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Remark: We allow I to be a closed interval, and we allow c to be an endpoint of I.
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w is the slope of the secant line through (c,f(c)) and (x,f(x)).

f’(c) is the limit of these slopes as x — c.
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Remark: Every differentiable f “infinitesimally” behaves like the affine function ax + b.
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Therefore,

Example: f(x) := |x| is not differentiable at 0.
Proof: When x > 0,

=10l _x=0 _,

x-0 x-0
When x < 0,

|x|—|0|_—x—0__1

x—0 x-=0
So the limit x — 0 does not exist.
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(ii) Defineh: I — R by h(x) := f(x) + g(x). Then h is differentiable at c and I’ (c) = f'(c) + §’(c).

H) — o) _ af ) ~ af() __f(x) ()

Proof: (i) Forx eI, x # ¢,

xX—c xX—c xX—c
The limit as x — ¢ of the RHS exists and lim M = limw.
x—C X—C X—C X—C

(i) Forxel, x #¢,

hx) —h(e) _ (&) +8(x)) — (f(©) +8(c) _ f(x) —f() L8 —g)

X—cC X—cC X—cC X—cC

The limit as x — ¢ of RHS exists and
m h(x) — h(c) _ (x) - C(c) + lim g(x) - g(c)'

li lim f—

xX—C X—C x—c X — x—c X—C



Proposition (Product rule / Leibniz rule)

Let I be an interval, let f: I — Rand g: I — R be functions differentiable at c. If h: I — R is
defined by h(x) = f(x)g(x),




Proposition (Product rule / Leibniz rule)

Let I be an interval, let f: I — R and g: I — R be functions differentiable at c. If h: I — R is
defined by h(x) = f(x)g(x), then h is differentiable at ¢ and

K (c) = f(0)g'(c) +f'(c)g(c).




Proposition (Product rule / Leibniz rule)

Let I be an interval, let f: I — R and g: I — R be functions differentiable at c. If h: I — R is
defined by h(x) = f(x)g(x), then h is differentiable at ¢ and

K (c) = f(0)g'(c) +f'(c)g(c).

Proof: Exercise.



Proposition (Product rule / Leibniz rule)

Let I be an interval, let f: I — R and g: I — R be functions differentiable at c. If h: I — R is
defined by h(x) = f(x)g(x), then h is differentiable at ¢ and

K (c) = f(0)g'(c) +f'(c)g(c).

Proof: Exercise. Hint: f(x)g(x) — f(c)g(c) = f(x)(g(x) — g()) + (f(x) — f(c))g(c)



Proposition (Product rule / Leibniz rule)

Let I be an interval, let f: I — R and g: I — R be functions differentiable at c. If h: I — R is
defined by h(x) = f(x)g(x), then h is differentiable at ¢ and

K (c) = f(0)g'(c) +f'(c)g(c).

Proof: Exercise. Hint: f(x)g(x) — f(c)g(c) = f(x)(g(x) — g(c)) + (f(x) — f(c))g(c)
or Alf-g)=f-Ag+Af-g.



Proposition (Product rule / Leibniz rule)
Let I be an interval, let f: I — Rand g: I — R be functions differentiable at c. If h: I — R is

defined by h(x) = f(x)g(x), then h is differentiable at ¢ and
W' (c) = f()g'(c) + f(c)g(c).

Proof: Exercise. Hint: f(x)g(x) — f(c)g(c) = f(x)(g(x) — g(c)) + (f(x) — f(c))g(c)
or  Aff-g)=f-Ag+Af-g.

(x)

e ) (g - g©)
g(c)

=

&

£)3(¢) <

=

) S

0 fle) fx)



Proposition (Quotient rule)

Let I be an interval, let f: I — R and g: I — R be differentiable at c and g(x) # 0 for all x € I. If

h: I — R is defined by h(x) = %'




Proposition (Quotient rule)

Let I be an interval, let f: I — R and g: I — R be differentiable at c and g(x) # 0 for all x € I. If
h: I — R is defined by h(x) = L9 then b is differentiable at c and

ﬁ ’
f(08(0) ~fl)g'(0)

H(c) =
(3(0))*




Proposition (Quotient rule)

Let I be an interval, let f: I — R and g: I — R be differentiable at c and g(x) # 0 for all x € I. If

h: I — R is defined by h(x) = %, then h is differentiable at c and

f'(0)g(c) = f(c)g’(c) '

H(c) =
(3(0))*

Proof: Exercise.



Proposition (Chain rule)

Let I1, I, be intervals, let g: I — I be differentiable at ¢ € Iy, and f: I, — R be differentiable at
8(c).
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Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). Ifh: I - R is defined by h(x) := (f o g)(x) = f(g(x)),
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Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: I — R is defined by h(x) := (f o g)(x) = f(g(x)), then h is differentiable at ¢ and

H(c) =£(8(c))g'(©)-




Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: I — R is defined by h(x) := (f o g)(x) = f(g(x)), then h is differentiable at ¢ and

H(c) =£(8(c))g'(©)-

Proof: Letd := g(c).



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
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Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

u = | HyEd
P2V @ iy =4,



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: I — Ris defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at ¢ and

H(c) =£(8(c))g'(©)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fOFD e 24 g8
u(y) = { v ify+d, o(x) = = %fx #c,
f/(d) ify=d, <'(c) ifx=c.



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: I — Ris defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at ¢ and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy-f@ .
u(y) = { ra ity #d, x=c

v(x) =

<'(c) ifx=c.

S5O e
@) ify=d,

f differentiable atd = g(c) = u is continuous at d.



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: I — Ris defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at ¢ and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy)—f(d) if d
u(y) ‘:{ R T N

<'(c) ifx=c.

S5O e
@) ify=d,

f differentiable atd = g(c) = u is continuous at d.
g differentiable atc = v is continuous at c.



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by
fly)—f) ify+d
u(y) = { y=a YT a

v(x) = x—c

<'(c) ifx=c.

S5O e
@) ify=d,

f differentiable atd = g(c) = u is continuous at d.
g differentiable atc = v is continuous at c.

f) = fd) = u(y)(y —d)



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by
fly)—f) ify+d
u(y) = { y=a YT a

v(x) = x—c

<'(c) ifx=c.

S5O e
@) ify=d,

f differentiable atd = g(c) = u is continuous at d.
g differentiable atc = v is continuous at c.

fy)=fld) =uly)y—d) and gx)-g(c)=o()(x=-c)  Vxy.



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy-f@ . (0)—glc) .
u(y)::{ny ify #d, {g" £ ifx#e,

£(d) ify=d, o) = g’(xc_)c ifx=c.

f differentiable atd = g(c) = u is continuous at d.

g differentiable atc = v is continuous at c.

fy)—fd) =u(y)y—d) and gx)-glc)=ov(x)(x-c)  Vx,y.
= T(x) - h(c)



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy-f@ . (0)—glc) .
u(y)::{ny ify#d, {g" £ ifx#e,

£(d) ify=d, o) = g’(xc_)c ifx=c.

f differentiable atd = g(c) = u is continuous at d.

g differentiable atc = v is continuous at c.

fy)=fld) =uly)y—d) and gx)-g(c)=o()(x=-c)  Vxy.
= h(x) - () = f(g(x)) - f(3(c)



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy-f@ . (0)—glc) .
u(y):z{ny ify#d, {g" £ ifx#e,

£(d) ify=d, o) = g’(xc_)c ifx=c.

f differentiable atd = g(c) = u is continuous at d.
g differentiable atc = v is continuous at c.

fy)—f@=uly)y—-d) and gx)-glc)=vx)(x—c) Vxy.
= h(x) = h(c) = f(g(x)) = f(g(c)) = u(g(x))(g(x) - g(c))



Proposition (Chain rule)

Let I, I be intervals, let g: Iy — I, be differentiable at ¢ € I, and f: I, — R be differentiable at
g(c). If h: Iy — R is defined by h(x) = (f o g)(x) = f(g(x)), then h is differentiable at c and

H(c) =f(8(c)g'(c)-

Proof: Letd := g(c).
Defineu: b, - Rand v: I; = R by

fy-f@ . (0)—glc) .
u(y):z{ny ify#d, {g" £ ifx#e,

£(d) ify=d, o) = g’(xc_)c ifx=c.

f differentiable atd = g(c) = u is continuous at d.
g differentiable atc = v is continuous at c.

fy)—f@=uly)y—-d) and gx)-glc)=vx)(x—c) Vxy.
= h(x) = h(c) = f(g(x)) = f(8(0)) = u(g(x)(g(x) = g(c)) = u(gx)) (v(x)(x - c)).



h(x) = h(c)

X—cC

If x # ¢, then
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hx) - h(o) _

X—cC

If x # ¢, then u(g(x))o(x).



h(x) = h(c)

X—cC

If x # ¢, then = u(g(x))o(x).

u is continuous atd = lirr‘; u(y) = f'(d) = f'(g(c)).
y—)



If x # ¢, then

MR — (5ot

c

u is continuous atd = lin‘} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C



If x # ¢, then

MR — (5ot

c

u is continuous atd = linl} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C

giscontinuousatc = limg(x) = g(c).
X—C



If x # ¢, then

MM~ wfgyot)

c

u is continuous atd = lirrl} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C

giscontinuousatc = limg(x) = g(c).
X—C

= limu(g(x))o(x) exists



If x # ¢, then

w = u(g(x))o(x).

c

u is continuous atd = linl} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C

giscontinuousatc = limg(x) = g(c).
X—C

= }Ciglu(g(x))v(x) exists and equals  f7(g(c))g’(c).



If x # ¢, then

w = u(g(x))o(x).

c

u is continuous atd = linl} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C

giscontinuousatc = limg(x) = g(c).
X—C

= }Cig}u(g(x))v(x) exists and equals  f7(g(c))g’(c).

= his differentiable at ¢



If x # ¢, then

w = u(g(x))o(x).

c

u is continuous atd = linl} u(y) = f'(d) = f'(g(c)).
y—)

viscontinuousatc = limo(x) = g'(c).
X—C

giscontinuousatc = limg(x) = g(c).
X—C

= }Cig}u(g(x))v(x) exists and equals  f7(g(c))g’(c).

= his differentiable at c and ’(c) = f’(g(c))g’(c).



Exercise: Prove the following simple version of LHopital’s rule:
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Exercise: Prove the following simple version of LHopital’s rule:
Suppose f: (a,b) —» Rand g: (a,b) — R are differentiable functions whose derivatives f’
and g’ are continuous functions.



Exercise: Prove the following simple version of L'Hoépital’s rule:

Suppose f: (a,b) —» Rand g: (a,b) — R are differentiable functions whose derivatives f’
and ¢’ are continuous functions. Suppose that at ¢ € (a,b), f(c) =0, g(c) = 0, g’(x) # 0 for all
x € (a,b), and g(x) # 0 whenever x # c.



Exercise: Prove the following simple version of L'Hoépital’s rule:

Suppose f: (a,b) —» Rand g: (a,b) — R are differentiable functions whose derivatives f’
and ¢’ are continuous functions. Suppose that at ¢ € (a,b), f(c) =0, g(c) = 0, g’(x) # 0 for all
x € (a,b), and g(x) # 0 whenever x # c.

Note that the limit of f(*)/g'(x) as x goes to c exists.



Exercise: Prove the following simple version of L'Hoépital’s rule:

Suppose f: (a,b) —» Rand g: (a,b) — R are differentiable functions whose derivatives f’
and ¢’ are continuous functions. Suppose that at ¢ € (a,b), f(c) =0, g(c) = 0, g’(x) # 0 for all
x € (a,b), and g(x) # 0 whenever x # c.

Note that the limit of f(*)/g'(x) as x goes to c exists.

Show that ,
lim@ = limf (x) .
x—e gx)  x—e g'(x)




