

|A| = 2 and |𝒫(A)| = 4 = 22.

Exercise: If |A| = n ∈ ℕ, then |𝒫(A)| = 2n.

So if A is finite, |A| = n < 2n = |𝒫(A)|.

Interestingly, it works for infinite sets too:

Theorem (Cantor)
|A| < |𝒫(A)| for any set A.
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Theorem (Cantor)
|A| < |𝒫(A)| for any set A.

Proof: f : A → 𝒫(A) defined by f (x) B {x} is injective ⇒ |A| ≤ |𝒫(A)|.

We must show no surjection exists.
Suppose g : A → 𝒫(A) is a function. Define

B B
{
x ∈ A : x ∉ g(x)

}
.

Claim: B is not in g(A).
Suppose for contradiction g(x0) = B for some x0 ∈ A.
Either x0 ∈ B or x0 ∉ B.
x0 ∈ B ⇒ x0 ∉ g(x0) = B, a contradiction.
x0 ∉ B ⇒ x0 ∈ g(x0) = B, a contradiction.
⇒ No such x0 exists ⇒ g is not a surjection ⇒ no surjection exists. □

Consequence: Uncountable sets exist, e.g., 𝒫(ℕ).

In fact, |ℕ | < |𝒫(ℕ)| < |𝒫(𝒫(ℕ))| < |𝒫(𝒫(𝒫(ℕ)))|, etc.
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We must show no surjection exists.
Suppose g : A → 𝒫(A) is a function. Define

B B
{
x ∈ A : x ∉ g(x)

}
.

Claim: B is not in g(A).
Suppose for contradiction g(x0) = B for some x0 ∈ A.
Either x0 ∈ B or x0 ∉ B.
x0 ∈ B ⇒ x0 ∉ g(x0) = B, a contradiction.
x0 ∉ B ⇒ x0 ∈ g(x0) = B, a contradiction.
⇒ No such x0 exists ⇒ g is not a surjection ⇒ no surjection exists. □

Consequence: Uncountable sets exist, e.g., 𝒫(ℕ).
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