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Example: Consider { nlﬁ }20:1.

As+fn>1foralln €N,
1

0<—
nyn

S% foralln € N.

We already know lim 1/n = 0.
n—oo



Example: Consider {anﬁ }:;1.

As+fn>1foralln €N,
1

0<—<
nyn

1 foralln € N.
n

We already know lim 1/n = 0.
n—oo
The constant sequence {0}, ; and {1/n} | in the squeeze lemma =

lim L =0.

n—oo Tl\/?l
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Corollary

(i) If {xn},, is convergent such that x, > 0¥ n € N, then  lim x, > 0.

n—oo
(ii) Leta,b € R and {x,}, , be convergent such thata < x, <bVn € N.
Thena < lim x, < b.

n—oo

Proof is an exercise.
The results are not true with strict inequalities.

Example: Let x,, := -1/n and y,, := 1/n.
Then x, < yu, x, <0, and y, > 0 for all n.
However, lim x, = lim y, = 0.

n—o0 n—o00

Strict inequalities may become non-strict inequalities when limits are applied.
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Proposition
Let {xn};, and {yn}, , be convergent sequences.

(i) {xn +yn},., converges and lim (x, +yn) = }im Xp + r}im Yn-
= n—00 —00 —00
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(i) {xn +yn},., converges and lim (x, +yn) = nlim Xp + r}im Yn-
= n—00 —00 —00
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(i) {xn — yn o | converges and nh_r}r.}o (X0 —yn) = r}l_r)r(}o Xy r}l_r)r(}o Y-
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Proposition
Let {xn};, and {yn}, , be convergent sequences.
(i) {xn +yn},, converges and lim (x, +y,) = lim x, + lim y,.
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(i) {x, — Yn} o, converges and hm (xn Yu) = lim x, — lim y,,.
n—oo n—oo

(iii) {xnyn},., converges and 11m (xnyn) (11_r>r01o xn) (7}1_130 yn).
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(ii) {xn —Yu},., converges and hm (xn Yu) = lim x, — lim y,,.
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Proposition
Let {xn};, and {yn}, , be convergent sequences.

(i) {xn +yn},, converges and 11m (xn +Yn) = hm 5%p < hm 0 Y.

(ii) {xn —Yu},., converges and hm (xn Yn) = lim x, — lim y,,.

n—oo n—oo
(iii) {xnyn},., converges and 11rn (xnyn) (lirn xn) (lim yn).
—00 n—o0
(iv) If im y, #0 and y, # 0 foralln € N, then {;—”} | converges and
n—oo n)n=
Xn limy, 00 Xy

lim — =

n—oo 1y lim, o Yn

Note that you can also use constant sequences.



Proposition
Let {xn};, and {yn}, , be convergent sequences.

(i) {xn +yn},, converges and }grc}o (X0 +yn) = nh—I»l;lo Xp + r}l_r)r(}o Yn-
(ii) {xn —Yu},., converges and hm (xn Yn) = nh_r};lo Xy — 7}1_1:{)10 Y-
(iii) {xnyn},., converges and 11rn (xnyn) (nh_r)rgo xn) (nh_r)lgo yn).

(iv) If im y, #0 and y, # 0 foralln € N, then {%} , converges and
n—00 n)n=

. xp limy e xp
111’1‘1 —_— =

n—oo 1y lim, o Yn

Note that you can also use constant sequences.
E.g. if c € Rand {x,}, , converges, then

lim cx, =c¢ (lim xn) , lim (c + x;) = ¢+ lim x,, etc.
n—oo n—o00 n—oo n—00
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Let € > 0 be given.
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Suppose {x,}77, and {y,} | are convergent, x = lim x,, y = lim y,.
n—oo

n—-oo

Let € > 0 be given.
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Proof: (i) (addition).

Suppose {x,}77, and {y,} | are convergent, x = lim x,, y = lim y,.
n—oo

n—-oo

Let € > 0 be given.

Find an M; such thatV n > My, |x, — x| < €/2.
Find an M» such thatV n > My, |y, —y| < €¢/2.
Take M = max{Mi, M}.

Foralln > M,

€ €
G+ ) = G+ 9| = v —x+ =yl < =2l +lyu -yl <5 +5 =€
(i) is proved.

Proof of (ii) (subtraction) is almost identical (exercise).
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(iv) follows from (iii) and the claim:

Claim: If {y,},, is convergent, hm 0 Y # 0, and yy # 0 for all n € N, then {1y}, | converges

and lim l = ;
n—co Yy 1My 00 Yy
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1 1
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Exercise: (induction) lim xf = (lim xn)k forall k € N.
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n—oo

Proof: Letx .= lim x,,, x>0.

n—oo

First suppose x = 0.
Let € > 0 be given.
Find Msuch thatVn > M, x, = |x,| < €%, or x, <e€.

|\/x_n - \/§| =/x,; <E€.
Now suppose x > 0 (and hence vx > 0).

1

|‘/x_n \/_| @+\/§|xn_x| S%p‘n_

x| .

The rest is an exercise.



Proposition

If {xn}}7, is a convergent sequence, then {|x, |}, is convergent and

lim | x| = |lim X
n—oo n—oo
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Proposition

If {xn},, is a convergent sequence, then {|x,|}_, is convergent and

lim | x| = |1im X
n—o00 n—oo

Proof sketch: The reverse triangle inequality: | |2 — || | < |xy —x|. O

11/21



Example:
Note that lim 1/» = 0.
n—00
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Example:
Note that lim 1/» = 0.

n—00
Then

lim |\/1 T 1/ — 100/2
n—o0

=1.

1+ ( lim 1/71) - 100( lim 1/n) ( lim 1/n)

n—oo




Example:
Note that lim 1/» = 0.

n—00
Then

=1.

lim |\/1 T — 1002
n—o0

Read this from right to left. The propositions = LHS exists.

1+ ( lim 1/71) - 100( lim 1/n) ( lim 1/;1)

n—oo




Example:
Note that lim 1/» = 0.

n—00
Then

lim |\/1 T — 1002
n—o0

Read this from right to left. The propositions = LHS exists.

=1.

1+ ( lim 1/71) - 100( lim 1/n) ( lim 1/;1)

n—oo

Example: Be careful:

2
lim( 1 —n)=—1,
n—oo \n+1




Example:
Note that lim 1/» = 0.

n—oo
Then

lim |\/1 T — 1002
n—o0

Read this from right to left. The propositions = LHS exists.

=1.

1+ ( lim 1/71) - 100( lim 1/n) ( lim 1/;1)

n—oo

Example: Be careful:

2 2
lim —-n|=-1, but lim n - (lim n) is nonsense.
n—oo \n+1 n—oon+1 n—oo



x2 -2

2x,

Example: Define {xn};’l"=1 by x1 =2 and x,41 == X, —

13/21



x2 -2

2x,

Example: Define {xn};’f:l by x1 =2 and x,41 == X, —

We must prove:
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Example: Define {xn}f;’:l by x1 =2 and x4 :

We must prove:
1) the sequence is well-defined,

Xy —

2x,




x2 -2

2x,

Example: Define {xn}fl"=1 by x1 := 2 and X;41 = X, —

We must prove:
1) the sequence is well-defined,
2) the sequence converges,



x2 -2

Example: Define {xn}fl":1 by x1 := 2 and X;41 = X, — T

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.
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2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,

2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)

Suppose for some 7, x,, exists and x,, > 0.



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:
1) the sequence is well-defined,
2) the sequence converges,
3) only then try to find the limit.
First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.
X2 -2

2x,

Xn+l = Xp —



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.
x2—-2 22 -x2+2

n n_

Xp+l = Xy —
" " 2x, 2x,



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.

X2-2  2xA-x%+2 _ X2 +2
2xn 2xn an '

Xn+l = Xp —



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.

X2-2  2xA-x%+2 _ X2 +2
2xn 2xn an '

Xn+l = Xp —

x2+2>0andx, >0,



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.
X2-2 2A-x2+42 x2+42

n

2x, 2x;, T2,

Xn+l = Xp —

242
x2+2>0and x, >0, and 50 x,41 = 2— > 0.
n



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.
X2-2 2A-x2+42 x2+42

n

Xp+l = Xy — = .
" " 2x, 2x, 2x,

242
x2+2>0and x, >0, and 50 x,41 = 2— > 0.
n

By induction {x,} ", exists and x, > 0 for all n.



x2 -2

2x,

Example: Define {xn};"=1 by x1 := 2 and X;41 = X, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.

X2-2 22-x24+2 x2+2

Xn+l = Xp —

2x, 2x;, T2,
242
x2+2>0and x, >0, and 50 x,41 = 2— > 0.
n

By induction {x,} ", exists and x, > 0 for all n.

We claim {x,}} ; is monotone decreasing.



x2 -2

2x,

Example: Define {xn};"=1 by x1 :=2and xp41 = x, —

We must prove:

1) the sequence is well-defined,
2) the sequence converges,

3) only then try to find the limit.

First, x; =2 > 0 (so xp exists: xp =2 — 2;—_22 =15>0)
Suppose for some 7, x,, exists and x,, > 0.

X2-2 22-x24+2 x2+2

Xn+l = Xp —

2x, 2x;, T2,
242
x2+2>0and x, >0, and 50 x,41 = 2— > 0.
n

By induction {x,} ", exists and x, > 0 for all n.
We claim {x,}} ; is monotone decreasing.

If we show that x,% —2 > 0for all n, then x,,41 < x,, for all n.



(recall: x1 := 2 and x,41 == X5 — xzﬁj)
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(recall: x1 := 2 and x,41 == X5 — x2$13;2)

B-2=4-2=2>0
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(recall: x1 := 2 and x,41 == X5 — xzﬁ;z)

B-2=4-2=2>0

2
Xps1 ~ 2
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(recall: x1 := 2 and x,,41 == X, — xi;Z)

2 2
2 _ xs +2
xn+1_2_( ;xn ) -2
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x2-2
25,)

(recall: x1 := 2 and x,,11 = x,, —

-2=4-2=2>0

2 zz(x%+2)2_2:x%+4x%+4—8x,21

n+1 2%, 4x%
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x2-2
25,)

(recall: x1 := 2 and x,,11 = x,, —

-2=4-2=2>0

2 2_(x%+2)2 2_xﬁ+4x§+4—8x,21_x§—4x5+4

m+ 2xy 4X% 4x%



x2-2
25,)

(recall: x1 := 2 and x,,11 = x,, —

-2=4-2=2>0

2 2_(x%+2)2 2_xﬁ+4x§+4—8x,%_xﬁ—4xﬁ+4_(xf,—Z)z

m+ 2xy 4x2 4x2 4x2



x2-2
25,)

(recall: x1 := 2 and x,,11 = x,, —

-2=4-2=2>0

2 2_(x%+2)2 2_xﬁ+4x§+4—8x,%_xﬁ—4xﬁ+4_(xf,—Z)z

m+ 2xy 4x2 4x2 4x2



x2-2
25,)

(recall: x1 :=2and x,41 == x, —
3-2=4-2=2>0

_xp—Axi+4 (363,—2)2
4x2 4x2 4x2

X

) 22 +2)\° Xh+4x2 + 4 - 8x2
n+1_2: 2x -2=
n

So {xx},, is monotone decreasing and bounded below, it must converge.

> 0.



x,2172)

(recall: x1 := 2 and xp41 = X, — 5
n

3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

2 - 2 2
4x;, 4x;, 4x;,

X

) 22 +2)\° Xh+4x2 + 4 - 8x2
n+1_2: 2x -2=
n

So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXpe1 = xfz + 2.

> 0.



x%72)

(recall: x1 := 2 and xp41 = X, — 5
n

3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

= > 0.
4x2 4x2 4x2

2 2:(x%+2)2_2:xﬁ+4xﬁ+4—8x,21

=
n+ 2x,
So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1};., is the 1-tail of {x,} 7, so it converges to the same limit, say x.



x%72)

(recall: x1 := 2 and xp41 = X, — 5
n

3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

= > 0.
4x2 4x2 4x2

2 2:(x%+2)2_2:9cﬁ+4x%+4—8x,21

=
n+ 2x,
So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1}7., is the 1-tail of {x,} 7, so it converges to the same limit, say x. So

2% =% +2



x%72)

(recall: x1 := 2 and xp41 = X, — 5
n

3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

= > 0.
4x2 4x2 4x2

2 2:(x%+2)2_2:9cﬁ+4x%+4—8x,21

=
n+ 2x,
So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1}7., is the 1-tail of {x,} 7, so it converges to the same limit, say x. So

202 =22 +2 = x? =2,



x%72)

(recall: x1 := 2 and xp41 = X, — 5
n

3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

= > 0.
4x2 4x2 4x2

2 2:(x%+2)2_2:9cﬁ+4x%+4—8x,21

=
n+ 2x,
So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1}7., is the 1-tail of {x,} 7, so it converges to the same limit, say x. So
202 =x2+2 = X2 =2.

Asx, >0foralln, x=>0.



x2-2
25,)

(recall: x1 :=2and x,41 == x, —
3-2=4-2=2>0

_xp—Axi+4 (363,—2)2

= > 0.
4x2 4x2 4x2

X

) 22 +2)\° Xh+4x2 + 4 - 8x2
n+1_2: 2x -2=
n

So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1}7., is the 1-tail of {x,} 7, so it converges to the same limit, say x. So
202 =x2+2 = X2 =2.

Asx, >0foralln, x>0. = x=+V2.



(recall: x1 := 2 and x,41 = X, — xif)

_xp—Axi+4 (3631—2)2

2 - 2 2
4x;, 4x; 4x;,

X

>, x%+22_2_xﬁ+4x%+4—8x,21
n+1 - 2%, -
So {xn};, is monotone decreasing and bounded below, it must converge.

Write
2XpXp+1 = xfz +2.

{xu+1}7., is the 1-tail of {x,} 7, so it converges to the same limit, say x. So
202 =x2+2 = X2 =2.

Asx, >0foralln, x>0. = x=+V2.

You may have noticed the above is Newton's method for finding V2,
a common and practical way to find roots of equations.



Example: Suppose x1 = 1 and x,,41 = xfl + x5
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Example: Suppose x1 := 1 and x,41 = X2 + x.

Suppose we blindly write x := lim x;,.
n—oo



Example: Suppose x1 := 1 and x,41 = x% + xy.

Suppose we blindly write x := lim x,. Then x,41 = X2+ xy, gives
n—00

x=x2+x



Example: Suppose x1 := 1 and x,41 = x% + xy.

Suppose we blindly write x := lim x,. Then x,41 = X2+ xy, gives
n—00

x=x+x = x=0.



Example: Suppose x1 := 1 and x,41 = x% + xy.

Suppose we blindly write x := lim x,,. Then x,41 = xfl + x,, gives
n—00

x=x>+x = x=0.

But the sequence does not converge (unbounded).



Example: Suppose x1 := 1 and x,41 = x% + xy.

Suppose we blindly write x := lim x,,. Then x,41 = xfl + x,, gives
n—00

x=x>+x = x=0.

But the sequence does not converge (unbounded). lim x, does not exist.
n—oo



Example: Suppose x; := 1 and x;,41 = x% + xy.
Suppose we blindly write x := lim x,,. Then x,41 = xfl + x,, gives
n—oo
Xx=x%+x = x=0.
But the sequence does not converge (unbounded). lim x, does not exist.
n—o0

Moral: Before you can compute what a limit is, you need to know the sequence converges.



Example: Suppose x; := 1 and x;,41 = x% + xy.

Suppose we blindly write x := lim x,,. Then x,41 = xfl + x,, gives
n—00

Xx=x%+x = x=0.
But the sequence does not converge (unbounded). lim x, does not exist.
n—o0

Moral: Before you can compute what a limit is, you need to know the sequence converges.

More general moral: Before you prove that a limit actually exists do not do any
calculations with
im x,,.

n—oo



Example: Suppose x; := 1 and x;,41 = x% + xy.

Suppose we blindly write x := lim x,,. Then x,41 = xfl + x,, gives
n—00

Xx=x%+x = x=0.
But the sequence does not converge (unbounded). lim x, does not exist.
n—o0

Moral: Before you can compute what a limit is, you need to know the sequence converges.

More general moral: Before you prove that a limit actually exists do not do any
calculations with
im x,,.

n—oo

Just don't write “ lim ” anywhere before you prove the limit exists.

n—oo



Proposition

()

Let {xn},, be a sequence. Suppose 3 x € R and a convergent {a,},’ |

such that lima, =0
n—00

and  |x, —x| < ay, foralln € N.
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Proposition

Let {xn}, | be a sequence. Suppose 3 x € R and a convergent {a,},’ | such that nh_r){)lo a, =0

and  |x, —x| < ay, foralln € N.
Then {x,}_, converges and lim x, = x.
- n—o0
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Proposition

Let {xn}, | be a sequence. Suppose 3 x € R and a convergent {a,},’ | such that r}l—{rolo a, =0

and  |x, —x| < ay, foralln € N.
Then {x,}_, converges and lim x, = x.
- n—o0

Proof: Let € > 0 be given.

16/21



Proposition
Let {xn},, be a sequence. Suppose 3 x € R and a convergent {a, },’ | such that ~ lim a, =0
- - n—00

and  |x, —x| < ay, foralln € N.
Then {x,}_, converges and lim x, = x.
- n—o0

Proof: Let € > 0 be given.

Note a,, > 0 for all n.



Proposition
Let {xn},, be a sequence. Suppose 3 x € R and a convergent {a, },’ | such that ~ lim a, =0
- - n—00

and  |x, —x| < ay, foralln € N.
Then {x,}_, converges and lim x, = x.
- n—o0

Proof: Let € > 0 be given.
Note a,, > 0 for all n.

Find M € N such thata, = |a,, — 0| < € forall n > M.



Proposition

Let {xn},, be a sequence. Suppose 3 x € R and a convergent {a, },’ | such that ~ lim a, =0

n— o0

and  |x, —x| < ay, foralln € N.
Then {x,}_, converges and lim x, = x.
- n—o0

Proof: Let € > 0 be given.
Note a,, > 0 for all n.
Find M € N such thata,, = |a, — 0| < e foralln > M.

Soforalln >M, |x,—x|<a,<e.



Proposition
Letc > 0.
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Proposition
Let ¢ > 0.
(i) Ifc <1, then lim ¢" = 0.
n—oo
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Proposition
Let c > 0.
(i) Ifc <1, then lim ¢" = 0.
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(ii) Ifc > 1, then {c"}}’ | is unbounded.
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Proposition
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(i) Ifc <1, then lim ¢" = 0.
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(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.
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Proposition
Letc > 0.
(i) Ifc <1, then lim ¢" = 0.

n—oo

(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.
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(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.



Proposition
Letc > 0.
(i) Ifc <1, then lim ¢" = 0.

n—oo

(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges.



Proposition
Letc > 0.
(i) Ifc <1, then lim ¢" = 0.

n—oo

(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"}}, is decreasing bounded below = it converges. Let x := lim c".
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Proposition
Letc > 0.
(i) Ifc <1, then lim ¢" = 0.

n—oo

(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"}}, is decreasing bounded below = it converges. Let x := lim c".

n—oo

The 1-tail {c"*1}* | converges to x.
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n—oo

(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
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(i) Ifc <1, then lim ¢" = 0.
n—oo
(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
= x=0asc#1



Proposition
Let c > 0.
(i) Ifc <1, then lim ¢" = 0.
n—oo
(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.

As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
= x=0asc#1

Now consider ¢ > 1.



Proposition
Let c > 0.
(i) Ifc <1, then lim ¢" = 0.
n—oo
(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.
As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
= x=0asc#1

Now consider ¢ > 1.  Let B > 0 be arbitrary.



Proposition
Let c > 0.
(i) Ifc <1, then lim ¢" = 0.
n—oo
(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.
As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
= x=0asc#1

Now consider ¢ > 1.  Let B > 0 be arbitrary.
As1/c < 1, then {(1/c)”}:;°=1 converges to 0.



Proposition
Let c > 0.
(i) Ifc <1, then lim ¢" = 0.
n—oo
(ii) Ifc > 1, then {c"}}’ | is unbounded.

Proof: First consider ¢ < 1.

Asc >0, then " > 0 for all n € N by induction.
As ¢ < 1, then ¢"*! < ¢" for all n.

= {c"};, is decreasing bounded below = it converges. Let x := lim .

n—oo
The 1-tail {c"*1}* | converges to x.
Take the limit of both sides of "' =¢-¢" = x=cx, or (1-c)x=0.
= x=0asc#1

Now consider ¢ > 1.  Let B > 0 be arbitrary.
As1/c < 1, then {(1/6),1}:;1 converges to 0.

n
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