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Definition
Given a set A, a binary relation on A is a subset R C A X A, which are those pairs where the
relation is said to hold. Instead of (4, b) € R, we write a R b.

Example: Take A = {1,2,3}. Consider ‘<.
The corresponding set of pairs is {(1, 2),(1,3),(2, 3)}.

1 < 2 holds as (1, 2) is in the corresponding set of pairs,
3 < 1 does not hold as (3, 1) is not in the set.

The relation ‘=" is defined by {(1, 1),(2,2),(5, 3)}.

Any subset of A X A is a relation.
E.g., define the relation t via {(1, 2),(2,1),(2,3),(3, 1)},
then1t2and 3t1 are true, but 1 13 is not.
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Let A be a set and R an equivalence relation. An equivalence class of a € A, denoted by [a], is
theset {x € A:aRx}.

Example: For A = {1,2,3} and ‘x’ defined by {(1, 1),(1,2),(2,1),(2,2),(3, 3)}, there are
two equivalence classes, [1] = [2] = {1, 2} and [3] = {3}.

Reflexivity = a € [a].

Symmetry = if b € [a], thena € [b].

Transitivity = if a € [b] and b € [c], then a € [c].

Proposition

If R is an equivalence relation on a set A, then every a € A is in exactly one equivalence class.
Moreover,aRb < [a] = [b].

Proof is an exercise.

Example: Q can be defined as the set of equivalence classes on Z X N under the relation
(a,b) ~ (c,d) when ad = bc (exercise). We write [(a, b)] as a/b.
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very subtle.

|Al=0| ©A=0 IfB#0,nof:B— 0can exist.
Write |0] = 0.

If |A| = {1,2,3,...,n}| for n € N, write |A| = n (exercise: such n is unique).

Definition
Ais finiteif |[A| e N or |[A| =0, otherwise A is infinite.
A is countably infinite if |A| = |N|. (often denoted |N| = Ng)

A is countable if A is finite or countably infinite.
If A is not countable, then it is uncountable.
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Example: [N x N| = |N].

Sketch of proof: Arrange N x N as
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Define a bijection by (1) = (1, 1), f(2) := (1, 2), etc.
Example: |Q| = |N].
Sketch of proof: For positive Q, as for N x N, write 1/1, 1/2, 2/1, etc., then cross out any pair

such as 2/2 that has already appeared as a rational number.
For all Q, also include 0 and the negatives: 0, 1/1, -1/1, /2, =1/2, 2/1, =2/1, etc.
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E.g.,if A = {1,2}, then P(A) = {0, {1}, {2}, {1,2}}.
|A| =2 and |P(A)| = 4 = 22.

Exercise: If |[A| = n € N, then |P(A)| = 2".
So if A is finite, |[A| = n < 2" = |P(A)].
Interestingly, it works for infinite sets too:
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Claim: B is notin g(A).
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In fact, IN| < |[P(N)| < |P(P(N))| < |P(P(P(N)))], etc.



