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Definition
Let I be an interval, let f : I → ℝ be a function, and let c ∈ I.

If the limit

L B lim
x→c

f (x) − f (c)
x − c

exists,

then f is differentiable at c, L is the derivative of f at c, and write f ′(c) B L.

If f is differentiable at all c ∈ I, say f is differentiable, and obtain a function f ′ : I → ℝ.

Other notation:
df
dx

or d
dx

(
f (x)

)
.

The expression
f (x) − f (c)

x − c
is called the difference quotient.

Remark: We allow I to be a closed interval, and we allow c to be an endpoint of I.
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The graphical interpretation of the derivative:

2 G

slope = 5 (G)− 5 (2)
G−2

2

slope = 5 ′(2)

f (x) − f (c)
x − c

is the slope of the secant line through
(
c, f (c)) and

(
x, f (x)) .

f ′(c) is the limit of these slopes as x → c.
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Example: Let f : ℝ → ℝ be f (x) B x2 and c ∈ ℝ.

If x ≠ c, then

x2 − c2

x − c
=

(x + c)(x − c)
x − c

= (x + c).

Therefore,

f ′(c) = lim
x→c

x2 − c2

x − c
= lim

x→c
(x + c) = 2c.

Example: Let f (x) B ax + b for a, b ∈ ℝ. Let c ∈ ℝ. For x ≠ c,

f (x) − f (c)
x − c

=
a(x − c)

x − c
= a.

Therefore,

f ′(c) = lim
x→c

f (x) − f (c)
x − c

= lim
x→c

a = a.

Remark: Every differentiable f “infinitesimally” behaves like the affine function ax + b.
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Example: f (x) B √
x is differentiable for x > 0.

Proof: Fix c > 0 and take x ≠ c, x > 0.
√

x − √
c

x − c
=

√
x − √

c
(√x − √

c)(√x + √
c) =

1√
x + √

c
.

Therefore,

f ′(c) = lim
x→c

√
x − √

c
x − c

= lim
x→c

1√
x + √

c
=

1
2
√

c
. □

Example: f (x) B |x| is not differentiable at 0.
Proof: When x > 0,

|x| − |0|
x − 0 =

x − 0
x − 0 = 1.

When x < 0,
|x| − |0|
x − 0 =

−x − 0
x − 0 = −1.

So the limit x → 0 does not exist. □
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A continuous function exists which is not differentiable at any point (Weierstrass).

However,

Proposition
Let f : I → ℝ be differentiable at c ∈ I, then it is continuous at c.

Proof:
lim
x→c

f (x) − f (c)
x − c

= f ′(c) and lim
x→c

(x − c) = 0.

f (x) − f (c) =
(
f (x) − f (c)

x − c

)
(x − c).

⇒ limit of f (x) − f (c) as x → c exists and

lim
x→c

(
f (x) − f (c)) = (

lim
x→c

f (x) − f (c)
x − c

) (
lim
x→c

(x − c)
)
= f ′(c) · 0 = 0.

⇒ lim
x→c

f (x) = f (c) ⇒ f is continuous at c. □
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Proposition (Linearity)
Let I be an interval, let f : I → ℝ and g : I → ℝ be differentiable at c ∈ I, and 𝛼 ∈ ℝ.

(i) Define h : I → ℝ by h(x) B 𝛼f (x). Then h is differentiable at c and h′(c) = 𝛼f ′(c).
(ii) Define h : I → ℝ by h(x) B f (x) + g(x). Then h is differentiable at c and h′(c) = f ′(c) + g′(c).

Proof: (i) For x ∈ I, x ≠ c, h(x) − h(c)
x − c

=
𝛼f (x) − 𝛼f (c)

x − c
= 𝛼

f (x) − f (c)
x − c

.

The limit as x → c of the RHS exists and lim
x→c

h(x) − h(c)
x − c

= 𝛼 lim
x→c

f (x) − f (c)
x − c

.

(ii) For x ∈ I, x ≠ c,

h(x) − h(c)
x − c

=

(
f (x) + g(x)) − (

f (c) + g(c))
x − c

=
f (x) − f (c)

x − c
+ g(x) − g(c)

x − c
.

The limit as x → c of RHS exists and

lim
x→c

h(x) − h(c)
x − c

= lim
x→c

f (x) − f (c)
x − c

+ lim
x→c

g(x) − g(c)
x − c

. □
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Proposition (Product rule / Leibniz rule)
Let I be an interval, let f : I → ℝ and g : I → ℝ be functions differentiable at c. If h : I → ℝ is
defined by h(x) B f (x)g(x),

then h is differentiable at c and

h′(c) = f (c)g′(c) + f ′(c)g(c).
Proof: Exercise. Hint: f (x)g(x) − f (c)g(c) = f (x)(g(x) − g(c)) + (

f (x) − f (c))g(c)
or Δ(f · g) = f · Δg + Δf · g.

f (c)g(c)

g(x)
g(c) (f(x)−

f(c) )g(c)
f (x)(g(x) − g(c))

f (x)f (c)0
0
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Proposition (Quotient rule)
Let I be an interval, let f : I → ℝ and g : I → ℝ be differentiable at c and g(x) ≠ 0 for all x ∈ I. If
h : I → ℝ is defined by h(x) B f (x)

g(x) ,

then h is differentiable at c and

h′(c) = f ′(c)g(c) − f (c)g′(c)(
g(c))2 .

Proof: Exercise.



9 / 12

Proposition (Quotient rule)
Let I be an interval, let f : I → ℝ and g : I → ℝ be differentiable at c and g(x) ≠ 0 for all x ∈ I. If
h : I → ℝ is defined by h(x) B f (x)

g(x) , then h is differentiable at c and

h′(c) = f ′(c)g(c) − f (c)g′(c)(
g(c))2 .

Proof: Exercise.



9 / 12

Proposition (Quotient rule)
Let I be an interval, let f : I → ℝ and g : I → ℝ be differentiable at c and g(x) ≠ 0 for all x ∈ I. If
h : I → ℝ is defined by h(x) B f (x)

g(x) , then h is differentiable at c and

h′(c) = f ′(c)g(c) − f (c)g′(c)(
g(c))2 .

Proof: Exercise.



10 / 12

Proposition (Chain rule)
Let I1 , I2 be intervals, let g : I1 → I2 be differentiable at c ∈ I1, and f : I2 → ℝ be differentiable at
g(c).

If h : I1 → ℝ is defined by h(x) B (f ◦ g)(x) = f
(
g(x)) , then h is differentiable at c and

h′(c) = f ′
(
g(c))g′(c).

Proof: Let d B g(c).
Define u : I2 → ℝ and v : I1 → ℝ by

u(y) B
{ f (y)−f (d)

y−d if y ≠ d,
f ′(d) if y = d,

v(x) B
{

g(x)−g(c)
x−c if x ≠ c,

g′(c) if x = c.

f differentiable at d = g(c) ⇒ u is continuous at d.
g differentiable at c ⇒ v is continuous at c.

f (y) − f (d) = u(y)(y − d) and g(x) − g(c) = v(x)(x − c) ∀x, y.

⇒ h(x) − h(c) = f
(
g(x)) − f

(
g(c)) = u

(
g(x)) (g(x) − g(c)) = u

(
g(x)) (v(x)(x − c)) .
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If x ≠ c, then h(x) − h(c)
x − c

= u
(
g(x))v(x).

u is continuous at d ⇒ lim
y→d

u(y) = f ′(d) = f ′
(
g(c)) .

v is continuous at c ⇒ lim
x→c

v(x) = g′(c).
g is continuous at c ⇒ lim

x→c
g(x) = g(c).

⇒ lim
x→c

u
(
g(x))v(x) exists and equals f ′

(
g(c))g′(c).

⇒ h is differentiable at c and h′(c) = f ′
(
g(c))g′(c). □
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Exercise: Prove the following simple version of L’Hôpital’s rule:

Suppose f : (a, b) → ℝ and g : (a, b) → ℝ are differentiable functions whose derivatives f ′
and g′ are continuous functions. Suppose that at c ∈ (a, b), f (c) = 0, g(c) = 0, g′(x) ≠ 0 for all
x ∈ (a, b), and g(x) ≠ 0 whenever x ≠ c.

Note that the limit of f ′(x)/g′(x) as x goes to c exists.

Show that
lim
x→c

f (x)
g(x) = lim

x→c

f ′(x)
g′(x) .
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