[Go to the Tasty Bits of Several Complex Variables home page]

**May 5th 2016 edition (version 2.0):**

- On page 22, the definition of meromorphic functions is nonstandard. The standard definition is that $F$ is the quotient of holomorphic functions locally. That the definitions are equivalent for domains in ${\mathbb{C}}^n$ follows via a deep result of Oka, and our definition would be misleading when generalizing to complex manifolds. So the next version will use the standard defition. Thanks to Debraj Chakrabarti for pointing this out.
- Exercise 6.4.16, the numbers $\ell_j$ were not needed, assume they are all 1.

**November 24th 2015 edition:**

- On page 8, when it says why we can swap the order of summation, it says it is because of uniform convergence, when it should say uniformly absolutely convergent. Similar error is due to cut and paste on page 16.
- In exercise 1.2.4, the $f$ should be holomorphic in a neighborhood
- In exercise 1.4.2, X and Y should just be assumed locally compact Hausdorff, and for the extension $f(\infty) = \infty$.
- In proof of theorem 1.6.3, 1) the $\varphi$ need only be defined for $\xi = 0$. 2) The last equality shouldn't include $\det Dh$ since that does not make sense, it is $\det D\varphi$. (also $\varphi$ and $\phi$ were both used by mistake here)
- In Definition 2.1.1, the set $V$ should be assumed nonempty.
- In Definiteion 2.2.3, replace $T_pM$ with $T_p\partial U$.
- On top of page 44, there is a $\frac{1}{2}$ missing in front of the Hessian in the equation that should be $y = \frac{1}{2} x^t H x + E(x)$. Similarly a few lines down.
- Page 49, the the computation about 2/3 of the way down, when we plugged in for $w$ in $-\operatorname{Im} w$, the minus sign disappeared.
- Page 54, in the proof of Theorem 2.3.10 (tomato can principle). In the first displayed equation in the proof, the second $z_1$ is missing a conjugate sign. In the second displayed equation, the $\lambda$ mysteriously disappeared from the right hand side.
- Page 70, Exercise 2.5.7, clearly the points $p$ should be in $\partial U$.
- In Exercise 4.3.2, $f$ should be defined on $\partial U$ not $U$.

**August 21st 2015 edition:**

- On page 13, the boundary of the bidisk is $\partial {\mathbb{D}}^2 = (\partial {\mathbb{D}} \times \overline{{\mathbb{D}}}) \cup (\overline{{\mathbb{D}}} \times \partial {\mathbb{D}})$. The closures were missing.
- Also on page 13, Exercise 1.1.3. Part b) is not correct as stated. I will just remove part b) from next version.
- On page 24, in Rothstein's theorem and also in Exercise 1.4.4, the hypothesis of "holomorphic" is missing.
- On page 35, Exercise 2.1.2, it should say every connected component is a domain of holomorphy as the intersection could be disconnected.

**November 19th 2014 edition:**

- Exercise 1.2.9: The sequence of functions must be nowhere zero as in the standard corollary to Hurwitz from one variable, otherwise there are easy counterexamples.
- Exercise 1.5.1: There is an extra
*not*, that is, "if U is not unbounded" should be "if U is unbounded". The hint hopefully makes it clear what was meant. - Page 45, definition of $T_p^{(1,0)}M$, the right hand side should have intersection with $T_p^{(1,0)} {\mathbb C}^n$ of course, not M. Same for (0,1) vectors.
- Page 31, at the end of proof of Theorem 1.6.1, Exercise 1.6.3 is used and was forgotten to be mentioned, that is the complement of $g^{-1}(0)$ is connected.

**September 2nd 2014 edition:**

These are mostly minor typos. There were also a bunch of english typos or hard to understand sentences that are now fixed.

- In Example 2.3.6, for $z_j$ (little $z$) the $j$ runs from $1$ to $n-1$, not $n$.
- Theorem 2.4.14 as stated only makes sense for proper subsets of ${\mathbb C}^n$, that is the boundary of $U$ better be nonempty.
- In proof of Theorem 2.4.16 The $j$ should run from 2 to $n-1$.
- In proof of Proposition 3.1.5, clearly $f$ cannot be defined where $z\zeta = -1$, not 1.