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Definition
A sequence in a metric space (X, d) is a function x : ℕ → X.

Write xn for the nth element. For
the whole sequence write

{xn}∞n=1.

{xn}∞n=1 is bounded if ∃ p ∈ X and B ∈ ℝ such that

d(p, xn) ≤ B for all n ∈ ℕ.

That is, {xn}∞n=1 is bounded ⇔ {xn : n ∈ ℕ} is bounded.

If {nk}∞k=1 is a sequence of natural numbers such that nk+1 > nk for all k,
then {xnk}∞k=1 is a subsequence of {xn}∞n=1.
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Definition
{xn}∞n=1 in a metric space (X, d) is said to converge to p ∈ X if
for every 𝜖 > 0, there exists an M ∈ ℕ such that d(xn , p) < 𝜖 for all n ≥ M.

p is said to be a limit of {xn}∞n=1.

If the limit is unique, write lim
n→∞

xn B p.

A sequence that converges is convergent.
Otherwise, the sequence is divergent.
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Sequence converging to p. The first 10 points are shown and M = 7 for this 𝜖.
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Proposition
A convergent sequence in a metric space has a unique limit.

Remark: Proof is exactly the same as for real-sequences.

Proof: Suppose {xn}∞n=1 has limits x and y.
Take an arbitrary 𝜖 > 0.
Find an M1 such that for all n ≥ M1, d(xn , x) < 𝜖/2.
Find an M2 such that for all n ≥ M2, d(xn , y) < 𝜖/2.
Consider n such that n ≥ M1 and n ≥ M2.
d(y, x) ≤ d(y, xn) + d(xn , x) < 𝜖

2 + 𝜖
2 = 𝜖.

d(y, x) < 𝜖 ∀ 𝜖 > 0 ⇒ d(y, x) = 0 ⇒ y = x.
Hence the limit (if it exists) is unique. □
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Proposition
A convergent sequence in a metric space is bounded.

Proposition
A sequence {xn}∞n=1 in a metric space (X, d) converges to p ∈ X if and only if there exists a sequence
{an}∞n=1 of real numbers such that

d(xn , p) ≤ an for all n ∈ ℕ, and lim
n→∞

an = 0.

Proposition
Let {xn}∞n=1 be a sequence in a metric space (X, d).
(i) If {xn}∞n=1 converges to p ∈ X, then every subsequence {xnk}∞k=1 converges to p.

(ii) If for some K ∈ ℕ the K-tail {xn}∞n=K+1 converges to p ∈ X, then {xn}∞n=1 converges to p.

Proofs: Exercises.
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Example: Take C
(
[a, b],ℝ

)
be the metric space of continuous functions where

d(f , g) B sup
x∈[a,b]

|f (x) − g(x)| (uniform norm).

Convergence is identical to uniform convergence (see chapter 6).

That is, {fn}∞n=1 converges uniformly if and only if it converges in the metric space sense.

Remark: No metric on the set of functions f : [a, b] → ℝ gives pointwise convergence.
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Proposition
Consider {xm}∞m=1 in ℝn, where xm =

(
xm,1 , xm,2 , . . . , xm,n

)
∈ ℝn.

Then,
{xm}∞m=1 converges ⇔ {xm,k}∞m=1 converges for every k = 1, 2, . . . , n,

in which case lim
m→∞

xm =

(
lim

m→∞
xm,1 , lim

m→∞
xm,2 , . . . , lim

m→∞
xm,n

)
.

Proof: Suppose {xm}∞m=1 converges to y = (y1 , y2 , . . . , yn) ∈ ℝn.

Given 𝜖 > 0, ∃ M such that ∀ m ≥ M, d(y, xm) < 𝜖.

Fix some k = 1, 2, . . . , n.
For all m ≥ M,

��yk − xm,k
�� = √(

yk − xm,k
)2 ≤

√√ n∑
ℓ=1

(
yℓ − xm,ℓ

)2
= d(y, xm) < 𝜖.

⇒ {xm,k}∞m=1 converges to yk.
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Now suppose {xm,k}∞m=1 converges to yk for every k = 1, 2, . . . , n.

Given 𝜖 > 0, pick M such that ∀ m ≥ M and ∀ k = 1, . . . , n,
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d(y, xm) =
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(
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= 𝜖.

⇒ {xm}∞m=1 converges to y = (y1 , y2 , . . . , yn) ∈ ℝn. □

Example: In the set of complex numbers ℂ, z = x + iy,
{zn}∞n=1 = {xn + iyn}∞n=1 converges to z = x + iy
⇔

{xn}∞n=1 converges to x and {yn}∞n=1 converges to y.
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Proposition
Let (X, d) be a metric space and {xn}∞n=1 a sequence in X. Then {xn}∞n=1 converges to p ∈ X if and
only if for every open neighborhood U of p, there exists an M ∈ ℕ such that for all n ≥ M, we have
xn ∈ U.

Proof: Suppose {xn}∞n=1 converges to p.
Let U be an open neighborhood of p.
⇒ ∃ 𝜖 > 0 such that B(p, 𝜖) ⊂ U.
Find M ∈ ℕ such that ∀ n ≥ M, d(p, xn) < 𝜖, that is, xn ∈ B(p, 𝜖) ⊂ U.

The other direction:
Given 𝜖 > 0, let U B B(p, 𝜖) be the neighborhood of p.
⇒ ∃ M ∈ ℕ such that for n ≥ M, xn ∈ U = B(p, 𝜖),
that is, d(p, xn) < 𝜖. □
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Proposition
Let (X, d) be a metric space, E ⊂ X a closed set, and {xn}∞n=1 a sequence in E that converges to some
p ∈ X. Then p ∈ E.

Proof: We prove the contrapositive.

Suppose {xn}∞n=1 in X converges to p ∈ Ec.

Ec is open ⇒ ∃ M such that ∀ n ≥ M, xn ∈ Ec.

⇒ {xn}∞n=1 is not a sequence in E. □
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Proposition
Let (X, d) be a metric space and A ⊂ X. Then p ∈ A if and only if there exists a sequence {xn}∞n=1 of
elements in A such that lim

n→∞
xn = p.

Proof: Let p ∈ A.

For every n ∈ ℕ, ∃ xn ∈ B(p, 1/n) ∩ A.

d(p, xn) < 1/n ∀n ⇒ limn→∞ xn = p.

The other direction: Exercise. □
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Exercise: Let (X, d) be a metric space where d is the discrete metric. Suppose {xn}∞n=1 is a
convergent sequence in X. Show that there exists a K ∈ ℕ such that for all n ≥ K, we have
xn = xK.

A set S ⊂ X is said to be dense in X if X ⊂ S or in other words if for every p ∈ X, there exists
a sequence {xn}∞n=1 in S that converges to p.

Exercise: Prove that ℝn contains a countable dense subset.

Exercise: Let (X, d) be a metric space and {xn}∞n=1 a sequence in X. Prove that {xn}∞n=1
converges to p ∈ X if and only if every subsequence of {xn}∞n=1 has a subsequence that
converges to p.
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