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Let (X, d) be a metric space.

VcXisopenifVxeV,36 > 0such that B(x,6) Cc V.

E c X is closed if E° = X \ E is open.

When X is not clear from context, we say V is open in X and E is closed in X.

If x € V and V is open, then V is an open neighborhood of x (or just neighborhood).

Remark: 0 depends on x.

An open set V is a set that does not
include its “boundary.”

If we are in V we are allowed to VVVVVVVVVVVVVVVVV
“wiggle” and we'll stay in V.

E is closed if everything not in E is some distance away from E.
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Examples:

(0, 00) C R is open:
Given x € (0, 00), let 6 = x
= B(x,0) =(0,2x) C (0, c0).

[0, 0) C R is closed:

Given x € (—00,0) = [0, )¢, let 6 == —x

= B(x,06) = (-2x,0) C (—=o0,0) = [0, o0)°.

[0,1) c R s neither open nor closed:

V6 >0,B(0,9) = (-6, 6) contains numbers notin [0,1) = [0, 1) is not open.

V6 >0,B(1,0)=(1-0,1+0) contains numbersin [0,1) = [0, 1)" is not open
= [0,1) is not closed.

In any metric space (X, d), if x € X, then {x} is closed (exercise).
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Proposition
Let (X, d) be a metric space.
(i) 0 and X are open.
(ii) If V1, V>, ..., Vi are open subsets of X, then

k
(Vi
j=1
is also open. That is, a finite intersection of open sets is open.
(iil) If {Va}aer is an arbitrary collection of open subsets of X, then
Vi
A€l

is also open. That is, a union of open sets is open.
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Proof: (i): @ and X are obviously open in X.

(ii): Tf x € N, Vj, then x € V; for all j.

Vjareallopen = Vj306; > 0such thatB(x,0;) C V.

Take 6 := min{01, 02, ..., Ok}

Note 6 > 0.

= B(x,0) C B(x, 6) C V; for every j and so B(x, 5) C ﬂ]]le V;.
= The intersection is open.

(iii): If x € (J,¢1 Va, then x € V), for some A € [

Viisopen = 30 > 0such that B(x,0) C V.

= B(x,0) c U Va

= The union is open.

Example: (ii) is not true for an arbitrary intersection:
My (71/n,1/n) = {0}, which is not open.



Proposition
Let (X, d) be a metric space.

7/21



Proposition
Let (X, d) be a metric space.
(1) @ and X are closed.

7/21



Proposition
Let (X, d) be a metric space.
(i) @ and X are closed.
(ii) If {Ea}aer is an arbitrary collection of closed subsets of X, then
(&
Ael

is also closed. That is, an intersection of closed sets is closed.




Proposition
Let (X, d) be a metric space.
(i) 0 and X are closed.
(ii) If {Ex}aer is an arbitrary collection of closed subsets of X, then
[]E
Ael

is also closed. That is, an intersection of closed sets is closed.

(iii) IfEq1, Eo, ..., Ex are closed subsets of X, then

E;

-

L

is also closed. That is, a finite union of closed sets is closed.




Proposition
Let (X, d) be a metric space.
(i) 0 and X are closed.
(ii) If {Ex}aer is an arbitrary collection of closed subsets of X, then
[]E
Ael

is also closed. That is, an intersection of closed sets is closed.

(iii) IfEq1, Eo, ..., Ex are closed subsets of X, then

E;

-

L

is also closed. That is, a finite union of closed sets is closed.

Proof: Exercise.



Proposition
Let (X, d) be a metric space, x € X, and 6 > 0.

8/21



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 6) is open and C(x, 0) is closed.

8/21



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 9).

8/21



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let a := 6 —d(x,y) > 0.



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y, a):



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y, a):
d(x,z) < d(x,y) +d(y,z)



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y, a):
d(x,z) < d(x,y)+d(y,z)
<dx,y)+a



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y, a):
d(x,z) < d(x,y)+d(y,z)

<dx,y)+a

=d(x,y)+0—-d(x,y)=0.



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y,a):

d(x,z) <d(x,y) +d(y, z) C
<dx,y)+a
=d(x,y)+06-d(x,y) =




Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y,a):

d(x,z) <d(x,y) +d(y, z) 5
<dx,y)+a
=d(x,y)+06-d(x,y) =

= B(y,a) cB(x,0) = B(x,0)isopen.



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let @ := 0 —d(x,y) > 0. Consider z € B(y,a):

d(x,z) <d(x,y) +d(y, z) " P
<dx,y)+a
=dx,y)+0—-dx,y) =0

= B(y,a) cB(x,0) = B(x,0)isopen.

That C(x, 9) is closed is an exercise.



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let a := 6 —d(x,y) > 0. Consider z € B(y, a):
d(x,z) <d(x,y) +d(y, z) e
<dx,y)+a
=dx,y)+0—-dx,y) =0
= B(y,a) cB(x,0) = B(x,0)isopen.

That C(x, 9) is closed is an exercise.

Careful: [0,1/2) is an open ball in [0, 1], and so [0, 1/2) is an open set in [0, 1].



Proposition

Let (X, d) be a metric space, x € X, and 6 > 0.
Then B(x, 0) is open and C(x, 6) is closed.

Proof: Lety € B(x, 6). Let a := 6 —d(x,y) > 0. Consider z € B(y, a):
d(x,z) <d(x,y) +d(y, z) e
<dx,y)+a
=dx,y)+0—-dx,y) =0
= B(y,a) cB(x,0) = B(x,0)isopen.

That C(x, 9) is closed is an exercise.

Careful: [0,1/2) is an open ball in [0, 1], and so [0, 1/2) is an open set in [0, 1].
[0, 1/2) is neither open nor closed in R.
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Let a, b be two real numbers, a < b. Then (a, b), (a, ), and (—oo, b) are open in R. Also [a, b],
[a, ), and (—oo, b] are closed in R.
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Suppose (X, d) is a metric space, and Y € X. Then U C Y is open in Y (in the subspace topology)
& Jopenset V C X (soopenin X), such that VNY = U.

Example: Let X =R, Y := [0, 1], U = [0, 1/2).
U is an open set in Y, may take V := (-1/2,1/2).

Proof of proposition: Suppose V € Xisopenand VNY = U.
Supposex e U=V NY. 36> 0such thatBx(x,6) c V.

Then By(x,0) = Bx(x,0)NY cVnY =U.

The opposite direction is an exercise. |
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Suppose (X, d) is a metric space, V C X is open, and E C X is closed.
(i) U c Vis open in the subspace topology < U is open in X.
(ii) F C E is closed in the subspace topology <  F is closed in X.

Proof: (i): Suppose U C V is open in the subspace topology.

By the previous proposition, 3 W C X, openin X, such that U = WNV
Intersection of open setsisopen = U is openin X.

Now suppose U is open in X.

= U=UNV = UisopeninV (the proposition again)

(ii): Exercise.
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Definition
A nonempty metric space (X, d) is connected if the only subsets of X that are both open and
closed (so-called clopen subsets) are @ and X itself.

If a nonempty (X, d) is not connected we say it is disconnected.

A nonempty subset A C X is connected if A is connected with the subspace topology.

A nonempty X is connected if X = X; U X, where X; N X, = 0 and X; and X are open,
then either X7 = 0 or X, = 0.

To show X is disconnected, find nonempty disjoint open sets X; and X, whose union is X.

Example: B(x, 0) is not always connected.

Consider {a, b} with the discrete metric.

= B(a,2) = {a, b}, which is not connected:

B(a,1) = {a} and B(b, 1) = {b} are open and disjoint.
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Let (X, d) be a metric space. A nonempty S C X is disconnected & 3 open sets Uy and U, in
X, suchthat UyNU,NS=0,U1NS#0,U,NS # 0, and

S=(LNS)U(UznS).

Proof: =) Suppose S is disconnected: 3 nonempty disjoint S; and S, that are openin S
and S=51US,.

= 3 Uj and U, that are openin X suchthat U1 NS =S;jand U, NS = S,.

&) Suppose Uy and U, exist. = U; NS and U NS are openin S.

= S is disconnected.

Example: SC Rand 3x,y,z,st. x <z<ywithx,ye Sandz ¢ S.
Claim: S is disconnected.
Proof: ((—c0,z)NS)U ((z,0)NS) =S
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A nonempty set S C R is connected < S is an interval or a single point.

Proof: Suppose S is connected.
If S is a single point, then we are done.

Suppose x < yand x,y € S.

Suppose z € Rissuch that x <z <.
(—o0,z)NS #0and (z,00) N S # 0.

The sets are disjoint.
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= z€S.

= Sisan interval.
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Corollary
Let (X, d) be a metric space and A C X. Then dA = A N A°.
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Exercise: Prove that in a metric space,
a) Eis closed if and only if JE C E.
b) Uisopenifandonlyif JUNU = 0.

Exercise: Prove that in a metric space,
a) Aisopenifand only if A° = A.
b) U c A° for every open set U such that U C A.

Exercise: Let (X, d) be a metric space and A € X. Show that
A°=J{V:Visopenand V c A}.



