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Definition
A sequence {xn}∞n=1 in a metric space (X, d) is Cauchy

if for every 𝜖 > 0, there exists an
M ∈ ℕ such that for all n ≥ M and all k ≥ M, d(xn , xk) < 𝜖.

Proposition
A convergent sequence in a metric space is Cauchy.

Proof: Suppose {xn}∞n=1 converges to p.

Given 𝜖 > 0, ∃ M such that ∀ n ≥ M, d(p, xn) < 𝜖/2.

⇒ ∀ n, k ≥ M, d(xn , xk) ≤ d(xn , p) + d(p, xk) < 𝜖/2 + 𝜖/2 = 𝜖. □

Definition
A metric space (X, d) is complete or Cauchy-complete if every Cauchy sequence {xn}∞n=1 in X
converges to a p ∈ X.
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Proposition
The space ℝn with the standard metric is a complete metric space.

Already proved for ℝ = ℝ1.

Proof: Let {xm}∞m=1 in ℝn be Cauchy, write xm =
(
xm,1 , xm,2 , . . . , xm,n

)
.

Given 𝜖 > 0, ∃ M such that ∀ i, j ≥ M, d(xi , xj) < 𝜖.

Fix k = 1, 2, . . . , n. For i, j ≥ M,

��xi,k − xj,k
�� = √(

xi,k − xj,k
)2 ≤

√√ n∑
ℓ=1

(
xi,ℓ − xj,ℓ

)2
= d(xi , xj) < 𝜖.

⇒ {xm,k}∞m=1 is Cauchy.

ℝ is complete ⇒ {xm,k}∞m=1 converges to some yk ∈ ℝ.

Write y = (y1 , y2 , . . . , yn) ∈ ℝn.
By a proposition, {xm}∞m=1 converges to y ⇒ ℝn is complete. □
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Consider C
(
[a, b],ℝ

)
with the uniform norm as the metric

d(f , g) = ∥f − g∥[a,b] = sup
x∈[a,b]

|f (x) − g(x)| .

Convergence in this metric space is uniform convergence.

In chapter 6, we proved a uniform limit of continuous functions is continuous.

The following proposition is then an easy exercise in verifying the definitions:

Proposition
The space of continuous functions C

(
[a, b],ℝ

)
with the uniform norm as metric is a complete

metric space.
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Example: A subset of a complete metric space need not be complete:

(0, 1] with the subspace metric is not complete.
{1/n}∞n=1 is Cauchy with no limit in (0, 1].

Proposition
Suppose (X, d) is a complete metric space and E ⊂ X is closed. Then E is a complete metric space
with the subspace metric.

Proof: Exercise.
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Definition
Let (X, d) be a metric space and K ⊂ X.

The set K is compact if for every collection of open
sets {U�}�∈I such that K ⊂

⋃
�∈I

U�,

there exists a finite subset {�1 ,�2 , . . . ,�m} ⊂ I such that K ⊂
m⋃

j=1
U�j .

Call {U�}�∈I an open cover of K.
K is compact if every open cover of K has a finite subcover.

Example: ℝ is not compact.
Proof: Take Uj B (−j, j), j ∈ ℕ.

⋃
j(−j, j) = ℝ by Archimedean property.

If ℝ ⊂ Uj1 ∪ Uj2 ∪ · · · ∪ Ujm (j1 < j2 < · · · < jm) ⇒ ℝ ⊂ Ujm ⇒⇐
Example: (0, 1) ⊂ ℝ is not compact.
Proof: Consider Uj B (1/j, 1 − 1/j) for j = 3, 4, 5, . . .. (0, 1) = ⋃∞

j=3 Uj.
Again, if ∃ finite subcover then (0, 1) ⊂ Uj for some j, ⇒⇐
Example: {0} ⊂ ℝ is compact
Proof: For an open cover {U�}�∈I, ∃ �0 s.t. 0 ∈ U�0 . {U�0} is a finite subcover.
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Proposition
Let (X, d) be a metric space. If K ⊂ X is compact, then K is closed and bounded.

Proof: Fix p ∈ X.

The open cover K ⊂
∞⋃

n=1
B(p, n) = X

has a finite subcover

K ⊂
m⋃

j=1
B(p, nj) = B(p, nm).

⇒ K is bounded.

K

1
2

B(p, 3)
B(p, 2)

3

B(p, 1)

p
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Suppose K is not closed: K ≠ K

⇒ ∃ x ∈ K \ K.

x ∉ K & if y ≠ x ⇒y ∈ C(x, 1/n)c for some n

⇒ K ⊂
∞⋃

n=1
C(x, 1/n)c

C(x, 1)

C(x, 1/4)

C(x, 1/2)

C(x, 1/3)
x

K

That’s an open cover as C(x, 1/n)c are open.

Take a finite collection
m⋃

j=1
C(x, 1/nj)c = C(x, 1/nm)c

x ∈ K ⇒ C(x, 1/nm) ∩ K ≠ ∅.

⇒ so no finite subcover ⇒ K is not compact. □
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Lemma (Lebesgue covering lemma)
Let (X, d) be a metric space and K ⊂ X.

Suppose every sequence in K has a subsequence convergent
in K. Given an open cover {U�}�∈I of K, there exists a 𝛿 > 0 such that for every x ∈ K, there is a
� ∈ I with B(x, 𝛿) ⊂ U�.

Proof: If conclusion not true, then ∃ open cover {U�}�∈I of K such that:

For every n ∈ ℕ, ∃ xn ∈ K s.t. B(xn , 1/n) is not a subset of any U�.

Take x ∈ K ⇒ ∃ � ∈ I s.t. x ∈ U�.
U� is open ⇒ ∃ 𝜖 > 0 s.t. B(x, 𝜖) ⊂ U�.

Take M s.t. 1/M < 𝜖/2.

If y ∈ B(x, 𝜖/2) and n ≥ M, then

B(y, 1/n) ⊂ B(y, 1/M)
⊂ B(y, 𝜖/2) ⊂ B(x, 𝜖) ⊂ U�,

𝜖

B(x, 𝜖)

B(y, 𝜖/2)

y
x

B(x, 𝜖/2)

B(y, 1/n)

𝜖/2
U�

(B(y, 𝜖/2) ⊂ B(x, 𝜖) follows by
triangle inequality.)

⇒ y ≠ xn ⇒ {xn}∞n=1 has no subsequence converging to x. □
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Remark: If K such that every sequence has a convergent subsequence in K is called
sequentially compact.

The 𝛿 in the lemma depends on the cover, but not on the x.

Example: K B [−10, 10] and for n ∈ ℤ, Un B (n, n + 2) give an open cover.
If x ∈ K, then ∃ n ∈ ℤ, such that n ≤ x < n + 1.
If n ≤ x < n + 1/2, then B

(
x, 1/2

)
⊂ Un−1.

If n + 1/2 ≤ x < n + 1, then B
(
x, 1/2

)
⊂ Un.

⇒ 𝛿 = 1/2 works.

For the cover given by U′
n B

( n
2 ,

n+2
2
)

the largest 𝛿 is 1/4.

Example: ℕ ⊂ ℝ is not sequentially compact.
Exercise: Find the cover with no 𝛿 > 0.
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Theorem
Let (X, d) be a metric space. Then K ⊂ X is compact if and only if every sequence in K has a
subsequence converging to a point in K.

Proof: Claim: Suppose K ⊂ X and {xn}∞n=1 is a sequence in K. Suppose ∀ x ∈ K,
∃ 𝛼x > 0 s.t. xn ∈ B(x, 𝛼x) for only finitely many n ∈ ℕ. Then K is not compact.
Proof of the claim: Notice K ⊂ ⋃

x∈K B(x, 𝛼x).
Any finite subcollection contains xn for only finitely many n.
⇒ there is no subcover ⇒ K is not compact.

Suppose K is compact and {xn}∞n=1 is a sequence in K.
By claim ∃ x ∈ K s.t. ∀ 𝛿 > 0, B(x, 𝛿) contains xn for infinitely many n ∈ ℕ.

B(x, 1) contains some xk ⇒ let n1 B k.
Suppose nj−1 is defined.
∃ k > nj−1 such that xk ∈ B(x, 1/j) ⇒ let nj B k.

d(x, xnj) < 1/j ⇒ {xnj}∞j=1 converges to x.
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Now suppose K is sequentially compact and {U�}�∈I is an open cover of K.

By Lebesgue covering lemma, ∃ 𝛿 > 0 s.t. ∀ x ∈ K, ∃ � ∈ I with B(x, 𝛿) ⊂ U�.

Pick x1 ∈ K and find �1 ∈ I s.t. B(x1 , 𝛿) ⊂ U�1 .

If K ⊂ U�1 , we are done.
Otherwise, ∃ x2 ∈ K \ U�1 . Note d(x2 , x1) ≥ 𝛿.
∃ �2 ∈ I such that B(x2 , 𝛿) ⊂ U�2 . If K ⊂ U�1 ∪ U�2 , then done.

Suppose �n−1 is defined.
Either K ⊂ U�1 ∪ · · · ∪ U�n−1 (done), or ∃ xn ∈ K \

(
U�1 ∪ · · · ∪ U�n−1

)
.

Note d(xn , xj) ≥ 𝛿 for all j = 1, 2, . . . , n − 1.
∃ �n ∈ I s.t. B(xn , 𝛿) ⊂ U�n .

𝛿

x1U�1

K
x2 x3

x4

U�2

U�3

Either we find a subcover,
or we obtain a sequence {xn}∞n=1
in K such that d(xn , xk) ≥ 𝛿
whenever k ≠ n.

No subsequence of {xn}∞n=1 can be Cauchy. ⇒⇐ □
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Example: Bolzano–Weierstrass theorem for sequences of real numbers:
Every bounded sequence in ℝ has a convergent subsequence.

⇒ Every sequence in [a, b] ⊂ ℝ has a convergent subsequence.
⇒ The limit is also in [a, b].
⇒ A closed bounded interval [a, b] ⊂ ℝ is (sequentially) compact.

Proposition
Let (X, d) be a metric space and let K ⊂ X be compact. If E ⊂ K is a closed set, then E is compact.

As K is closed, E is closed in K ⇔ E is closed in X.

Proof: Let {xn}∞n=1 be a sequence in E.
{xn}∞n=1 is a sequence in K.
⇒ ∃ a convergent {xnj}∞j=1 converging to some p ∈ K.
E is closed ⇒ p ∈ E.
⇒ E is (sequentially) compact. □
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Theorem (Heine–Borel)
A closed bounded subset K ⊂ ℝn is compact.

Warning: Heine–Borel only holds for ℝn and not for metric spaces in general.
The theorem does not hold even for subspaces of ℝn, just in ℝn itself.

Example: In X = (0,∞) the subset (0, 1] is closed and bounded and not compact.

In general, compact ⇒ closed and bounded, but not vice versa!

Just for emphasis: Closed and bounded does not imply compact in general!

An example complete metric space where closed and bounded is not compact is the space
of continuous functions C([0, 1],ℝ).

Exercise: The closed unit ball C(0, 1) in C([0, 1],ℝ) is not compact.
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Proof: Suppose n = 1.

K ⊂ [a, b]. [a, b] is compact. K is a closed subset of a compact set.
⇒ K is compact.

Now consider n = 2. Arbitrary n is an exercise.
If K ⊂ ℝ2 is bounded, ∃ B = [a, b] × [c, d] ⊂ ℝ2 such that K ⊂ B.
If B is compact, then as K is closed it is also compact.

Let
{
(xk , yk)

}∞
k=1 be a sequence in B.

That is, a ≤ xk ≤ b and c ≤ yk ≤ d for all k.
By BW, ∃ convergent subsequence {xkj}∞j=1.
{ykj}∞j=1 is also a bounded, so ∃ convergent subsequence {ykji

}∞i=1.
{xkji

}∞i=1 is also convergent.
Let x B lim

i→∞
xkji

and y B lim
i→∞

ykji
.

So
{
(xkji

, ykji
)
}∞

i=1 converges to (x, y).
a ≤ xk ≤ b and c ≤ yk ≤ d for all k ⇒ (x, y) ∈ B.

B is compact ⇒ K is compact. □
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{ykj}∞j=1 is also a bounded, so ∃ convergent subsequence {ykji

}∞i=1.
{xkji

}∞i=1 is also convergent.
Let x B lim

i→∞
xkji

and y B lim
i→∞

ykji
.

So
{
(xkji

, ykji
)
}∞

i=1 converges to (x, y).
a ≤ xk ≤ b and c ≤ yk ≤ d for all k ⇒ (x, y) ∈ B.

B is compact ⇒ K is compact. □
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Example: Let (X, d) be a metric space with the discrete metric
(d(x, y) = 1 if x ≠ y).

Suppose X is an infinite set. Then
(i) (X, d) is a complete metric space.

(ii) Any K ⊂ X is closed and bounded.
(iii) K ⊂ X is compact ⇔ K is a finite set.
(iv) The conclusion of the Lebesgue covering lemma is always satisfied, e.g. with 𝛿 = 1/2,

even for noncompact K ⊂ X.
Proof: Exercises.

Remark: Compactness only depends on topology (on the set of open sets).

Completeness depends on which sequences are Cauchy, so it depends on the actual metric.
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Exercise: Finite sets are compact.

Exercise: The union of finitely many compact sets is compact.

Exercise: A compact set is a complete metric space.

Exercise: Suppose (X, d) is complete and E1 ⊃ E2 ⊃ E3 ⊃ · · · are compact and nonempty.
Prove

⋂∞
j=1 Ej ≠ ∅.

Exercise: Let (X, d) be a complete metric space. Show that K ⊂ X is compact if and only if
K is closed and such that for every 𝜖 > 0 there exists a finite set of points x1 , x2 , . . . , xn with
K ⊂ ⋃n

j=1 B(xj , 𝜖). Note: Such a set K is said to be totally bounded, so in a complete metric
space a set is compact if and only if it is closed and totally bounded.

Exercise: Prove the general Bolzano–Weierstrass theorem: Any bounded sequence {xk}∞k=1
in ℝn has a convergent subsequence.

Exercise: Let (X, d) be a metric space and K ⊂ X. Prove that K is compact as a subset of
(X, d) if and only if K is compact as a subset of itself with the subspace metric.
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