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This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0
United States License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

You can use, print, duplicate, share these notes as much as you want. You can base your own notes
on these and reuse parts if you keep the license the same. If you plan to use these commercially (sell
them for more than just duplicating cost), then you need to contact me and we will work something
out. If you are printing a course pack for your students, then it is fine if the duplication service is
charging a fee for printing and selling the printed copy. I consider that duplicating cost.

During the writing of these notes, the author was in part supported by NSF grant DMS-0900885.

See http://www.jirka.org/scv-mini/ for more information (including contact information).

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://www.jirka.org/scv-mini/


Contents

Introduction 4
0.1 Notes about these notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Complex Analytic Varieties 5
1.1 Holomorphic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Weierstrass preparation and division theorems . . . . . . . . . . . . . . . . . . . . 9
1.3 The ring of germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 CR Geometry 20
2.1 Proper maps and the inequivalence of ball and polydisc . . . . . . . . . . . . . . . 20
2.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Hermitian forms for polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Complex varieties in real algebraic hypersurfaces . . . . . . . . . . . . . . . . . . 26
2.5 Hermitian forms for real-analytic functions . . . . . . . . . . . . . . . . . . . . . 30
2.6 Complex varieties in real-analytic hypersurfaces . . . . . . . . . . . . . . . . . . . 33

3 Proper Maps of Balls 37
3.1 Proper maps of balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Tensors and polynomial proper maps . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Monomial proper maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Projective setting and hyperquadrics . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Hermitian forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Degree 2 maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Monomial degree estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Further Reading 58

Bibliography 58

Index 61

3



Introduction

0.1 Notes about these notes
These were the lecture notes for a graduate Math 595 half-semester mini-course at University of
Illinois at Urbana-Champaign on Several Complex Variables given in Spring 2010. Prerequisites
are one variable complex analysis, linear algebra, real analysis and basic functional analysis. The
notes are not meant as a polished finished product. I hope they are usable as a quick and dirty
introduction to the subject. Due to time constraints much is missing. For example, the Levi form,
nor pseudoconvexity is not mentioned. The focus is on geometry using Hermitian forms rather than
analysis.

The notes are also not completely self contained. There are many proofs in the beginning
sections about complex geometry that are left out due to lack of time in the course. Some material
from the course did not make it into these notes and vice-versa.

There are most likely many typos and minor errors throughout (hopefully no major ones), so
be wary. Do email me any errors you find so that they get fixed. See http://www.jirka.org/
scv-mini/ for more info.

The structure of the course is the following.

1. Complex Analytic Varieties. This chapter covers the very basics of complex geometry and
holomorphic functions of several variables.

2. CR Geometry. We solve some basic problems in CR geometry using Hermitian forms. The
chapter begins with the inequivalence of the ball and polydisc in C2 for motivation.

3. Proper Maps of Balls. A very natural place where Hermitian forms arise are proper maps of
balls and hyperquadrics. We cover this topic in this chapter.

I would like to acknowledge my SCV minicourse class at UIUC for any comments during the
class, and especially Dusty Grundmeier. I would also like to acknowledge Montgomery Taylor and
Jianou Zhang for reading through and finding errors.
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Chapter 1

Complex Analytic Varieties

1.1 Holomorphic functions

Let Cn denote the complex Euclidean space. We denote by z = (z1, . . . ,zn) the coordinates of Cn.
Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) denote the coordinates in Rn. We can identify Cn with
Rn×Rn = R2n by letting z = x+ iy. Just as in one complex variable we write z̄ = x− iy. We call z
the holomorphic coordinates and z̄ the antiholomorphic coordinates.

Definition 1.1.1. For ρ = (ρ1, . . . ,ρn) where ρ j > 0 and a ∈ Cn define a polydisc

∆ρ(a)
def
= {z ∈ Cn :

∣∣z j−a j
∣∣< ρ j}. (1.1)

We call a the center and ρ the polyradius or simply the radius of the polydisc ∆ρ(a).

At this point it will be useful to recall the Euclidean inner product

〈z,w〉= z · w̄ = z1w̄1 + · · ·+ znw̄n. (1.2)

Using the inner product we obtain the standard Euclidean norm

‖z‖ def
=
√
〈z,z〉=

√
|z1|2 + · · ·+ |zn|2. (1.3)

As in complex analysis in one variable we define the formal operators

∂

∂ z j

def
=

1
2

(
∂

∂x j
− i

∂

∂y j

)
, (1.4)

∂

∂ z̄ j

def
=

1
2

(
∂

∂x j
+ i

∂

∂y j

)
. (1.5)
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6 CHAPTER 1. COMPLEX ANALYTIC VARIETIES

Definition 1.1.2. Let U ⊂ Cn be an open set, and let f : U → C be a continuously differentiable
function. We say that f is holomorphic if it satisfies the Cauchy-Riemann equations

∂ f
∂ z̄ j

= 0 for j = 1, . . . ,n. (1.6)

In other words, f is holomorphic if it is holomorphic in each variable separately as a function of
one variable. Suppose that f is holomorphic in some polydisc ∆ = ∆ρ(a) = ∆1×·· ·×∆n centered
at a, where ∆ j ⊂ C is a disc. Suppose that f is continuous on the closure ∆. We can apply the
Cauchy formula:

f (z) =
1

2πi

∫
∂∆1

f (ζ1,z2, . . . ,zn)

ζ1− z1
dζ1. (1.7)

We apply the formula n−1 more times and write the integral as a single integral. The operation
requires the Fubini theorem, which applies as f is continuous on the closed polydisc. We obtain the
Cauchy integral formula in several variables.

Theorem 1.1.3 (Cauchy integral formula). Let ∆ be a polydisc centered at a ∈ Cn. Suppose that
f : ∆→ C is a continuous function holomorphic in ∆. Write Γ = ∂∆1×·· ·×∂∆n. Then for z ∈ ∆

f (z) =
1

(2πi)n

∫
Γ

f (ζ1,ζ2, . . . ,ζn)

(ζ1− z1)(ζ2− z2) · · ·(ζn− zn)
dζ1∧dζ2∧·· ·∧dζn. (1.8)

We will use the so-called multi-index notation. Let α ∈ Zn be a vector of integers. We write

zα def
= zα1

1 zα2
2 · · ·z

αn
n (1.9)

1
z

def
=

1
z1z2 · · ·zn

(1.10)

dz def
= dz1∧dz2∧·· ·∧dzn (1.11)

|α| def
= α1 +α2 + · · ·+αn (1.12)

α! def
= α1!α2! · · ·αn! (1.13)

In this notation, the Cauchy formula becomes

f (z) =
1

(2πi)n

∫
Γ

f (ζ )
(ζ − z)

dζ . (1.14)

If we differentiate both sides (assuming α ∈ Nn
0, i.e. α j ≥ 0) we obtain

∂ |α|

∂ zα
f (z) =

1
(2πi)n

∫
Γ

α! f (ζ )
(ζ − z)α+1 dζ , (1.15)
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where α + 1 = (α1 + 1, . . . ,αn + 1). Just as in one-variable theory, the formulas imply that f is
infinitely differentiable and furthermore if f j converges to f uniformly on compact subsets, then
∂ |α| f j
∂ zα → ∂ |α| f

∂ zα uniformly on compact subsets.
Let ‖ f‖K denote the supremum norm of f over the set K. Taking absolute values and suprema

we obtain in the same way as in one-variable theory:∣∣∣∣∣∂ |α| f∂ zα
(a)

∣∣∣∣∣≤ α!
ρα
‖ f‖

Γ
. (1.16)

These are the so-called Cauchy estimates.
As in one variable theory, holomorphic functions have a power series expansion.

Theorem 1.1.4. Let ∆ = ∆ρ(a). Suppose that f : ∆→C is continuous and holomorphic on ∆. Then
on ∆, f is equal to a series converging uniformly on compact subsets of ∆:

f (z) = ∑
α

cα(z−a)α . (1.17)

Conversely if f is defined by (1.17) converging uniformly on compact subsets of ∆, then f is
holomorphic on ∆.

Proof. First assume that f is holomorphic. We write the kernel of the Cauchy formula as

1
ζ − z

=
1

ζ −a
1(

1− z−a
ζ−a

) . (1.18)

We expand in a multiple geometric series. We can then integrate termwise to obtain (1.17) where

cα =
1

(2πi)n

∫
Γ

f (ζ )
(ζ − z)α+1 dζ . (1.19)

The details are left to the reader.
The converse follows by applying the Cauchy-Riemann equations to the series termwise.

Theorem 1.1.5 (Identity theorem). Let U ⊂ Cn be a connected open set and let f : U → C be a
holomorphic. Suppose that f |N ≡ 0 for an open subset N ⊂U. Then f ≡ 0.

Proof. Let Z be set where all derivatives of f are zero; then N ⊂ Z. The set Z is closed in U as all
derivatives are continuous. Take an arbitrary a ∈ Z. We find ∆ρ(a)⊂U . If we expand f in a power
series around a. As the coefficients are given by derivatives of f , we see that the power series is
identically zero and hence f is identically zero in ∆ρ(a). Therefore Z is open in U and Z =U .

Of course this also means that if we have two functions f and g such that f = g on a small open
set, then f ≡ g. We also have the maximum principle from one variable theory. We prove this using
a useful technique that can be used for generalizing all sorts of basic results to several variables.
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Theorem 1.1.6 (Maximum principle). Let U ⊂ Cn be a connected open set. Let f : U → C be
holomorphic and suppose that | f (z)| attains a maximum at some a ∈U. Then f ≡ f (a).

Proof. The set E of points z ∈U where f (z) = f (a) is closed. Let b ∈ E. We look at the complex
line L = {b+λv : λ ∈ C,v ∈ Cn}. Now we note that the one variable function λ 7→ f (b+λv) is
holomorphic. If we look at the connected component V of L∩U that contains b, we can apply the
one variable Maximum principle and obtain that f |V ≡ f (b) = f (a). As this is true for all complex
lines through b, we can see that f (z) = f (a) for a small open neighborhood around b. Thus E is
open and therefore E =U .

Definition 1.1.7. Let U ⊂ Cn be an open set. Define O(U) to be the ring of holomorphic functions.

Exercise 1.1.1: Show that O(U) is an integral domain (has no zero divisors) if and only if U is
connected.

For a holomorphic function f we can reorder the series and write

f (z) =
∞

∑
k=0

fk(z−a), (1.20)

where fk is homogeneous polynomial of degree k, that is, the monomials of fk are all of degree k.

Definition 1.1.8. For a ∈ Cn such that f is a holomorphic function defined near a, define

orda f def
= min{k ∈ N0 : fk 6≡ 0}, (1.21)

with the obvious definition that if f ≡ 0, then orda f = ∞. The number orda f is called the order of
vanishing of f at a.

A useful concept for study of local geometry will be that of germs of functions.

Definition 1.1.9. Let p be a point in a topological space X . Let Y be a set and U,V ⊂ X be open
neighborhoods of p. We say that two functions f : U → Y and g : V → Y are equivalent if there
exists a neighborhood Ω of p such that f |Ω = g|Ω.

An equivalence class of functions defined in a neighborhood of p is called a germ of a function.
Usually it is denoted by ( f , p), but we may simply say f when the context is clear.

Germs are particularly useful for analytic functions because of the identity theorem. The set of
germs of complex valued functions always forms a ring. When the functions are holomorphic, the
ring has many nice properties.

Definition 1.1.10. Let p ∈ Cn. Define nOp = Op to be the ring of germs of holomorphic functions
near p.

Exercise 1.1.2: Show that Op is an integral domain (has no zero divisors).
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Exercise 1.1.3: Show that Op is isomorphic to the ring of convergent power series.

Exercise 1.1.4: Show that given a germ ( f , p) of a holomorphic function, we can always pick an
open neighborhood U of p and a representative f : U → C such that any other representative g of
( f , p) will extend to be a holomorphic function on an open set containing U such that g|U ≡ f .

Similarly we also have germs of sets.

Definition 1.1.11. Let p be a point in a topological space X . We say that sets A,B⊂X are equivalent
if there exists a neighborhood N of p such that A∩N = B∩N.

An equivalence class of sets is called a germ of a set at p. Usually it is denoted by (A, p), but
we may simply say A when the context is clear.

The notation (X , p)⊂ (Y, p) is now defined in an obvious manner. So can the operation of union
and intersection of germs be defined.

Exercise 1.1.5: Write down a rigorous definition of subset, union, and intersection of germs. Then
check that what you did is well defined.

It will be on occasion useful to use the implicit and inverse function theorems in the holomorphic
category. Their statements are essentially the same as in the real category except that everything is
holomorphic. For this reason we assign the following exercise.

Exercise 1.1.6: Give a holomorphic version of the implicit and inverse function theorems. You
can use the statements from the real category, you simply need to show that if the function we are
starting with is holomorphic, then the function we end up with is also holomorphic.

Remark 1.1.12. It is sometimes useful to work with z̄ instead of z. A function f such that ∂ f
∂ z = 0 is

said to be antiholomorphic and can be written locally as a power series in z̄. Taking the concept
further, we can have a function be holomorphic in certain variables and antiholomorphic in others.
Such a concept will come up when we talk of polarization in section 2.2.

1.2 Weierstrass preparation and division theorems
We wish to study the zero sets of holomorphic functions. A basic tool in the subject are the so-called
Weierstrass preparation and division theorems.

1.2.1 The preparation theorem
Definition 1.2.1. Let U ⊂ Cn−1 be open. Let z′ ∈ Cn−1 denote the coordinates. Suppose that
p ∈ O(U)[zn] is monic of degree k, that is,

p(z′,zn) = zk
n + ∑

j=0
c j(z′)z j

n. (1.22)

Further suppose that c j(0) = 0 for all j. Then p is called a Weierstrass polynomial of degree k.
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The purpose of this section is to show that every holomorphic function in O(U) is (up to a
unit and a possible small rotation) a Weierstrass polynomial. This will imply that zero sets of
holomorphic functions (varieties) behave a lot like zero sets of polynomials.

Theorem 1.2.2 (Weierstrass preparation theorem). Suppose that f is holomorphic in a domain
U =U ′×∆, where 0 ∈U ′ ⊂ Cn−1 and ∆⊂ C is a disc centered at 0. Suppose that zn 7→ f (0,zn) is
not identically zero on ∆ and vanishes to order k at the origin.

Then there exists a neighborhood V ⊂ Cn of 0, a unique holomorphic function u defined in V ,
u(0) 6= 0, and a unique Weierstrass polynomial p of degree k defined in V such that

f (z′,zn) = u(z′,zn) p(z′,zn). (1.23)

Thus for a fixed z′ we see that the zeros of f coincide with the zeros of a degree m polynomial
whose coefficients depend holomorphically on z′.

In one variable, the theorem is very easy. If f is holomorphic and not identically zero and the
order of vanishing at 0 is k, then f (z) = zkg(z) where g(0) 6= 0.

Proof. There exists a small disc D⊂ C around zero such that f (0,zn) is not zero on D\{0}. By
continuity we can find a small polydisc V =V ′×D such that V ⊂U and f is not zero on V ′×∂D.

The one variable argument principle implies that the number of zeros (with multiplicity) of
zn 7→ f (z′,zn) in D is

1
2πi

∫
∂D

∂ f
∂ zn

(z′,zn)

f (z′,zn)
dzn. (1.24)

The number equals k for all z′ ∈V ′ by continuity. We write the zeros as α1(z′), . . . ,αk(z′) (including
multiplicity). We do not give any particular order to the zeros we simply pick some order for every
z′. In fact the functions α j will not be holomorphic. What we do is write

p(z′,zn) =
k

∏
j=1

(zn−α j(z′)) = zk
n + ck−1(z′)zk−1

n + · · ·+ c0(z′). (1.25)

As for a fixed z′, p is uniquely defined, it is clear that u and p are unique if they exist (that is, if they
are holomorphic functions).

We will prove that c j(z′) are holomorphic. The functions c j are the elementary symmetric
functions of the α j’s. It is a standard (and easy) theorem in algebra that the elementary symmetric
functions are polynomials in the so-called power sum functions in the α j’s.

sm(z′) =
k

∑
j=1

α j(z′)m. (1.26)

Therefore, if we can show that sm are holomorphic, then c j are also holomorphic.
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We use another theorem from one variable theory: If h and g are holomorphic functions on a
disc D, continuous on D, such that g has no zeros on ∂D, and α1, . . . ,αk are the zeros of g in D, then

1
2πi

∫
∂D

h(ζ )
g′(ζ )
g(ζ )

dζ =
k

∑
j=1

h(α j). (1.27)

We use the formula above and obtain that

sm(z′) =
k

∑
j=1

α j(z′)m =
1

2πi

∫
∂D

zm
n

∂ f
∂ zn

(z′,zn)

f (z′,zn)
dzn. (1.28)

We can now simply differentiate under the integral to obtain that sm is holomorphic (justification is
left as an exercise).

The hypotheses of the theorem are not an obstacle. If a holomorphic function f is such that
zn 7→ f (0,zn) vanishes identically, then we can make a small linear change of coordinates L (L can
be a matrix arbitrarily close to the identity) such that f ◦L satisfies the hypotheses of the theorem.

Exercise 1.2.1: Prove the fact above.

Note that the order of vanishing of f at the origin is only a lower bound on the number k in the
theorem. The order of vanishing for a single variable may in fact be larger. You could however
again make a small linear change of coordinates so that k = ord0 f .

We can think of Weierstrass preparation theorem as a generalization of the implicit function
theorem. When k = 1 in the theorem, then we obtain the Weierstrass polynomial zn = c0(z′). That
is, the zero set of f is a graph of a holomorphic function.

Example 1.2.3: A useful example to keep in mind is f (z1,z2) = z2
2− z1. For all z1 except the origin

we have two zeros. For z1 = 0, there is only one zero.

There is an obvious statement of the preparation theorem for germs.

Exercise 1.2.2: State and prove a germ version of the preparation theorem.

1.2.2 The division theorem

Theorem 1.2.4 (Weierstrass division theorem). Suppose that f is holomorphic near the origin, and
suppose that p is a Weierstrass polynomial of degree k in zn. Then there exists a neighborhood N
and unique holomorphic functions q and r defined in N such that r is a polynomial in zn of degree
less than k such that in N we have

f = pq+ r.
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Do note that r need not be a Weierstrass polynomial; it need not be monic nor do the coefficients
need to vanish at the origin. It is simply a polynomial in zn with coefficients that are holomorphic
functions of n−1 variables.

Proof. The uniqueness is left as an exercise. We can assume we are working in a neighborhood
V =V ′×D for some small disc D such that f and p are continuous in V and such that p is not zero
on V ′×∂D and the only zeros of p(0,zn) in D are at the origin. We write

q(z′,zn) =
1

2πi

∫
∂D

f (z′,ζ )
p(z′,ζ )(ζ − zn)

dζ . (1.29)

By the assumptions on D we can see that q is holomorphic in V . Writing f using the Cauchy integral
in the last variable and subtracting pq we obtain

r(z′,zn) = f (z′,zn)− p(z′,zn)q(z′,zn) =
1

2πi

∫
∂D

f (z′,ζ )p(z′,ζ )− f (z′,ζ )p(z′,zn)

p(z′,ζ )(ζ − zn)
dζ . (1.30)

We simply need to show that r is a polynomial in zn of degree less than k. In the expression inside
the integral the numerator is a polynomial of degree k in zn that is divisible by (ζ − zn). We perform
the division and obtain a polynomial of degree k−1. We can then use linearity of the integral to
integrate the polynomial’s coefficients. Each coefficient is a holomorphic function and we are done.
Some coefficients may have integrated to zero, so we can only say that r is a polynomial of degree
k−1 or less.

Exercise 1.2.3: Prove the uniqueness part of the theorem.

1.2.3 Dependence of roots on parameters and the discriminant
Let us prove that the roots change holomorphically as long as they do not come together. Further-
more, the roots come together only on a small set; it is a zero set of a certain holomorphic function
called the discriminant.

Proposition 1.2.5. Suppose f is a holomorphic function in U ′×D⊂ Cn−1×C, such that for each
fixed z′ ∈U ′ the function zn 7→ f (z′,zn) has a unique zero α(z′). Then α is holomorphic in U ′.

Proof. This is a local statement about α so we need only show that α is holomorphic near some
point, which, without loss of generality, is the origin. We apply the preparation theorem and we
have f = up where p is a Weierstrass polynomial in O(V ′)[zn] for some V ′ ⊂U ′. We have

p(z′,zn) =
(
zn−α(z′)

)k
= zk

n− kα(z′)zk−1
n + · · · (1.31)

As the coefficients of p are holomorphic then α is holomorphic.
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Proposition 1.2.6. Suppose that f is holomorphic in U ′×D⊂ Cn−1×C. Let m < ∞ be an integer
such that for each z′ ∈U ′, the function zn 7→ f (z′,zn) has precisely m geometrically distinct zeros.
Then there exist m holomorphic functions (defined on a perhaps smaller V ′ ⊂U ′) α1(z′), . . . ,αm(z′),
m integers k1, . . . ,km and a nonvanishing holomorphic function u such that

f (z′,zn) = u(z′,zn)
m

∏
j=1

(
zn−α j(z′)

)k j .

Exercise 1.2.4: Prove Proposition 1.2.6 by application of Proposition 1.2.5.

Theorem 1.2.7. Suppose that f is holomorphic in U ′×D⊂Cn−1×C for a connected U ′. Suppose
the set f−1(0) has no limit points on U ′×∂D. For each z′ ∈U ′, the function zn 7→ f (z′,zn) has at
most m < ∞ geometrically distinct zeros. There exists a set E such that U ′ \E is connected open
and dense in U ′ such that zn 7→ f (z′,zn) has exactly m zeros for z′ ∈U ′ \E.

Furthermore, for each point z′ ∈U ′ there exists a neighborhood N ⊂U ′ of p and a holomorphic
function ω : N→ C such that {z′ : ω(z′) = 0}= E ∩N.

In particular the set of points where zn 7→ f (z′,zn) has less than m roots is nowhere dense. The
function ω is called the discriminant function and its zero set E is called the discriminant set. For
example for the quadratic equation, ω is the discriminant we learned about in high school.

Proof. Proof omitted.

1.3 The ring of germs
Let us prove some basic properties of the ring of germs of holomorphic functions.

Theorem 1.3.1. Op is Noetherian.

Noetherian means that for any ideal I ⊂Op there exist finitely many elements f1, . . . , fk ∈ I such
that every g ∈ I can be written as g = c1 f1 + · · ·+ ck fk.

Proof. For simplicity we will assume that p is the origin. The proof is by induction on dimension.
That 1O0 is Noetherian is a simple one variable argument that is left as an exercise.

So suppose for induction that n−1O0 is Noetherian. If I = {0} or if I = Op, then the assertion is
obvious. Therefore, we can assume that all elements of I vanish at the origin (otherwise I = O0)
and there exist elements that are not identically zero. Suppose that g is such an element. After
perhaps a linear change of coordinates, we can assume that g is a Weierstrass polynomial in zn by
the preparation theorem.

B the division theorem, every element in f ∈ I is of the form f = gq+ r where r is a polynomial
in zn. We can think of r as an element of n−1O0[zn] and furthermore r ∈ I. The set J = I∩ n−1O0[zn]
is an ideal in the ring n−1O0[zn]. By the Hilbert basis theorem, as n−1O0 is Noetherian, then the
polynomial ring n−1O0[zn] is Noetherian. Thus J has finitely many generators. The generators of J
together with g must generate I as any element in I is gq+ r.
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Exercise 1.3.1: Prove that 1O0 is Noetherian, in fact it is a principal ideal domain (PID).

Theorem 1.3.2. Op is a unique factorization domain (UFD). That is, up to a multiplication by a
unit, every element has a unique factorization into irreducible elements of Op.

Proof. We again assume p is the origin. We induct on the dimension. The one dimensional
statement is left as an exercise. If n−1O0 is a UFD, then n−1O0[zn] is a UFD by the Gauss lemma.

Take f ∈ nOp. After perhaps a linear change of coordinates f = qW where q is a unit in nO0
and W is a Weierstrass polynomial in zn. As n−1O0[zn] is a UFD, then W has a unique factorization
in n−1O0[zn] into W =W1W2 · · ·Wk. So f = qW1W2 · · ·Wk. That Wj are irreducible in nOp is left as
an exercise.

Suppose that f = q̃g1g2 · · ·gm is another factorization. We notice that the preparation theorem
applies to each g j. Therefore write g j = u jW̃j for a unit u j and a Weierstrass polynomial W̃j. We
obtain f = uW̃1W̃2 · · ·W̃m for a unit u. By uniqueness part of the preparation theorem we obtain
W = W̃1W̃2 · · ·W̃m. Conclusion is then obtained by noting that n−1O0[zn] is a UFD.

Exercise 1.3.2: 1Op is a unique factorization domain.

Exercise 1.3.3: Show that if an element is irreducible in n−1O0[zn], then it is irreducible in nO0.

1.4 Varieties

1.4.1 Definition
We can now define a variety (or a subvariety). If f : U → C is a function, let Z f = f−1(0) denote
the zero set.

Definition 1.4.1. Let U ⊂ Cn be an open set. Let X ⊂U be a set such that near each point p ∈U ,
there exists a neighborhood N of p and a family of holomorphic functions F defined on N such that

N∩X = {z ∈ N : f (z) = 0 for all f ∈F}=
⋂

f∈F
Z f . (1.32)

Then X is called a (complex) variety or a (complex) subvariety of U .

It is useful to note what happens when we replace “near each point p ∈U” with “near each
point p ∈ X .” We get a slightly different concept, and X is said to be a local variety. A local variety
X is a subvariety of some neighborhood of X , but it is not necessarily closed in U . As a simple
example, the set X = {z ∈C2 : z1 = 0, |z2|< 1} is a local variety, but not a subvariety of C2. On the
other hand X is a subvariety of the unit ball {z : ‖z‖< 1}.

The family F of functions can always be taken to be finite. To see this fact we first need a little
bit of algebra. We will work with germs of functions. When ( f , p) is a germ of a function it makes
sense to talk about the germ (Z f , p). We can simply take the zero set of some representative and
look at its germ at p.
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Exercise 1.4.1: Suppose that f and g are two representatives of a germ ( f , p) show that the germs
(Z f , p) and (Zg, p) are the same.

Let
Ip(X)

def
= {( f , p) ∈ Op : (X , p)⊂ (Z f , p)}. (1.33)

That is, Ip(X) is the set of germs of holomorphic functions vanishing on X near p. It is not hard to
show that Ip(X) is an ideal.

As Op is Noetherian, Ip(X) must be finitely generated. Therefore, near each point p only finitely
many functions are necessary to define a variety.

1.4.2 Regular points and dimension

Let us define the regular points of a variety and their dimension. If f : U ′⊂Ck→Cn−k is a mapping,
then by a graph of f we mean the set in U ′×Cn−k ⊂ Ck×Cn−k defined by

{(z,w) ∈U ′×Cn−k : w = f (z)}. (1.34)

Definition 1.4.2. Let X ⊂U ⊂ Cn be a (complex) subvariety of U . Let p ∈ X be a point. If there
exists a (complex) linear change of coordinates such that near p the set X can be written as a graph
of a holomorphic mapping f : U ′ ⊂ Ck → Cn−k (for some k ∈ N0), then p is a regular point (or
simple point) of X and the dimension of X at p is k or dimp X = k.

The set of regular points of X will be denoted by Xreg. Any point that is not regular is singular.
The set of singular points of X is denoted by Xsing.

So p ∈ X is a regular point if after perhaps a linear change of coordinates X ∩ (U ′×Cn−k) =
{(z,w) ∈U ′×Cn−k : w = f (z)} where p ∈ X ∩U ′×Cn−k. In other words, p is a regular point of
X (of dimension k) if near p X is a k-dimensional complex manifold near p. Note that an isolated
point of the variety is a regular point of dimension 0. We have the following theorem, which we
state without proof.

Theorem 1.4.3. Let U ⊂ Cn be open and connected and let X ⊂U be a subvariety, then the set of
regular points Xreg is open and dense in X. In fact Xsing is a subvariety of X.

We will prove the following simpler version to get a feeling for why the theorem is true.

Proposition 1.4.4. Let U ⊂ Cn be open and connected. Let f : U → C be holomorphic. Then
(Z f )reg is open and dense in Z f .

In fact, (Z f )sing is contained in the zero set of some holomorphic function that is not zero on
any open set of Z f .
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Proof. Without loss of generality, we need only prove this locally near the origin. After a possibly
linear change of coordinates we can apply the preparation theorem to find that near the origin, Z f is
the zero set of a Weierstrass polynomial p(z′,zn) defined on some U ′×C. Let E be the discriminant
set for p. Above each point in U ′ \E the set is union of m distinct graphs of holomorphic functions
by Proposition 1.2.6. As above, each point of E we only have finitely many points of Z f the
conclusion follows.

A related result we will also not prove is the following.

Theorem 1.4.5. Let U ⊂ Cn be open and connected and let X ⊂U be a subvariety, then the X is a
locally finite union of manifolds.

We can also define dimension at a singular point. We stated above (without proof) that the set
of regular points of a complex subvariety is open and dense in the subvariety. Thus, a variety is a
manifold at most points. This of course means that the following definition does make sense.

Definition 1.4.6. Let X ⊂U ⊂Cn be a (complex) subvariety of U . Let p ∈ X be a point. We define
the dimension of X at p to be

dimp X def
= max{k ∈ N0 : ∀ neighborhoods N of p, ∃q ∈ N∩Xreg with dimq X = k}. (1.35)

The dimension of X is defined to be

dimX def
= max

p∈X
dimp X . (1.36)

We also define the dimension of the whole variety as

dimX def
= max

p∈X
dimp X . (1.37)

Finally we will also sometimes use the word codimension. If X is a subvariety of an open set of
Cn and has dimension k, then we say that X is of codimension n− k.

1.4.3 Hypervarieties
Codimension 1 subvarieties are particularly nice. Sometimes codimension 1 subvarieties are called
hypervarieties. We state the following theorem without proof.

Theorem 1.4.7. Let U ⊂ Cn be open and connected. Let f : U → C be holomorphic. Then Z f is
either empty, codimension 1, or Z f =U.

Conversely, if (X , p) is a germ of a codimension 1 variety, then there is a germ holomorphic
function f at p such that (Z f , p) = (X , p).
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Example 1.4.8: Such simple statements are not true in general. It is simply not true that if a
dimension of a variety in Cn is n− k, then there are k holomorphic functions that “cut it out.” The
set defined by

rank
[

z1 z2 z3
z4 z5 z6

]
< 2 (1.38)

is a 4 dimensional variety in C6 and the defining equations are z1z5− z2z4 = 0, z1z6− z3z4 = 0, and
z2z6− z3z5 = 0. The unique singular point is the origin and there exist no 2 holomorphic functions
that define this variety. In more technical language, the variety is not a complete intersection.

1.4.4 Irreducible varieties
Definition 1.4.9. A germ of a complex variety (X , p) ⊂ (Cn, p) is said to be reducible at p if
there exist two germs (X1, p) and (X2, p) with (X1, p) 6⊂ (X2, p) and (X2, p) 6⊂ (X1, p) such that
(X , p) = (X1, p)∪ (X2, p). Else the germ (X , p) is irreducible at p.

Similarly globally, a subvariety X ⊂U is reducible in U if there exist two subvarieties X1 and
X2 of U with X1 6⊂ X2 and X2 6⊂ X1 such that X = X1∪X2. Else the germ (X , p) is irreducible in U .

It turns out that for the local notion we simply need to check does not exist a germ (Y, p)⊂ (X , p)
(Y, p) 6= (X , p) and dimp X = dimpY . We state without proof that if a complex variety is irreducible,
then it has the same dimension at all points, and furthermore the set of regular points is connected.
In fact, much more is true and we give the following theorem without proof (we leave the special
case of codimension 1 as an exercise).

Theorem 1.4.10 (Local parametrization theorem). Let (V,0) an irreducible germ of a complex
variety of dimension k in Cn. Let V denote a representative of the germ. Then after a linear change
of coordinates, we let π : Cn→ Ck be the projection onto the first k components, and obtain that
there exists a neighborhood U ⊂ Cn of the origin, and a proper subvariety E ⊂ π(U) such that

(i) V ′ =V ∩U \π−1(E) is a connected k-dimensional complex manifold that is dense in V ∩U.

(ii) π : V ′→ π(U)\E is an m-sheeted covering map for some integer m.

(iii) π : V ∩U → π(U) is a proper mapping.

An m-sheeted covering map in this case will be a local biholomorphism that is an m-to-1 map.

Exercise 1.4.2: Use Theorem 1.2.7 to prove the parametrization theorem if V is defined by the
vanishing of a single holomorphic function. Do not prove that V ′ is connected.

For varieties defined by the vanishing of a single holomorphic function, we see that by the UFD
property of nOp we can find finitely many so-called irreducible components. We state without proof
that this property holds for all varieties.
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Example 1.4.11: Note that the local and global behavior are different. For example

z2
2 = z1(z1−1)2 (1.39)

is irreducible in C2 (the regular points are connected) but locally at the point (1,0) it is reducible.
See Figure 1.1 for the plot in two real dimensions.

−1 0 1 2
−1

0

1

Figure 1.1: Locally reducible but globally irreducible curve.

1.4.5 Curves

Complex varieties of dimension one will play a crucial role. Any one dimensional variety is locally
an image of a disc under a holomorphic one-to-one mapping. First, let us define what we mean by
an analytic curve.

Definition 1.4.12. Let X ⊂Cn be a set such that near every point p ∈ X , there exists a holomorphic
map f : D→Cn (D⊂C is the unit disc) that is one-to-one and such that for some open neighborhood
N of p we have f (D) = X ∩N. Then X is an analytic curve.

For example image of z 7→ (z2,z3) is the variety (analytic curve) defined by z3
1− z2

2 = 0 in C2.
We state without proof the following theorem.

Theorem 1.4.13 (Puiseux normalization). Let (X , p)⊂ (Cn, p) be an irreducible germ of a dimen-
sion one subvariety. Then X is a germ of an analytic curve.

In particular, if X ⊂ C2 is the zero set of some function f irreducible in O0 and f (0,z) is not
identically zero, then there exists a holomorphic function g such that f

(
zk,g(z)

)
= 0 (z ∈ C). This

is the statement that is generally referred to as the Puiseux theorem.
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A consequence of this theorem is that one dimensional complex varieties are topological
manifolds, even at the singular points. This is not true for higher dimensions. One dimensional
varieties are simply very nice.

Because of this theorem, whenever we are looking for germs of one dimensional complex
varieties, we will generally simply parametrize them. For varieties of larger dimensions we can
always find enough curves through any point, and then we can parametrize those.

Exercise 1.4.3: Using the local parametrization theorem, prove that if (X , p) is an irreducible germ
of a complex variety of dimension greater than 1, then there exists a neighborhood U of p and
a closed subvariety X ⊂U (whose germ at p is (X , p)), such that for every q ∈ X there exists an
irreducible subvariety Y ⊂ X of dimension 1 such that p ∈ Y and q ∈ Y .



Chapter 2

CR Geometry

2.1 Proper maps and the inequivalence of ball and polydisc

2.1.1 Proper maps
Definition 2.1.1. Let X and Y be topological spaces. A continuous mapping f : X → Y is said to
be proper if f−1(K)⊂ X is compact whenever K ⊂ Y is compact.

Being proper is a purely topological notion. It can be thought of as the first step towards having
a continuous inverse. We know that a continuous map pushes forward compact sets but inverse
images of compact sets could be only closed. The inverse image of compact sets being compact is a
necessary, but by far not sufficient condition to having a continuous inverse.

One way to understand proper maps is by looking at compactifications. Let X∞ and Y ∞ be the
one point compactifications of X and Y and define f ∞ : X∞→ Y ∞ by f ∞(∞) = ∞ and f ∞|X = f .

Exercise 2.1.1: Show that f is proper if and only if f ∞ is continuous (Note that f is continuous to
start with).

It seems to therefore make sense that proper maps that extend to the boundaries of domains take
boundary to boundary. In particular we have the following lemma.

Lemma 2.1.2. Let U ⊂ Rn and V ⊂ Rm be bounded domains and let f : U →V be a continuous.
Then f is proper if and only if for every sequence {zk} in U such that zk→ p ∈ ∂U, the set of limit
points of { f (zk)} lies in ∂V .

Proof. First suppose that f is proper. Take a sequence {zk} in U such that zk→ p ∈ ∂U . Then take
any convergent subsequence f (zk j) of { f (zk)} converging to some q ∈V . Let E = { f (zk j)}. The
inverse image f−1(E) is not compact in U and hence E is not compact in V and thus q /∈V .

Conversely suppose that for every sequence {zk} in U such that zk→ p ∈ ∂U , the set of limit
points of { f (zk)} lies in ∂V . Take a closed set E ⊂V and look at f−1(E). If f−1(E) is not compact

20
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in U , then there exists a sequence {zk} in f−1(E) such that zk→ p ∈ ∂U . But then the limit points
of { f (zk)} are in ∂V and hence E has limit points in ∂V and thus is not compact.

Corollary 2.1.3. Let U ⊂ Rn and V ⊂ Rm be bounded domains. Let f : U → V be a continuous
map such that f (U)⊂V . Then f |U : U →V is a proper map if and only if f (∂U)⊂ ∂V .

2.1.2 Inequivalence of ball and polydisc
First let us consider the boundaries of the unit bidisc D×D⊂ C2 and the unit ball B2 ⊂ C2. We
notice that the boundary of the unit bidisc contains analytic curves {p}×D and D×{p} for p∈ ∂D.
On the other hand we have the following proposition.

Proposition 2.1.4. The unit sphere S2n−1 = ∂Bn ⊂ Cn contains no analytic curves.

Proof. Suppose we have a holomorphic function g : U ⊂ C→ Cn such that the image of g is inside
the unit sphere. In other words

‖g(z)‖= 1 (2.1)

for all z ∈U . Without loss of generality (after composing with a unitary matrix) we can assume that
g(0) = (1,0,0, . . . ,0). We look at the first component and notice that g1(0) = 1 and |g1(z)|< 1 for
all z such that g1(z) 6= 1. By the maximum principle g1(z) = 1 for all z and therefore g(z) = g(0)
for all z.

The fact that the sphere contains no nontrivial varieties (no curves) is the most important
geometric distinction between the boundary of the polydisc and the sphere.

Theorem 2.1.5 (Rothstein 1935). There exists no proper mapping of the unit bidisc ∆ =D×D⊂C2

to the unit ball B2 ⊂ C2.

Proof. Suppose that we have a proper holomorphic map f : ∆→ B2. Fix some eiθ in the boundary
of the disc D. Take a sequence wk ∈ D such that wk→ eiθ . The functions gk(ζ ) = f (ζ ,wk) map
the unit disc into B2. By the standard Montel’s theorem, by passing to a subsequence we can
assume that the sequence of functions converges to a limit g : D→ B2. As (ζ ,wk)→ ∂∆, then by
Lemma 2.1.2 we have that g(D)⊂ ∂B2 and hence g must be constant.

As the functions g′k converge to g′, then for every fixed ζ ∈ D, ∂ f
∂ z1

(ζ ,wk)→ 0. Notice that
this was true for all eiθ and a subsequence of an arbitrary sequence wk→ eiθ . We can apply the
maximum principle to find that ∂ f

∂ z1
≡ 0. By symmetry ∂ f

∂ z2
≡ 0. Therefore f would be a constant,

which is a contradiction as f was proper.

As a biholomorphic mapping is proper, we see that the unit bidisc is not biholomorphically
equivalent to the unit ball in C2. This fact was first proved by Poincaré by computing the automor-
phism groups of ∆ and B2, although the proof assumed that the maps extended to the boundary. The
first real proof was by H. Cartan in 1931, though popularly the theorem is attributed to Poincaré.
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We saw that the reason why there is not even a proper mapping is the fact that the boundary of
the polydisc contained analytic curves, while the sphere did not. It will be therefore useful to know
when does the boundary of a domain contain complex varieties.

Similar proof extends to higher dimensions as well. In fact, it is not hard to prove the following
theorem.

Theorem 2.1.6. Let U = U ′×U ′′ ⊂ Cn×Ck and V ⊂ Cm be bounded domains such that ∂V
contains no nontrivial complex analytic subvarieties. Then there exist no proper holomorphic
mappings f : U →V .

Note the difference with one variable theory. In one variable, any two simply connected domains
are biholomorphically equivalent. In two or more variables this is no longer the case, even for
the two most simple examples. The geometry of the boundaries makes a difference, not just the
topology of the domains.

2.2 Polarization
Let us prove an immensely useful result for CR geometry. The consequence will be that we will
be able to treat z and z̄ as separate variables. First let us define for a domain U ⊂ Cn the complex
conjugate

U∗ def
= {z ∈ Cn : z̄ ∈U}. (2.2)

Proposition 2.2.1 (Polarization). Let U ⊂ Cn be open and connected. Let f : U ×U∗ → C be
holomorphic such that for all z ∈U we have

f (z, z̄) = 0, (2.3)

then f (z,w) = 0 for all (z,w) ∈U×U∗

Proof. Without loss of generality, assume that U is some small neighborhood of the origin where
the power series of f converges. Write down the power series for f at the origin in multi-index
notation.

f (z,w) = ∑
αβ

cαβ zαwβ . (2.4)

Let δ k
j be the Kronecker delta (that is, δ k

j = 0 if j 6= k and δ
j
j = 1). Elementary calculation

shows that ∂

∂ z j
zk = δ k

j , ∂

∂ z j
z̄k = 0, ∂

∂ z̄ j
zk = 0, ∂

∂ z̄ j
z̄k = δ k

j . Therefore for any two multi-indexes α and
β by differentiating the power series and evaluating at z = 0 we obtain

∂ |α|+|β |

∂ zα z̄β

∣∣∣∣∣
z=0

f (z, z̄) =
∂ |α|+|β |

∂ zα z̄β

∣∣∣∣∣
z=0

∑
µν

cµνzµ z̄ν = α!β !cαβ . (2.5)

Since f (z, z̄) is identically zero, we get that cαβ = 0. Hence f ≡ 0.
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Thus if we can write a function g(x,y) defined on Cn (where x+ iy = z ∈ Cn) as f (z, z̄) for a
holomorphic function f in 2n variables, then we can treat z̄ as a separate variable, as any real-analytic
identity involving z and z̄ extends to a holomorphic identity where z̄ is a separate variable.

Treating z̄ as a separate variable is sometimes also called complexification.

2.3 Hermitian forms for polynomials

2.3.1 Polynomials as Hermitian forms
We first start with relating real polynomials and Hermitian forms. We will build up to real-analytic
functions later. The results of this section in the context of complex analysis are due to D’Angelo.

Let x+ iy = z ∈ Cn be the coordinates. Suppose we have a real-valued polynomial p(x,y). We
will define the polynomial r on Cn×Cn by

r(z, w̄) = p
(

z+ w̄
2

,
z− w̄

2i

)
. (2.6)

Now notice that r(z, z̄) = p(x,y). We have simply written p in terms of z and z̄ instead of x and y.
We will note that it will be advantageous to consider z and z̄ as separate variables.

As p is real-valued we have that r(z, z̄) = r(z, z̄). By polarization (last section), we note that for
all w ∈ Cn we have

r(z, w̄) = r(w, z̄). (2.7)

A polynomial that satisfies (2.7) we will call a Hermitian symmetric polynomial. The reason for
this notation is that as we will see, the polynomial is an honest Hermitian form on the space of
holomorphic polynomials.

Write r in multi-index notation

r(z, w̄) = ∑
αβ

cαβ zα w̄β .

We order all the multi-indexes in some way. This gives us a certain ordering of the monomials in z
(and in w̄). For example, 1,z1,z2, . . . ,zn,z2

1,z1z2, . . .. After ordering it makes sense to write down
the matrix C = [cαβ ]. We call C the matrix of coefficients. For convenience, let the rows be denoted
by the β and the columns by α . We will write X∗ = X t for the conjuate transpose of X .

As r is Hermitian symmetric, C is Hermitian symmetric as it is easy to check that the Hermitian
symmetry of r implies that cαβ = cβα . Note that we only really need to write down the pure
holomorphic or pure antiholomorphic monomials that appear in the polynomial.

Example 2.3.1: Take r(z, z̄) =−iz1z̄2+ iz2z̄1+3
∣∣z2

2

∣∣2. Then let us order the monomials that appear
as (z1,z2,z2

2). The 3×3 matrix C is then

C =

 0 i 0
−i 0 0
0 0 3

 , so that r(z, z̄) =

z1
z2
z2

2

∗C
z1

z2
z2

2

=

z1
z2
z2

2

∗ 0 i 0
−i 0 0
0 0 3

z1
z2
z2

2

 . (2.8)
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We can see that a real-valued polynomial on Cn can be regarded as a Hermitian form on the
space of Holomorphic polynomials. When we use the monomial basis for that space, we recover
the matrix C. Notice that once we fix the basis and the ordering, then C is uniquely determined.

2.3.2 Decomposition as difference of squared norms

Suppose that C has a positive and b negative eigenvalues. We will call the pair (a,b) the signature
pair of r. We will prove the following proposition.

Proposition 2.3.2. Let r(z, z̄) be a Hermitian symmetric polynomial with signature pair (a,b). Then
there exist two holomorphic polynomial mappings f : Cn→ Ca and g : Cn→ Cb, such that

r(z, z̄) = ‖ f (z)‖2−‖g(z)‖2 . (2.9)

Proof. Take v1, . . . ,va+b be an orthonormal set of eigenvectors of the matrix of coefficients corre-
sponding to the nonzero eigenvalues. Let v1, . . . ,va be the eigenvectors corresponding to the positive
eigenvalues λ1, . . . ,λa, and let va+1, . . . ,va+b be the eigenvectors corresponding to the negative
eigenvalues λa+1, . . . ,λa+b.

We have

C =
a+b

∑
j=1

λ jv jv
∗
j (2.10)

where the star denotes conjugate transpose.

Exercise 2.3.1: Prove the identity above.

Let Z denote the column vector of monomials sorted as above and write w j =
√∣∣λ j

∣∣v j. Then

C =
a

∑
j=1

λ jv jv
∗
j −

a+b

∑
j=a+1

(−λ j)v jv
∗
j

=
a

∑
j=1

√
λ j v j

√
λ j v∗j −

a+b

∑
j=a+1

√
−λ j v j

√
−λ j v∗j

=
a

∑
j=1

w jw
∗
j −

a+b

∑
j=a+1

w jw
∗
j

(2.11)

For j = 1, . . . ,a define f j(z) = w∗jZ . For j = 1, . . . ,b define g j(z) = w∗a+ jZ . Then notice that
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∣∣ f j(z)
∣∣2 = Z ∗w jw

∗
jZ and

∣∣g j(z)
∣∣2 = Z ∗wa+ jw

∗
a+ jZ . Therefore

r(z, z̄) = 〈CZ ,Z 〉= Z ∗CZ

=
a

∑
j=1

Z ∗w jw
∗
jZ −

a+b

∑
j=a+1

Z ∗w jw
∗
jZ

=
a

∑
j=1

∣∣ f j(z)
∣∣2− b

∑
j=1

∣∣g j(z)
∣∣2

= ‖ f (z)‖2−‖g(z)‖2 .

(2.12)

Example 2.3.3: Let us continue the previous example r(z, z̄) =−iz1z̄2 + iz2z̄1 +3
∣∣z2

2

∣∣2. We have
Z = (z1,z2,z2

2)
t . The eigenvalues are 3, 1, and −1. The corresponding set of orthonormal eigen-

vectors are

v1 =

0
0
1

 , v2 =
1√
2

 1
−i
0

 , v3 =
1√
2

1
i
0

 , (2.13)

and w1 =
√

3v1, w2 = v2 and w3 = v3. Thus

f1(z) =
√

3z2
2, f2(z) =

z1− iz2√
2

, g1(z) =
z1 + iz2√

2
, (2.14)

and

r(z, z̄) =
∣∣∣√3z2

∣∣∣2 + ∣∣∣∣z1− iz2√
2

∣∣∣∣2− ∣∣∣∣z1 + iz2√
2

∣∣∣∣2 . (2.15)

2.3.3 Pure parts
Note that in the decomposition given above, it is not necessary for all the functions f j and g j to
vanish at the origin, even if r(0,0) = 0. For example, when r(z, z̄) = z1 + z̄1, then we can write

r(z, z̄) =
∣∣∣∣z1 +1√

2

∣∣∣∣2− ∣∣∣∣z1−1√
2

∣∣∣∣2 . (2.16)

Sometimes it is useful to have all the functions vanish at the origin. Notice that it is precisely the
terms in the polynomial that are purely holomorphic (depend only on z) or purely antiholomorphic
(depend only on z̄) that make trouble. If we exclude those terms, then none of the eigenvectors will
involve the constant term and therefore, the resulting functions will vanish at the origin. Furthermore,
by writing all the polynomials as polynomials in z− p, we can make sure that if r(p, p̄) = 0, then
all the functions in the decomposition vanish at p.
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Proposition 2.3.4. Let r(z, z̄) be a Hermitian symmetric polynomial and p ∈Cn such that r(p, p̄) =
0. Then there exists a holomorphic polynomial h(z), and two holomorphic polynomial mappings
f (z), g(z), all vanishing at p such that

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 . (2.17)

We allow the possibility that any of h, f , or g may in fact be missing (i.e. be identically zero)
for certain r.

Proof. Without loss of generality, assume that p = 0. Take h(z) = r(z,0), that is, h(z) is the polyno-
mial consisting of all the holomorphic terms in r(z, z̄). Then we note that all the antiholomorphic
terms in r are in fact h(z) as r is Hermitian symmetric. Note that 2Reh(z) = h(z)+ h(z). As
r(0,0) = 0, there is no constant term. Therefore h(0) = 0.

Now we notice that the coefficient matrix for the Hermitian symmetric polynomial r(z, z̄)−
2Reh(z) has no entries in the row and column corresponding to the constant monomial. Therefore,
all the eigenvectors corresponding to nonzero eigenvalues only have nonzero entries for nonconstant
monomials. Therefore the functions w∗jZ must vanish at the origin.

2.4 Complex varieties in real algebraic hypersurfaces

A real algebraic hypersurface is a real submanifold M of R2n ∼= Cn of real dimension 2n−1 that is
defined by

M = {z ∈ Cn : r(z, z̄) = 0}

for some real-valued (Hermitian symmetric) polynomial r. For simplicity, we will assume that M is
really a submanifold and is not singular.

Suppose that p ∈ M is a point such that through p there is a positive dimensional complex
variety contained in M. Without loss of generality suppose that this variety is an analytic curve.
That is, there exists a nonconstant holomorphic function ϕ : D→ Cn such that ϕ(D) ⊂ M, and
ϕ(0) = p. That is, we have that for all t ∈ D we have

r
(
ϕ(t),ϕ(t)

)
= 0. (2.18)

As a useful notation, denote by ϕ̄ the holomorphic function that is obtained by taking the
complex conjugate of all the coefficients in the power series of the function ϕ . Then ϕ(t) = ϕ̄(t̄).

In the equation 0 = r
(
ϕ(t),ϕ(t)

)
= r
(
ϕ(t), ϕ̄(t̄)

)
, we can treat t̄ as a separate variable. Now

decompose r as in Proposition 2.3.4

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 . (2.19)
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Plug in z = ϕ(t) and set t̄ = 0 and then notice that ϕ(0) = p. In the following the dot · denotes the
simple symmetric (not Hermitian) dot product: ξ ·ζ = ξ1ζ1 + · · ·+ξnζn.

0 = r
(
ϕ(t), ϕ̄(0)) = h

(
ϕ(t)

)
+ h̄
(
ϕ̄(0)

)
+ f (z) · f̄

(
ϕ̄(0)

)
+g(z) · ḡ

(
ϕ̄(0)

)
= h
(
ϕ(t)

)
+h(p)+ f (z) · f (p)+g(z) ·g(p)

= h
(
ϕ(t)

)
.

(2.20)

Therefore h vanishes on the image of ϕ .
Note that {z ∈ Cn : h(z) = r(z, p) = 0} defines the so-called Segre variety Σp for M at p. We

will talk more about this useful variety later on. For now, let us simply note that we have proved the
following proposition.

Proposition 2.4.1. Let M ⊂Cn be a real algebraic hypersurface. Let (X , p) be a germ of a complex
variety such that (X , p)⊂ (M, p). Then (X , p)⊂ (Σp, p).

Example 2.4.2: The Lewy hypersurface M ⊂ Cn defined by

Imzn =
n−1

∑
j=1

∣∣z j
∣∣2 (2.21)

contains no nontrivial complex varieties through the origin. We write r(z, z̄) = Imzn−∑
n−1
j=1

∣∣z j
∣∣2.

Then we look at r(z,0) = zn/2i. Thus Σ0 = {z : zn = 0}. If we plug zn = 0 this into the defining
equation of M, then we obtain 0 = ∑

n−1
j=1

∣∣z j
∣∣2, and hence M∩Σ0 = {0}.

The Lewy hypersurface is in fact locally biholomorphically equivalent to a sphere, so we have
seen this statement before.

On the other hand, just because Σp intersects M in a nontrivial way, it doesn’t mean that M
contains complex varieties. All we do know is that any complex variety contained in M is contained
in M∩Σp.

Theorem 2.4.3 (D’Angelo). Let M ⊂ Cn be an algebraic hypersurface defined by r(z, z̄) = 0. Let
p ∈M be a point and let

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 , (2.22)

where h, f , and g vanish at p. By adding zero components assume that target dimensions of f and
g are the same. Then M contains a germ of complex variety at p if and only if there exists a unitary
matrix U with such that the variety V (h, f −Ug) (i.e. the variety defined by h = 0 and f =Ug) is
nontrivial.

In fact, V = V (h, f −Ug) ⊂M for every unitary U, and if (X , p) is an irreducible germ of a
complex variety such that (X , p)⊂ (M, p) then there exists a unitary U such that (X , p)⊂ (V, p).
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Proof. Let us start with the easy direction. Suppose that there exists a unitary matrix U such that
V (h, f −Ug) is nontrivial. For a unitary matrix U we have that ‖Ug(z)‖2 = ‖g(z)‖2. So if z is such
that f (z) =Ug(z) and h(z) = 0, then 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 = 0. Thus V (h, f −Ug)⊂M.

For the other direction, suppose that there is an irreducible germ of a complex variety through
p contained in M. Take a representative X of this variety. As we have seen, for any nonconstant
holomorphic mapping ϕ : D→ X ⊂ M with ϕ(0) = p we have that h

(
ϕ(t)

)
= 0 for all t ∈ D.

Therefore, for all t ∈ D we have ‖ f
(
ϕ(t)

)
‖2 = ‖g

(
ϕ(t)

)
‖2. Since this is true for any curve that

lies in X ⊂M, we know that there exists a regular point ξ ∈ X , such that ‖ f (z)‖2 = ‖g(z)‖2 for
all z ∈ X near ξ . So parametrize a neighborhood N ⊂ X of ξ via a mapping Φ : ∆′→ N for some
polydisc ∆′ of the same dimension as X . Then for z ∈ ∆′∥∥ f

(
Φ(z)

)∥∥2
=
∥∥g
(
Φ(z)

)∥∥2
. (2.23)

Note that for a mapping F : Cn→ Cm and a unitary matrix U we have ‖F(z)‖2 = ‖UF(z)‖2.
What’s interesting is that the converse holds as well. We need the following lemma.

Lemma 2.4.4. Let V ⊂ Cn be a domain and let F : V → Cm and G : V → Cm be holomorphic
mappings such that for all z ∈V we have

‖F(z)‖2 = ‖G(z)‖2 , (2.24)

then there exists a unitary U such that F(z) =UG(z).

Proof. Without loss of generality let us assume that V is a neighborhood of the origin where the
power series for both F and G converges. Let us denote by F the m×∞ matrix of coefficients of
the function F(z) and similarly with G. Let Z is an infinite column vector of all the monomials in
z such that F(z) = FZ and G(z) = GZ . We then see that ‖F(z)‖2 = Z ∗F∗FZ and ‖G(z)‖2 =

Z ∗G∗GZ . By polarization and the fact that ‖F(z)‖2 = ‖G(z)‖2 we have that F∗F = G∗G.
Obviously F∗F and G∗G have the same rank, so we take unitary matrices U ′ and U ′′ such that

U ′F =
[

F ′
0

]
and U ′′G =

[
G′
0

]
and F ′ and G′ are of full rank (rankF ′ is equal to the number of rows

of F ′). Thus without loss of generality we can assume that F and G are of full rank.
If we wish we can work with finite matrices. Let Fk denote the first k columns of F . Then we

see that the leading principal k× k submatrix of F∗F is F∗k Fk. As F∗k Fk = G∗kGk, then by standard
linear algebra there exists a unitary matrix Uk such that Fk =UkGk. Since both Fk and Gk are of full
rank, then there exists a K such that for k ≥ K, Fk and Gk are of full rank. It is then easy to see that
for all k, `≥ K we must have U` =Uk. Hence taking U =UK gives the theorem.

Armed with the lemma, we now look at∥∥ f
(
Φ(z)

)∥∥2
=
∥∥g
(
Φ(z)

)∥∥2
. (2.25)

We have assumed that f and g have the same number of components by adding zero components if
necessary. Applying the lemma we have that there exists a unitary matrix U such that for all z

f
(
Φ(z)

)
=Ug

(
Φ(z)

)
. (2.26)
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And we are essentially done. We have that Φ(∆′)⊂V (h, f −Ug), and so X ⊂V (h, f −Ug) as X is
irreducible.

Before we move on, let us remark about a simple scenario for a certain important class of
hypersurfaces. Suppose that we can write the defining equation for M as

2Reh(z)+‖ f (z)‖2 = 0, (2.27)

where h(p) = 0 and f (p) = 0. Then M contains a germ of a nontrivial complex variety through p if
and only if V (h, f ) is nontrivial.

Example 2.4.5: The algebraic hypersurface M ⊂ C3 defined by

0 = 2Rez3 + |z1|2−|z2|2 (2.28)

contains many complex lines through the origin. In particular any line of the form {z : z3 = 0,z1 =
eiθ z2} for some fixed α . No other complex varieties exist. Furthermore there is not a single unique
complex variety sitting in M. The union of all the lines is the set {z : z3 = 0, |z1|= |z2|}, and this is
not a complex analytic set.

Example 2.4.6: Let us modify the example just a little bit to define M ⊂ C3 as

0 = 2Rez3 + |z1|2 + |z2
1|2−|z2|2. (2.29)

We have added a higher order term only, yet this modification produced an hypersurface containing
no nontrivial complex analytic variety through the origin. By the theorem M can contain a variety if
and only if there exists a 2×2 unitary U =

[
a b
c d

]
such that[

a b
c d

][
z2
0

]
=

[
z1
z2

1

]
. (2.30)

Or in other words if az2 = z1 and cz2 = z2
1, where |a|2 + |c|2 = 1. Both a and c cannot be both

zero. Hence either both z1 and z2 are zero or neither can be. We can solve to obtain cz1 = az2
1 and

cz2 = a2z2
2. From this we obtain c = az1 and c = a2z2. Therefore for a fixed a and c we get at most

two solutions, one (0,0) and one (c/a, c/a2). Thus there is no nontrivial variety through zero.

We can also give a wonderfully simple proof of the following simple version of the Diederich-
Fornaess theorem (Theorem 2.6.5). The full version of Diederich-Fornaess allows singularities and
does not require algebraicity but only real-analyticity.

Corollary 2.4.7 (Special case of Diederich-Fornaess). Let M ⊂ Cn be a compact real algebraic
hypersurface in Cn. Then at no point does M contain a germ of a nontrivial complex analytic
variety.
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Proof. Let r(z, z̄) = 0 be the defining equation for M and write r(z, z̄) = 2Reh(z)+ ‖ f (z)‖2−
‖g(z)‖2, as in the theorem. Let (X , p)⊂ (M, p) be a germ of a complex variety. The theorem says
that there exists a unitary U such that (X , p) is contained in some V =V (h, f −Ug). The variety V
is algebraic (defined by polynomials), so it has global set of defining equations (in particular it is a
closed subset of Cn. As V ⊂M and M is compact, then so is V . If V is compact, then find the point
q ∈V such that ‖q‖2 is maximal for all points in V . Take a holomorphic map ϕ : D→ Cn such that
ϕ(D) ⊂ V and ϕ(0) = q. By noting that ‖ϕ(z)‖2 attains a maximum at 0, we use the maximum
principle to show that ϕ is constant (exercise). Hence V =V ′∪{q}. If V ′ is nontrivial, apply same
reasoning to V ′ to show that V must be a finite set of points. To see that the set is finite, remember
that any variety V must be a locally finite union of manifolds.

2.5 Hermitian forms for real-analytic functions
Now suppose that r(z, z̄) is Hermitian symmetric, but let us suppose that z 7→ r(z, z̄) is real-analytic
rather than a polynomial. The first subtle point is about the domain of convergence. Convergence is
not so simple for real analytic functions as it is for holomorphic functions. For example, if we have
a holomorphic entire function f : Cn→ C, it has a power series around the origin that converges
everywhere. On the other hand if we have a real-analytic function defined on all of Cn (that is, it
has a real power series near every point), it is no longer necessarily true that it will have a single
everywhere convergent series. The problem is that while r(z, z̄) might be analytic everywhere, but
r(z, w̄) may only be analytic in some neighborhood of z = w and not in all of Cn×Cn.

For every point p, we can however find a neighborhood U of p, such that r(z, w̄) has a series
that converges in U×U∗ (remember U∗ is the conjugate of U).

Now we come to the second subtle issue. When we write the coefficients of r(z, z̄) as a matrix,
it will be an infinite matrix. We can do a lot of the same computations formally as before, but
we may have to then prove things about convergence. Furthermore, the mappings we get in the
computations have infinite dimensional range, so we have to make sense of that. We will replace
Cm with a Hilbert space (we will assume it is separable). Remember a basis of a Hilbert space is
not the algebraic basis, but the analytic Hilbert space one. If a countable set {e j} is an orthonormal
basis of a separable Hilbert space H , then every p ∈H can be written as p = ∑

∞
j=1 c je j. So you

can simply think of `2 (the space of square summable sequences) for H .

Definition 2.5.1. Let H be a separable Hilbert space and let {e j} be an orthonormal basis. Then
f : Cn→H is said to be holomorphic if and only if

〈 f (z),e j〉 (2.31)

is holomorphic for every j.

Exercise 2.5.1: Let U ⊂ Cn be open and f : U →H be holomorphic with respect to one basis.
Show that it is holomorphic with respect to any basis.
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Exercise 2.5.2: Let U ⊂ Cn be open and f : U →H be holomorphic. Suppose that 0 ∈U. Show
that you can write f (z) = ∑α cαzα , where cα ∈H .

If we take a Hermitian symmetric function r(z, z̄) converging in a neighborhood U×U∗ of the
origin, then we can formally

r(z, z̄) = Z ∗CZ , (2.32)

where C is the matrix of coefficients and Z is an infinite vector of all the monomials. Now Z does
not map all of U into `2 and C may not even be a bounded operator. We have to be a little careful.
We can always rescale the variables to ensure that the series for r(z, z̄) has a domain of convergence
that includes the point z = (1,1, . . . ,1) in its interior. Then r converges on the polydisc ∆ = ∆1(0)
and complexifies into ∆×∆. Furthermore Z maps ∆ into `2 as can be easily checked by noting
the geometric series. As (1, . . . ,1) is in the domain of convergence, we can plug in to Z and note
absolute convergence. The vector Z becomes (1,1,1, . . .) and thus

∑
αβ

∣∣cαβ

∣∣= ‖C‖1 < ∞. (2.33)

Proposition 2.5.2. If A = [a jk] is an infinite matrix such that
∞

∑
j,k=1

∣∣a jk
∣∣2 < ∞, (2.34)

then A defines a unique bounded operator on `2 with orthonormal basis {e j} such that 〈Ae j,ek〉=
a jk.

In fact, A is a compact (completely continuous) operator. We leave that as an exercise.

Proof. Write M = ∑
∞
j,k=1

∣∣a jk
∣∣2. We have in particular that for each k

∞

∑
j=1

∣∣a jk
∣∣2 < ∞. (2.35)

Thus define the operator A on the basis elements as

Aek =
∞

∑
j=1

a jke j. (2.36)

we can extend linearly to all finite combinations of basis elements. If u and v are finite combinations
of basis elements it is not hard to see that we must get (the details are left to the reader)

|〈Au,v〉| ≤ ‖Au‖‖v‖ ≤M ‖u‖‖v‖ . (2.37)

By continuity this is true for all v. Letting v = Au we find

‖Au‖2 ≤M ‖u‖‖Au‖ , (2.38)

or in other words ‖Au‖ ≤M ‖u‖. Thus, A is bounded and we can extend to all of `2.
We leave that A is unique to the reader.
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In fact, if a linear operator on `2 is bounded, then it is defined by a matrix, but we will not prove
this fact although it is not hard with some basic functional analysis. See [AG93].

Thus if C is as in the discussion before the proposition, the proposition says that C defines a
bounded operator on H (note that C being absolutely summable implies it is square summable).

Proposition 2.5.3. Let U ⊂ Cn be open. Suppose that F : U → `2 is holomorphic such that the
series for ‖F(z)‖2 converges on a neighborhood of the closed unit polydisc ∆. Then the matrix of
coefficients of F(z) defines a bounded operator on `2.

Here by the matrix of coefficients of F(z) we mean a matrix, which we also call F , such that
FZ = F(z), where Z is the infinite column vector of monomials in z.

Proof. Write F(z) =∑α fαzα , where fα is an infinite column vector. Consider the function ‖F(z)‖2.
Formally we have that ‖F(z)‖2 = Z ∗F∗FZ , and we know that this series converges as F(z) is `2

valued. By the preceding discussion we have that ‖F∗F‖1 < ∞. Writing out what that means and
only looking at the diagonal entries we have that

∑
α

|〈 fα , fα〉| ≤ ‖F∗F‖1 < ∞. (2.39)

Therefore the matrix F satisfies the hypothesis of Proposition 2.5.2.

We prove the following theorem. To apply the theorem, you may have to do a change of
coordinates. Notice the quantitative aspects of the theorem.

Theorem 2.5.4 (D’Angelo). Let r(z, z̄) be a Hermitian symmetric real-analytic function vanishing
at p such that the series converges in a neighborhood of ∆×∆∗ for a polydisc ∆ centered at p. Then
there exist a holomorphic function h : ∆→C and holomorphic mappings f : ∆→ `2 and g : ∆→ `2,
such that

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 (2.40)

and h(p) = 0, f (p) = 0, and g(p) = 0.
Alternatively, we can find two holomorphic mappings F : ∆→ `2 and G : ∆→ `2, such that

r(z, z̄) = ‖F(z)‖2−‖G(z)‖2 , (2.41)

but we cannot guarantee that F or G vanish at p.

Proof. Without loss of generality we can assume that after an affine change of variables p = 0 and
∆ is the unit polydisc.

It is not hard to find h(z) = r(z,0). Therefore, we will simply prove that we can write r(z, z̄) =
‖F(z)‖2−‖G(z)‖2. The result will then easily follow.

We note that by the discussion above, the coefficient matrix C or r(z, z̄) defines a bounded
operator on `2. We wish to decompose C = A∗A−B∗B. For example, write A = 1

2(C + I) and
B = 1

2(C− I).
r(z, z̄) = 〈CZ ,Z 〉= 〈AZ ,AZ 〉−〈BZ ,BZ 〉. (2.42)
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It is not hard to check (exercise) that AZ defines a holomorphic mapping from ∆ to `2. Same with
BZ .

We will also require the theorem about unitary operators extended to the infinite dimensional
setting.

Lemma 2.5.5 (D’Angelo). Let V ⊂ Cn be a connected open neighborhood of p. Let F : V → `2

and G : V → `2 be holomorphic maps such that ‖F(z)‖2 = ‖G(z)‖2 for all z ∈ V . Write F(z) =
∑ fα(z− p)α and G(z) = ∑ fα(z− p)α (where fα and gα are in `2).

Then there exists an isometry U : span{ fα}→ span{gα} such that F(z) =UG(z).

Proof. As before translate and scale coordinates such that F is holomorphic in a neighborhood of
the closed unit polydisc ∆ and let p = 0. Then the series of ‖F(z)‖2 complexifies to ∆×∆∗. Let C
be the matrix of coefficients of the function ‖F(z)‖2, and as before C defines a bounded operator.
Let F denote the matrix for F(z) such that F(z) = FZ . Similarly with G. We therefore have that
C = F∗F = G∗G. As C is bounded, so is F and G.

Now C is positive semidefinite and thus has a unique positive square root P by a standard
theorem in functional analysis (for example [Rud91], Theorem 12.33). The root is determined up to
partial isometry, that is, exactly the statement of the theorem above. Note that R(F) is definitely
contained in the closure of the range of F as an operator and same with G.

2.6 Complex varieties in real-analytic hypersurfaces
A real-analytic hypersurface is a real submanifold M of R2n ∼= Cn of real dimension 2n−1 that is
defined by

M = {z ∈ Cn : r(z, z̄) = 0}

for some real-valued (Hermitian symmetric) real-analytic function r. For simplicity, we will assume
that M is really a submanifold and is not singular.

Let p ∈M be a point and we decompose r as

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 , (2.43)

where h, f and g vanish at p. Suppose that through p there is a positive dimensional complex variety
contained in M. That is, there exists a nonconstant holomorphic function ϕ : D→ Cn such that
ϕ(D)⊂M, ϕ(0) = p. That is, we have that for all t ∈ D

r
(
ϕ(t),ϕ(t)

)
= 0. (2.44)

Just as before, we treat t as a separate variable and set it to zero, to find that r
(
ϕ(t), p

)
= 0. Hence,

as before h vanishes on ϕ(D), and hence on any germ of a complex variety in M through p.
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Definition 2.6.1. Let U be a neighborhood of p such that r(z, z̄) complexifies into U ×U∗. Then
Σp = {z ∈U : r(z, p) = 0} defines the so-called Segre variety Σp for M at p

Do note that the definition does depend on U and r as before. As a warm up, and to illustrate
the use of the Segre variety, let us prove a result about complex varieties of (complex) codimension
1 lying in a hypersurface. We will show that if such a variety goes through every point in M, then M
has locally no biholomorphic invariants (M is Levi-flat, see below).

First let us define a Levi-flat hypersurface as a real codimension 1 submanifold M ⊂Cn such that
through every point p ∈M, there exists a germ of a complex hypervariety (subvariety of dimension
n−1) (X , p) such that (X , p)⊂ (M, p). Being Levi-flat is a degenerate condition. An example of a
Levi-flat hypersurface is the boundary of the polydisc, which is Levi-flat away from the “corners”
where it is not a smooth submanifold.

Proposition 2.6.2. Let M ⊂Cn be a real-analytic hypersurface (nonsingular) If at p there is a germ
of a complex subvariety (X , p) of (complex) dimension n−1 such that (X , p)⊂ (M, p). Then (X , p)
is the unique nonsingular complex manifold through p and there exists a local defining function r
for M such that (X , p) = (Σ, p).

Furthermore, if M is Levi-flat, then there exists a local biholomorphic change of coordinates
near p that takes M into the manifold given by

Imz1 = 0. (2.45)

Proof. First let p = 0. As M is a submanifold, we can find a defining function r(z, z̄) for M near 0
that has linear terms (M is locally a graph over some real hyperplane after all). Fix a neighborhood
U such that r complexifies to U×U∗. We note that all the linear terms must be in r(z, 0̄). Thus Σ0
is a submanifold. That means that there can be only a unique complex variety through 0 and that is
Σ0 (exercise).

If M is Levi-flat, the same is true for every point p ∈ M. Let ϕ(t)→ M be a real-analytic
function, then

r
(
z,ϕ(t)

)
= 0. (2.46)

We can pick ϕ in a way so that the image is not contained in Σp. Hence r
(
z,ϕ(t)

)
is an infinite

family of complex manifolds.
We treat t̄ as a complex variable in t 7→ r

(
z,ϕ(t)

)
. As r(z, p̄) is a graph near p, we can pick ϕ

such that the complex derivative in t̄ of t 7→ r
(
z,ϕ(t)

)
is nonzero. Then by the holomorphic implicit

function theorem we can write t as a function z. The function t is real-valued on M. We can thus
perform the change of variables as given. The details are left to the reader.

Before we prove the analytic analogue of the theorem about germs of complex varieties in a real
hypersurface we need a little bit of notation.

Definition 2.6.3. Let r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2. Let p be a point such that h, f and g
vanish at p. Furthermore suppose that h, f , and g are holomorphic in a polydisc ∆ centered at p. Let
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0 denote the map to `2 that is the constant element zero for all z. Define f̃ = f ⊕0 and g̃ = g⊕0.
Let U be a unitary operator on `2. We define the family of ideals (in O(∆)) as

I(U, p) def
= (h, f̃ −Ug̃). (2.47)

That is, the ideals defined by the (infinitely many) equations h(z) = 0 and f̃ (z) =Ug̃(z). Define

V (U, p) def
= {z ∈ ∆ : ψ(z) = 0,∀ψ ∈ I(U, p)}. (2.48)

A priory, I(U, p) depends on the holomorphic decomposition and on the defining function.
However, it can be shown that the ideals are independent if taken as ideals in Op. We will not show
this fact, see [D’A93].

We prove the following theorem. Notice the quantitative aspects of the theorem.

Theorem 2.6.4 (D’Angelo). Let M ⊂ Cn be an real-analytic hypersurface defined by r(z, z̄) = 0
near p and let ∆ be a polydisc centered at p such that the series for r converges in a neighborhood
of ∆×∆∗. We let

r(z, z̄) = 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 , (2.49)

be the holomorphic decomposition of r where h, f , and g are holomorphic in ∆ and vanish at p,
and f and g are `2 valued.

Then M contains a germ of complex variety at p if and only if there exists a unitary U such that
V (U, p) is nontrivial.

In fact, V =V (U, p)⊂M for every unitary U, and if (X , p) is an irreducible germ of a complex
variety such that (X , p)⊂ (M, p) then there exists a unitary U such that (X , p)⊂ (V, p). In particular,
X lies in a subvariety of ∆.

Proof. The proof is very similar to the proof of theorem Theorem 2.4.3. We can assume that p = 0
and ∆ is the unit polydisc.

Let us first start with the easy direction. Without loss of generality we can assume that g = g̃ and
f = f̃ as in Definition 2.6.3. Suppose that there exists the unitary U such that V (U,0) is nontrivial.
For a unitary U we have that ‖Ug(z)‖2 = ‖g(z)‖2. Thus if z is such that f (z) =Ug(z) and h(z) = 0,
then 2Reh(z)+‖ f (z)‖2−‖g(z)‖2 = 0. Thus V (U,0)⊂M.

Now for the other direction, suppose that there is a germ of an irreducible complex variety
through p in M. Take a representative X of this germ. As before, for any holomorphic mapping
ϕ : D→ X ⊂ M with ϕ(0) = p, we have h

(
ϕ(t)

)
= 0 for all t ∈ D. Thus for all t ∈ D we have

‖ f
(
ϕ(t)

)
‖2 = ‖g

(
ϕ(t)

)
‖2. Similarly as before we parametrize a neighborhood of a nonsingular

point of X using a map Φ : ∆′→ X , for a polydisc ∆′ of same dimension as X such that for all z ∈ ∆′∥∥ f
(
Φ(z)

)∥∥2
=
∥∥g
(
Φ(z)

)∥∥2
. (2.50)

We have seen (Lemma 2.5.5) that this implies the existence of an isometry U on a subspace H1
that is the closed span of the coefficients of g

(
Φ(z)

)
. The range is a subspace H2 that is the closed
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span of the coefficients of f
(
Φ(z)

)
. It is not necessarily true that this must extend to a unitary

operator on `2 (for example it could happen that codimension of H2 is finite, while codimension of
H1 is infinite).

But we are allowed to direct sum with a zero component, producing f̃ and g̃, ensuring that the
codimensions are infinite. Since all infinite dimensional separable Hilbert spaces are isometric, we
can extend U to a unitary operator on the resulting space. The result follows.

Notice that the theorem implies that any germ of a subvariety extends to a subvariety of ∆. We
can use this fact to prove the full strength of the Diederich-Fornaess theorem. Again the theorem
also works if the hypersurface has singularities, but we will not worry about this.

Theorem 2.6.5 (Diederich-Fornaess ’78 [DF78]). Let M ⊂ Cn be a compact real-analytic hyper-
surface in Cn. Then at no point does M contain a germ of a nontrivial complex analytic variety.

Proof. Let S be the union of all (local) complex analytic varieties contained in M. As M is compact,
then S is compact, so let p ∈ S be the point furthest away from the origin. Then there exists an
affine holomorphic function ψ(z) = Lz+ z0 that attains its maximum on S exactly at p, for example
suppose ψ(p) = 1. Furthermore, when δ > 0 is small enough, then there is some ε > 0 such that
such that the set {q ∈ S : |ψ(q)|> 1− ε} lies within a ball of radius δ around p.

Now look at the defining equation r for M near p. There is some α > 0 such that when we
rescale, Theorem 2.6.4 applies at p and says that any complex variety contained in X through p
is contained in a subvariety of ∆α(p)∩M. Now we notice that Theorem 2.6.4 actually applies in
a small neighborhood of p. That is we can pick some β > 0 (smaller than α) such that for every
q ∈ B(β ; p)∩M (where B(β ; p) is the ball of radius β centered at p), every germ of a complex
variety through q extends to ∆α(p) (the p is not a typo).

If we pick q ∈ S close enough to p, for example, ‖p−q‖< min{α,β ,δ}, then when we find
the subvariety X̃ of ∆α(p)∩M that contains X and we notice that ϕ attains its maximum on X̃ away
from the boundary of ∆α(p) (as X̃ ⊂ S).

A holomorphic function cannot attain a maximum on a variety unless it is constant on the
variety.

Exercise 2.6.1: Prove maximum principle for varieties. If a holomorphic f attains a maximum on a
variety X̃ , then f restricted to X̃ is constant. Hint: parametrize a curve in the variety near the point

Thus the variety must lie within some {ψ = c} for some constant c with |c|< 1. But δ could
have been picked small enough such that {ψ = c}∩S is a compact subset of ∆α(p) and so X̃ is a
compact subset of ∆α(p). By similar reasoning as before X̃ has to be trivial.



Chapter 3

Proper Maps of Balls

3.1 Proper maps of balls
We have seen proper mappings before. They are continuous maps that pull back compact sets to
compact sets. We have seen that they “take boundary to boundary.” Proper maps can be viewed as
a “poor man’s biholomorphism,” as they possess one necessary (but not sufficient) condition for
having a holomorphic inverse.

We have seen that there are no proper from the polydisc to the ball. Let us consider proper maps
between balls then. Let us start with dimension 1.

Proposition 3.1.1. Let f : D→ D be a proper map. Then

f (z) = eiθ
k

∏
j=1

z−a j

1− ā jz
, (3.1)

for some real θ and some a j ∈ D (that is, f is a finite Blaschke product).

Proof. Consider E = f−1(0). E is a subvariety of D and it is compact by properness. Therefore, it
is a finite set.

Exercise 3.1.1: Finish the proof.

How about in higher dimensions. Well the story is no longer so simple.

Theorem 3.1.2 (Pinčuk / Alexander ’77 (complicated history. . . )). If f : Bn→ Bn is proper holo-
morphic map and n≥ 2, then f is an automorphism of Bn.

Remark 3.1.3. The theorem has natural generalizations to more complicated domains. For example,
proper self-mappings of strongly pseudoconvex domains are automorphisms.

37
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An automorphism of the ball is a linear fractional transformation (See Rudin [Rud80]). We
will write Aut(Bn) for the group of automorphisms. The group happens to be equivalent to the real
Lie group SU(n,1). And that is the way we will want to think of it, and we will give details in
section 3.5. We can write it in the following explicit way

f (z) =U
w−Lwz

1−〈z,w〉
(3.2)

for some w ∈ Bn, a unitary matrix U , and a linear map

Lwz = sz+
〈z,w〉
s+1

w, where s =
√

1−‖w‖2, (3.3)

although we will not find use for this form. It is interesting to note that the automorphisms do look
like Blaschke factors in one dimension. We omit the proof of the theorem.

Notice that z 7→ zd is a proper map of the disk to the disk for any d ∈ N. What happens to zd if
n≥ 2? Well, it is still there, we just need to look at tensor products and we need to allow the target
dimension to become larger.

So what if the target and domain are not of the same dimension? First let us start with the easiest
case.

Proposition 3.1.4. Let f : Bn→ BN be a proper holomorphic map. Then N ≥ n.

Proof. A proper map pulls back compact sets to compact sets. The inverse image f−1(0) is the
simultaneous vanishing of the components of f . As there are N components of f , the dimension of
the variety f−1(0) is at least n−N. Since the only compact variety is of dimension 0, we see that
n−N ≤ 0 or in other words n≤ N.

As we have foreshadowed, there do exist nontrivial mappings when the target dimension is larger
than n. As long as the maps are nice up to the boundary, there is some bound on their complexity.

Theorem 3.1.5 (Forstnerič ’89 [For89]). Let N ≥ n ≥ 2 be given. If F : Bn → BN is a proper
holomorphic mapping that is smooth (C∞) up to the boundary, then F is rational.

In fact, the degree of F is bounded by some number D(n,N).

The degree of a rational mapping is the maximum of the degree of the numerator and the
denominator when written in lowest terms.

Note that the requirement that the mapping extends to the boundary is necessary if N > n. There
exist non-rational maps from Bn to BN that are only continuous up to the boundary. In fact such
maps already exist when N = n+1, see [Dor90].

We will want to classify rational proper mappings of balls. We will therefore need some notion
of equivalence.
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Definition 3.1.6. We say F : Bn→ BN and G : Bn→ BN are spherically equivalent if there exist
χ ∈ Aut(Bn) and τ ∈ Aut(BN) such that the following diagram commutes:

Bn

χ

��

F // BN

τ

��
Bn

G // BN

(3.4)

To simplify notation, we also define spherical equivalence for different target dimensions.
Suppose that N < M and F : Bn→ BN and G : Bn→ BM. Let F ⊕0 denote the mapping F with
M−N zero components appended. We say F and G are spherically equivalent if F⊕0 and G are
spherically equivalent.

As an example, we get the following complete classification in the case of low dimensions.

Theorem 3.1.7 (Faran ’82 [Far82]). If F : B2 → B3 is a proper mapping that is C3 up to the
boundary, then F is spherically equivalent to one of

(z1,z2) 7→ (z1, z2, 0) (“Linear embedding”)

(z1,z2) 7→ (z1, z1z2, z2
2) (“Whitney map”)

(z1,z2) 7→ (z2
1,
√

2 z1z2, z2
2) (“Homogeneous”)

(z1,z2) 7→ (z3
1,
√

3 z1z2, z3
2) (“Faran map”)

The proof is a complicated argument using moving frames. The theorem implies that the
maximum possible degree for a map from B2 to B3 is 3.

Note that every mapping that Faran found is monomial. That is, every component is a single
monomial. For higher n, some information is known. The following theorem is a result that is a
culmination of successive improvements of theorems of Webster ’79 [Web79], Faran ’86 [Far86],
Cima-Suffridge ’83 [CS83], Huang ’99 [Hua99], Huang-Ji ’01 [HJ01], Hamada ’05 [Ham05], and
Huang-Ji-Xu ’05 and ’06 [HJX06]. Many of the later developments reduce the regularity to the
boundary necessary for rationality. For simplicity we will state the theorem for rational maps.

Theorem 3.1.8. Let F : Bn→ BN be rational proper and holomorphic.

(i) If n > 1 and N < 2n−1, then F is spherically equivalent to the identity.

(ii) If n≥ 3 and N ≤ 2n−1, then F is spherically equivalent to a monomial map of degree two or
less.

(iii) If n≥ 4 and N ≤ 3n−4, then F is spherically equivalent to a monomial map of degree two or
less.
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As we will learn how to classify monomial mappings, and in fact all mappings of degree 2 or
less, we do not give the formulas here.

D’Angelo conjectured that the sharp bound (the constant D(n,N) from Forstnerič’s theorem)
for the degree of a rational proper mapping F : Bn→ Bn is

degF ≤

{
2N−3 if n = 2,
N−1
n−1 if n≥ 3.

(3.5)

Obviously there is no degree bound when n = 1. As there are examples where equality is satisfied
the inequalities are sharp if true. We will see how to construct the sharp maps when n≥ 3 in the
next section.

3.2 Tensors and polynomial proper maps
What happened to zd? Let z be the identity map and consider

z⊗d = z⊗ z⊗·· ·⊗ z. (3.6)

In simple terms if f = ( f1, . . . , fn) and g = (g1, . . . ,gm) are mappings then, f ⊗g means

f ⊗g =⊕n
j,k=1 f jgk (3.7)

For example, if n = 2 and d = 2, then z⊗2 is the mapping

(z1,z2) 7→ (z2
1, z1z2, z2z1, z2

2). (3.8)

To see that z⊗d is a proper mapping of balls, we simply check that it takes the unit sphere to the
unit sphere. To see this we notice that

‖ f ⊗g‖= ‖ f‖‖g‖ . (3.9)

Therefore
‖z⊗d‖= ‖z‖d. (3.10)

Therefore if ‖z‖= 1, then ‖z⊗d‖= 1.
We notice that some of the components on z⊗d are redundant. For example take the example

with n = 2 and d = 2. A priory, z⊗2 takes B2 to B4. We can however compose with a unitary
mapping to obtain

(z1,z2) 7→ (z2
1,
√

2 z1z2, z2
2, 0). (3.11)

We can ignore the trailing zero and define

H2,2(z1,z2)
def
= (z2

1,
√

2 z1z2, z2
2). (3.12)

So H2,2 is a proper map from B2 to B3.
We define Hn,d in a similar fashion.
A mapping is a homogeneous polynomial of degree d if F(tz) = tdF(z).
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Theorem 3.2.1 (Rudin ’84). Suppose that F : Bn→ BN be proper and a homogeneous polynomial
of degree d, then F is spherically equivalent (actually unitarily equivalent) to Hn,d .

There is an elegant proof of this theorem by D’Angelo.

Proof. On the sphere we have that

‖F(z)‖= ‖z‖d = ‖z⊕d‖= ‖Hn,d(z)‖= 1 (3.13)

Now take any w ∈ Cn. Write w = tz, where t ≥ 0 and ‖z‖= 1. By homogeneity we have

‖F(tz)‖= ‖tdF(z)‖= td‖F(z)‖= td‖Hn,d(z)‖= ‖tdHn,d(z)‖= ‖Hn,d(tz)‖ (3.14)

Hence ‖F(w)‖= ‖Hn,d(w)‖ for all w ∈Cn. As all components of Hn,d are linearly independent, we
know that we may only need to add zero components to Hn,d and obtain a constant unitary matrix
such that

F =U(Hn,d⊕0) (3.15)

If F already had the same number of components as Hn,d then the zeros are not necessary.

We can also only tensor on a subspace. For example, let z = (z′,zn). Then we can create the
so-called Whitney map

z′⊕ (zn⊗ z) = (z1,z2, . . . ,zn−1,znz1,znz2, . . . ,z2
n). (3.16)

Let us see that this map takes sphere to sphere. Suppose ‖z‖= 1. Then

‖z′⊕ (zn⊗ z)‖2 = ‖z′‖2 +‖zn⊗ z‖2 = ‖z′‖2 + |zn|2 ‖z‖2 = ‖z′‖2 + |zn|2 = ‖z‖2 = 1. (3.17)

The map has 2n−1 components and is of degree 2. Therefore, for n≥ 3, this map gives equality in
the conjectured degree bound.

To create other maps with high degree and low number of terms we could simply repeat the
procedure. For example to create a degree 3 map we write

z′⊕
(
zn⊗

(
z′⊕ (zn⊗ z)

))
. (3.18)

The procedure is simply to isolate the z2
n component from the Whitney map and tensor on that 1

dimensional subspace with the identity again. This map and maps constructed in the same way are
sometimes called the generalized Whitney maps.

In general we can tensor by the identity on any subspace to obtain another proper map of balls.
For example take a proper map of balls written as F(z) = ( f1(z), f2(z)) for two vector valued maps
f1 and f2. Then we can simply obtain the map

f1⊕ ( f2⊗ z) = ( f1(z), f2(z)z1, . . . , f2(z)zn). (3.19)

The proof that this new map takes the sphere to the sphere is virtually identical to the computation
above. We notice that when working on the level of the norm squared, tensoring is simply the more
convenient multiplication of polynomials.
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3.3 Monomial proper maps
Before tackling rational proper maps, let us first say a little bit about the monomial maps (every
component is a single monomial). Further, let us classify all the degree 2 monomial proper ball
maps. We will use this classification later.

Let us start with setting up a real algebraic problem. Let F : Bn→ BN be a proper monomial
map. That is

‖F(z)‖2 = 1 when ‖z‖2 = 1. (3.20)

Not that if a component of F is zα , then the corresponding term in ‖F(z)‖2 is |czα |2. Therefore if
we replace |z1|2 with x1, |z2|2 with x2, etc. . . , then |czα |2 becomes

√
|c|xα . The form ‖z‖2 becomes

x1 + · · ·+ xn. Therefore, assuming that the components of F were linearly independent (were
distinct monomials) we obtain a real polynomial p(x) with positive coefficients such that

p(x) = 1 when ∑
j

x j = 1, (3.21)

and such that p has N terms. It is easy to see that up to multiplying each component by some eiθ we
can start with p(x) and obtain a proper map of balls.

Lemma 3.3.1. If F : Bn→ BN is a proper monomial map, then F is spherically equivalent to a
monomial map taking the origin to the origin by post-composing with a diagonal matrix.

Proof. Take F and produce p(x) as above. If F(0) 6= 0, then p(0) 6= 0. In other words, p(x) has a
constant term p(0). We note that 0 < p(0)< 1. If p(0) = 1, then p(x) = 1 and F was not a proper
map of balls. It is easy to see that p(0)> 1 is impossible.

Then p(x)−p(0)
1−p(0) is a polynomial with nonnegative coefficients with no constant term that is one

on x1 + · · ·+ xn = 1. The equivalence of the induced maps is by a diagonal matrix.

Lemma 3.3.2. If F : Bn→ BN is a proper monomial map of degree 2 or less taking. Then F is
spherically equivalent to one map of the form

Dz⊕
(
(
√

I−D2 z)⊗ z
)
, (3.22)

where D =

[ t1 0
. . .

0 tn

]
with 0≤ t1 ≤ t2 ≤ . . .≤ tn ≤ 1. If F(0) = 0, then equivalence is by permuting

the variables and components of the map and post-composing with unitary matrix.

Proof. Take F and construct p(x) as above. We obtain a polynomial p(x) of degree 2, such that
p−1 is divisible by (x1 + · · ·+ xn−1), p(0) = 0, and all coefficients of p are nonnegative.

Write p = p1 + p2 where p1 is of degree 1, and p2 is of degree 2. Homogenize p− 1 by
p1(x)t + p2(x)− t2 and note that this polynomial is divisible by (x1 + · · ·+ xn− t). By setting
t = 0 we note that p2 is divisible by (x1 + · · ·+ xn). Write a polynomial q = p1 +

p2
x1+···+xn

. The
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polynomial q is of degree 1, q(0) = 0, and q− 1 is also divisible by (x1 + · · ·+ xn− 1). Hence,
q = x1 + · · ·+ xn.

So p was constructed from q by a partial tensoring operation, which in this language is just
multiplication of a part of q by (x1 + · · ·+ xn). The p1 corresponds to Dz. Then obviously p2

x1+···+xn

must correspond to
√

I−D2 z, where I−D2 ≥ 0. By a permutation matrix, we can sort the entries
in D. The unitary matrix comes about because of the translation from the real algebraic setting back
to proper mappings, possibly to account for components of the map not being linearly independent.
Do note that the equivalence is taking into account possibly adding zero components.

We can symmetrize the tensor by a unitary matrix just as we did for the homogeneous map. For
example, for n = 2 we have the following family of maps.

(z1,z2) 7→
(√

sz1,
√

t z2,
√

1− sz2
1,
√

2− s− t z1z2,
√

1− t z2
2
)
, 0≤ s≤ t ≤ 1. (3.23)

Here we took D =
[√

s 0
0
√

t

]
and then symmetrized the two components corresponding to z1z2. We

will see later that monomial maps taking the origin to the origin are spherically equivalent if and
only if they are equivalent by a permutation of the variables and components and post-composing
with a unitary. In particular, the maps above are inequivalent for different parameters (s, t). It
is not too difficult to prove this by directly applying the automorphisms and noting that distinct
monomials are linearly independent. However, for degree 2 maps, the result will be automatic from
classification of the underlying Hermitian forms.

Once we have that the monomial maps above are mutually inequivalent, then we see that for
example for n = 2 the moduli space of maps of degree 2 or less is a closed triangle with one
corner being the identity, another corner being the Whitney map and the last corner being H2,2. See
Figure 3.1.

Identity (N = 2)

H2,2 (N = 3) Whitney (N = 3)N = 4

N = 4N = 5

N = 5

Figure 3.1: Moduli space of degree 2 proper maps of B2 to BN in the s, t plane. The minimal target
dimension N is marked for each vertex, edge, and the interior.



44 CHAPTER 3. PROPER MAPS OF BALLS

Similarly, the moduli space for n dimensions is an n+1 dimensional simplex with one vertex
for the identity, and the other vertices for maps obtained by tensoring with the identity on 1, 2, . . . ,
n dimensional subspace. We will prove that this is the moduli space for all rational degree 2 proper
maps of balls.

3.4 Projective setting and hyperquadrics
It turns out that to handle rational maps, it is easiest to work in the complex projective space.
Rational maps become polynomials and linear fractional maps (automorphisms of the ball) become
linear maps. We will be able to simply apply linear algebra.

Definition 3.4.1. The n-dimensional (complex) projective space CPn, or just Pn, is the space of
complex lines through the origin in Cn+1.

The space Pn is an n dimensional complex manifold. If we look at all the points z ∈ Cn+1 such
that zn+1 = 1, then we get a one-to-one correspondence of Cn with an open subset of Pn. These
coordinates are the so-called inhomogeneous coordinates on Pn. We define a natural projection

τ : Cn+1 \{0}→ Pn (3.24)

by taking a point z ∈ Cn+1 \{0} to the point in Pn representing the unique line through z and 0 in
Cn+1. We will simply write τ regardless of n.

Exercise 3.4.1: Check that τ is holomorphic (check this in some set of inhomogeneous coordinates).

The “coordinates” of Cn+1 are called the homogeneous coordinates. Do note however that these
are not actual coordinates as z j is not an actual function on Pn. The reason for doing this is the
following proposition. First let us define homogeneity.

Definition 3.4.2. A polynomial p(z), z ∈ Cn+1 is said to be homogeneous of degree d if

p(tz) = td p(z) (3.25)

for all t ∈ C. A polynomial p(z, z̄) is said to be bihomogeneous of bidegree (d,d) if

p(tz, z̄) = p(z, tz̄) = td p(z, z̄) (3.26)

for all t ∈ C.

Proposition 3.4.3. A zero set of a homogeneous holomorphic polynomial p(z) (z ∈ Cn+1) is a well
defined subset of Pn. A zero set of a bihomogeneous polynomial p(z, z̄) is a well defined subset.

Proof. Trivial: If p(z) = 0, then p(tz) = 0 for all t and therefore p is zero on the whole line through
the origin. As Pn is the space of lines, p(z) = 0 is a well defined set. Similarly with a bihomogeneous
polynomial.
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In fact by setting a variable to 1, we get a polynomial equation in n variables. Thus the zero
sets above are actual varieties (real or complex). So while the homogeneous and bihomogeneous
polynomials have no well defined values on Pn, they do have well defined zero sets.

Let us now define hyperquadrics (including the sphere) in inhomogeneous coordinates. The
hyperquadric Q(a,b) is defined as

Q(a,b) def
= {z ∈ Ca+b : |z1|2 + · · ·+ |za|2−|za+1|2−·· ·− |za+b|2 = 1}. (3.27)

To extend Q(a,b) to a subset of Pn we define

HQ(A,B) def
= {z ∈ CA+B : |z1|2 + · · ·+ |zA|2−|zA+1|2−·· ·− |zA+B|2 = 0}. (3.28)

HQ(A,B) is defined as a cone in CA+B and therefore we can identify it with a subset of PA+B−1.
Therefore we will not make a distinction and write HQ(A,B) both for the cone in CA+B and for
the subset of PA+B−1. Now note that when restricted to the patch defined by zA+B = 1, we get that
HQ(A,B) = Q(A,B−1).

Now suppose that we have a homogeneous (holomorphic) polynomial map

f : Cn+1→ Cm+1. (3.29)

Exercise 3.4.2: Show that a homogeneous f takes lines through the origin in Cn+1 to lines through
the origin in Cm+1.

Proposition 3.4.4. Let f : Cn+1→ Cm+1 be a homogeneous holomorphic polynomial map. Then
V =V ( f )⊂ Pn be the common zero locus of the components of f . Then f induces a holomorphic
map F : Pn \V → Pm given by F = τ ◦ f ◦ τ−1. On any pair of inhomogeneous coordinate patches,
the map is rational.

We will simply call f a rational map. Generally we will divide through by any common factor.
Without proof we note that this will mean that V will be of codimension 2 or more in Pn.

Proof. The map is well defined by the exercise. Restrict to some inhomogeneous coordinate patch.
If we are not in V , then one of the components of f is nonzero near some point, suppose that it is
fm+1. Now take the map

f̃ =
(

f1

fm+1
,

f2

fm+1
, . . . ,

fm

fm+1

)
. (3.30)

As fm+1/fm+1 is always one. Thus f̃ is a well defined rational map into the inhomogeneous coordinate
patch where the (m+1)th component of Cm+1 is one.

We state the next observation as a proposition. The proof is obvious.
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Proposition 3.4.5. Let X ⊂ Pn be a set such that r(z, z̄) is a bihomogeneous polynomial of bidegree
(d,d) that vanishes on X. Suppose that the signature pair of r is (a,b). Decompose r(z, z̄) =
‖ f (z)‖2−‖g(z)‖2 for f and g that are homogeneous of degree d. Then ( f ,g) induces a rational
map of Pn to Pa+b−1. As long as X is not contained in the common zero set of f and g, then ( f ,g)
is a rational map that takes an open subset of X to HQ(a,b).

In particular we are interested in X = HQ(n,1), which is the sphere S2n−1 in homogeneous
coordinates. If r(z, z̄) vanishes on HQ(n,1), then r is divisible by the defining equation of HQ(n,1).
That is

r(z, z̄) = q(z, z̄)
(
|z1|2 + · · ·+ |zn|2−|zn+1|2

)
(3.31)

for some bihomogeneous q(z, z̄). If the signature pair of r(z, z̄) is (N,1), then when decomposed as

r(z, z̄) = ‖ f (z)‖2−|g(z)|2 (3.32)

the map ( f ,g) takes (an open subset) HQ(n,1) to HQ(N,1). To make this claim we note that
HQ(n,1) is a real hypersurface and thus cannot possibly be contained in the common zero set of f
and g. Thus if we take f

g and set zn+1 = 1, we obtain a rational mapping that takes sphere to sphere.

On the other hand, suppose that we have a rational mapping f
g that takes S2n−1 ⊂ Cn to

S2N−1 ⊂CN . We homogenize f and g (call the homogenized versions f̃ and g̃). Then the map ( f̃ , g̃)
takes HQ(n,1) to HQ(N,1). If we suppose that f and g had no common factors and were linearly
independent, then when we write

r(z, z̄) =
∥∥ f̃ (z)

∥∥2−|g̃(z)|2 , (3.33)

we note that r must have signature pair (N,1).
Thus we have an identification of rational maps of spheres with bihomogeneous polynomials

vanishing on HQ(n,1) with signature pair (N,1). The trouble is that the r(z, z̄) that we obtain has
many different decompositions. We need to know how are the maps corresponding to two different
decompositions related.

3.5 Hermitian forms
As before, 〈·, ·〉 denotes the standard Hermitian inner product. Let A be a Hermitian matrix, then a
Hermitian form is simply

〈Az,z〉, (3.34)

where z ∈ Cn+1. As we will often talk of the zero sets of Hermitian forms, define

VA
def
=
{

z ∈ Cn+1 : 〈Az,z〉= 0
}
. (3.35)
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Let Z = Zd be the degree d Veronese map

(z1, . . . ,zn+1)
Z7→ (zd

1,z
d−1
1 z2, . . . ,zd

n+1), (3.36)

that is, the map whose components are all the degree d monomials. As we saw before we will think
of a bihomogeneous polynomial r(z, z̄) as

r(z, z̄) = 〈AZ ,Z 〉, (3.37)

where A matrix of coefficients.
Let f be a rational map of Pn to PN . In homogeneous coordinates, f is given by n+1 homoge-

neous polynomials f = f1, f2, . . . , fn+1. Let us formulate what it means for f to take VJ ⊂ Pn to
VV ⊂ PN for two Hermitian matrices J and V . We can simply plug f into the equation for VV to
obtain

〈V f (z), f (z)〉= 0. (3.38)

Then f takes VJ to VV if and only if there exists a bihomogeneous real polynomial q such that

〈V f (z), f (z)〉= q(z, z̄)〈Jz,z〉. (3.39)

To classify f that take VJ to VV we first need to find out when do such mappings differ by an
automorphism preserving VV .

Lemma 3.5.1. Let V be a nonsingular Hermitian matrix. Let f and g be homogeneous polynomial
maps of Cn+1 to CN+1 such that

〈V f (z), f (z)〉= 〈V g(z),g(z)〉. (3.40)

Suppose that f has linearly independent components. Then

g(z) =C f (z) (3.41)

for some invertible matrix C such that C∗VC =V .

Proof. We write f (z) = FZ for some complex matrix F with linearly independent rows. Then

〈V f (z), f (z)〉= 〈V FZ ,FZ 〉= 〈F∗V FZ ,Z 〉. (3.42)

Similarly, g(z) = GZ . Thus 〈V f (z), f (z)〉= 〈V g(z),g(z)〉 implies that

〈(F∗V F−G∗V G)Z ,Z 〉= 0. (3.43)

We have a real polynomial that is identically zero and so its coefficients are zero. Thus F∗V F =
G∗V G. By permuting the monomials, we could suppose that F = [F1 F2 ], where F1 is an invertible
matrix. We write G = [G1 G2 ], where G1 is square. Now F∗V F = G∗V G implies F∗1 V F1 = G∗1V G1.
Let C = G1F−1

1 . Clearly C∗VC =V and G1 =CF1. We have our matrix C we simply need to show
that G2 =CF2. F∗V F = G∗V G also implies F∗1 V F2 = G∗1V G2. Now compute

F∗1 V F2 = G∗1V G2F∗1 C∗V G2 = F∗1 VC−1G2.

As F1 and V are invertible we get G2 =CF2 and thus g(z) =C f (z).
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Lemma 3.5.1 says that if 〈V f (z), f (z)〉 = 〈V g(z),g(z)〉, then f and g are equivalent up to a
linear map of the target space preserving the form defined by V . Note that these linear maps (up to
a scalar multiple) correspond exactly to linear fractional transformations that take VV to itself and
preserve the sides of VV . As we are working in homogeneous coordinates, we must also always
consider the possibility 〈V f (z), f (z)〉= λ 〈V g(z),g(z)〉 for λ > 0. We can then simply f or g and
use the proposition. Note that we will only consider V where the number of positive and negative
eigenvalues are not equal. Otherwise we would also want to consider maps that take V to −V . The
V we will consider defines the ball and always has only one negative eigenvalue.

For the hyperquadric HQ(a,b) we let V be the matrix with a ones and b negative ones on the
diagonal. Thus for a sphere, V will always have N ones and one −1. Similarly for J. Let U(N,1)
be the set of matrices M such that M∗V M = V . U(N,1) is called the generalized unitary group.
It is left as an easy exercise that up to scaling U(N,1) represent linear fractional transformations
preserving the sphere. The scaling comes about because we are working in homogeneous coordi-
nates. Therefore, the set of linear fractional transformations that preserve the sphere is the Lie group
SU(N,1) (the generalized special unitary group), that is, matrices in U(N,1) with determinant 1.

Exercise 3.5.1: Linear fractional transformations preserving the S2N−1 are in one-to-one corre-
spondence with matrices in SU(N,1).

Corollary 3.5.2. Let f and g be rational CR maps of S2n−1 to S2N−1 and let V be a Hermitian form
defining HQ(N,1). Let fh and gh be the corresponding homogeneous polynomial maps of Cn+1 to
CN+1. Suppose that the components of fh are linearly independent. Then f and g are spherically
equivalent if and only if there exists a T ∈U(n,1) and λ > 0, such that

〈V fh(T z), fh(T z)〉= λ 〈V gh(z),gh(z)〉 for all z ∈ Cn+1. (3.44)

The requirement that components of fh are linearly independent simply translates to the require-
ment that the image of f does not lie in a hyperplane.

The proof follows immediately by putting together the results of the preceding discussion.
Similar lemma follows for all hyperquadrics. The only technical issue that comes up with general
hyperquadrics is when the number of positive and negative eigenvalues are equal, in which case we
would have to allow λ to be negative.

Consequently, by working in projective space and with Hermitian forms rather than the maps
themselves, we reduce the spherical equivalence problem to an equivalence problem using only
the group of automorphisms of the source. Any real polynomial corresponds to a rational map
f : Pn→ PN taking the zero set of the polynomial to a hyperquadric with the same signature as the
coefficient matrix. Therefore to classify all maps taking one hyperquadric to another hyperquadric
up to the group of linear fractional maps that fix the hyperquadric, we need only classify real
polynomials that vanish on the source hyperquadric and have the correct signature.

Let J define HQ(n,1). If we have a Hermitian matrix B such that 〈BZd,Zd〉 is zero on VJ , then

〈BZd,Zd〉= 〈AZd−1,Zd−1〉〈Jz,z〉, (3.45)
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for some Hermitian matrix A. We take an automorphism preserving the set defined by J, that is, a
matrix T such that T ∗JT = J. To find all maps equivalent by an automorphism of the source we
compute the canonical form of

〈AZd−1(T z),Zd−1(T z)〉〈Jz,z〉= 〈T̂ ∗AT̂Zd−1,Zd−1〉〈Jz,z〉, (3.46)

where T̂ is the matrix defined by Zd−1(T z) = T̂Zd−1(z). Hence, we will look for a canonical form
of the pair (J,A) under ∗-conjugation by T̂ and T . When d = 2, then T̂ = T and matters become
simpler.

3.6 Degree 2 maps
Let us consider degree-two CR maps of spheres. We will prove the following theorem.

Theorem 3.6.1. Let f : S2n−1 → S2N−1, n ≥ 2, be a rational CR map of degree 2. Then f is
spherically equivalent to a monomial map.

Proof. By the preceding section, to study degree 2 monomial sphere maps, we simply study the
equation

〈BZ ,Z 〉= 〈Az,z〉〈Jz,z〉, (3.47)

where Z is the degree two Veronese mapping, B is the matrix F∗V F , F is the matrix of coefficients
of the map under consideration, V defines HQ(N,1), and J defines HQ(n,1).

If we start on the right hand side, we multiply 〈Az,z〉〈Jz,z〉 and obtain a B, we simply need to
check that B has the right signature pair, that is only one negative eigenvalue. By going through
all possible Hermitian matrices A we get all degree-two maps of VJ to all hyperquadrics. Then we
restrict to those matrices A where the resulting matrix B has the right signature.

By composing with a unitary and removing zero components, we can assume that the compo-
nents of f are linearly independent.

Exercise 3.6.1: a) Show that if f is a CR sphere map, then there exists a unitary U such that
U f = f̃ ⊕ 0, where f̃ has linearly independent components. b) Find an example of a map of
hyperquadrics whose components are not linearly independent where 〈V f (z), f (z)〉= 1 for all z
(hence for hyperquadric maps, matters are not as simple).

We take T ∈U(n,1) and consider

〈AT z,T z〉〈JT z,T z〉= 〈T ∗AT z,z〉〈Jz,z〉. (3.48)

Therefore, if we can put a pair of Hermitian matrices into canonical form by ∗-congruence by
nonsingular matrices, where one of the canonical forms is J, then we have classified all maps from
the sphere to any hyperquadric up to the right equivalence. If we then pick out only those canonical
pairs that give maps to spheres, we have classified all degree 2 maps of spheres.
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Classification of a pair of matrices has a long history (going back to Kronecker). The results
we are interested in date to the 1930s. A survey by Lancaster and Rodman [LR05] is useful. For
convenience let us give the result as formulated in a paper by Horn and Sergeichuk [HS06], whose
canonical form is easy to work with. They also give an algorithm for computing the canonical form,
so we also have an algorithm for producing a normal form for maps of hyperquadrics.

Before we can give the result of Horn and Sergeichuk, we first define the building block matrices
used for their canonical form. Let us define Mn as the n×n matrix with ones on the subdiagonal
and the superdiagonal, and similarly Nn as the n×n matrix with negative ones on the subdiagonal
and ones on the super diagonal.

Mn
def
=


0 1 0

1 0
. . .

. . .
. . . 1

0 1 0

 , Nn
def
=


0 1 0

−1 0
. . .

. . .
. . . 1

0 −1 0

 . (3.49)

Let Jn(λ ) be the n×n Jordan block with eigenvalue λ (λ on the diagonal, ones on the superdiagonal).
Finally define

∆n(α,β )
def
=


0 α

α β

. .
.

. .
.

α β

α β 0

 . (3.50)

We let In denote the n×n identity matrix.

Theorem 3.6.2 (Horn-Sergeichuk [HS06]). Let A, B be a pair of Hermitian matrices. They are
simultaneously ∗-congruent to a direct sum of blocks of the following four types, determined
uniquely up to permutation.

(i)
(
Mn, iNn

)
,

(ii) ±
(
∆n(1,0),∆n(α,1)

)
, α ∈ R,

(iii) ±
(
∆n(0,1),∆n(1,0)

)
,

(iv)
([

0 In
In 0

]
,

[
0 Jn(α + iβ )∗

Jn(α + iβ ) 0

])
, α,β ∈ R, α +β i 6= i, β > 0.

When we write ±
(
∆n(1,0),∆n(α,1)

)
we mean either the pair

(
∆n(1,0),∆n(α,1)

)
or the pair(

∆n(−1,0),∆n(−α,−1)
)
. Similarly for ±

(
∆n(0,1),∆n(1,0)

)
.

We take the pair (J,A), where J defines the HQ(n,1). We will put the pair (J,A) into canonical
form. If we can diagonalize J and A simultaneously by ∗-congruence, then the map is equivalent
to a monomial map allowing negative exponents. It is easy to see that if the map takes sphere to
sphere, then no negative exponents are allowed.
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Exercise 3.6.2: A monomial CR map taking sphere to sphere has no negative exponents.

So if (J,A) is simultaneously diagonalizable, we are done. Therefore, let us see what happens in
the case when we cannot simultaneously diagonalize J and A. From now on, assume that at least
one block in the canonical form is larger than 1×1.

As J defines the sphere, all blocks except one in the canonical form for J must be 1×1 blocks.
All the possible blocks of larger size have at least 1 negative eigenvalue, and hence there can only
be one of these. Furthermore, J has no zero eigenvalues. Such blocks that have at most 1 negative
eigenvalue and no zero eigenvalues are M2, ±∆2(1,0), ∆3(1,0),

[
0 I1
I1 0

]
. All these blocks are 2×2

or 3×3. Therefore, it will be sufficient to simply consider source dimension n = 2. Only in two
dimensions can the map possibly be non-monomial. Thus we let n = 2 in all that follows. Therefore,
J and A are both 3×3, and we compute all the normal forms for the Hermitian forms that arise
from degree-two maps.

Note that
[

0 I1
I1 0

]
= M2, and iN2 can be obtained by swapping variables and letting α + iβ = i in

the block
[

0 α−iβ
α+iβ 0

]
. So we need not consider the block M2, but just need to allow α + iβ = i.

Let us compute. First take the situation corresponding to the block ∆2 in J. That is we have the
following canonical form for (J,A)1 0 0

0 0 1
0 1 0

 ,
α 0 0

0 0 β

0 β 1

3. (3.51)

For α,β ∈ R. Take Z = (z2
1,z1z2,z1z3,z2

2,z2z3,z2
3). The form corresponding to the product

〈Az,z〉〈Jz,z〉= 〈BZ ,Z 〉 is

B =


α 0 0 0 0 0
0 0 α +β 0 0 0
0 α +β 1 0 0 0
0 0 0 0 0 β

0 0 0 0 2β 1
0 0 0 β 1 0

 . (3.52)

If α +β 6= 0, then this form clearly has at least two negative eigenvalues (notice the block structure).
If β =−α 6= 0, then it is also not hard to see that there must still be at least two negative eigenvalues.
When β = α = 0, A has rank one, and we have a first degree map.

The forms for the related canonical pair
([1 0 0

0 0 −1
0 −1 0

]
,

[
α 0 0
0 0 β

0 β −1

])
are similar.

Next pair to consider is 0 0 1
0 1 0
1 0 0

 ,
0 0 α

0 α 1
α 1 0

 , (3.53)
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for α ∈ R. After multiplying the forms we get

B =


0 0 0 0 0 α

0 0 0 0 2α 1
0 0 2α 0 1 0
0 0 0 α 1 0
0 2α 1 1 0 0
α 1 0 0 0 0

 . (3.54)

This form also always has at least two negative eigenvalues. To see this fact, notice that the form
has a zero eigenvalue only when α = 0. Hence, it is enough to check the signature of the matrix for
α = 0.

Finally we get to the canonical pair1 0 0
0 0 1
0 1 0

 ,
α 0 0

0 0 β − iγ
0 β + iγ 0

 , (3.55)

for α,β ∈ R and γ > 0. We note that we can just rescale to have γ = 1 if needed. After multiplying
the forms we get

B =


α 0 0 0 0 0
0 0 α +β − iγ 0 0 0
0 α +β + iγ 0 0 0 0
0 0 0 0 0 β − iγ
0 0 0 0 2β 0
0 0 0 β + iγ 0 0

 . (3.56)

Again, because of the block structure and the fact that γ 6= 0, we easily see that this form must have
at least two negative eigenvalues.

Hence we have proved that all degree 2 sphere maps are monomial. We have already classified
all monomial maps. There is one little piece missing. We need to show that two monomial maps
taking zero to zero with linearly independent components (distinct monomials) are spherically
equivalent if and only if they are equivalent up to swapping of variables, reordering coefficients
and a diagonal unitary matrix. Let us prove this for degree two maps using the machinery we have
developed.

One direction is simple of course, so let us concentrate on the hard direction. Suppose that
f and g are monomial degree-two maps that are spherically equivalent. Write down the forms
corresponding to ‖ f (z)‖2−1 and ‖g(z)‖2−1 in homogeneous coordinates and find the matrix A f
for f and Ag for g. We notice that these matrices must be diagonal. They are in canonical form, and
the canonical form is canonical up to permutation of the blocks (hence permutation of variables).
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Hence after a permutation of variables we get that the diagonal entries of A f and Ag are equal. The
diagonal entries in A f and Ag are the absolute values squared of the coefficients. We are done.

Let us state the result in inhomogeneous coordinates.

Theorem 3.6.3. Let f : S2n−1→ S2N−1, n≥ 2, be a nonconstant rational CR map of degree 2 or
less. Then f is spherically equivalent to a monomial map.

In particular, f is equivalent to a map taking (z1, . . . ,zn) to(√
t1 z1,
√

t2 z2, . . . ,
√

tn zn,
√

1− t1 z2
1,
√

1− t2 z2
2, . . . ,

√
1− tn z2

n,√
2− t1− t2 z1z2,

√
2− t1− t3 z1z3, . . . ,

√
2− tn−1− tn zn−1zn

)
,

0≤ t1 ≤ t2 ≤ . . .≤ tn ≤ 1. (3.57)

Furthermore, all maps of the form (3.57) are mutually spherically inequivalent for different parame-
ters (t1, . . . , tn).

We note that for the special case n = 2 a classification theorem was proved by Ji and Zhang. The
fact that the maps are all equivalent to monomial maps is new however. Furthermore, the moduli
space is much easier to see in our formulation.

We also note one minor point from the proof. As long as the source is a sphere, we can let the
target be any hyperquadric and we still obtain that such maps are equivalent to monomial maps
except for perhaps two variables.

3.7 Monomial degree estimates
Let us end the course with a quick tour of the degree estimates proof monomial maps. We prove
only the two dimensional case here as the three dimensional case is much more complicated. The
original proof of a degree estimate in n = 2 is due to D’Angelo-Kos-Riehl [DKR03]. The modified
more general theorem proved below was done by Lebl-Peters [LP11]. We have noted that studying
monomial CR sphere maps is equivalent to studying real polynomials p(x,y) such that p(x,y) = 1
on x+ y = 1 and such that p has positive coefficients. We will make one more change. We will
work in the projective space, so we will add a homogenizing variable t. We will further replace t
with −t and study polynomials P(x,y, t) such that P(x,y, t) = 0 on x+ y+ t = 0.

Definition 3.7.1. Denote by I = I (2) the set of homogeneous polynomials P(x,y, t) such that
P(x,y, t) = 0 on x+ y+ t = 0. We say P is irreducible if P cannot be written as P = P1 +P2, where
P1,P2 ∈I and P1 and P2 share no common monomials. We define p-degree of P as the smallest
integer d such that P(x,y, t) = xiy jtkR(x,y, t) for polynomial R of degree d. Let

N(P) = # of distinct monomials in P. (3.58)

We will prove the following theorem.
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Theorem 3.7.2. If P ∈I (2) is irreducible and of p-degree d, then

d ≤ 2N(P)−5. (3.59)

As a corollary we obtain.

Corollary 3.7.3. Let F : B2→ BN be a monomial proper map of degree d. Then

d ≤ 2N−3. (3.60)

To obtain the corollary it suffices to prove the following proposition.

Proposition 3.7.4. Let p(x,y) be a polynomial of degree d with nonnegative coefficients such that
p(x,y) = 1 when x+ y = 1. When we obtain the induced P ∈I , P is irreducible and of p-degree d.

Proof. If P were reducible, then the monomial corresponding to the constant term could only
belong to one of the summands. Therefore, there would exist a polynomial r(x,y) with nonnegative
coefficients such that r(x,y) = 0 when x+y = 1. It is not hard to see that r≡ 0. Thus P is irreducible.
When we homogenize, there will exist a td and also a monomial of degree d that does not depend
on t. Hence p-degree is d.

Definition 3.7.5. Let Q be the homogeneous polynomial

Q(x,y, t) =
P(x,y, t)
x+ y+ t

. (3.61)

We define the function D : Z2→{0,P,N} as follows. Let c j,k be the coefficient of x jyktd− j−k in Q.
Then

D( j,k) def
=


P if c j,k > 0,
0 if c j,k = 0,
N if c j,k < 0.

(3.62)

We call D the Newton diagram of Q, and we will say that D is the Newton diagram corresponding
to P.

We will call the m ∈ Z2 points of D, and we will call m a 0-point if D(m) = 0, a P-point if
D(m) = P and an N-point if D(m) = N.

Therefore, the Newton diagram of Q is an array of Ps, Ns, and 0s one for each coefficient of Q.
The condition of irreducibility will turn out to be a connectedness condition on the Newton diagram
of Q and the p-degree will be related to the size of the set of nonzero points.

We will generally ignore points m ∈ Z2 where D(m) = 0. We can give graphical representation
of D by drawing a lattice, and then drawing the values of D in the lattice. For convenience, when
drawing the lattice, we put (0,0) at the origin, and then let (0,1) be directed at angle π

3 and (1,0) at
angle 2π

3 . In the figures we will use light color circles for positive coefficients and dark color circles
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Figure 3.2: Newton diagram for Q(x,y, t) = x2 + y2 + t2− xy− yt− xt.

for negative coefficients. We will not draw the circles corresponding to the zero coefficients. See
Figure 3.2 for an example.

We will say that two points (or monomials) are adjacent if the corresponding monomials m1
and m2 if v1m1 = v2m2, where v1 is x, y, or t and v2 is x, y, or t. Between any two points (or any
two monomials) we can define the distance dist(m1,m2) as 1 if the corresponding monomials are
adjacent, and if they are not adjacent as the length of the shortest path along adjacent monomials.

The support K ⊂ Z2 of a Newton diagram D is the set of nonzero points. That is, K =
D−1({P,N}). We say that the support K of a Newton diagram D is connected if any two points of
K are joined by a path of adjacent points of K. Let #(D) be the number of nonzero points in D, in
other words, the cardinality of K.

For a set K ⊂Z2, we let K̂ ⊂Z2 be the smallest simplex that contains K. More precisely, K̂ ⊂Z2

is the smallest set such that K ⊂ K̂ and for some ( j,k) ∈ Z2 and some m ∈ N we have

K̂ = {(a,b) ∈ Z2 : a≥ j, b≥ k, a+b≤ m}. (3.63)

When K ⊂N2
0 then the diameter of K̂ in the distance defined above is easily seen to be m− j−k. We

define the size of K as the diameter of K̂ plus 1. Therefore the size of K as above is m− j− k+1.

Proposition 3.7.6. P ∈I is irreducible then D is connected.

Proof. If D is not connected, take corresponding monomials for the two components multiply by
(x+ y+ t) and note that we get two polynomials in I with no monomials in common.

Definition 3.7.7. Let D : Z2→{0,P,N} be a Newton diagram. Take ( j,k) ∈ Z2 and let

E = E( j,k) def
= {( j,k),( j−1,k),( j,k−1)}. (3.64)

We call E a node if D(E)⊂ {0,P} or D(E)⊂ {0,N}, but D(E) 6= {0}. For a diagram D let

#(D)
def
= (number of nodes in D). (3.65)

See Figure 3.3 for an example of a diagram with nodes marked. In dimension 2, the nodes are
marked with a triangle where each vertex of the triangle touches a point of the node. In dimension 3
we mark the nodes similarly with a simplex.



56 CHAPTER 3. PROPER MAPS OF BALLS
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Figure 3.3: Nodes in Newton diagrams.

The key point is that if the diagram of polynomial P ∈I has a node E( j,k), then there must
exist a term in P as the only terms of Q that can contribute to this term are those corresponding to
E( j,k).

Proposition 3.7.8. Let D be a Newton diagram with support K in two variables. Suppose that K is
of size d, is connected, contains (0,0). Then

#(D)≥ d +5
2

. (3.66)

The proof of Proposition 3.7.8 will consist of two short lemmas. We will say that a diagram D′

is an extension of D if the support K′ of D′ contains the support K of D and such that D′|K = D|K .

Lemma 3.7.9. Let D and K be as in Proposition 3.7.8. Let m < d and suppose that K contains all
points ( j,k) with j+ k ≤ m−1. Then there exists a Newton diagram D′ with support K′ ⊃ K such
that D′|K = D and such that #(D′)≤ #(D) and such that K′ contains all points ( j,k) with j+k≤m.

Proof. We change the 0-points at level k into alternating N and P-points, one connected group of
0-points of level k at a time. There must be at least one P or N-point at the k-level. There are two
cases that we should consider. In the first case, the group of 0-points has N or P-points on both
sides. In this case no new nodes can possibly be created.

If the group goes all the way to the end of the positive quadrant, then we have to consider the
two possible alternating strings of Ps and Ns. One of them will not create a new node at the point at
the boundary of the positive quadrant. See Figure 3.4. The circles with the dark borders are the
nonzero points that were added in a single step.

By induction using Lemma 3.7.9 we obtain a diagram with support K = {(a,b)∈N2
0 | a+b< d}.

Proposition 3.7.8 now follows from the following lemma.

Lemma 3.7.10. Let D be a Newton diagram in two variables with support K of size d and suppose
that K contains all (a,b) ∈ N2

0 with a+b < d. Then D has at least d+5
2 nodes.
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Figure 3.4: Filling a 2-dimensional diagram.

Proof. First count the number of nodes that involve points at level d (all 0-points) or d− 1 (no
0-points). The number of nodes is d + 1− k where k is the number of sign changes at the d− 1
level.

Now look at two adjacent levels less than d. If the number of sign changes in one level is m and
the number of sign changes in the lower level is n, then there must be at least max{m−n

2 ,0} nodes
involving points only on these two levels. Now by induction plus adding the node at the bottom will
complete the proof.

Finally we prove the following lemma that at once implies Theorem 3.7.2 as soon as we note
that the number of nodes bounds the number of terms in P.

Lemma 3.7.11. Let D be a Newton diagram with connected support K of size d in two variables.
Then

#(D)≥ d +5
2

. (3.67)

Proof. Without loss of generality we may assume that the support K contains a point (a,0) and a
point (0,b) for some a and b. By connectedness K must contain a connected path from (a,0) to
(0,b). By the proof of Lemma 3.7.9 we can change all the 0-points of D above this connected path
into P and N-points without increasing the number of nodes. By rotating the diagram swapping the
roles of the variables and repeating the procedure we obtain a filled in diagram so that we can apply
Proposition 3.7.8 to complete the proof.
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