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Definition
LetSCcR,ceS. Wesayf: S — R is continuous at c if for every € > 0 there is a 6 > 0 such

that whenever x € S and |x — ¢| < 8, we have |[f(x) — f(c)| < €.
When f: S — R is continuous at all ¢ € S, we say f is a continuous function.

e

Note: 6 depends on both € and ¢; no need to pick the same 6 forall c € S.
If f is continuous for all ¢ € A, we say f is continuous on A C S.

Remark: If f is continuous on A, then f|4 is continuous (exercise), but the converse does
not hold (we'll give an example shortly).
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Example: f: (0, 0) — R defined by f(x) := 1/x is continuous.

Proof: Fix c € (0, ).
Let {x,}, , be a sequence in (0, co) such that lim x, = c.
- n—oo

Then

1 1 . 1 .
f@ = ¢ limx, nh—I}(;loE B nh_rﬂof(x”)'
n—00

= f is continuous at c.

As f is continuous at all ¢ € (0, o), f is continuous.
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Proposition
Letf: S —» Rand g: S — R be functions continuous at ¢ € S.

7/15



Proposition
Letf: S —» Rand g: S — R be functions continuous at ¢ € S.
(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.




Proposition
Letf: S — Rand g: S — R be functions continuous at c € S.

(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.
(i) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.




Proposition
Letf: S — Rand g: S — R be functions continuous at c € S.

(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.
(i) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.
(iii) The function h: S — R defined by h(x) := f(x)g(x) is continuous at c.




Proposition
Letf: S — Rand g: S — R be functions continuous at c € S.
(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.
(i) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.
(iii) The function h: S — R defined by h(x) := f(x)g(x) is continuous at c.
(iv) Ifg(x) # 0 for all x € S, the function h: S — R defined by h(x) = f ( ) is continuous at c.




Proposition
Letf: S —» Rand g: S — R be functions continuous at ¢ € S.
(i) The function h: S — R defined by h(x) = f(x) + g(x) is continuous at c.
(i) The function h: S — R defined by h(x) := f(x) — g(x) is continuous at c.
(iii) The function h: S — R defined by h(x) := f(x)g(x) is continuous at c.
(iv) Ifg(x) # 0 for all x € S, the function h: S — R defined by h(x) = f ( ) is continuous at c.

Proof: Exercise.
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Example: (sin(l/x))2 is a continuous function on (0, o).

Proof: 1/x is continuous on (0, o) and sin(x) is continuous on (0, co).
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If f is not continuous at ¢, say f is discontinuous at c (has a discontinuity at c).

Proposition
Consider f: S — Ruand c € S. Suppose 3 a sequence {x,} | in S where lim x,, = c such that
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{f (xn)}:lo:1 does not converge to f(c).
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Q: Does there exist a function continuous at all irrational numbers, but discontinuous at
all rational numbers?

A: Yes.
Example: (Thomae function or popcorn function).

Definef: (0,1) — R as

o) = {1/k if x = m/k, where m, k € N and m and k have no common divisors,

0  if xis irrational.

Claim: f is continuous at every irrational number and discontinuous at every rational number.
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Another thing:
Let A := {0} and B := R \ {0}.

gla is continuous, but g is not continuous on A.

¢|p is continuous, and g is continuous on B.



