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A common method of proof for statements over ℕ is induction.

Order ℕ = {1, 2, 3, . . .} naturally:

1 < 2 < 3 < 4 < · · ·

S ⊂ ℕ has a least element when ∃ x ∈ S such that ∀ y ∈ S, we have x ≤ y.

Well ordering property of ℕ
Every nonempty subset of ℕ has a least element.

We take this property as an axiom.
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Theorem (Principle of induction)
Let P(n) be a statement depending on a natural number n.

Suppose that
(i) (basis statement) P(1) is true.

(ii) (induction step or induction hypothesis) If P(n) is true, then P(n + 1) is true.
Then P(n) is true for all n ∈ ℕ.

Proof: Let S B {n ∈ ℕ : P(n) is not true }.
Suppose for contradiction S ≠ ∅.

S has a least element m ∈ S by the well ordering property.

1 ∉ S by hypothesis ⇒ m > 1, and m − 1 ∈ ℕ.

m is the least element of S ⇒ P(m − 1) is true.

The induction step says P(m − 1 + 1) = P(m) is true, so m ∉ S.

So m ∈ S and m ∉ S, a contradiction.

So S = ∅ and P(n) must be true for all n ∈ ℕ. □.

Remark: It may be convenient to start at a number different than 1.
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Example: Claim: For all n ∈ ℕ, 2n−1 ≤ n! (Recall n! = 1 · 2 · 3 · · · n)

Proof: Let P(n) be the statement “2n−1 ≤ n! is true.”
P(1) is true by plugging in n = 1.
Suppose P(n) is true: 2n−1 ≤ n! holds.
Multiply both sides by 2 to obtain: 2n ≤ 2(n!).
As 2 ≤ (n + 1) when n ∈ ℕ ⇒ 2(n!) ≤ (n + 1)(n!) = (n + 1)!
That is, 2n ≤ 2(n!) ≤ (n + 1)! and hence P(n + 1) is true.
By the principle of induction, P(n) is true for all n ∈ ℕ.

Example: Claim: For all c ≠ 1, we have 1 + c + c2 + · · · + cn = 1−cn+1

1−c

Proof: Easy to check for n = 1.
Suppose it is true for n. Then

1 + c + c2 + · · · + cn + cn+1 = (1 + c + c2 + · · · + cn) + cn+1

= 1−cn+1

1−c + cn+1 =
1−cn+1+(1−c)cn+1

1−c = 1−cn+2

1−c .
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Informally, for sets A and B, a set-theoretic function or mapping or map

f : A → B

is an object that to each x ∈ A assigns a unique y ∈ B.

Example: Define f : S → T taking S B {0, 1, 2} to T B {0, 2}, by
f (0) B 2, f (1) B 2, and f (2) B 0.

A function f : A → B is a black box, taking elements of A to elements of B.

f may be given by a formula, but f is not a formula, it is a table of values.

Some functions have several different formulas giving the same function.

Many functions have no formula at all.
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Definition
Let A and B be sets. The Cartesian product is the set of tuples defined as

A × B B
{
(x, y) : x ∈ A, y ∈ B

}
.

Example: {a, b} × {c, d} =
{
(a, c), (a, d), (b, c), (b, d)

}
.

Example: [0, 1] × [0, 1] is the subset of the plane bounded by a square with vertices (0, 0),
(0, 1), (1, 0), and (1, 1).

Notation: A2 B A × A. E.g., ℝ2 = ℝ ×ℝ is the plane.

Definition
A function f : A → B is a subset f of A × B such that for each x ∈ A, there exists a unique
y ∈ B for which (x, y) ∈ f . We write f (x) = y. Sometimes the set f is called the graph of the
function rather than the function itself.

A is called the domain of f and B is called the codomain of f .
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Examples: Functions from calculus taking real numbers to real numbers.

“derivative” or “Laplace transform” is a function that takes functions to functions.

Determinant from linear algebra is a function that takes matrices to numbers.

The “number of classrooms” is a function that takes the set of buildings on campus to the
integers.



7 / 11

Examples: Functions from calculus taking real numbers to real numbers.

“derivative” or “Laplace transform” is a function that takes functions to functions.

Determinant from linear algebra is a function that takes matrices to numbers.

The “number of classrooms” is a function that takes the set of buildings on campus to the
integers.



7 / 11

Examples: Functions from calculus taking real numbers to real numbers.

“derivative” or “Laplace transform” is a function that takes functions to functions.

Determinant from linear algebra is a function that takes matrices to numbers.

The “number of classrooms” is a function that takes the set of buildings on campus to the
integers.



7 / 11

Examples: Functions from calculus taking real numbers to real numbers.

“derivative” or “Laplace transform” is a function that takes functions to functions.

Determinant from linear algebra is a function that takes matrices to numbers.

The “number of classrooms” is a function that takes the set of buildings on campus to the
integers.



8 / 11

Definition
Consider f : A → B and subsets C ⊂ A and D ⊂ B.

The image (or direct image) is f (C) B
{
f (x) ∈ B : x ∈ C

}
.

The set f (A) is called the range of f .
The inverse image is f−1(D) B

{
x ∈ A : f (x) ∈ D

}
.

Example: Define f : {1, 2, 3, 4} → {a, b, c, d} by
f (1) B b, f (2) B d, f (3) B c, f (4) B b

a1

2

3

4

b

c

d

f f
(
{1, 2, 3, 4}

)
= {b, c, d}

f
(
{1, 2, 4}

)
= {b, d}

f
(
{1}

)
= {b}

f−1 ({a, b, c}) = {1, 3, 4}
f−1 ({a}) = ∅
f−1 ({b}) = {1, 4}
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Proposition
Consider f : A → B. Let C,D ⊂ B.

Then

f−1(C ∪ D) = f−1(C) ∪ f−1(D), f−1(C ∩ D) = f−1(C) ∩ f−1(D),

f−1(Cc) =
(
f−1(C)

)c (that is f−1(B \ C) = A \ f−1(C)).

Proof: Start with the union.
If x ∈ f−1(C ∪ D), then f (x) ∈ C or f (x) ∈ D.
⇒ f−1(C ∪ D) ⊂ f−1(C) ∪ f−1(D).
Conversely if x ∈ f−1(C), then x ∈ f−1(C ∪ D). Similarly for x ∈ f−1(D).
⇒ f−1(C ∪ D) ⊃ f−1(C) ∪ f−1(D), and we have equality.

The rest of the proof is left as an exercise. □

Proposition
Consider f : A → B. Let C,D ⊂ A. Then
f (C ∪ D) = f (C) ∪ f (D), f (C ∩ D) ⊂ f (C) ∩ f (D).

Proof is an exercise
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Definition
f : A → B is injective, one-to-one, or an injection if f (x1) = f (x2) ⇒ x1 = x2.

If f (A) = B, then f is surjective, onto, or a surjection.

If f is both surjective and injective, then f is bĳective or a bĳection.

If f is a bĳection, then ∀y ∈ B, f−1({y}) is a unique element of A, so by slight abuse of
notation consider the inverse function f−1 : B → A and write f−1(y).

Example: f : ℝ → ℝ given by f (x) B x3 is a bĳection.
The inverse function is defined by f−1(x) = 3√x.

Example: f : ℝ → ℝ given by f (x) B x2 is neither an injection as f (−1) = 1 and f (1) = 1, nor
a surjection as there is no x such that f (x) = −1.

Example: f : ℝ → [0,∞) (the non-negative real numbers) given by f (x) B x2 is not an
injection (same reason as above), but it is a surjection.
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Definition
The composition of f : A → B and g : B → C is the function g ◦ f : A → C

(g ◦ f )(x) B g
(
f (x)

)
.

E.g., if f : ℝ → ℝ is f (x) B x3 and g : ℝ → ℝ is g(y) = sin(y), then (g ◦ f )(x) = sin(x3).

Easy exercise:
a composition of one-to-one maps is one-to-one,
a composition of onto maps is onto.
So a composition of bĳections is a bĳection.
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