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A common method of proof for statements over N is induction.

Order N = {1,2,3,...} naturally:

1<2<3<4<---

S ¢ N has a least element when 3 x € Ssuch thatVy € S, we have x <.

Well ordering property of N

Every nonempty subset of N has a least element.

We take this property as an axiom.
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Let P(n) be a statement depending on a natural number n. Suppose that
(i) (basis statement) P(1) is true.
(ii) (induction step or induction hypothesis) If P(n) is true, then P(n + 1) is true.
Then P(n) is true for all n € N.

Proof: Let S := {n € N : P(n) is not true }.

Suppose for contradiction S # 0.

S has a least element m € S by the well ordering property.

1 ¢ Sby hypothesis = m>1,andm-1¢eN.

m is the least element of S = P(m —1) is true.

The induction step says P(m — 1+ 1) = P(m) is true, som ¢ S.
Som € Sand m ¢ S, a contradiction.

So S = () and P(n) must be true for all n € N.

Remark: It may be convenient to start at a number different than 1.
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Informally, for sets A and B, a set-theoretic function or mapping or map
f:A—B

is an object that to each x € A assigns a unique y € B.

Example: Define f: S — T taking S := {0,1,2} to T := {0, 2}, by
f(0) :==2,f(1) :==2,and f(2) :== 0.

A function f: A — B is a black box, taking elements of A to elements of B.
f may be given by a formula, but f is not a formula, it is a table of values.
Some functions have several different formulas giving the same function.

Many functions have no formula at all.
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Definition
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Examples: Functions from calculus taking real numbers to real numbers.
“derivative” or “Laplace transform” is a function that takes functions to functions.
Determinant from linear algebra is a function that takes matrices to numbers.

The “number of classrooms” is a function that takes the set of buildings on campus to the
integers.
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Definition

Consider f: A — B and subsets C ¢ Aand D C B.

The image (or direct image)is ~ f(C) := {f(x) € B: x € C}.
The set f(A) is called the range of f.

The inverse imageis  f~(D) := {x € A: f(x) € D}.

Example: Define f: {1,2,3,4} — {a,b,c,d} by
f)=0bf2)=d,f(3):=c,f4)=0b

1@ f @

f({1,2,3,4}) = {b,c,d}
2@ 0 ()=
f({a,b,c}) = {1,3,4}
30 \ @ £ ({a}) =
4 @ o, /[ {)={14
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notation consider the inverse function f~': B — A and write f~(y).

Example: f: R — R given by f(x) := x° is a bijection.
The inverse function is defined by f~!(x) = ¥x.

Example: f: R — R given by f(x) := x? is neither an injection as f(—1) = 1 and f(1) = 1, nor
a surjection as there is no x such that f(x) = —1.

Example: f: R — [0, o) (the non-negative real numbers) given by f(x) := x? is not an
injection (same reason as above), but it is a surjection.
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Definition
The composition of f: A — B and g: B — C s the functiongof: A = C

() = g(f(x)).

E.g.,iff: R > Risf(x) :=x3and g: R — Riis g(y) = sin(y), then (g o f)(x) = sin(x3).

Easy exercise:

a composition of one-to-one maps is one-to-one,
a composition of onto maps is onto.

So a composition of bijections is a bijection.



