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Definition
A sequence in a metric space (X, d) is a function x: N — X. Write x,, for the nth element. For
the whole sequence write

{xn }Zozl .

{xn}};, is bounded if 3p € X and B € R such that
d(p,x,) < B foralln € N.

That s, {x,}, isbounded & {x,:n € N} isbounded.

If {nk}]‘;‘;l is a sequence of natural numbers such that 71 > n for all &,
then {x, };2, is a subsequence of {x}, ;.
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{xu},7, in a metric space (X, d) is said to converge to p € X if
for every € > 0, there exists an M € N such that d(x,,p) < € for all n > M.

p is said to be a limit of {x,} ;.

If the limit is unique, write ~ lim x, = p.

n—oo

A sequence that converges is convergent.
Otherwise, the sequence is divergent.
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Sequence converging to p. The first 10 points are shown and M = 7 for this €.
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Proposition

A convergent sequence in a metric space has a unique limit.

Remark: Proof is exactly the same as for real-sequences.

Proof: Suppose {x,},’ ; has limits x and y.

Take an arbitrary € > 0.

Find an M; such that foralln > My, d(x,,x) < €/2.
Find an M; such that for alln > My,  d(x,,y) < €/2.
Consider n such that n > My and n > M.

d(y,x) < d(y, x,) +d(x,,x) < 5§+ 5 =¢€.

dy,x) <eVe>0 = dy,x)=0 = y=x
Hence the limit (if it exists) is unique.
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Proposition
A sequence {x,}, , in a metric space (X, d) converges to p € X if and only if there exists a sequence
{an};, of real numbers such that

d(xp,p) <a, forallneN, and lim a, = 0.
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Proposition
Let {xn},", be a sequence in a metric space (X, d).
(@) If {xn},, converges to p € X, then every subsequence {xy},. , converges to p.

(ii) If for some K € N the K-tail {x,}" | converges to p € X, then {x,}, | converges to p.

Proofs: Exercises.
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Example: Take C([a, b], R) be the metric space of continuous functions where
d(f,g) = sup |f(x) —g(x)| (uniform norm).

x€la,b]
Convergence is identical to uniform convergence (see chapter 6).

That is, {f,} ., converges uniformly if and only if it converges in the metric space sense.

Remark: No metric on the set of functions f: [a,b] — R gives pointwise convergence.
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= {Xpi}_, converges to y.
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Now suppose {x,k},,_, converges to yy forevery k=1,2,...,n.

Given e > 0, pick M such thatVm > MandVk=1,...,n, |yk - xm,k| < €/yh.

n n € 2 n &2
d(yrxm)ZJZ(yk_xm,k)z < JZ(%) J - =e€.
k=1

k=1 k=1

= {xn}_, converges toy = (y1,Y2,...,Yn) € R",

Example: In the set of complex numbers C, z = x + iy,
{zn};2q = {xn +iyu}; | converges toz = x + iy

S
{xn}};, converges to x and {y,},’ , converges to y.
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Suppose {x,},’, in X converges to p € E°.
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Exercise: Let (X, d) be a metric space where d is the discrete metric. Suppose {x,},’  isa
convergent sequence in X. Show that there exists a K € N such that for all n > K, we have
Xy = XK.



Exercise: Let (X, d) be a metric space where d is the discrete metric. Suppose {x,},’  isa
convergent sequence in X. Show that there exists a K € N such that for all n > K, we have
Xy = XK.

A set S C X is said to be dense in X if X C S or in other words if for every p € X, there exists
a sequence {x,}, in S that converges to p.



Exercise: Let (X, d) be a metric space where d is the discrete metric. Suppose {x,},’  isa
convergent sequence in X. Show that there exists a K € N such that for all n > K, we have
Xy = XK.

A set S C X is said to be dense in X if X C S or in other words if for every p € X, there exists
a sequence {x,}, in S that converges to p.

Exercise: Prove that R” contains a countable dense subset.



Exercise: Let (X, d) be a metric space where d is the discrete metric. Suppose {x,},’  isa
convergent sequence in X. Show that there exists a K € N such that for all n > K, we have
Xy = XK.

A set S C X is said to be dense in X if X C S or in other words if for every p € X, there exists
a sequence {x,}, in S that converges to p.

Exercise: Prove that R” contains a countable dense subset.

Exercise: Let (X, d) be a metric space and {x,},; a sequence in X. Prove that {x,} ",
converges to p € X if and only if every subsequence of {x,},, has a subsequence that
converges to p.



