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Definition
Let (X, d) be a metric space, x ∈ X, and 𝛿 > 0.

Define the open ball, or ball, of radius 𝛿
around x as

B(x, 𝛿) B
{
y ∈ X : d(x, y) < 𝛿

}
.

Define the closed ball as
C(x, 𝛿) B

{
y ∈ X : d(x, y) ≤ 𝛿

}
.

Write BX(x, 𝛿) B B(x, 𝛿) or CX(x, 𝛿) B C(x, 𝛿), to emphasize the space.

Example: Take ℝ with the standard metric:

B(x, 𝛿) = (x − 𝛿, x + 𝛿) and C(x, 𝛿) = [x − 𝛿, x + 𝛿].

Example: Consider [0, 1] as a subspace of ℝ. In [0, 1],

B(0, 1/2) = B[0,1](0, 1/2) =
{
y ∈ [0, 1] : |0 − y| < 1/2

}
= [0, 1/2).

Note the difference with Bℝ(0, 1/2) = (−1/2, 1/2).
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Definition
Let (X, d) be a metric space.

V ⊂ X is open if ∀ x ∈ V, ∃ 𝛿 > 0 such that B(x, 𝛿) ⊂ V.

E ⊂ X is closed if Ec = X \ E is open.

When X is not clear from context, we say V is open in X and E is closed in X.

If x ∈ V and V is open, then V is an open neighborhood of x (or just neighborhood).

x

V

B(x, 𝛿)

𝛿

Remark: 𝛿 depends on x.

An open set V is a set that does not
include its “boundary.”

If we are in V we are allowed to
“wiggle” and we’ll stay in V.

E is closed if everything not in E is some distance away from E.
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Examples:

(0,∞) ⊂ ℝ is open:
Given x ∈ (0,∞), let 𝛿 B x
⇒ B(x, 𝛿) = (0, 2x) ⊂ (0,∞).

[0,∞) ⊂ ℝ is closed:
Given x ∈ (−∞, 0) = [0,∞)c, let 𝛿 B −x
⇒ B(x, 𝛿) = (−2x, 0) ⊂ (−∞, 0) = [0,∞)c.

[0, 1) ⊂ ℝ is neither open nor closed:
∀ 𝛿 > 0, B(0, 𝛿) = (−𝛿, 𝛿) contains numbers not in [0, 1) ⇒ [0, 1) is not open.
∀ 𝛿 > 0, B(1, 𝛿) = (1 − 𝛿, 1 + 𝛿) contains numbers in [0, 1) ⇒ [0, 1)c is not open

⇒ [0, 1) is not closed.

In any metric space (X, d), if x ∈ X, then {x} is closed (exercise).
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Proposition
Let (X, d) be a metric space.

(i) ∅ and X are open.

(ii) If V1 ,V2 , . . . ,Vk are open subsets of X, then

k⋂
j=1

Vj

is also open. That is, a finite intersection of open sets is open.

(iii) If {V𝜆}𝜆∈I is an arbitrary collection of open subsets of X, then⋃
𝜆∈I

V𝜆

is also open. That is, a union of open sets is open.
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Proof: (i): ∅ and X are obviously open in X.

(ii): If x ∈ ⋂k
j=1 Vj, then x ∈ Vj for all j.

Vj are all open ⇒ ∀ j ∃ 𝛿j > 0 such that B(x, 𝛿j) ⊂ Vj.
Take 𝛿 B min{𝛿1 , 𝛿2 , . . . , 𝛿k}.
Note 𝛿 > 0.
⇒ B(x, 𝛿) ⊂ B(x, 𝛿j) ⊂ Vj for every j and so B(x, 𝛿) ⊂ ⋂k

j=1 Vj.
⇒ The intersection is open.

(iii): If x ∈ ⋃
𝜆∈I V𝜆, then x ∈ V𝜆 for some 𝜆 ∈ I.

V𝜆 is open ⇒ ∃ 𝛿 > 0 such that B(x, 𝛿) ⊂ V𝜆.
⇒ B(x, 𝛿) ⊂ ⋃

𝜆∈I V𝜆

⇒ The union is open. □

Example: (ii) is not true for an arbitrary intersection:⋂∞
n=1(−1/n, 1/n) = {0}, which is not open.
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Proposition
Let (X, d) be a metric space.

(i) ∅ and X are closed.

(ii) If {E𝜆}𝜆∈I is an arbitrary collection of closed subsets of X, then⋂
𝜆∈I

E𝜆

is also closed. That is, an intersection of closed sets is closed.

(iii) If E1 , E2 , . . . , Ek are closed subsets of X, then

k⋃
j=1

Ej

is also closed. That is, a finite union of closed sets is closed.

Proof: Exercise.
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Proposition
Let (X, d) be a metric space, x ∈ X, and 𝛿 > 0.

Then B(x, 𝛿) is open and C(x, 𝛿) is closed.

Proof: Let y ∈ B(x, 𝛿). Let 𝛼 B 𝛿 − d(x, y) > 0. Consider z ∈ B(y, 𝛼):

d(x, z) ≤ d(x, y) + d(y, z)

< d(x, y) + 𝛼

= d(x, y) + 𝛿 − d(x, y) = 𝛿. x𝛿

z

B(x, 𝛿)

𝛼
y

⇒ B(y, 𝛼) ⊂ B(x, 𝛿) ⇒ B(x, 𝛿) is open.

That C(x, 𝛿) is closed is an exercise. □

Careful: [0, 1/2) is an open ball in [0, 1], and so [0, 1/2) is an open set in [0, 1].
[0, 1/2) is neither open nor closed in ℝ.
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Proposition
Let a, b be two real numbers, a < b.

Then (a, b), (a,∞), and (−∞, b) are open in ℝ. Also [a, b],
[a,∞), and (−∞, b] are closed in ℝ.

Proof: Exercise.

Proposition
Suppose (X, d) is a metric space, and Y ⊂ X. Then U ⊂ Y is open in Y (in the subspace topology)
⇔ ∃ open set V ⊂ X (so open in X), such that V ∩ Y = U.

Example: Let X B ℝ, Y B [0, 1], U B [0, 1/2).
U is an open set in Y, may take V B (−1/2, 1/2).

Proof of proposition: Suppose V ⊂ X is open and V ∩ Y = U.
Suppose x ∈ U = V ∩ Y. ∃ 𝛿 > 0 such that BX(x, 𝛿) ⊂ V.

Then BY(x, 𝛿) = BX(x, 𝛿) ∩ Y ⊂ V ∩ Y = U.

The opposite direction is an exercise. □
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Proposition
Suppose (X, d) is a metric space, V ⊂ X is open, and E ⊂ X is closed.

(i) U ⊂ V is open in the subspace topology ⇔ U is open in X.

(ii) F ⊂ E is closed in the subspace topology ⇔ F is closed in X.

Proof: (i): Suppose U ⊂ V is open in the subspace topology.

By the previous proposition, ∃ W ⊂ X, open in X, such that U = W ∩ V

Intersection of open sets is open ⇒ U is open in X.

Now suppose U is open in X.

⇒ U = U ∩ V ⇒ U is open in V (the proposition again)

(ii): Exercise. □
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Definition
A nonempty metric space (X, d) is connected if the only subsets of X that are both open and
closed (so-called clopen subsets) are ∅ and X itself.

If a nonempty (X, d) is not connected we say it is disconnected.

A nonempty subset A ⊂ X is connected if A is connected with the subspace topology.

A nonempty X is connected if X = X1 ∪ X2 where X1 ∩ X2 = ∅ and X1 and X2 are open,
then either X1 = ∅ or X2 = ∅.

To show X is disconnected, find nonempty disjoint open sets X1 and X2 whose union is X.

Example: B(x, 𝛿) is not always connected.
Consider {a, b} with the discrete metric.
⇒ B(a, 2) = {a, b}, which is not connected:
B(a, 1) = {a} and B(b, 1) = {b} are open and disjoint.
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Proposition
Let (X, d) be a metric space.

A nonempty S ⊂ X is disconnected ⇔ ∃ open sets U1 and U2 in
X, such that U1 ∩ U2 ∩ S = ∅, U1 ∩ S ≠ ∅, U2 ∩ S ≠ ∅, and

S =
(
U1 ∩ S

)
∪
(
U2 ∩ S

)
.

S
S

U2
U1

Proof: ⇒) Suppose S is disconnected: ∃ nonempty disjoint S1 and S2 that are open in S
and S = S1 ∪ S2.
⇒ ∃ U1 and U2 that are open in X such that U1 ∩ S = S1 and U2 ∩ S = S2.
⇐) Suppose U1 and U2 exist. ⇒ U1 ∩ S and U2 ∩ S are open in S.
⇒ S is disconnected. □

Example: S ⊂ ℝ and ∃ x, y, z, s.t. x < z < y with x, y ∈ S and z ∉ S.
Claim: S is disconnected.
Proof:

(
(−∞, z) ∩ S

)
∪
(
(z,∞) ∩ S

)
= S
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Proposition
A nonempty set S ⊂ ℝ is connected ⇔ S is an interval or a single point.

Proof: Suppose S is connected.

If S is a single point, then we are done.

Suppose x < y and x, y ∈ S.
Suppose z ∈ ℝ is such that x < z < y.
(−∞, z) ∩ S ≠ ∅ and (z,∞) ∩ S ≠ ∅.
The sets are disjoint.
As S is connected, their union can’t be S.
⇒ z ∈ S.
⇒ S is an interval.
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If S is a single point, it is connected,

so suppose S is an interval.

Consider U1 and U2 open in ℝ, such that
U1 ∩ S ≠ ∅ and U2 ∩ S ≠ ∅ and S =

(
U1 ∩ S

)
∪
(
U2 ∩ S

)
.

Suppose x ∈ U1 ∩ S and y ∈ U2 ∩ S, WLOG x < y.
S is an interval ⇒ [x, y] ⊂ S.
U2 ∩ [x, y] ≠ ∅ let z B inf(U2 ∩ [x, y]). WTS z ∈ U1.
If z = x, then z ∈ U1.
If z > x, then ∀ 𝜖 > 0, B(z, 𝜖) has pts of [x, y] \ U2, as z = inf(U2 ∩ [x, y]).
So z ∉ U2 as U2 is open.
⇒ z ∈ U1 (U1 and U2 cover [x, y])
U1 is open ⇒ B(z, 𝛿) ⊂ U1 for some 𝛿 > 0.
z = inf(U2 ∩ [x, y]) ⇒ ∃ w ∈ U2 ∩ [x, y] s.t. w ∈ [z, z + 𝛿) ⊂ B(z, 𝛿) ⊂ U1.

U2U1

x y
z w

(z − 𝛿, z + 𝛿)

⇒ w ∈ U1 ∩ U2 ⇒ (U1 ∩ S) ∩ (U2 ∩ S) ≠ ∅ ⇒ S is connected. □
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Definition
Let (X, d) be a metric space and A ⊂ X.

The closure of A is the set

A B
⋂

{E ⊂ X : E is closed and A ⊂ E}.

Proposition
Let (X, d) be a metric space and A ⊂ X. A is closed, and A ⊂ A.
Furthermore, if A is closed, then A = A.

Proof: A an intersection of closed sets ⇒ A is closed.

∃ at least one closed set containing A, namely X itself, ⇒ A ⊂ A.

If A is closed, then A is a closed set that contains A.
⇒ A ⊂ A ⇒ A = A. □
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Example: The closure of (0, 1) in ℝ is [0, 1].

Proof: If E is closed and (0, 1) ⊂ E, then 0, 1 ∈ E (why?). ⇒ [0, 1] ⊂ E.
[0, 1] is closed ⇒ (0, 1) = [0, 1].

Example: Ambient space matters.

If X = (0,∞), then the closure of (0, 1) in (0,∞) is (0, 1].

(0, 1] is closed in (0,∞) (why?).
Any closed set E s.t. (0, 1) ⊂ E must contain 1.
⇒ (0, 1] ⊂ E ⇒ (0, 1) = (0, 1] in (0,∞).
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Proposition
Let (X, d) be a metric space and A ⊂ X.

x ∈ A ⇔ ∀ 𝛿 > 0, B(x, 𝛿) ∩ A ≠ ∅.

Proof: We will show x ∉ A ⇔ ∃ 𝛿 > 0 such that B(x, 𝛿) ∩ A = ∅.

Suppose x ∉ A.
A is closed ⇒ ∃ 𝛿 > 0 such that B(x, 𝛿) ⊂ A

c
.

As A ⊂ A, B(x, 𝛿) ⊂ A
c ⊂ Ac ⇒ B(x, 𝛿) ∩ A = ∅.

Now suppose ∃ 𝛿 > 0, such that B(x, 𝛿) ∩ A = ∅.
⇒ A ⊂ B(x, 𝛿)c.
B(x, 𝛿)c is closed, x ∉ B(x, 𝛿)c, A is the intersection of closed sets containing A
⇒ x ∉ A. □
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Definition
Let (X, d) be a metric space and A ⊂ X. The interior of A is the set

A◦ B {x ∈ A : there exists a 𝛿 > 0 such that B(x, 𝛿) ⊂ A}.

The boundary of A is the set
𝜕A B A \ A◦.

Example: Suppose A B (0, 1] and X B ℝ.

⇒ A = [0, 1], A◦ = (0, 1), and 𝜕A = {0, 1}.

Example: Consider X B {a, b} with the discrete metric, and A B {a}.

⇒ A = A◦ = A and 𝜕A = ∅.
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Proposition
Let (X, d) be a metric space and A ⊂ X.

x ∈ 𝜕A ⇔ ∀ 𝛿 > 0, B(x, 𝛿) ∩ A ≠ ∅ and B(x, 𝛿) ∩ Ac ≠ ∅.

x

𝛿

B(x, 𝛿)

Ac

A

𝜕A

Proof: Suppose x ∈ 𝜕A = A \ A◦ and
𝛿 > 0 is arbitrary.
x ∈ A ⇒ B(x, 𝛿) ∩ A ≠ ∅.
If B(x, 𝛿) ∩ Ac = ∅, then x ∈ A◦

as x ∉ A◦ ⇒ B(x, 𝛿) ∩ Ac ≠ ∅.

Now suppose x ∉ 𝜕A ⇒ x ∉ A or x ∈ A◦.

If x ∉ A, then B(x, 𝛿) ⊂ A
c

for some 𝛿 > 0 as A is closed.
⇒ B(x, 𝛿) ∩ A = ∅ as A

c ⊂ Ac.

If x ∈ A◦, then B(x, 𝛿) ⊂ A for some 𝛿 > 0, so B(x, 𝛿) ∩ Ac = ∅. □

Corollary
Let (X, d) be a metric space and A ⊂ X. Then 𝜕A = A ∩ Ac.
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Exercise: Prove that in a metric space,

a) E is closed if and only if 𝜕E ⊂ E.
b) U is open if and only if 𝜕U ∩ U = ∅.

Exercise: Prove that in a metric space,
a) A is open if and only if A◦ = A.
b) U ⊂ A◦ for every open set U such that U ⊂ A.

Exercise: Let (X, d) be a metric space and A ⊂ X. Show that
A◦ =

⋃{V : V is open and V ⊂ A}.
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