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Why security?

• GNOME gaining acceptance and thus will become a target

of security attacks soon.

• It’s better to start thinking about this now then when we are

widely deployed.
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Types of attacks

• Remote vs. local. Many purely local problems become re-

mote with email.

• Escallation of privilages: the “attacker” is able to do some-

thing that he normally has no privilages for. For example

gaining shell as a user on the machine without having an

account.

• Data loss: the “attacker” is able to cause data to be inad-

vertantly corrupted or deleted.
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Types of attacks (cont.)

• Denial of service: the “attacker” manages to force an ap-

plication to refuse to work, thus effectively rendering the

application useless.

• Information leaks: “attacker” is able to gain some informa-

tion he should not know.
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Two Guiding Principles

• Paranoia ∗

• Simplicity †

∗Should be taken with a grain of salt.
†This is really part of paranoia.
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Security vs. User Friendliness

• User friendly and security are not exclusive.

• Users do the easy thing, so only easy to use software is

secure. Example: encryption, scp vs. ftp, etc...

• Unfriendly paranoia leads to denial of service, or people using

an unsafe alternative. Example: ssh
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Misc. General Paranoia

• When to trust code external to your application?

• Study semantics of the functionality (documentation / source

code)

• Handle errors, don’t assume everything just succeeds.
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Misc. General Paranoia (cont.)

• Global variables / states.

• Try to keep code compartmentalized and self contained.

• Example: caching values, optimizes speed but allows subtle

bugs and the supporting code must be sprinkled around the

application.
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Input Checking

• Q: When to trust external information? A: Never.

• Sources of external information are: eMail, webpages, doc-

uments, the user GUI, configuration, drag and drop data,

etc...

• Always have the “public terminal scenario” in mind.

• Check that the information is in the correct form and is

actually something that you expect.
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Input Checking (cont.)

• Sanity limits for size or complexity of input.

• Sanity limits should be larger then anything really useful.

• Alternatively allow cancellation.

• Both memory and CPU are affected.
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Buffer Overruns

Best seen by example:

char buf2[] = "DEF";

char buf1[] = "ABC";

puts (buf2);

strcpy (buf1, "123.456");

puts (buf2);

will first print “DEF” and then “456”. But worse things can

happen (stack smashing, executing different commands, etc...)
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Avoiding Buffer Overruns

• Don’t use C/C++ (easier said then done)

• Use dynamic arrays and strings (e.g. GArray, GString)

• Use the helper string functions of glib such as g_strdup_printf,
g_strconcat, etc...

• Avoid pointer arithmetic.

• Allocate and reallocate things on heap rather then “fiddling”
with strings on the stack.
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Avoiding Buffer Overruns (cont.)

• Have a well defined application wide policy for memory man-

agement.

• Don’t keep around pointers to data you free. Initialize point-

ers with NULL and set them to NULL when you free what they

pointed to.

• It’s better to reallocate data in memory then to have to

manage what the lifetime of some data is, example follows:
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Example of Subtle Data Lifetime Bug

GtkWidget *dlg, *entry;

const char *str;

...

str = gtk_entry_get_text (GTK_ENTRY (entry));

gtk_widget_destroy (dlg);

...

foo (str);
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Executing Commands and Shells

Wrong code:

const char *s;

char *cmd;

s = gtk_entry_get_text (GTK_ENTRY (entry));

cmd = g_string_printf ("frobator %s", s);

system (cmd);

g_free (cmd);
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Executing Commands and Shells (cont.)

Fixed code (note the ‘--’ and the fact that the shell is not used):

const char *s;

char *cmd, q;

s = gtk_entry_get_text (GTK_ENTRY (entry));

q = g_string_quote (s);

cmd = g_string_printf ("frobator -- %s", q);

g_spawn_command_line_sync (cmd, NULL, NULL,

NULL, NULL);

g_free (cmd);

g_free (q);

Even better may be to use g_spawn_sync and avoid the quoting.
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Executing Commands and Shells (cont.)

• Don’t use shell unless really, really, needed.

• Quote things properly.

• Think of options (add ‘--’ if needed)

• Synchroneous execution hangs your application.
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Temporary Files

• Don’t use /tmp if you don’t need to.

• The “attack” here is to create a symbolic link which you will
overwrite.

• Use commands like g_mkstemp or g_file_open_tmp which do
the correct thing.

• Never expect a filename to be available.

• Don’t expect things to stay around in /tmp.
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Opening Files for Writing

Can be similar as /tmp since shared directories might be used.

GnomeVFSHandle *handle;
GnomeVFSResult result;

gnome_vfs_unlink (uri);
/* Can ignore errors from unlink */
result = gnome_vfs_create (&handle, uri,

GNOME_VFS_OPEN_WRITE,
TRUE /* exclusive */,
0644);

if (result == GNOME_VFS_OK) {
g_assert (handle != NULL);
/* File is opened successfully */

}
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Denial of Service

• Happens when the desktop “breaks” and can’t be fixed by
the average user (non-expert GUI only, no command line, no
gconf-editor).

• Printing an error to stderr and calling exit(1) when some-
thing is not kosher is a denial of service.

• Applications, especially the core desktop should work even in
very broken situations to allow for repair.

• If an error can be repaired by the program automatically it
should just do that. Annoying example: old netscape lock
files.
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Denial of Service (cont.)

• The configuration or startup state can lead to a crash which
causes a denial of service.

• It’s needed to detect a crash on startup and allow the user
to reset settings, load files one by one or otherwise get into
a working state.

• Example: broken Nautilus thumbnail/preview plugin crashing
nautilus viewing the home directory.

• Moral: expect bugs, expect crashes, try to mitigate the dam-
age they may do.
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Denial of Service (cont.)

• Logfiles can fill diskspace which may not be reclaimed un-
til user logs out (files are only truly deleted when they are
closed).

• Output to stdout, stderr is logged!

• Avoid spurious output of errors especially in response to ex-
ternal data to stdout or stderr.

• Set a maximum of errors per document or per interval of
time when printing to stdout or stderr or to a log file.
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Information, Cookies, Authentication and Random Num-
bers

• Use encryption when possible.

• Modern encryption methods should allow this to be totally
transparent to the user.

• Authentication may require some setup on the part of the
user, try to keep this as simple to do as possible so that
people don’t go to unsafe alternatives.

• NEVER home cook new protocols for encryption. Use well
tested and scrutinized protocols and libraries such as OpenSSL.
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Random Numbers for Security
This section doesn’t apply for random numbers that don’t need to be secure

• Pseudorandom number generators don’t generate random
numbers.

• Use /dev/urandom directly if possible.

• Pseudorandom number generator will not take a non-random
seed and make it random.

• Once you have something that has some entropy, no need
to further massage it unless you need to use less space (then
use MD5, SHA1, not GRand)
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Random Numbers from Current Time

Sort of going off topic but I’m a maths student so I wouldn’t feel right if you weren’t subjected

to this.

GTimeVal now;

g_get_current_time (&now);

Using now.tv_sec and now.tv_usec gets about 32 bits of entropy

with 68 minutes uncertainty. For a 32 bit number use

(now.tv_sec << 20) ^ now.tv_usec

and not

now.tv_sec ^ now.tv_usec
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How Many Bits in a Cookie?

I can count from 1 to 232 in a busy loop in 5 seconds. If computer

speed keeps doubling every 18 months, I’ll be able to do the same

with 2128 in about 150 years. Conclusion: 128 bits is enough

and will likely be always enough. Use 196 or 256 if you are truly

paranoid.
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Summary

Remember: Paranoia, Simplicity

Full paper is online at: http://www.jirka.org/
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