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Theorem (1st form of the Fundamental Theorem of Calculus)
Let F : [a, b] → ℝ be continuous, differentiable on (a, b).

Let f ∈ ℛ[a, b] be such that f (x) = F′(x)
for x ∈ (a, b). Then ∫ b

a
f = F(b) − F(a).

Proof: Let P = {x0 , x1 , . . . , xn} be a partition of [a, b].
By MVT, ∀ i find ci ∈ (xi−1 , xi) s.t. f (ci)Δxi = F′(ci)(xi − xi−1) = F(xi) − F(xi−1).

area = 5 (28)ΔG8
= �(G8) − �(G8−1)

area = 5 (28−1)ΔG8−1

= �(G8−1) − �(G8−2)

area = 5 (28+1)ΔG8+1

= �(G8+1) − �(G8)

G8−2 G8−1 G8 G8+1

5 (28−1)
5 (28)

5 (28+1)

28−1 28 28+1

ΔG8−1 ΔG8 ΔG8+1

H = 5 (G) = �′(G)

The area of all three shaded rectangles is F(xi+1) − F(xi−2).
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Using the notation from the definition of the integral, mi ≤ f (ci) ≤ Mi ∀i.

⇒ miΔxi ≤ F(xi) − F(xi−1) ≤ MiΔxi ∀i

⇒
n∑

i=1
miΔxi ≤

n∑
i=1

(
F(xi) − F(xi−1)

) ≤ n∑
i=1

MiΔxi.

⇒ L(P, f ) ≤ F(b) − F(a) ≤ U(P, f ).

⇒
∫ b

a
f ≤ F(b) − F(a) ≤

∫ b

a
f .

f is Riemann integrable ⇒
∫ b

a
f =

∫ b

a
f ≤ F(b) − F(a) ≤

∫ b

a
f =

∫ b

a
f .

⇒
∫ b

a
f = F(b) − F(a). □
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Example: To compute ∫ 1

0
x2 dx,

notice x2 is the derivative of x3

3 .
The fundamental theorem says ∫ 1

0
x2 dx =

13

3 − 03

3 =
1
3 .
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Theorem (2nd form of the Fundamental Theorem of Calculus)
Let f : [a, b] → ℝ be a Riemann integrable function.

Define

F(x) B
∫ x

a
f .

First, F is continuous on [a, b]. Second, if f is continuous at c ∈ [a, b], then F is differentiable at c
and F′(c) = f (c).

Proof: f is bounded ⇒ ∃ M > 0 s.t. |f (x)| ≤ M for all x ∈ [a, b].

If x, y ∈ [a, b] with x > y, |F(x) − F(y)| =
����∫ x

a
f −

∫ y

a
f
���� = ����∫ x

y
f
���� ≤ M |x − y|.

Same holds if x < y.

So F is Lipschitz, thus continuous.
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Now suppose f is continuous at c.

Fix 𝜖 > 0. Find 𝛿 > 0 s.t. for x ∈ [a, b], |x − c| < 𝛿, we have |f (x) − f (c)| < 𝜖.
For such x, f (c) − 𝜖 < f (x) < f (c) + 𝜖.

⇒ if x > c, then
(
f (c) − 𝜖

)(x − c) ≤
∫ x

c
f ≤ (

f (c) + 𝜖
)(x − c).

If c > x, the inequalities reverse.

⇒ if x ≠ c, f (c) − 𝜖 ≤
∫ x

c f
x − c

≤ f (c) + 𝜖.

F(x) − F(c)
x − c

=

∫ x
a f −

∫ c
a f

x − c
=

∫ x
c f

x − c

⇒
����F(x) − F(c)

x − c
− f (c)

���� ≤ 𝜖.

The result follows. □
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Remark: If f is continuous on [a, b],

then it is Riemann integrable, F is differentiable on all
of [a, b], and F′(x) = f (x) for all x ∈ [a, b].
Remark: 2nd form of FTC still holds if for d ∈ [a, b], we define

F(x) B
∫ x

d
f .

Any point can be the base point. Proof: Exercise.

Example: Define f (x) B −1 if x < 0, and f (x) B 1 if x ≥ 0.
Let F(x) B

∫ x
0 f . Not hard to see that F(x) = |x|.

f is discontinuous at 0 and F is not differentiable at 0.

The converse in the theorem does not hold.
Let g(x) B 0 if x ≠ 0, and g(0) B 1.
Let G(x) B

∫ x
0 g. Then G(x) = 0 for all x.

g is discontinuous at 0, but G′(0) exists and equals 0.
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g is discontinuous at 0, but G′(0) exists and equals 0.
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Remark on calculus: What is “closed form”?

Natural logarithm is just defined as

ln x B
∫ x

1

1
s

ds.

So is writing
∫ b

a
1
x dx = ln b − ln a writing things in closed form?

Another common function defined by an integral

erf(x) B 2√
𝜋

∫ x

0
e−s2 ds.

etc.
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Theorem (Change of variables or u-substitution)
Let g : [a, b] → ℝ be continuously differentiable,

f : [c, d] → ℝ continuous, and suppose
g
([a, b]) ⊂ [c, d]. Then ∫ b

a
f
(
g(x)) g′(x) dx =

∫ g(b)

g(a)
f (s) ds.

Proof: g, g′, and f are continuous ⇒ f
(
g(x)) g′(x) is continuous on [a, b],

thus Riemann integrable. Also, f integrable on every subinterval of [c, d].
Define F : [c, d] → ℝ by F(y) B

∫ y
g(a) f (s) ds.

By 2nd form of FTC, F is differentiable and F′(y) = f (y).
Chain rule ⇒ (

F ◦ g
)′(x) = F′ (g(x))g′(x) = f

(
g(x))g′(x).

F
(
g(a)) = 0 and the 1st form of FTC implies∫ g(b)

g(a)
f (s) ds = F

(
g(b)) = F

(
g(b)) − F

(
g(a))

=
∫ b

a

(
F ◦ g

)′(x) dx =
∫ b

a
f
(
g(x))g′(x) dx. □
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Example: The derivative of sin(x) is cos(x).

Using g(x) B x2,∫ √
𝜋

0
x cos(x2) dx =

∫ 𝜋

0

cos(s)
2 ds = 1

2

∫ 𝜋

0
cos(s) ds = sin(𝜋) − sin(0)

2 = 0.

Example: Consider
∫ 1

−1

ln |x|
x

dx.

Tempting to take g(x) B ln |x|. Compute g′(x) = 1/x and try to write∫ 1

−1

ln |x|
x

dx =
∫ g(1)

g(−1)
s ds =

∫ 0

0
s ds = 0.XXXXXXXXXX

This is incorrect!

1) ln|x|
x is not continuous on [−1, 1].

2) ln|x|
x is not even Riemann integrable on [−1, 1] (it is unbounded).∫ 1

−1
ln|x|

x dx simply does not make sense!

3) g is not continuous on [−1, 1], let alone continuously differentiable.
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Exercise: Suppose F : [a, b] → ℝ is continuous and differentiable on [a, b] \ S, where S is a
finite set.

Suppose there exists an f ∈ ℛ[a, b] such that f (x) = F′(x) for x ∈ [a, b] \ S. Show
that

∫ b
a f = F(b) − F(a).

Exercise: Let f : [a, b] → ℝ be continuous and 𝜖 > 0 such that a + 𝜖 < b − 𝜖. For
x ∈ [a + 𝜖, b − 𝜖], define

g(x) B 1
2𝜖

∫ x+𝜖

x−𝜖
f .

a) Show that g is differentiable and find the derivative.
b) Let f be differentiable and fix x ∈ (a, b) (let 𝜖 be small enough). What happens to g′(x)

as 𝜖 gets smaller?
c) Find g for f (x) B |x|, 𝜖 = 1 (you can assume [a, b] is large enough).
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