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CHAPTER 1

INTRODUCTION

When looking at mappings of the plane, the nicest mappings one can imagine are
conformal mappings. That is mappings that preserve angles between lines. These map-
pings are really the complex analytic functions that have many nice properties. However
they also have many restrictions. For example we cannot conformally map a rectangle
onto another rectangle with a different aspect ratio while mapping corners to corners.
So the question is how nice can mappings be and still preserve some of the nice proper-
ties. If we relax the restriction that the mapping must preserve angles and say that the
mapping must not change angles too much, then we have what is called a quasiconformal
mapping. In 1928, H. Grotzsch introduced this problem and also the first definition of
such a mapping [1]. What is of particular interest is the behavior of these mappings close
to the boundary. The primary question that we will deal with is the question of which
boundary correspondence maps have a quasiconformal extension to the whole domain.
Since there can be many such extensions with the same boundary condition, we study
two explicit constructions, the first done by Beurling and Ahlfors [2] and the second by
Douady and Earle [4]. We will then present applications of these ideas to related theory.

1.1 Quasiconformality

We wish to now rigorously define what is a quasiconformal mapping. Suppose f is
a differentiable topological mapping f : C — C. And we define the partial derivatives in

terms of the real and complex parts where f(z,y) = u(z,y) +iv(z,y) as

fo=1/2(ug + vy) +1i/2(ve — uy),

fz=1/2(ug — vy) +1/2(vy + uy).

(1.1)

We will only consider sense preserving mappings, that is mappings that preserve
orientation of Jordan curves. For such mappings we have that |fz| < |f,| because only

that way do we have a positive Jacobian which is defined [1] as J = |f,| — | f2].



So let us now define the dilatation of a function at a point [1].

Definition 1.1 Dilatation of a function at a particular point is defined as

Df(Z) = M > 1.

[l = 1f2l
A mapping is conformal if and only if Df(z) is 1 for all z, since then |fz| = 0.
Geometrically the dilatation is the ratio of the major and minor axis of the infinitesimal
ellipse that is the image of the infinitesimal circle under the mapping f. Let us look at
a simple example of a linear function, which takes all circles to ellipses. Let’s consider

(using two dimensional notation rather than complex notation for simplicity)

1 -2 T
flz,y) = - (1.2)
3 4 Y
This function will take all circles to ellipses. Figure 1.1 shows for example the result

of applying this map to the unit circle.

[ ] 4_| 7 ]
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Figure 1.1: The Graph of Where the Linear Map f(x,y) Takes the Unit Circle

To calculate the dilatation of this function we first calculate the partial derivatives

with respect to z and Z
[fol = 11/2(uz + vy) +/2(va — uy)| = [1/2(1 +4) +i/2(3+2)| = /25/2 =5/V2,
[f2l = [1/2(us — vy) +i/2(vs +uy)| = [1/2(1 — 4) +i/2(3 - 2)| = V/5/2 = V5/V2.

Now we can calculate the dilatation itself. We note that the dilatation of this function

is the same at every point and this is

LI+ 52+ VE/V2 5 +06 N
Dy(2) ~

IR T VA VBV ovs




We are really interested in the uniform bound on the dilatation over the entire
domain, if in fact it is actually uniformly bounded. So we can now define what it means
for a mapping to be quasiconformal [1] [2].

Definition 1.2 A mapping is quasiconformal if the dilatation is uniformly bounded over

the entire domain of the mapping. We call
Ky =sup Dy(z)

the maximal dilatation of f. A mapping is K-quasiconformal if the mazimal dilatation
of the function is K.

From this definition we can see that the linear function we defined above is quasi-
conformal and that K; ~ 2.62, since the dilatation of that function is constant. Also any
conformal mapping is 1-quasiconformal as its dilatation is 1 everywhere and therefore
constant.

There are some related quantities to dilatation. The first is called the small dilatation
and is defined in [1] as:

Definition 1.3 The small dilatation of a sense-preserving quasiconformal map at a par-

ticular point is defined as
1
| /-]

Note that this quantity is less than 1 only for sense preserving maps. This can

< 1.

dy(z)

be seen by looking at the Jacobian J = |f,| — |f;| and noting that it must be then
positive for sense preserving maps. If it would equal to 1, then the dilatation would not
be bounded at that point. Also to note that some books, such as [13] use the notation
k-quasiconformal to mean that the d; <  for all z. This quantity is related to Dy (the

dilatation) by
_l+d, . Dy-1

D; = .
= 1=a, I Di+1

If the mapping is conformal if Dy = 1 and dy = 0. This quantity may be more
convenient sometimes because of the simpler definition, although it doesn’t have such

a nice geometric description. As an example we look at (1.2) and calculate the small



dilatation

_ VIV Vg

U= T 5 s

Another related quantity is called the complez dilatation and is defined as follows.

Definition 1.4 The complex dilatation of a function at a particular point is defined as

f=(2)
wr(z) = :
1(2) )
Now obviously we have that |u;| = dy. This complex dilatation is seen in the

Beltrami differential equation
f2(2) = ps(2) f2(2)
And so a quasiconformal mapping is a solution to the Beltrami equation where the fi is

uniformly bounded by some k£ < 1. Obviously it can be seen that for a conformal map,

py must equal to 0 for all 2.
1.2 The M-condition

It is known that a quasiconformal mapping from the unit disc onto itself is continuous
on the boundary [2]. This means that a quasiconformal mapping induces a topological
mapping between the boundaries. It is also known that composition with conformal
mappings does not change the maximal dilatation [1], so this means that looking at the
mappings of the unit disc to itself is the same as looking at the mappings from the upper
halfplane to itself. These mappings have the advantage of having its boundary on the
real line and thus the function that defines boundary correspondence is a real function
onto the real line, which is also one to one. So let’s define a so called M -condition [1] [2]
on any such function p(z) that fixes oo.

Definition 1.5 A function p(z) satisfies the M-condition if there is some M such that
for any x and t,

1 _platt)—p@) _

M = p(z) = plz —1) —
Geometrically this means that the ratio of the length of the intervals u[(z — ¢, x)]

and p[(z,z + t)] is bounded. This also implies that the function must be one to one,



since if p(x) = p(y), then if we let t = x —y, then the M-condition would not be satisfied
since then p(z) — u(x — t) would be zero and thus the ratio would not be defined.
Definition 1.6 A function that satisfies this condition is also called quasisymmetric. In
particular if a function satisfies the M-condition for a particular M, then the function is
called M-quasisymmetric.

Let us look at some examples of this. It is fairly trivial to see that all linear maps
satisfy the M-condition with M = 1. So let’s look at a little less trivial example of
u(z) = z%. We note that we have that u(kr) = k3u(r) and so we can really factor any
multiple out of the M-condition. This means that we really only need to look at the case

where x = 1 and just let ¢ vary. So we have (noting that ¢ # 0)

p(l+t)—p(l) B +3t2+3t  t*+3t+3
p(l) —p(l—t) B3 —-324+3t 2 -3t+3

The denominator is always positive and never zero, and so this is a continuous function.
In fact it is easy to see that it approaches 1 as we approach ¢ = 0. The limit as ¢
approaches oo (in both positive and negative directions) goes to 1, and so this function
achieves both a maximum and a minimum, both of which are positive. In fact with a bit
of calculus we can see that these are achieved at v/3 and —+v/3. So we in fact have that
the M-condition is satisfied for M = 8+3v3

6—3v/3"
It is also useful to see examples of functions which do not satisfy the M-condition.

Consider p(z) = e — e~®. This is a one-to-one and onto function of the real line onto

itself. Let us now look at the M-condition in the case where t = z,

pa+t) —p(z) _ (¥ —e ™) — (" —e™)

pw(z) — plz — 1) (e* —e7) =0
_ (ez _ ef:c)(ew + ef;v) _ (ew _ efw)
=e"+e " -1

We can see that this is not bounded as x goes to oo, and thus this function does not
satisfy the M-condition and is therefore not quasisymmetric.
We will need a few definitions and lemmas that arise from the M-condition. First

it is useful to consider a so called normalized quasisymmetric function.



Definition 1.7 We will call an M-quasisymmetric function p normalized if pu(0) = 0
and p(1) = 1.

Lemma 1.1 For a normalized M -quasisymmetric p we have
1 n
(1 + M) <u2") < (M+1)"  (for all integers n > 0).

Proof: We know p satisfies the M-condition and is normalized so we plug x = 2"

and ¢t = 2" into the M-condition to get (noting that x(0) = 0 and p(2™) must be positive)

1 a2 - ()

— < <M,
M =@ o)
“§7 p(2") < @) < (M + p(2"),
( %) p(2™h) < p(2™) (M +1). (1.3)

And now using induction on n, we suppose that (1 + )" < p(2") < (M + 1)" holds
then by (1.3) we have that

(142 ) <(1+31) (v )
o)

(2")(M +1)
M +1)(M + 1)

IN

1
1

IN

IN

(
(M + 1)n-|—1.
QED!

Lemma 1.2 For a normalized M -quasisymmetric u we have

1 1\"
—M(M+1)" < p(—2") < -— i (1 + M) (for all integers n > 0).



Proof: We plug x = 0 and ¢t = 2" into the M-condition getting

1 _ (") = u(0)

< M,

TH(2") < —p(=2") < Mp(2"). (1.4)

Using Lemma 1.1 on the page before and (1.4) we then obtain

L (1 ; %) < (") < —p(~2") < Mp(2") < MM +1)"

QED!



CHAPTER 2

THEOREM OF BEURLING AND
AHLFORS

2.1 Boundary Condition

The main result of the Beurling and Ahlfors paper [2] was that a mapping p of the

real line to itself satisfying the M-condition is a sufficient and necessary condition for the
existence of a quasiconformal mapping from the upper halfplane to itself with x as the
boundary correspondence.
Theorem 2.1 (Beurling and Ahlfors) There exists a quasiconformal extension of the
upper halfplane to itself if and only if the boundary correspondence mapping p(x) satisfies
the M-condition. Furthermore there exists an extension of i to a quasiconformal map of
the upper halfplanes such that the mazimal dilatation of the extension depends only on
M, and not on pu.

Beurling and Ahlfors proved that the dilatation must be less than M?, however there
are better bounds in terms of M and they are given in Section 4.1 on page 45. They also
proved that a quasiconformal mapping must have a maximal dilatation greater than or
equal to 1 + Alog M where A is a constant, about 0.2284. We will prove the sufficiency
condition by constructing the extension as given by Ahlfors [1].

We will not prove all of Theorem 2.1, but just the sufficiency condition. This is
because we are really interested in the explicit construction of the extension and the
proof of the necessity is rather involved. Proof can be seen in either [2] or [1]. The
sufficiency part, including a bound on the maximal dilatation, will be proved in Section
2.3.

As an example take p(xz) = 22. We know that this function satisfies the M-condition
with M = 1, which is obvious from the M-condition. So according to Beurling and

Ahlfors there exists a quasiconformal mapping with a maximal dilatation of 1 (since it



must be greater than or equal to 1 and less than or equal to 1). Since a quasiconformal
mapping with a maximal dilatation of 1 is conformal, this mapping will in fact also be
conformal. It is easy to see that such a mapping is just f(z) = 2z.

In fact we can expand on this example. If i satisfies the M-condition with M =1,

then
p(z + 1) — p(z)
p(z) — plx —t)

1< <1

which implies that
pl(z +1) — plz) = p(z) — plz —1).
So u must be a linear mapping of the form p(z) = ax+b where a > 0 since y is increasing.
We know that there exists a quasiconformal mapping of a dilatation of at most M? = 1,
that is a conformal mapping, which in fact is the mapping ¢(z) = az + b. It is also easy
to see that this must be the only conformal mapping of the upper halfplane to itself that
fixes oo.
2.2 The M-condition as a Compactness
Condition

It is also possible to give a more qualitative meaning to the M-condition. First let’s
define a mapping p(z) of the real line onto itself to be normalized if and only if 1(0) = 0
and u(1) = 1. Now let’s consider the following compactness condition [2]:
Definition 2.1 A family F of mappings u which is closed under composition with affine
transformations (of the form ax + b, where a > 0) satisfies the compactness condition
if every infinite set of normalized mappings u € F contains a sequence {ii,}5° which
converges to a strictly increasing limit function.

The second result of Beurling and Ahlfors in their paper is that the above compact-
ness condition is equivalent to the M-condition.
Theorem 2.2 The mappings p in a family F, which is closed under affine transfor-
mations, satisfy the M-condition, all for the same M, if and only if the compactness
condition (Definition 2.1) is satisfied. In fact every infinite sequence of normalized map-

pings has a subsequence that converges to a mapping satisfying the M -condition.



10

This will in fact mean that the set of all normalized mappings that satisfy the

M-condition for some M is a compact subset of all the mappings that satisfy the M-
condition for that same M. Before we can prove this result we must prove a small but
useful lemma.
Lemma 2.1 Suppose p is a mapping which satisfies the M -condition, then composing
it with two affine mappings does not modify the M-condition. That is Ap(ax + b) + B
where A,a > 0 satisfies the same M-condition as p.

Proof: From

1 _ pl(az +b) + at) — plaz +b)

M oz +0) a0 —at) <

1 pla(z+1t) +b) — plaz +b)

M = wlax +b) — pla(z —t) + b) s M,
iA:AMM$+ﬂ+®+B—@M®$+®+B)<A{
M — A(u(az +b) + B) — (Ap(a(z —t)+b)+ B) —

we can see that since z and ¢ are arbitrary, we could just as well take (ax + b) instead of

« and at instead of ¢ and thus Apu(ax + b) + B satisfies the same M-condition if p itself
satisfies it. QED!
Proof of Theorem 2.2: First we suppose that the M-condition is satisfied for some
M for all 4 € F. So suppose p is normalized mapping in F. Now we look at the M
condition if we let z = ¢t = 27" for any n. Now notice that since p is normalized then
1(27™) is positive. And so
1 _ plx+1t) — p(z)

M= (@) —plo—1)°
12 e
. M~ u(2m) ’
MED) 4 ) < pen ),

(14 57 ) w2 <z,

ue™ < (377 ) mE) (21)

We know that p(1) =1 and so for n =1 from (2.1) we get that

we) < (5757 ) o2 = (5757




11

So we can now use induction on n, going in the positive direction. Suppose that

M n—1
2—n+1 <
wET) = (M+ 1)

ue ) < (G ) He )

(Mﬂi ) M+ 1)
()

Since p(x) is increasing, then we have this inequality for all = less than or equal to 27"

holds, then we get that

as well.

We now combine Lemma 1.1 on page 6 and Lemma 1.2 on page 6 to get
—M(M+1)" <p(z) < (M+1)" (for —2" <z < 2"),
or
(@) < M(M +1)"  (for z € [—2",2")). (2.3)

This means that on the interval [— 2" 2"] the normalized p € F are uniformly
bounded, since the M is the same for all p in the family F. Since any compact set
E C R is bounded, we can find n large enough such that all normalized p(z) in F are
uniformly bounded on this compact set.

Now we use the fact that F is closed under composition by affine transformations

and so for any a we let S = mﬁ%’% and let T = x + a, then

_ o+ )~ (o)
SHD = 1) — ula)

It is easy to see that (SuT)(0) = 0 and that (SuT")(1) = 1, and so SuT is normalized.

We plug SpT into (2.2) and thus for any 0 < z < 27" we have that

o) —ue) (MY

wla+1) —pla) — \M+1

wlat 7) — p(a) < (u(a+1) — p(a) (M]‘i 1) . (2.4)
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We now wish to show that for any compact set £ we have equicontinuity. First we
find an N, such that we have that E C [—2"= 2"a] and also such that for every z € E
we have that z — 1 € [-2"e 2Ve] and z + 1 € [—2Ne, 20a].

Suppose that a € E, then by (2.3) we have that |u(a)| < M(M + 1) and also that
lu(a+1)] < M(M + 1)Ne. Now we wish to show that p(a + 1) — p(a) is bounded for all
ain E. So

(e +1) = p(a)] < |u(a+ 1)+ |u(a)| < 2M (M + 1)

So p(a + 1) — p(a) is bounded for all « € E. Since u is strictly increasing we have
that p(a + 1) — p(a) is positive and so for all @ € E we have

0<pu(a+1) - p(a) < 2M(M +1)Ne,
Now we look at (2.4) and we can see that

a+2) — (o) < (la+ 1)~ (o) (574 ) <200+ (1)

Since we can make the right side arbitrarily small by taking large enough n since
1 is less than 1 and 2M (M + 1) is fixed, and since y is strictly increasing we can
see that p must be continuous. Since this is true for all normalized p € F then the
normalized p € F are equicontinuous over E.

We now apply the Arzela-Ascoli theorem (Theorem A.1 on page 60). We notice
that on any compact set £ the normalized mappings in F are equicontinuous and also
uniformly bounded. So this implies that on E, each sequence of normalized mappings
has a subsequence that converges uniformly on E.

So take any infinite set of normalized mappings and take a sequence from this set
which converges uniformly over some compact set E. Specifically let {u,(x)}5° converge
uniformly (over E) to p(x). Since p,(0) = 0 and p,(1) = 1 for all n, then the limit
function p(z) is also normalized and p(0) = 0 and p(1) = 1. Also a uniform limit of
continuous functions is continuous so the limit function u(x) is continuous (Theorem A.2
on page 60).

Now we wish to show that u(z) satisfies the M-condition. We know that all the

n () satisfy the M-condition, all for the same M. Now given an € > 0, we know we can
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find an N such that for all n > N, we have that |u,(z) — u(z)| < € for all z. So looking
now at the right side of the M condition for u,(x) for n > N we have that

g <
Ha (T + 1) — pn(7) < M(pin(7) — po(z — 1)),
p(z +1) — (@) < M(pa(x) — pn(z =) + 2¢,
p(z +1) — p(z) < M(p(z) — plz — 1) + 2€) + 2,
plz +1) — plz) < M(p(z) — plz — 1) + M2e + 2,
plo+) —p(a) = M2e—2¢ _

And since M is fixed and € can get arbitrarily small, we have the right side of the M
condition satisfied. The left side follows in a similar way. And thus the limit function
also satisfies the M-condition.

If the M-condition holds for any limit of such a sequence then this limit must be
strictly monotone. Thus if M-condition is satisfied, then the compactness condition
(Definition 2.1 on page 9) holds.

Conversely suppose that the compactness condition holds, then we want to show

that this implies the M-condition. Now set

a=infpu(-1),  B=supu(-1),

where p ranges over all normalized mappings in . By the compactness condition there
exists a sequence of normalized mappings p,, € F, such that p,(—1) — 8 and such that
the limit of this sequence is a normalized strictly monotone function. This implies that
B < 0. Similarly there exists a sequence of normalized mappings u, € F, such that
tn(—1) = « and such that the limit of this sequence is a normalized strictly monotone
function. This implies that o > —oc.

Consider, for any p € F, the mapping

o(z) = w(y + tz) — p(y)
uly +1) — p(y)
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It is easy to see that v is a normalized mapping, and it is also in F, since it is just a
composition of two affine transformations and the mapping p, similarly as we did before.
Now if we look at v(—1) we know that it must be between « and 3, since that was

the inf and the sup of all the values at —1. So we have that

pw(y —t) — u(y)
@ p(y +1t) — p(y) =b,
w(y) — m(y —t)
ez p(y +t) — pu(y) =0
Loyt —ply) o1
o~ ply)—uly—t)— B’

— < < M.

And so if the compactness condition is satisfied, then the M-condition is also satisfied
for all (not just normalized) mappings p € F. QED!

Now Theorem 2.1 on page 8 and Theorem 2.2 on page 9 imply the following corollary
[2] which gives a qualitative condition for the boundary correspondence of a quasiconfor-
mal mapping.

Corollary 2.1 A boundary mapping p can be extended to a quasiconformal mapping of
the upper halfplanes if and only if the family of all mappings SuT satisfies the compactness
condition (Definition 2.1 on page 9)

Proof: Now this is easy to see. Since we can take our y and normalize it by use of
the affine mappings S and T as defined earlier we get a family of mappings. And if this
family of mappings satisfies our compactness condition it will imply that u will satisfy
the M-condition, and thus there exists a quasiconformal map of the upper halfplanes.

QED!

2.3 Extensions of the Ahlfors-Beurling Type

Now we come to the actual construction of the extension given a mapping which

satisfies the M-condition. For this we use the definition due to Ahlfors [1], which is
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slightly simpler than the definition in the original paper by Beurling and Ahlfors [2] since
that one introduced an extra parameter to minimize the maximal dilatation. Suppose we
are given a mapping u which satisfies the M-condition, we will construct a quasiconformal
mapping which maps the upper halfplane to itself with i as the boundary correspondence.
This formula will be given in the two dimensional notation.

Definition 2.2 (Beurling-Ahlfors Extension) Suppose that p is a quasisymmetric
mapping of the real line onto itself which fizres oco. Then we define a map ¢(x,y) =
u(z,y) +iv(x,y) of the upper halfplane to itself as

1 Y
21y /‘y (2.5)

v(z,y) = / "l + 1) — pla — ).

2y
First it is easy to see that when y tends to 0, then u(z,y) tends to p(z). It is also

easy to see that v(z,y) tends to 0 as y tends to 0. Furthermore v(z,y) is positive when
y is positive as p(x +t) — p(xz — t) is always a positive quantity. This means that this
function satisfies the boundary condition and maps the upper halfplane to the upper
halfplane.

As an example let’s use the mapping u(z) = 2z. Again it is easy to see that this

mapping is quasisymmetric with M = 1. Computing the ¢(z,y) = u(x,y) + iv(z,y) we

get
w(z,y) % /_ yy il + )dt
= 5o+ = @)
— 9%,
o, y) = % (/Oyu(x—i-t)dt— /Oym —t)dt>
_ % (z+y)* — 2+ (2 — y)? — 22)

Now let’s compute the dilatation of this mapping. This is fairly trivial as u, = 2,

uy = 0, v, = 0 and vy, = 1. This is true everywhere so the dilatation is constant. Looking
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at the small dilatation, we get by Definition 1.3 on page 3 and by (1.1) that

g [fzl _ (e —vy) +i(ve +uy)| _ |2-1+43(0+0)] 1
] (e o) T ios —u) |~ [241+i(0-0)| ~ 3
which yields a dilatation of D = % = 2. Clearly ¢ is a homeomorphism of the upper

halfplane onto itself and so a quasiconformal map as we wanted. It is however not with
the best dilatation as we’'ve seen a function 2z also satisfies u as a boundary condition
and would have a dilatation of 1. However if we take a look at u(z,y) +i2v(z,y) this
precisely equals 2z and so we can improve on the dilatation by multiplying v(z,y) by a
constant.

Now for a less trivial example let’s use the mapping u(z) = z* which we have shown
is quasisymmetric on page 5. Again we compute ¢(z,y) = u(z,y) +iv(z,y) and get

u(z,y) = %/_y p(z +t)dt
1(z+y)—(@-y)'

:2y 4

= 2® +y’,

v(z,y) = % (/Oyu(x—i—t)dt — /Oyu(:c — t)dt>

1@ty -2+ (x—y* o

2y 4
3 o L3
—ixy—i-zy.

We can see that this mapping is no longer the same as the conformal mapping. In
fact since the M for u(z) = z* is quite high, we know that this mapping will have a
fairly high maximal dilatation. Figure 2.1 on the next page shows what the extension of
w(z) = 2 does to a grid in the upper halfplane. It is clear from the graph that the worst
dilatation occurs as we approach the point 0. The computer code used to produce this
graph, as well as all the other grapha,s is given in Appendix B.

Now we want to show that the mapping (2.5) is in fact quasiconformal for any
quasisymmetric mapping p. So we first need to show that the dilatation of the mapping
is bounded. We follow the proof of Ahlfors in [1] page 69. First we need some lemmas

concerning bounds on normalized pu.
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3

17



18

Lemma 2.2 For a normalized M -quasisymmetric p we have

1 ! 2M + 1
— < Hdt < ———.
2(M+1)—/0“() =2(M +1)

Proof: By plugging x = 5 and t = % into the M-condition and noting that u is

1
2

normalized, we get

which just becomes

1 1 M
Splg) s :
M+1 2 M+1
Now we wish to get upper and lower bounds on fol u(t)dt. By the fact that pu is

increasing we get that the p that would minimize the integral would be 0 on [0, %) and

ﬁ on [,1]. The p that would maximize the integral would be MLH on [0,3] and 1 on

(3,1]. So from this we get the inequality

1 1 </1 (t)dt<1 M +1
oM+1- ), T Eo T

[\V]

and a little bit of elementary algebra proves the lemma. QED!

Lemma 2.3 For a normalized M -quasisymmetric 1 we have

1 1 /0 oM +1

S+ 1) = ac ) WA S sy

Proof: By substitution of variables we can see that

/_ i p(t)dt = — /0 (bt

Now we take the M-condition and plug in x = 0 to get

1) - p(o)
M= u(0) — () =M



19

Since p is normalized we immediately get that M ~'u(t) < —u(—t) and —pu(—t) < Mu(t).

From this we can conclude
1 1 2M +1
dt < — dt <M dt <M-——-
M 2(M+1) M / / 2(M +1)’
1 1 2M+1
- > Hdt > —M ———
M2(M+1) — /0 u(=t)dt 2 2(M +1)’

1 1 0 OM +1
__7>/ u(t)dt > MiJr

Ma2M+1) — ), 2(M + 1)’
1 1 0 2M +1
wM+n§uvw[ﬂ@ﬁfwM+w

QED!

We now rewrite (2.5) to the form

ula,y) = 1/HZMMu

2y

wmw=%(éﬁﬁma—élmm@,

since in this form we can take the partial derivatives easily. Thus the partial derivatives

(2.6)

of v and v are

te = (@ + 1) — plz — 1)),

2y
Uy = _2iy2 :+y w(t)dt + %(u(x +y) +u(r —y)), @)
vy = %(/L(x +y) — 2u(z) + plz —y)),
v, = —QLyQ (/w yu(t)dt - /w u(t)dt> + %(u(w +y) — ulz —y)).

Lemma 2.4 Suppose u is a quasisymmetric mapping and suppose ¢ is the Beurling-
Ahlfors extension of p. If we replace u(x) by pi(x) = Ap(ax +b) + B (a, A > 0) then
the Beurling-Ahlfors extension of py will be ¢1(z) = A¢p(az + b) + B. Furthermore p,
satisfies the same M -condition as . and ¢1 has the same mazimal dilatation as ¢.
Proof: If we replace pu(z) by pi(xz) = Au(ax +b) + B (a, A > 0) we still have the
same M-condition on this new p; by Lemma 2.1 on page 10. Since multiplying by a
constant nor translation changes the maximal dilatation we have that ¢; has the same

maximal dilatation as ¢.
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So we still need to show that ¢1(z) = A¢(az+0b)+B. In the two dimensional notation

this means showing that u;(z,y) = Au(az +b,ay) + B and v, (z,y) = Av(az + b, ay). So

1 Tty
ui(z,y) = % pa(t)dt
T—y
1 Tty
= — Ap(at +b) + Bdt
2y Jory
1 Tty 1 Tty
— A u(at+b)dt+B—/ dt
2y Jo—y 2Y Ju—y
11 az+ay+b
= A——/ p(t)dt + B
2aya’ ar—ay+b

= Au(az + b, ay) + B,

and v1(z,y) = Av(az + b, ay) can be shown in a similar manner. QED!

Proof of the sufficiency of Theorem 2.1: What Lemma 2.4 buys us is that we can
really study the dilatation of the extension of a normalized mapping at a single point and
generalize what we find to the dilatation at any point of an extension of any quasisym-
metric mapping. Specifically let u(z) = Au(azx + b) + B and pick A and B such that
is normalized, that is we pick A = m and B = u(algi)@u(b) Now a > 0 and b are
arbitrary and so we extend pu; to get ¢; and then look at ¢, (i) = A¢(ai + b) + B. Now
A and B do not change the dilatation and @ and b can transport us to any point in the
plane. So if we can show that the dilatation is bounded at the point ¢, or (0,1) in the two
dimensional notation, we have shown it is bounded anywhere in the upper halfplane.

So from now on we will just study the dilatation of some ¢ at i, and we will assume

that the p that induces this extension is normalized (that is (1) =1 and p(0) = 0). So

we plug 7 into our partial derivatives (2.7) to obtain

uw(oa 1) = %(1 - ,U,(—l)),

L[ uyde+ 0+ u(-)),

1

£
<
—
=
—_
~—
|
|
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Let us now consider the small dilatation. By Definition 1.3 on page 3 and (1.1) we

see that
dy = b2 _ (ug — Uy) +i(vg + uy) .
b2 (ug + Uy) +i(vy — Uy)

We could plug in the partial derivatives that we got above to get the small dilatation at

1, but this may get too messy and so we will define 3 new variables
1
0

B =—u(-1),

which also gives

which gives (and let’s call d,(0, 1) just d from this point on)

d = dy(0,1) = Eu " ZZ; :EU i ZZ;
(0 +8) = (€+nB) +i ((1—5)+(£—n5))‘
(T+8)+ (E+nB)) +i((1—8) - (£—nB))
|- +80—n)+i((1+&) — ﬁ(1+77))‘
A+ +BA+n)+i(1=&) =1 —-n)|

Squaring this we get
2o LHEF LA+ 7) —26(E+n)
1+ +52(1+7%) +28(E+n)

and this in turn gives

1+d> 1 (11+‘52+51+"2>
1-d 2\Bé+n "E+n)
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We need some bounds on our temporary variables 3, & and 7. First let’s consider £,

and let’s use the M-condition with x =0 and ¢ = —1. We then get

Then we want to consider £. By Lemma 2.2 on page 18 we can see that

1 ! 2M +1
- < Hdt <
2(M+1)—/0“() =M +1)

2M +1 ' 1
e g < - -
2M+1) — /0 u(B)dt < 2(M +1)’
2M +1 ' 1

1
1 <1 2M +1

Finally let’s consider 7. By Lemma 2.3 on page 18 we can see that

0
s < i L 10U < sy
0
“a0r 1) < e | MO < = gy
0
- s0r D <1 e | M0 S - g
0
2(M1+ p=t- u(%l Bt < 22(%11)
1 <n< 2M +1
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We now have bounds on all three of our variables. We also note that since 0 < £ < 1

and 0 <7 < 1 we have €2 < £ and %2 < £. So

1+d2_1<11+§2 BL+M>
1—d> 2\B&+n "€+

1 2 2
< +£& +Ml—i—n)
§+m E+n

(2+§?+n>
§+nm
(2+22%E)
2(M+1)
(4(M +1) +2(2M + 1))
3
oM+ ).
( +3)

Given that 2d < 1 + d? we look at the large dilatation

<

N | —

N
S %|§ o M|§

1+d
D=1=3
1+dl+d
T 1-di+d
1+ d? 2d
Si—etioe
1+d?> 1+4+d?
Ny R
1+ d2
=g

g?M(?M—i—g).

So we have the dilatation (anywhere) bounded by an expression involving only M.
Ahlfors gets a nicer bound, but he has to prove another lemma to get it, and in the view
of the bounds discussed in Section 4.1 it is irrelevant. The bound on the dilatation also
means that the Jacobian must be always positive and thus by the Inverse Function The-
orem (Theorem A.3 on page 60) the mapping is locally one-to-one, and has a continuous

inverse (locally). What we now need to show is that |¢| — oo as z — oco. So from (2.6)
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we have
S e
e~ ([ " [ )
S0

w(@,y)? +v(z,y)’ = 4?11 [( dt) +( )dt)2]

If we keep y bounded, then as x — oo or as x — —o0, the 1ntegrals go to 0o or —oo
since u is monotone and unbounded. So if y is bounded then u? 4+ v? goes to oo as z goes
to oo.

We also have
1 y ?
forz >0  u(r,y)?+ov(r,y)* > 17 (/ u(t)dt) ,
0
1 ([0 ?
forz <0  wu(x,y)*+v(r,y)* > 1 (/ u(t)dt) .
Y

Now suppose we wish to see what happens if we let y — o00. If we let y = 2"+,
we note that by Lemma 1.1 on page 6 we have that fo wu(t)dt > 2" (1 + %)" since
1(2") > (14 +)". Using this we have (for z > 0) that

u(z,y)® +v(z,y)* > ﬁ (/OWI u(t)dt)2
by (o))
st ()

1 1 2n
> =14+ —=

which obviously goes to oo as n (and thus y) goes to co. The case for < 0 is similar

but we use Lemma 1.2 on page 6.
Now we wish to show that ¢ maps the upper halfplane onto itself. Suppose it doesn’t
and so there are points in the upper halfplane which are not in the image of ¢. We could

then find a point w in the upper half plane which is on the boundary of the image of
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¢. Now suppose we take a sequence {z;}° such that ¢(z;) — w. Now since ¢(z) goes
to infinity if 2z goes to infinity, then this means that z; cannot go to infinity (since w
is of finite modulus). This means that the z; are bounded. Then there must exist a
subsequence z;, which converges to some point z in the upper halfplane. Then we have
by continuity that ¢(z) = w and this means that w is in the image of ¢, but it is also
on the boundary. But from this we get a contradiction since the Jacobian of ¢ at z is
positive and thus there is an open neighborhood of w in the image of ¢ and so w could
not be on the boundary. This means that every point in the upper halfplane is in the
image of ¢ and thus ¢ maps the upper halfplane onto itself.

We now wish to show that it is also one to one and thus a homeomorphism. For
this we use the Monodromy Theorem (Theorem A.10 on page 63). The upper halfplane
H is a topological space and ¢ is a continuous function from H to H, that is locally one
to one and thus (H, @) is a covering space of H.

Now suppose that ¢(a) = ¢(b), then suppose we have two paths from 0 to ¢(a),
we can make them the same path and thus they are fixed end point (FEP) homotopic
(Definition A.5 on page 62). The liftings (Definition A.4 on page 62) of those paths are in
the domain of H and by the Monodromy Theorem they have the same endpoint, that is
a = b. This means that ¢ must be one to one. Which means that ¢ is a homeomorphism.
QED!

Ahlfors and Beurling introduce an extra parameter in the definition, to prove the
existence of a quasiconformal mapping with the dilatation less than M?2. In fact better

estimates for this extension are possible and we will expand on those results in Section

4.1.
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CHAPTER 3

THEOREM OF DOUADY AND EARLE

3.1 Conformally Natural Extension

We now come to the second explicit construction of a quasiconformal mapping given
the boundary correspondence. This was done by Douady and Earle [4]. In fact what they
do is something slightly different. They take a homeomorphism of the unit circle and
extend it to a homeomorphism of the whole unit disc in a specific way. This turns out to be
a quasiconformal mapping if such a mapping is possible. This extension is also called the
barycentric extension as it is defined in terms of ”barycenters” of probability measures.
We will mostly follow the statement and proof of this theorem from Gardiner and Lakic
[7] as it is somewhat easier to follow. We will also only consider the quasiconformal
case in the plane. Extending a mapping of the unit circle to a mapping of the whole
unit disc is really equivalent to extending a mapping of the real line to a mapping of
the upper halfplanes since we can just compose with a conformal map, which does not
change the quasiconformality constant, to get one from the other. Now we will also talk
about quasisymmetric mappings of the unit circle. These are basically mappings which
admit a quasiconformal extension to the unit disc. We can reformulate the M-condition
for the unit circle as stated in [7].

Definition 3.1 A function u(x) of the unit circle to itself satisfies the M-condition if

there is some M such that for any x and t (where t is not a multiple of 2 ),

i(z+t)) _ i(z)
M = |p(ef®) — p(ef==0)[ —

So let’s first fix the notation. Let D = {2z € C;|z| < 1} be the unit disc, let D be
the closed unit disc. Furthermore let G be the group of all conformal automorphisms of
D, and let G, be the subgroup consisting of sense preserving automorphisms of D. This

is really just the set of Mdobius transformations that fixes D. We know in fact that all
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g € G4 are in fact transformations of the form

gal2) = Af__;z Where |\ = 1 and |a| < 1. (3.1)

Note that whenever we use g, without specifying A we will assume that A = 1.

Since we are talking about conformally natural mappings we should define what this
means. It can be defined in general terms in terms of group actions, but we will be
interested in the special case of composition with Mobius transformations of the unit
disc. So suppose that Hsp is the space of all homeomorphisms of the unit circle and Hp
is the space of homeomorphisms of the open unit disc.

Definition 3.2 A mapping T : Hsp — Hp is conformally natural if and only if for any

o, € Gy and p € Hop we have

T(aopopB)=aoT(u)op.

We are now ready to state the theorem of Douady and Earle.
Theorem 3.1 (Douady and Earle) There is a conformally natural extension of any
quasisymmetric homeomorphism y : 0D — 0D to a quasiconformal homeomorphism
¢ = E(u) where ¢ : D — D. The extension ¢ = E(u) has the following properties:
1. The mapping ¢ = E(p) is conformally natural,
2. E(identity on 0D) = identity on D, and
3. if [y u(z)dz =0, then ¢(0) = 0.

3.2 Conformal Barycenter

Let m denote a probability measure defined on 0D which has no atoms, that is the
distribution function of m has no jump discontinuities. Now we consider a conformally
natural way to create a vector field &, (z) which is defined on D and is associated with

a probability measure m on dD. Suppose that m is nonnegative, has no atoms and that

/w dm(t) = 1.

we have
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We define
Em(0) = / tdm(t).
oD

Since we already said that the extension is called barycentric, it may be useful to give some
physical interpretation to these functions. We can think of the probability distribution as
weight distribution. Then &,,(0) is zero only if the center of the disc is truly the barycenter
of all this weight. If we’d try to balance the disc at 0 with the weight distributed by m
on the boundary it would tilt in the direction of arg&,,(0) as if there was a weight of
|€m(0)] in that direction on the boundary. We also note that |£,,(0)] < 1 if m has no
atoms since it could only be one if there was a single point with all the weight on the
boundary, but we’re assuming no such points exist.

We will need the following definition in order to make new measures out of old ones
using mappings of the unit circle.
Definition 3.3 A push-forward of a probability measure m (on 0D) by the map g :
0D — 0D will be denoted by g.m and given any S C 0D then

gem(S) = m(g~'(S)).

What this means is that g,m(S) is a measure of the set that g would take to S. If
g is really a map of the whole unit disc, we will just consider the restriction to the unit
circle for the purposes of the push-forward.

Now we wish to take a Mobius transformation that would take some point w € D
to 0 and use it to transport the value of &, (0) to w. This is the transformation g, as
defined in (3.1) with A = 1 since we do not want to rotate. If we look at the measure
gw«m (the push forward of m by g,,), then this transports the value of &,,(0) to another

point w, since the old 0 will now be at w for the measure g,.m. So we define &, (w) as

€gu.m (0)
() = S0l
=g w)
Now g; S L —— i i
g, (w) = G ww? = 77 and so with this we have

En(w) = (1 [w]?) /a td gym(t) -
D 3.2

_ (- |w|2)/a L2 am(e).

pl—wt
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The function &, is real analytic, which obvious from (3.2). Now we need to show that
&n has exactly one zero in D.
Lemma 3.1 For a probability measure m with no atoms the corresponding vector field
&m has a unique zero in D

This zero can be interpreted as the barycenter of the measure m, that is we could
balance the disc at this point with the weight distributed according to m.
Definition 3.4 For every probability measure m on 0D with no atoms, the corresponding
vector field &, has a unique zero in D. We call this zero the conformal barycenter B(m)
of m.
Lemma 3.2 The Jacobian of &,, at the point 0 is positive. For a probability measure m
with no atoms the corresponding vector field &,, has a unique zero in D

Proof: From (3.2) we get that

t

£n(w) = (1~ [uf?) / 1:;_‘; i)

t—

-/ i
/ —w
op 1 — t

/aD w)(1+ wt) dm(t) + LD%M@)H(UJ)

/ )(1 + wt) dm(t t m(t) + o(w)
oD oD —wt
/ w) (1 + wt) dm(t) + o(w)
oD
_/8D(1_\w| )t + 12 — w dm(t) + o(w)
= (1 — |w[2)&m(0) —w+w/aDt dm(t) + o(w)

— £ (0) — w+ w/ £ dm(t) + o(w).

oD

Now we can easily take the derivatives with respect to w and w and evaluate them

at 0. First &,,(0) is a constant, and the derivative of o(w) evaluated at 0 will just be zero.
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So the Jacobian of &, at w =0 is

TEm(0) = |(&m)1y (0)* = |(&m)i(0)
=|-17 =1 [ tdm(t)"
oD

—1— (/aDtQ dm(t)) </6D t dm(t)>
—1— //anaD 5% dm(t) x dm(s)
- //Ml ()<
' / [ - « dm(s))
_ % //anaD |52 — 125% + [t|2 — Ts* dm(t) x dm(s)

1
_1 // 152 — 212 dm(t) x dm(s)
2 dDxdD

QED!

Proof of Lemma 3.1: By Lemma 3.2 on the preceding page we know that the Jacobian
at 0 is a positive quantity so now suppose that that &,,(0) = 0, then since J&,(0) > 0
this is an isolated zero of index one by Lemma A.1 on page 64. Now since we can take
Em(w) = m%*m(o) then any zero will be an isolated zero of index one.

Now since mn has no atoms, then there exists an o > 0 such that m(J) < 5 whenever
an arc I of 9D has arc length of at most . So suppose that I is centered at the point
1. Now take ry so that the hyperbolic rays going from r, to the endpoints of I subtend
an angle of 2. That is g,,(I) has arc length 2F. This can be seen in Figure 3.1 on the
following page.

Now for r > ry let C, = {w;|w| = r}. And for w such that |w| = r, let g be a

conformal map which takes w to 0, and “’ to 1. If J is the arc from =" to 7, then this
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B
B

Figure 3.1: Point ry with Hyperbolic Rays that Subtend 37”

makes g,m(J) = m(g~*(J)) > % because g takes the D — I or more to J. Now

J

V2

2
5 dg.m(t)

/
- /6 D_JRe(t) dg.m(t) + / Re(t) dg.m(t)
/

—1dg.m(t) + /J

1 V22
=3+ 53

> 0.

This means that &;,,,,(0) points into g(C;) because C, is mapped onto the positive

real halfplane because ‘_—“’

] (which is on the opposite side of 0) goes to 1. However this

implies that &, (w) points into C, because g(z) = Ag,(2) where A is just a rotation and
thus we can again use the definition of &, (w). Since &, (w) points into C, then it is not
0, and so no zeros are on Ci.

Now suppose we make a manifold W by taking the inside of ), and removing a
small ball around every zero. Now &, is never zero on W nor does it approach zero.
So now we can define the mapping f(z) = ém (2)

T m(2)
to the unit circle 0D. If we assign orientation to boundaries of this manifold, then

This is a smooth mapping from W

the internal boundaries are negatively oriented and the outer one (the C,) is positively
oriented. Around each of the internal boundaries f is of degree —1. Since f restricted

to the boundaries obviously extends to a mapping of the whole W to 0D, then by the
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Extension Theorem (Theorem A.11 on page 64), we know that the degree of f if restricted
to the boundary of W is 0. This means that the degree of f restricted to C, is the number
of zeros of &, inside C,.. It is easy to see that since f always points inside on C,, it is
homotopic to the Gauss map which maps each point to the unit vector pointing to the
origin. The degree of the Gauss map is one, and thus there is exactly one zero of &,

inside C, and hence, &, has exactly one zero in D. QED!

3.3 Extensions of the Douady-Earle Type

We can now define the Douady-Earle extension of a quasisymmetric homeomorphism
of the unit circle. But first we need to define what is a harmonic measure.
Definition 3.5 For any Borel set A C 0D we define the harmonic measure n, of z as

1 1—|z]?
) =5 [ L=l gy,

o Ju e -1

The harmonic measure really measures the set that A would be taken to if z would
be taken 0 by a conformal transformation. An interpretation of this measure that is
useful for us is that suppose that we are at z, then 7,(A) measures how much A takes up
our "field of view”. If we want to get the ”"barycenter” or the center of gravity of such
a measure, then we’d want to find a point where no matter where we put A, it takes up
the same amount from our ”field of view”. This point is 0. Now what we are going to do
is we are going to push-forward this harmonic measure by our boundary mapping and
then get the barycenter of the resulting measure.
Definition 3.6 (The Douady-Earle Extension) Let u be a quasisymmetric mapping
of OD onto itself. We define the extension ¢ = E(u) on D as the conformal barycenter

of the forward push of n, by u, that is

¢(2) = B(pnz)-

On 0D we define ¢(z) = u(z).
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1 1-[2?
2 212

We now let p(z,t) =

to make notation easier. Then 7,(A) = [, p(z,t)|dt|

and so by (3.2) the Douady-Earle extension is the unique zero of the function

Fya(w) = (1— [wf?) / L2 (8)

op 1 — Wt
=(1—|wf) AD%CJ,%(@ (3.3)

—(1-fuP) [ O ar

Intuitively what is happening is that p distributes the weight on the unit circle
and then we try to find the barycenter of this weight. Imagine a set of weights on the
boundary of the unit circle as the u. Then suppose we are standing on the unit disc
at the point z. We then compare these weights by just judging their size depending
on how much of our field of view they take up, and find the barycenter based on this.
This is done by the 1, measure, which is the same as first applying to these weights the
Mobius transformation that takes z to 0 and then find the barycenter. This can be seen

in Figure 3.2.

A 4

Action of 7,

Figure 3.2: Distribution of Weights by © as Seen Through 7,

As an example we can try to see what happens if we use the z® function for our

boundary correspondence as we did with the Beurling-Ahlfors extension. This time
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however we must map it onto the unit circle. So suppose that S(z) is a conformal map

241

21t - Now we can consider
1z+1

which maps the unit circle onto the real line, that is S(z) =
the function S™(S(z)?). The result of this mapping can be seen in Figure 3.3 on the
next page. So that we can compare the result to Figure 2.1 on page 17 we map the disk
onto the plane in Figure 3.4 on page 36.

Proof of Theorem 3.1: The last condition of the theorem follows easily by looking at
w =0 and z =0 in (3.3). We also note that the harmonic measure when looking from

z = 0 is just the normal measure. So suppose that [, () |dt| = 0 then

Foo0) = (1 [0) / et

pl—

/M dno(t)
oD
/u |dt|
oD

And since the zero of F), , is unique, then ¢(0) = 0.

Similarly for the second condition. Suppose that p is the identity and suppose that
w = z. Notice that g,.n, is just the same as 7y since 7, is the measure of a set when we
take z to 0 conformally, but we’re pushing forward by a conformal mapping that takes z

to 0 already (so we take 0 to z before applying the measure). So this means we have

Fua(2) = (1 |2) /a T (o

D 1 -
= (1- 2]} ADtdgz*nz(t)
= (=) [ tam(o)

—(1— |2 / t|dt)
oD
= 0.

Next we wish to show that ¢ is conformally natural in the sense that for any two

conformal automorphisms « and 8 of D, we have that F(aopo ) = ao E(u) o 8. We
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can do this by showing that whenever F,o,u0p,.(w) has a zero, then F), g.,)(a™'(w)) also
has a zero, and since the zero is unique by Lemma 3.1 on page 29 we have conformal

naturality. So suppose that a(z) = ew% and then
Oé(Z) B Oé(w) <619 1- aw) — eia% - eie lw_a?u (em 1-— 611))
= afula(o) \" T=ew) " \T - e )\ T
6 B 1 —aw 1 —aw
1 a4 z-a 1—aw
—aw 1—az

z— 1—aw) (1—az)(w — a)
1—az)(1—aw)—(ﬁ—ﬁ)(z—a)
Z—0—aWwz+ aow —w + azw — aaz + a

l1—az —aw+aowz —wz + az + aw — aa
zZ —w — aaz + aqw

1 —wz+aawz — aa

(1 —aa)(z —w)
(1 —aa)(1 —wz)
oz w
C1-—wz
Which means that we can write
a(z) — alw Z—w
() —olw) oy 220 (3.4)
1 — a(w)a(z) 1 —wz
where
(w) z91
1 1—aw’

which is non-zero at any point on D.

Now we look at F), g,y and using (3.3) and (3.4) we see that

Fypoy () = (1— |w]?) / O =W 50y, 0
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F, a0 (Y w)) = (1 — oY w)]?)g(a™ (w z,t)|d
a7 (@) = (L= o™ )Pl () [ SEEEEES A e
e CRIOEIVON e PRI

(1~ o~ (w)]*)

= 1 _ |w|2 q(a_l(w)) FD&ONO/B,Z’

%q(a‘l(w)) is never 0 for w € D, we have that Fi,,.s, is zero if and

and since
only if F), g(,)(c ' (w)) is zero and thus ¢ = E(p) is conformally natural.

So now what we need is to show that F(u) = ¢ is continuous at a point s € 0D. For
this we first define H to be the complex harmonic extension of p to the unit disc. That
is

A = [ uo)dn.to) (35
aD

By definition of ¢ we can see that F), ,(¢(z)) = 0, since ¢ is defined in terms of the
zeros of F, ,. If we plug ¢(z) into (3.3) we get

t) —
0 =/ Mdnz(t). (3.6)
op 1 — p(t)¢(z)
Then combining (3.5) and (3.6) we get

¢(z) — H(z) = - ¢(2) — u(t) dn.(t)

T i S = A
= [, = n0de) L )

A TO T Y R
o B e L0 /a HOFE) O ()
Mdnz(t).

—0+ / R B

Now we can multiply a zero by anything and still have zero and so (3.6) also yields

o)
0= w96 | P S dn () .

[ = 6)
= | ua s ()

(3.7)
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So now subtracting (3.8) from (3.7) we get

¢@>—H@>=1;u@86$ﬂﬁif§idmuy—LDM@EGYﬂQZiEidmu)

1— p(t)¢(z) 1— p(t)e(2)
= — u(s —z—'u(t) _ (ﬁ(i) d .
) = e FE e ()
We note that |¢(z)| < 1 and % = 1 (which is just a Mdbius transformation
of the unit disk and p(t) is on the unit circle) for z € D and thus we get
z)— H(z — u(s z M .
6(2) — H(2)| S/{)D (u(t) — pu(s))o( )1_N(t)¢(z) 12 (1)
_ _ s B | A0 = 9(z) (3.9)
1m0 = s [5G |22

SLJMO—MMdm@-

Since p is a continuous function then the right hand side of this equation goes to
zero as z approaches s, since the closer z is to s the more ”"weight” is given to ¢ that are
close to s when thinking of the integral as a sum. So the left side also goes to zero as z
approaches s and thus ¢(z) gets closer to H(z) which is a continuous function and thus
¢ is also continuous at s (this can be seen by the triangle inequality).

We still need to show that ¢ is a real analytic diffeomorphism of the unit disc. Given
that we have continuity at the boundary, what is left is to show that ¢ is real analytic
and that the Jacobian is nonzero everywhere in D. To make things easier let’s first define

the function
F, . (w
G(z,w) = TR0 ’iz|(w‘)2
By Lemma 3.2 on page 29 the Jacobian of F), , is positive, and so the Jacobian of G
with respect to w (thus keeping z constant) is also positive. Then since ¢(z) is defined
in the terms of the zeros of G then by the Implicit Function Theorem (Theorem A.4 on
page 60) we have that ¢(z) is in fact a real analytic function in D. So what is left to
show is that the Jacobian is positive everywhere on D.

The Implicit Function Theorem also gives us a formula for the derivative of ¢(z)

in terms of the derivatives of G. Note that taking the determinant of a matrix and
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its negative is the same given that the matrix is of an even size. So given that our
determinant matrices that come from the Implicit Function Theorem are all 2 by 2, we

see

D.G(z,6(2)) + DuG(2,6(2)) - D¢(2)
D.G(z,¢(2))
J.G(2,0(2)) = JuG(z, 6(2)

() -
L 1.G(6(2))
10 = 58 e()

0,

—DyG(z,9(2)) - Do(2),
Jo(2),

Now we note that J,G(z,w) > 0 by Lemma 3.2 on page 29 (else we couldn’t really
do the above division). So all that is left to prove is that J,G(z,w) > 0, but we note
that if we treat w as a constant, then G(z,w) is really just the Harmonic extension of

Juw © |4, that is
Gz, w) = / (w0 W0 dn0),

By Theorem A.9 on page 62 we know a harmonic extension of a continuous function
that maps the unit circle to itself homeomorphically is a diffeomorphism with a positive
Jacobian, if we assume this is a sense preserving map. This means that J,G(z,w) > 0 and
in turn J¢(z) > 0. This means that since ¢(z) maps the circle to itself homeomorphically
and the Jacobian is positive everywhere in D, then ¢(z) must be a diffeomorphism of the
disk to itself.

Next we need to show that the dilatation of the extension is uniformly bounded. For
this we will need a lemma about the dependence of E(u) = ¢ on p. The proof of this
is different from both [7] and [4]. Tt is a more elementary - proof, but is substantially
longer.

Lemma 3.3 The Douady-FEarle extension E(u) = ¢ is a continuous mapping with re-
spect to the sup norm.

Proof: First let’s see what we wish to prove. Suppose we are given an € > 0 then we
wish to find a 6 > 0 such that sup,cp |E(uo) — E(u)| < € whenever sup,csp |0 — p| < 9.

So let’s pick v = £ and consider for now p and pg where sup,csp [po — 11| < 7. Close

to the boundary we have shown in (3.9) that ¢(z) is very close to H(z), the harmonic
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extension of p. Furthermore it is easy to see from that equation, that the closer z gets to
the boundary, the closer H(z) and ¢(z) are. So we can find a circle |z| = ry < 1 such that
|¢(z) — H(z)| < § for all |z| = r¢ (we can do this as a circle is a compact set and we’ll just
get close enough to the boundary as needed). Also if Hy is the harmonic extension of yq
and ¢o = E(uo) then we can also pick ro such that [¢o(2) — Ho(z)| < § for all [2| = ro.
In fact since as we said H(z) gets closer to ¢(z) as z gets closer to the boundary then we
know that [¢o(2) — Ho(z)| < § and |¢(z) — H(z)| < § for all 1 > |z| > ro. So now since

SUP,eap Mo — B < v = $ we have

|Ho(2) — H(2)| =

[ wtoano- [ uoin)
INICE u(t)dnz(t)‘
< / 1alt) = p(Oldn.()

< vdn, (t)
oD

€

Then for all z such that 1 > |z| > ry we have

[60(2) = 6(2)] = [d0(2) — Ho(2) + Ho(z) — H(z) + H(2) — ¢(2)]
)_

<|¢o(2) — Ho(2)| + [Ho(2) — H(2)| + |H(2) — ¢(2)|
cfeias

We are half way done. Let’s now concentrate on the set |z| < rq. This is a compact
set and thus ¢(z) and ¢y(z) are continuous and thus uniformly continuous on this set.
This means that they both achieve their maximum on this set and thus suppose that
|¢(2)| < rp and |¢g(z)| < ry for some r; < 1. Now let’s consider the function F), , where
|z| <7 and |w| < 7. Now pick any 2 such that |29 < ry. Then we have the functions
Fp.2(w) and F), , (w) are continuous (for |w| < r1) and in fact 1-1 since the Jacobian

is positive by Lemma 3.2 on page 29. This means these functions have an inverse and

by the Inverse Function Theorem (Theorem A.3 on page 60) this inverse is continuous.
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Since we are dealing with a compact set (continuous functions map compact sets to
compact sets) the inverse is in fact uniformly continuous. Now suppose that wy is such

that F,, ., (wp) = 0 (we know |wg| < r; because of how we picked r1). Now

|Fu,20(w0)| = ‘F ,Zo(wo) - FMO,Zo(w0)|
(= o) (u(t) — wo) (1 — [wn[?) (o(t) — w)
- [, wou(ty O elf) [ wona() el
U (= o)) — ()
T A i s MO
11— wnf2?

< 100 = 1O oy 0

then by reverse triangle inequality

1 — |wol*”

< [, 1m0~ 1O T )

d 7z ()

and now since |u(t)| =1 and |po(t)] =1

1 — |wo[*|”

|
< [ o) = w0l T sz d 1)
— (sup uo(2) — p(2))) /a el 1 S

2€0D p (1= [w))?

< (sup Jpo(2) — p(2))) / (o)

2€0D

= 4(255% 1o (2) — p(2)])-

So how close F), ,,(wo) is to zero depends only on the maximum difference of the
w and . Since the inverse of F), ., is uniformly continuous, we can pick a o(zp) > 0
(this o depends on zy) such that whenever sup,csp |0(2) — p(2)| < o(zp) we have that
lw — wo| < € (and so |p(z0) — do(20)] < €). We could further pick o(z) such that
o(z9) < 7y (where v is as it was defined above). Now o(zj) is a continuous function
defined on a compact set and it thus attains a minimum, and this minimum is not zero
because o(z) > 0 for all 25 on this compact set. Let’s call this minimum just o.

Now we are finished with the proof. We can pick 6 = min{o, v} and we get that for
all z € D we have |¢(2) — ¢o(2)| < €. QED!
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We are now ready to finish the proof of the Douady-Earle extension.

Continuation of the proof of Theorem 3.1: Because a rotation around 0 does not
change the dilatation anywhere in the disk, we can just study such p that fix a single
point, say —1. Now suppose that we have a and S such that o and 8 are conformal
maps of D onto D and fix —1, and we pick « such that oo ppo 8 fixes 2, —1 and 1.
Now since awo E(u) o 8 = E(ao po 3) and since o and § are conformal the maximal
dilatation of those two functions is the same. If we consider the conformal map that
takes —1 to infinity and the unit disc to the upper half plane, then 3 corresponds to
the affine transformations from Definition 2.1 on page 9, and then the « o i corresponds
to normalized quasisymmetric maps of the real line onto itself. Suppose we call S the
family of such normalized p that admit a K-quasiconformal extension. That is all of the
elements of S satisfy the same M-condition. By Theorem 2.2 on page 9 we have that S
is a compact set.

If we take E(u)(2) = ¢(z) as a function of both z and p we now know that this is
continuous function. Now on any compact set within D such as |z| < r < 1 we have that
the partial derivative of F(u)(z) with respect to z exists, is continuous as a function of

z and so the sequence (given n large enough)

E(p)(z) = E(w)(2 +1/n)
1/n

is a uniformly convergent sequence. The uniform limit of continuous functions is contin-

fn(Z, /1') =

uous by Theorem A.2 on page 60 and so ag(zp) is a continuous function in both p and z

(for z € D and not on the boundary of course). Same can be done for Z.
Now because E(p)(z) is a real analytic diffeomorphism as a function of z, we have

that

=

0
|2522(0),

0
|252(0),

|25 (0|
SUP{ s » < 1
ueS{|ag—(z“)(0)|

If we can show this, then since the § was arbitrary we could transport any point

< 1.

What we want to show is that

to 0, pick an appropriate « and still be in S. So we have the dilatation bounded for all
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z € D, and have the same bound for all i satisfying the same M-condition, since all the
elements of S satisfy the same M-condition. We have already shown that the partial
derivatives of E(u)(z) with respect to z and Z are continuous functions of u. Since p
are on a compact set, then the supremum is achieved and must thus be less than 1.
This means that the Douady-Earle extension E(u) of a homeomorphism g of the unit
circle that admits a quasiconformal extension is quasiconformal and that the in fact by
Lemma 2.1 on page 10 the quasiconformal constant K of the extension depends only
on the quasisymmetricity constant of y (since all of S satisfies the same M-condition).

QED!
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CHAPTER 4

COMPARISON OF THE EXTENSIONS

4.1 Maximal Dilatation of the Extensions

Now that we have both the Beurling-Ahlfors and Douady-Earle extensions defined
we wish to compare their maximal dilatations. Suppose that we have a boundary corre-

spondence function u(x) and suppose that we define
K(u) = inf{K : p has a K-quasiconformal extension}.

Also suppose that KB4 () is the maximal dilatation of the Beurling-Ahlfors exten-
sion, and that KPP () is the maximal dilatation of the Douady-Earle extension. By [4]
(using results of Ahlfors [1] and Lehtinen [11]) we have

1
KBA < = 7TK([,L),
(1) < ge
while by [4] we have that
KPP(u) < AeBE®W  for some positive A and B A <4x10® B < 35.

This means we have better bounds for the maximal dilatation of the Beurling-Ahlfors
extension.

Now given the M-condition on the boundary we can get a bound on the dilatation
purely based on the M. There is in fact a linear bound found by Lehtinen [10] which
is KBA(y) < 2M. We can also alter the definition of the extension by adding an extra
parameter r, then

or(2,y) = ulz,y) +irv(z,y),
where u(z,y) and v(z,y) are the same as in the original definition.

Let’s call the maximum dilatation of this modified extension K54. We then note

that with r = 1 we have the same exact extension as before and so KB4 = KB4, With

this new definition, Beurling and Ahlfors [2] prove that there exists an r depending
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only on M such that KP4 < M?. Lehtinen also proves in [11] that there exists an r
depending only on M such that K?4 < 2M — 1. In the same paper Lehtinen constructs

an M-quasisymmetric p such that K24 > %M for every r.

4.2 Conformal Naturality

The Beurling-Ahlfors extension is easier to define and construct and furthermore
we have very nice bounds on its dilatation. However it lacks the conformal naturality
property of the Douady-Earle extension. The Beurling-Ahlfors extension has something
somewhat similar in fact. Suppose that BA(u) = ¢ is the Beurling-Ahlfors extension,
then by Lemma 2.4 on page 19 we have that if o and  are Mobius transformations that
fix infinity (that is they are of the form az+b), then we have ao BA(u)o8 = BA(aopof).
Note that the restriction on @ > 0 is only in our original lemma since we are looking
at sense preserving mappings and we could very well just allow a < 0 as well. But the
restriction that o and ( fix a single point cannot be removed. In fact p has to fix the
same point for the extension to work.

If we wish to look at things in the same context as with the Douady-Earle extensions,
that is in the unit disc, then we let S(z) be the Mébius mapping from the real line onto
the unit circle bringing oo to 2. Then we could define the Beurling-Ahlfors extension on a
disk as BAp(u) = SoBA(S 'opuoS)oS™t. That is of course if u fixes 4, which means that
S~topoS fixes oo, since that is a requirement of the Beurling- Ahlfors extension. Now if o
and [ are Mébius transformations that fix ¢, then we have co BAp(u)off = BAp(aopof).
Which is almost conformal naturality, but not quite.

So for the purpose of being able to study the behavior of the extension by just
looking at a single point, this is enough. In fact we have used this property when proving
that the Beurling-Ahlfors extension is quasisymmetric since we only needed to look at
the dilatation at the point ¢. However if what we need is for the extension operator to
commute with composition with any conformal map, then we cannot use the Beurling-

Ahlfors extension.
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CHAPTER 5

APPLICATIONS

5.1 Absolute Continuity on the Boundary

In this section we will construct a quasisymmetric function of the real line to itself
which is not absolutely continuous (See Definition A.1 on page 61). Then by Theorem 2.1
on page 8 we conclude that there exists a quasiconformal mapping of the upper halfplane
to itself with such a boundary. Furthermore we will show that we can have the maximal
dilatation of that extension as close to 1 as we like. This result was proved in [2]. We
will in fact construct a purely singular function (See Definition A.2 on page 61).
Theorem 5.1 There exists a quasiconformal mapping ¢ of the halfplane to itself whose
boundary correspondence is given by a completely singular function p which satisfies the
M -condition for M arbitrarily close to 1. And the mazimal dilatation of phi is also
arbitrarily close to 1.

Proof: Given any M > 1 we shall take a strictly increasing sequence of numbers m,,

such that 1 < m, < M. And we will take a fixed number A such that 0 < A\ < ﬁi:& < 1.
We will use the notation M(u) to mean the smallest M for which p satisfies the M-
condition. Now we will construct a sequence of quasisymmetric functions {u, } normalized
by 1,(0) = 0 and p,(27) = 27 and such that they satisfy M (p,) < m, < M. Then by
Theorem 2.2 on page 9 we have that this sequence has a subsequence that converges to a
quasisymmetric mapping p such that M(u) < M. We will show that this mapping p is
purely singular that is, y'(z) = 0 for almost all z, and p is not constant. Such a mapping

is not absolutely continuous by application of Theorem A.7 on page 61.

We will construct a strictly increasing sequence of positive integers {n;}{° and define
o by

1y () :/ H(l-i—)\cosnis)ds.
0 =1
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It is easy to see (by fundamental theorem of calculus) that

pi1(z) = / (1 + Acosny,y18)u.,(s)ds.
0

We will use the notation y,(w) and p(w) for the set functions on the set w. That is
by how much does p, or u increase on the set w. If w is an interval, say w = [a, b] then
w(w) = p(b) — pu(a), and in terms of the integral definition of u, we can just take the
integral over w.

So suppose w is an interval, then we have

1-a=0-y ()

- [, (L+ Xcosnyq15)p,(s)ds
B [, 1, (s)ds
— ,U'V+1(w)
i (w) (5.1)
L1+ Xcos n,,+1s),ufj(5)ds
- Joy (s

cuon (i

=1+

And now if we have a pair of intervals w and w’, then using (5.1) we get

1—A < Mu+1(w)/ﬂu(w) < 1+)‘_ (5.2)

LA T (@) ) (W) — 1= A

Now suppose that w = [z, 2 + t] and w' = [x — ¢, 2], which are of equal length, then

for p; we get immediately that

11— < fwl + Acosn;sds _ w1 (w) < 14+

1+X 7 [, 14+ cosnysds  pa(w') — 1 =N
which is just the M-condition for p;. So the M-condition is satisfied with M(u;) <
1+A

< my. This means that n; can be arbitrary.
We will proceed inductively. So suppose we have already determined nq, ng,--- ,n,.
Then suppose that N, = Z;’:l ni, and we take that n,,; > N,. From this we can

conclude that

2w
/ ul(s)cosny,1sds =0, (5.3)
0
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which is easily seen by the fact that all the different cos terms are orthogonal to each
other. In fact this is true for any interval of length 27, not just [0,27]. Now by the
Riemann-Lebesgue Theorem (Theorem A.6 on page 61) we have that

X
/ i (s)cosn,1sds — 0,
0

at least pointwise as n,.; — oo. Now this is also uniform in z. To see that first
define p,(z) = [ u,(s) cosnsds. We can see that p(0) = 0 and p(27) = 0 and also
p(x + 27) = p(x) + 27 by (5.3), so we only need to look at z € [0,27], and we wish to

show that p,(z) — 0 uniformly as n — 0. First note that if C' is a constant, then

b C nb
/ C cos(ns)ds = — / cos(s)ds — 0
a n na

at the same rate no matter what a and b are as the integral of a cosine over any interval
is no larger than 1 in absolute value because of the oscillations. So if ¥(x) is a step
function then we know

/w Y(s) cos(ns)ds — 0
uniformly for all . So suppose W;) are given an € > 0, then by Theorem A.5 on page 61
we know that we can find a step function v (z) such that f027r [Y(s) — m,(s)|ds < 5. Also
we can find an N such that for all n > N we have that | [’ ¢(s) cos(ns)ds| < &. Thus

forn > N,

lon(2)| = / ., (s) cosnsds
0

- / "(W(s) + i (5) — (s)) cosms ds

<| [ wte)cosmsds|+ [ 10u0(o) — (o)) cosnst ds
< /Owip(s)cosnsds +/Ow|u;(s)—w(s)lds
<| [ wreosnsas| + [Tl o) - wolas
.
<gtg=e

So pn(z) — 0 uniformly as n — oo. This means that p,; tends uniformly to pu,, since

poi1() :/ w,(s)(1+ Acosmyi1s) ds:/ e, (8) ds+)\/ e, (s) cosn, 15 ds.
0 0 0
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We proceed by induction since n; is arbitrary and we have seen that M (u1) < m;.
So assume that n, - - - , n, have been picked, and that we have M (y;) < m; for 1 <i <.
Let w and w' be two intervals of the form [z, +t] and [z — ¢, z]. Since p,(z) is a smooth
analytic function, and thus the left and right derivative are equal at every point, we know
that

,Uu(w) ,u,,(x + t) - ,Lbu(l')

li = li
ok () 50 (@) — (e — 1)
— lim (T + 1) — pi(2) t
t—0+ t () — p(x —t)

=1.

The function ! (z) is uniformly continuous, because it is just a trigonometric poly-

nomial, and so we can pick 6, > 0 such that whenever ¢t < §, we have

14X 1 _ fom(s)ds _ p(w) _1-A

L= Amgys — [, ib(s)ds  m(w) — T+ A
Combining this with (5.2) we get, as long as ¢t < 9,,
1 v
<) o (5.4)

Myt~ o1 (W)

Now since p,,41 tends uniformly to p, and since M (p,) < m, < m,,1 we can choose
n,+1 large enough such that (5.4) is true for all ¢, and so we have the M-condition satisfied
and M (p,+1) < myy1. Now we could also always choose 1,1 even larger to make sure

that for all  we have that

(@) = o) < ()

which we can do since p,,,1 tends uniformly to p,. And so we shall pick n,; large enough
such that both of the above conditions are satisfied.

So now we have a sequence of normalized quasisymmetric mappings all of which
satisfy the M-condition for our initial M > 1. By Theorem 2.2 on page 9 we know
that the limit of this sequence is also a quasisymmetric mapping which satisfies the M-
condition for the same M. We call this limit function p and so what is left to show is

that this limit function is purely singular. We note that since (5.3) is true for all v, then
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(x4 27) = p(x) + 27, which really means that we only have to worry about the interval
[0, 27]. If we can show that p is purely singular on this interval then it is purely singular
everywhere.

First we write a related function in terms of the complex Fourier series

g(z) =log(l+ Acosz) = Z Ve etk

k=—00

where

because g(z) is continuous and twice differentiable on the interval [0,27] and ¢(0) =

g(2m), so the periodic extension is continuous. Also note that

1 2w
Yo = —/ log(1 + Acoss)ds < 0,
21 Jo

so let’s from now on define a = —7,, and notice that a > 0.
Since the sum »_,> _|7yx| converges to some positive number we can pick a ¢ such

that

Z h/k‘ < g,

|k|>q

which gives us

Now if we take the log of ! (x) we notice that it’s a sum of the ¢’s with different

arguments. Specifically

v

log s, (z) = Y _ g(n;)

j=1
av - tkn;x
< —? + / Z Y e
J=1 \1<|k|<q
We can thus write
av
log 1, (z) < —— + hy (), (5.6)

2
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where we define

We can see that the Fourier expansion of h,(x) will by definition contain at most
2qv different terms, and in fact each coefficient will be less than S =7 |y|. Now
if we look at the Fourier series for h%(z), it in fact has the same number of terms as the
Fourier series for h,(z), but they are bounded by S%. So if we integrate term by term we
can see that

1 " h%(s)ds < 2qvS?.
2 Jo 7 -

Now the set where h?(z)

(only for x € (0,27)) must be of measure less
than 64;2‘15 else the integral would be larger than it is. This is the set where h,(z) > %

and if we exponentiate both sides of (5.6) and define FE, as the set where

we can see that
64mqS?  64mqS? 1
a2y a2 v

m(E,) <

We notice that ¢, S and a only depend on the definition of g(z) and thus all of them

depend on the choice of \ only. So if we let ¢ = #4745

, we can see that m(£,) < £, where
c is a constant that depends only on A. This means that as v — oo we have m(E,) — 0.

Now we wish to show that u(E,) — 27. By p(E,) we mean that the amount that
the function u grows on the set E,. Now since p! (z) is a trigonometric polynomial of
degree at most N,, which we can see since if we look at the Fourier series of yl,(z) all
the terms higher than N, will be zero since u! (z) will be orthogonal to sin’s and cos’s

with higher degree by definition of p (x). This means that E, is in fact at most N, arcs

when z is considered on the unit circle. Now by (5.5) we get that for all =

n(a) <D o) = mlo)| < 3 e =

k=1
Now E, is at most IV, arcs so let’s call them A, ;. Also p and p, are increasing

functions which satisfy u(z + 27) = p(z) + 27 and p,(z + 27) = p,(x) + 27 and so for
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each arc A, which goes from oy to B; we get that

2
[1(Av k) = o (Avp)| < o) — o ()| + |1(Br) — 1 (Be)| < W= DN,
which implies
N, 9
(1(Ey) — o (E))| < Z [1(Avk) — po(Avp)| < b—1
k=1

Now this means that as v — oo then u(E,) — u,(E,). Now since p,, is an increasing,
analytic, continuous function and the derivative outside of E, gets smaller and smaller,
and since p,([0,27]) = 27 we must have that p,(E,) — 2. And this means that
w(Ey) — 2m. Since m(E,) — 0 we can find a subsequence {E,, } such that we have
m(E,,) < ;. Then by the subadditivity of Lebesgue measure we have that if we pick

any positive integer j, .
m(UEn) €3 e = v
k=j

which means that m (U;’OE,,,C) — 0 as j — oo. And this is a sequence of nested sets.
This means that there exists a set Z of measure 0 that is the limit (intersection) of the
UXE,,. Now since u(E,,) — 27 we must have that ;(Z) = 27. So we have a set Z, where
m(Z) =0 and u(Z) = 2. Since p cannot grow any more than 27 on the interval [0, 27],
this means that outside of Z, p must be constant (on a set of measure 27) and thus
have derivative 0 (if the derivative exists). Since by Theorem A.8 on page 62 increasing
functions have derivative defined almost everywhere, then the derivative must be 0 on a
set of measure 27 and thus p is purely singular. QED!

Now to have some sort of a feel of how such a function looks we look at the graphs of
first few elements of the sequence {u,(z)}, with n; =1, n, = N, ; + 1 and with A = %
In Figure 5.1 on the next page, we can see pi, 2, i3 and gy with those parameters.
It is also interesting to see how the Beurling-Ahlfors extension looks like. Figure 5.2 on
page 55 gives the Beurling-Ahlfors extension of pgg. It should be noted that the n,’s we
use do not follow all the conditions we set in the proof, however this should only affect

the maximal dilatation and the rate of convergence. From several trial tests it seems that

for our choice of n, the convergence is actually very fast already. It should be noted that
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the sharp edges in the graph of the extension are there because not enough points are
computed to produce completely smooth lines and not because the extension has such

sharp edges.

Figure 5.1: Graph of p(x), pe(z), ps(z) and pgo(x)
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Figure 5.2: Graph of the Beurling-Ahlfors Extension of pg(z)
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5.2 Application to Teichmiiller Spaces

Some applications require the conformal naturality property of the Douady-Earle
extension. As a small example we will give a proof of an alternative definition for a
Teichmiiller space as done by Douady and Earle [4]. This application requires the fact
that for any quasisymmetric map of the unit circle there exists a conformally natural
quasiconformal extension to the unit disc.

So let M be the open unit ball in L*(D, C). Now for each o0 € M there is a unique
quasiconformal map f of D onto itself that fixes the points 1, 7, and —1 and satisfies

the Beltrami differential equation

f7(z) = a(2)f](2),

and let ©” be the restriction of f to the unit circle.

Remember that G is the group of conformal maps of the unit disc to itself. Now
we let I' be a Fuchsian group, that is, a subgroup of G which is discrete (that is, any
convergent sequence in the group eventually becomes just the repetition of one element).

We can define
M) ={oc € M;f’ovyo(f°) ' €qGforallyel}. (5.7)

Douady and Earle [4] start with a different definition but prove that (5.7) is equivalent,
and it is what we need for the proof. Intuitively this is all the complex dilatations, such
that when we compose the associated quasiconformal mapping with a member of ' as
above we get a conformal map. Also let #(0D) be the space of all homeomorphisms of
the unit circle. We can now define the Teichmiiller space.

Definition 5.1 We define the Teichmiiller space for the Fuchsian group T" as
T(T) ={p € H(OD); u= pu° for some o € M(T')}.

So a Teichmiiller space is really all the quasisymmetric maps of the unit circle such
that there is a quasiconformal extension to the whole disk whose complex dilatation is

in M(T"). If we denote by 1 the trivial subgroup of G, then we can see that M(1) = M
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by definition and then 7'(1) is the space of all quasisymmetric maps of the unit circle.
That is, all the maps that allow a quasiconformal extension.

Now if u € T(T), then we will denote by ji the quasiconformal extension to D such
that p is the boundary of this extension and i = f for some o € M (I"), which we know
can be done by the definition of T'(T").

The following is a theorem due to Tukia [16], with a proof from Douady and Earle [4].
If we let E(u) be the Douady-Earle extension of p (or any conformally natural extension
in fact), we get

Theorem 5.2 Given a Fuchsian group I' we have
T(M)={ueT);fioyoi " €@ forall y €T}

So this gives an alternative definition of the Teichmiiller space, one that is similar
to our definition of M(T'). It says that if we extend the u to the disk, then if we compose
this as above with an element of I' we get back a conformal mapping.

Proof: First define S = {u € T(1);fioyojii~' € G for all v € T'}. Now by (5.7) we
have that if 0 € M (') then p” € S, since i = f?. This means that T(I') C S.

Conversely suppose that p € S, this means that for some all v € T" we have u o
v = g o u where g € G. Now we can extend both sides since they are equal and get

E(uov) = E(go u), by conformal naturality we get E(u) oy = go E(u) or
E(p)oyoE(n)' =g€G.

So we have to prove that E(u) = f? for some 0 € M(I'). Now by Theorem 3.1 on
page 27, we have that E(u) is quasiconformal and thus E(u) = f7 where 0 € M. Now

by definition of the complex dilatation we can write

Now since f = E(u) and since u = pu° € S we have f7ovyo (f°) ' € Gforally €T
and so 0 € M(T') by (5.7) and this means that S C T(I"). Thus S = T(T"). QED!

For further discussion of Teichmiiller spaces see Gardiner and Lakic [7].
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THEOREMS USED

We need a few basic theorems and results and so we list them here. First the
Arzela-Ascoli theorem with statement due to [6].
Theorem A.1 (Arzeld-Ascoli) Let E be a compact subset of C, and let F be a family of
continuous complez-valued functions on E that is uniformly bounded. Then the following
are equivalent:

1. The family F 1s equicontinuous at each point of E.
2. Fach sequence of functions in F has a subsequence that converges uniformly on E.

Specifically we will use this result to show that there always exists a uniformly
converging subsequence in any sequence of functions in such a family. Of course this is
also true for real valued functions as well, and this is what we will use.

We also need a few basic calculus results. The following three theorems are all due
to [5].
Theorem A.2 Suppose that {f, : D — R} is a sequence of continuous functions that
converges uniformly to the function f : D — R. Then the limit function f : D — R is
also continuous.
Theorem A.3 (Inverse Function Theorem) Let O be an open subset of the plane
R? and suppose the mapping f : O — R? is continuously differentiable. Let (zo,yo) be
a point in O at which the derivative matriz D f(xo,yo) is invertible (the Jacobian is not
zero). Then there is a neighborhood U of the point (xg,yo) and a neighborhood V of its
image f(xo,y0) such that f : U — V is one-to-one and onto. Furthermore the inverse
mapping 1V — U is also continuously differentiable.
Theorem A.4 (Implicit Function Theorem) Let n and k be positive integers, let O
be an open subset of R"* and suppose that the mapping f : O — R¥ is continuously
differentiable. At the point (zo,yo) (where the first coordinate is n dimensional and the
second k dimensional) in O, suppose that f(xo,yo) = 0 and that the Jacobian with respect
to yo is non zero. Then there exists a number r > 0 and a continuously differentiable

g : B(xg;r) — RF where B(xg;7) is an open ball around xy of radius v such that
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1. f(z,g(x)) =0 for all x € B(xo;r)
2. whenever ||z — xol| <7, ||ly — wol| < r, and f(z,y) =0 then y = g(x).
3. and lastly D, f(z,g(x)) + Dy f(z, g(x)) - Dg(z) =0 for all x € B(zy;7)
Next we need some theorems from the Lebesgue integral theory. The next two
theorems come from Royden [14]. First is a result about step functions.

Theorem A.5 Suppose f is integrable over E, then given any € > 0 there exists a step

[1r-vi<e

And the second is the Riemann-Lebesgue Theorem.

function 1 such that

Theorem A.6 (Riemann-Lebesgue) Suppose f is an integrable function on (—oo, 00)
then

o0

li_}rn f(z)cosnzdx = 0.

Specifically, we can multiply f(z) by any characteristic function and the above be-
comes true for any subset of (—o0, 00).

We also need the definitions for absolutely continuous functions and singular func-
tions. These come from [14].
Definition A.1 A real-valued function f defined on |a,b] is said to be absolutely contin-

uous on [a,b] if, given € > 0, there is a 6 > 0 such that
D) = flai) < e
i=1

for every finite collection {(x;, x})} of non overlapping intervals with

n
Z |z, — z;| < 6.
i=1

Definition A.2 A monotone, non-constant, function f on [a,b] is called singular if
f'(x) = 0 almost everywhere.

So if we can show that a function has derivative 0 almost everywhere on [a, b], and
f(a) # f(b) then we have shown that it is a purely singular function.
Theorem A.7 If f is absolutely continuous on [a,b] and f'(x) = 0 almost everywhere,

then f is constant.
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Now by the above theorem we know that a singular function cannot be absolutely
continuous. Also another useful result from Royden about monotone functions is the
following theorem.

Theorem A.8 Let f be an increasing real-valued function on [a, b] then f is differentiable
almost everywhere.

There is also a need for some results about harmonic maps of a disk. The following
theorem comes from [15].

Theorem A.9 (Rado) Suppose Q C R? is a convexr domain with a smooth boundary
0%), and suppose D is the unit disc. Given any homeomorphism u : 0D — 0S2, there exists
a unique harmonic map u : D — € such that v = p on 0D and u is a diffeomorphism.

Specifically we will take €2 to be the unit disc as well, and we will use this theorem,
to show that the harmonic extension of the unit disc is unique and secondly that the
Jacobian must be non-zero (since it is a diffeomorphism).

We need some results from topology as well. First we will need the Abstract Mon-
odromy Theorem. For this we need a few definitions. All of this comes from [3]
Definition A.3 Suppose ) is a topological space, then a covering space of (2 is a pair
(X, p) where X is a connected topological space and p is a continuous function of X onto
Q such that for each w € Q) there is a neighborhood A of w such that each component of
p~ 1 (A) is open and p maps each of these components homeomorphically onto A.
Definition A.4 Let (X, p) be a covering space of 2, and let v be a path in Q. A path 5
in X s called a lifting of v if poy =1
Definition A.5 Two paths v : [0,1] — X and o : [0,1] — X in a topological space
X with v(0) = 0(0) = a and (1) = o(1) = b are fixed end point homotopic or FEP

homotopic if there exists a continuous map T :[0,1] x [0,1] — X such that

[(s,0) =~(s), (s, 1) = a(s),
I'0,t) = a, I'(1,t) =b.

Where 0 < s,t < 1.
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Now we can state the (abstract) Monodromy Theorem.
Theorem A.10 (Monodromy Theorem) Let (X, p) be a covering space of 2 and let
v and o be two paths in Q) with the same nitial and final points. Let ¥ and & be paths
in X with the same initial points such that v and & are liftings of v and o respectively.
If v is FEP homotopic to o in ) then v and ¢ have the same final points and are FEP
homotopic in X.

We also need some results from differential topology. The following theorems and
definitions come from [8].
Definition A.6 Two functions, fo : X — Y and f; : X — Y are homotopic if there
exists a smooth map F : X x [0,1] = Y such that F(z,0) = fo(z) and F(z,1) = fi(z).
Definition A.7 If X is a subset of RN and it is locally diffeomorphic to R*, then X
15 called a k-dimensional manifold. Furthermore if X is locally diffeomorphic to the
halfspace H* such that each point in X possesses a neighborhood diffeomorphic to an
open set in H* then X is called a k-dimensional manifold with boundary. The points
that are mapped to the boundary of H* are the boundary, 0X of X.

Now we need to define the degree of a mapping f. First we define sign df,, that is
the sign of the derivative of f at the reqular point z, that is a point where the derivative
matrix is non-singular, as +1 if the derivative matrix preserves orientation or -1 if it

reverses orientation. Next we define

deg(fiy)= > signdfs.

zef~(y)

In fact this is the same for all regular points. And so
Definition A.8 The degree of a mapping is the deg(f;y) for some regular value y

Next we need to define the index of a zero of a smooth vector field on a manifold.
Definition A.9 Suppose M is a manifold and v : M — R™. And suppose that © = 0 is
an isolated zero for some x € M. Then if we take a sphere around x (call it S.) then the
index of the zero is the degree of the map % restricted to S..

In two dimensions, the index is really the number times that the direction rotates

completely counterclockwise as we move counterclockwise around the zero. We also need
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this very useful Lemma about indexes of zeros of vectorfields defined over manifolds as
given in [12].

Lemma A.1 Suppose U is a vectorfield and v(x) is a zero where the derivative matriz is
non singular (the Jacobian is non-zero). Then the index of this zero is +1 or -1 depending
on if the Jacobian is positive or negative respectively.

Now we can state a generalized version of the Hopf Degree Theorem as stated in [8].

The Hopf theorem is a particular instance of the following theorem. S* is the boundary
of the k + 1 dimensional ball, that is S* = {z € R¥*! : |z| = 1}.
Theorem A.11 (Extension Theorem) Let W be a compact, connected, oriented k+1
dimensional manifold with boundary, and let f : OW — S* be a smooth map. f extends
to a globally defined map F : W — S*¥, with OF = f, if and only if the degree of f is
zero.

In particular we are interested in this theorem in the plane where S! is the unit
circle. We also need the Hopf Degree Theorem itself.

Theorem A.12 (Hopf Degree Theorem) Two maps of a compact, connected, ori-

ented k-manifold X into S* are homotopic if and only if they have the same degree.
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COMPUTER CODE USED

All of the figures used have been produced with the ePix program [9] version 0.8.9.
This program takes C++ code using special calls and produces eepic format files for direct
inclusion in TEX documents. The website for this program has extensive documentation
on its use. Where normal real numbers are needed, the double type is used, and where a
complex number is needed, the ePix pair type is used. Unfortunately the ePix division
of pair values does not seem to be standard complex number division and so I have
implemented a ”div” routine in places where this is needed. If more than one picture
is needed to be produced from the same code, I use environment variables to tell the
program which plot to produce. For example in the figures for graphing the extensions
of the upper half plane to itself, the code produces either the grid, or where the grid is
taken with the mapping depending on if the PLOTGRID environment variable is set.

It should be noted that some routines, such as the ”integral” routine I have imple-

mented once and reused everywhere where they were needed.

B.1 Computer Code to Produce Figure 2.1

For Figure 2.1 on page 17 we need to plot the Beurling-Ahlfors extension to the
upper half plane of the quasisymmetric mapping u(z) = 3.

To plot the Beurling-Ahlfors extension we need to calculate integrals and so the
midpoint rule with 500 equally spaced rectangles for each calculation is used. Since the
function that we deal with is smooth enough, this produces very accurate results. When
run with the explicit formula calculated for u(x) = z® the output was indistinguishable
from the output gotten with the numerical approximation of the integral. To change
the function being used as p all that is needed is to change the definition of the "mu”
function in the code. The code is run first with the environment variable PLOTGRID

set to produce the source grid and then without to produce the resulting graph.

What follows is the C++ source code for generating the plot of Figure 2.1 with ePix.



#include "epix.h"
using namespace std;
using namespace ePiX;

#tdefine SIZE 2
#tdefine LABELGRID 0.5
#tdefine GRID 0.075

static double
integral (double (* func) (double), double a, double b, int p)
{

double sum = 0.0;
double len = b-a;
double em = len/p;
int i;

for (i = 0; i < p; i++) {
sum += (func (a + (len*i)/p + em/2) * em);

return sum;

static double
mu (double x)
{
// mu is x°3
return x*x*Xx;

}

static void
function (double x, double y, double *ox, double *oy)
{
if (y == 0.0) {
x0x = mu (x);

xoy = 0.0;
} else {
xox = (1 / (2%y)) * integral (mu, x-y, x+y, 500);

(1 / (2%y)) * (integral (mu, x, x+y, 500) -
integral (mu, x-y, x, 500));

*oy
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static int
out_of_bounds (double x, double y)
{
return (x < - SIZE || x > SIZE || y < 0.0 || y > SIZE);
}

int
main()
{
double x,y;

bounding_box (P(-SIZE,0), P(SIZE, SIZE));
picture (P(300, 150));
unitlength ("1pt");

begin () ;

grid (2*SIZE/LABELGRID, SIZE/LABELGRID);
h_axis (P(-SIZE,0), P(SIZE,0), 2+SIZE/LABELGRID);
v_axis (P(0,0), P(0,SIZE), SIZE/LABELGRID);
h_axis_labels (P(-SIZE,0), P(SIZE,0), 2+SIZE/LABELGRID, P(0,-10), c);
v_axis_labels (P(0,LABELGRID), P(0,SIZE),
SIZE/LABELGRID-1, P(-4,0), 1);

for (x = -SIZE; x <= SIZE; x += GRID) {
for (y = 0; y <= SIZE; y += GRID) {
double fi1x, fly;
double f2x, f2y;
double f3x, f3y;
double f4x, fay;
function (x, y, &fix, &fly);
function (x + GRID, y, &f2x, &f2y);
function (x + GRID, y + GRID, &f3x, &f3y);
function (x, y + GRID, &f4x, &f4y);
if (out_of_bounds (fix, fiy) ||
out_of_bounds (f2x, f2y) ||
out_of_bounds (£f3x, £f3y) ||
out_of_bounds (f4x, f4y))
continue;
// Switch for pre/post function grid
if (getenv("PLOTGRID")) {
line(P(x,y), P(x+GRID,y));
line(P(x+GRID,y), P(x+GRID,y+GRID));
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line(P(x+GRID,y+GRID), P(x,y+GRID));
line(P(x,y+GRID), P(x,y));

} else {
line(P(f1x,fly), P(£f2x,f2y));
line(P(£2x,f2y), P(£3x,f3y));
line(P(£3x,f3y), P(f4x,f4y));
line(P(f4x,f4y), P(fix,fly));

}

}
}

end ();

return O;

}

B.2 Computer Code to Produce Figure 3.3
and Figure 3.4

For Figures 3.3 on page 35 and 3.4 on page 36 we must plot the Douady-Earle
extension of 2> when conformally mapped onto the unit disc.
Since the Douady-Earle extension E(u) = ¢ is defined implicitly in terms of the

vector field

Fatw) = (1= uP) [ 2O =y, )t

we need to find the zeros of F,,. Fortunately F,, will in fact point in the direction
of the zero. And so the algorithm to find the value of ¢ at z, is to take wy = 0 as
our initial value and then recursively set w,i1 = w, + F, (w,), until the length of
the vector returned by F,, is within some tolerance. This is a fairly fast algorithm to
find the zeros and it is clear that this is correct from the proof of the Douady-Earle
extension. The body of the function F},, is again calculated by the midpoint rule, again
with 100 rectangles. Increasing both the zero tolerance and the number of rectangles
did not produce significantly different plots. It should be noted that if we increase the
zero tolerance we must also increase the precision of the integral or the code will loop
indefinitely for some z,. To change the function used for u, it is only needed to change

the function "mu” in the code below.



70

As for Figure 2.1, when this code is run with PLOTGRID environment variable set,
just the grid before being mapped will be produced.

For Figure 3.3 the code is run without any other environment set, and produces a
plot of a map from the unit disc to the unit disc. For Figure 3.4 the code is run with
RECTANGULAR environment variable set which maps the extension to the upper half
plane, such that we get a plot which is similar to that of Figure 2.1 and we can compare
the two extensions.

What follows is the C++4 source code for generating the plot of Figure 3.3 and 3.4
with ePix.

#include <math.h>
#include "epix.h"

using namespace std;
using namespace ePiX;

##define SIZE 2
##define LABELGRID 0.5
#tdefine GRID 0.075

#define conj(c) P((c).x1,-(c).x2)
#define modsq(c) ((c).x1x(c).x1 + (c).x2x(c).x2)

// Unfortunately ePix complex division is broken in the version I used
static pair
div (pair x, pair y)
{
return P((x.x1*y.x1 + x.x2%y.x2)/(y.xl*y.x1 + y.x2%y.x2),
(y.x1*x.x2 - x.x1%y.x2)/(y.x1*y.x1 + y.x2%y.x2));

// Mobius transform to map the circle onto real line
static pair
S(pair z)
{
return div((z+P(0,1)),(P(0,1)*z+P(1,0)));
}

static pair
Sinv(pair z)



{
return div((z-P(0,1)),(-P(0,1)*z+P(1,0)));
}

static pair

mu (pair t)

{
// Our mu is the S~-1(S(t)"3)
pair x = S(t);
return Sinv(x*x*x);

}

static pair
F (pair z, pair w)
{
pair sum, t;
pair modsqz = P(modsq(z),0);
pair conjw = conj(w);
pair P1 = P(1,0);
int i;

##define PARTS 100

sum = P(0,0);
for (i = 0; i < PARTS; i++) {
pair body;

t = polar (1.0, (i*2*M_PI)/PARTS);

sum += ( div ((mu(t)-w) , (Pl-conjwkxmu(t))))
*
( div ((P1-modsqz) , (P(modsq(z-t),0))));
}

return sum * P((1-modsq(w)) / PARTS,0);
}

static pair

phi (pair z)

{
int 1i,j;
pair coord = P(0,0);
pair val = F(z,coord);



while (modsq(val) > 0.00001) {
coord += val;
// Make sure we are within the circle
if (modsq(coord) >= 1) {
coord = coord * P(1.0/sqrt(modsq(coord)),0);
}

val = F(z,coord);

return coord;

}
static int do_grid = O;
static double phi_mod = 0.0;

static pair
phi_r (double r)

{
if (do_grid)
return polar (phi_mod, r);
if (truncate (phi_mod - 1.0) == 0.0)
return mu (polar (phi_mod, r));
else
return phi (polar (phi_mod, r));
}

static double phi_angle = 0.0;
static pair
phi_ray (double m)

{
if (do_grid)
return polar (m, phi_angle);
if (truncate (m - 1.0) == 0.0)
return mu (polar (m, phi_angle));
else
return phi (polar (m, phi_angle));
}

static void
run_plot (void)
{

int i;
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}

for (i = 1; i <= 8; i++) {
phi_mod = (1.0%i)/8.0;
plot (phi_r, 0.0, 2*M_PI, 100);

}

for (i = 1; i <= 20; i++) {
phi_angle = (2+M_PI*i)/20.0;
plot (phi_ray, 0.0, 1.0, 50);

}

static void
function (double x, double y, double *ox, double *oy)

{

pair w;
if (truncate (y) == 0.0) {
w = S(mu (Sinv(P(x,y))));
} else {
w = S(phi (Sinv(P(x,y))));
}

¥0x = w.x1;

X0y = W.X2;
// if *oy is less than 0, let’s just make it O, it’s an error
if (*xoy < 0.0)

x0y = 0.0;

static int
out_of_bounds (double x, double y)

{

3

return (x < - SIZE || x > SIZE || y < 0.0 || y > SIZE);

void
rectangular_plot ()

{

double x,y;

bounding_box (P(-SIZE,0), P(SIZE, SIZE));
picture (P(300, 150));

unitlength ("1pt");

begin () ;
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grid (2+SIZE/LABELGRID, SIZE/LABELGRID);
h_axis (P(-SIZE,0), P(SIZE,0), 2*SIZE/LABELGRID);
v_axis (P(0,0), P(0,SIZE), SIZE/LABELGRID);
h_axis_labels (P(-SIZE,0), P(SIZE,0), 2*SIZE/LABELGRID, P(0,-10), c);
v_axis_labels (P(0,LABELGRID), P(0,SIZE),
SIZE/LABELGRID-1, P(-4,0), 1);

for (x = -SIZE; x <= SIZE; x += GRID) {
for (y = 0; y <= SIZE; y += GRID) {
double fix, fly;
double f2x, f2y;
double f3x, f3y;
double f4x, fiy;
function (x, y, &fix, &fly);
function (x + GRID, y, &f2x, &f2y);
function (x + GRID, y + GRID, &f3x, &f3y);
function (x, y + GRID, &fé4x, &f4dy);
if (out_of_bounds (fix, fly) ||
out_of_bounds (f2x, f2y) ||
out_of_bounds (f3x, f3y) ||
out_of_bounds (f4x, f4y))
continue;
// Switch for pre/post function grid
if (getenv("PLOTGRID")) {
line(P(x,y), P(x+GRID,y));
line(P(x+GRID,y), P(x+GRID,y+GRID));
line(P(x+GRID,y+GRID), P(x,y+GRID));
line(P(x,y+GRID), P(x,y));
} else {
line(P(f1x,fly), P(£f2x,f2y));
line(P(£f2x,f2y), P(£3x,f3y));
line (P(£3x,£3y), P(f4x,f4y));
line(P(f4x,f4y), P(fix,fly));

end ();
}

void
circular_plot ()
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bounding_box (P(-1,-1), P(1, 1));
picture (P(230, 230));
unitlength ("1pt");

begin () ;

h_axis (P(-1,-1), P(1,-1), 4);
v_axis (P(-1,-1), P(-1,1), 4);
h_axis_labels (P(-1,-1), P(1,-1), 4, P(-12,-14));
v_axis_labels (P(-1,-1), P(-1,1), 4, P(-4,0), 1);

if (getenv ("PLOTGRID"))
do_grid = 1;
run_plot ();

end O;

int
main ()

{
if (getenv ("RECTANGULAR"))
rectangular_plot ();
else
circular_plot ();

return O;

}

B.3 Computer Code to Produce Figure 5.1

For Figure 5.1 on page 54 we need to plot

() :/ H(l—i—)\cosni:ﬁ)dx,
0 =1

for several different v’s. We do this for v = 1, 2, 3 and 20. The X is set to By

1
5.
experimentation we can see that the curve is more pronounced when A is larger, which
will also mean that the M will also be larger. For n, we use ny =1 and n, = N,_; + 1.

To calculate the integral more efficiently code computes the integral fzmil w! (x)dx, where



76

x; are the points used for the graph, then this is added to the value computed for z;_;.
The integral is again computed using the midpoint rule with 1000 rectangles used for
each of the steps. I computed the n,’s and put them in as an array, so they don’t have
to be recomputed all the time.

What follows is the code used by ePix for Figure 5.1.

#include "epix.h"
using namespace std;
using namespace ePiX;

##define LAMBDA 0.5
#define RECTS 1000

static double
integral (double (* func) (double), double a, double b, int p)
{

double sum = 0.0;
double len = b-a;
double em = len/p;
int i;

for (i = 0; i < p; i++) {
sum += (func (a + (len*i)/p + em/2) * em);

3

return sum;

static int nu;
static double value;
static double last_x;

static int n[] = {1,2,5,11,23,47,95,191,383,767,1535,3071,6143,12287,
24575,49151,98303,196607,393215,786431};

static double
mu_nu_prime (double x)
{

int i;

double prod = 1.0;



}

for (i = 0; i < nu; i++) {
prod *= 1+LAMBDA*std::cos(n[il*x);
}

return prod;

static double
mu_nu (double x)

{

}

if (x == last_x)
return value;
value = value + integral (mu_nu_prime, last_x, x, RECTS);
last_x = x;
return value;

int
main()

{

bounding_box (P(0,0), P(2*M_PI,2*M_PI));
picture (P(400, 400));
unitlength ("1ipt");

begin Q) ;

line (P(0,y_max),P(x_max,y_max));
line (P(x_max,0),P(x_max,y_max));

line (P(0,0),P(x_max,0));

line (P(0,0),P(0,y_max));

h_axis (P(x_min,0), P(floor(x_max),0), 12);

v_axis (P(0, y_min), P(0, floor(y_max)), 12);
h_axis_labels (P(0,0), P(floor(x_max),0), 6, P(0,-10), c);
v_axis_labels (P(0,0), P(0,floor(y_max)), 6, P(-4,0), 1);

dotted ();

nu = 1;

value = 0.0;

last_x = 0.0;

clipplot (mu_nu, x_min, x_max, 100);

line (P(5,1.3), P(5.3,1.3));

7
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label (P(5.4,1), P(0,0), "$\\mu_1(x)$", r);

dashed ();

nu = 2;

value = 0.0;

last_x = 0.0;

clipplot (mu_nu, x_min, x_max, 100);

line (P(5,1), P(5.3,1));
label (P(5.4,1), P(0,0), "$\\mu_2(x)$", r);

solid ();

nu = 3;

value = 0.0;

last_x = 0.0;

clipplot (mu_nu, x_min, x_max, 200);

line (P(5,0.7), P(5.3,0.7));
label (P(5.4,0.7), P(0,0), "$\\mu_3(x)$", r);

bold ();

nu = 20;

value = 0.0;

last_x = 0.0;

clipplot (mu_nu, x_min, x_max, 200);

line (P(5,0.4), P(5.3,0.4));
label (P(5.4,0.4), P(0,0), "$\\mu_{20}(x)$", r);

end ();

return O;

B.4 Computer Code to Produce Figure 5.2

To produce Figure 5.2 on page 55 we must do a similar plot as for Figure 2.1, but

with the difference that we use the
o 20

oo () = /0 H(l + Acosn;z)dz,

i=1

as our u function. The parameters for pgy are set the same as for Figure 5.1.
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Unfortunately since too many rectangles are used to plot this extension, and this
would make KTEX end with an error, the code had to be modified to be more optimal
with drawing lines. So care is taken to not draw lines twice over each other. Also since
at some points the distortion of the pyy function made the extension look too ”blocky”
since only the endpoints of the rectangles are calculated, the code is modified to add two
more points if the rectangle width is too big.

Also the function implementation as computed for Figure 5.1 could not be used di-
rectly, since recomputing the integral for each point takes too long. The first optimization
that is done is to notice that u(x+27) = p(x)+2m, and so we only need to compute the
on the interval [0, 27]. Furthermore the code first computes the function value for 10000
different equally spaced points, and then when it needs to compute it for a specific point
it picks the closest point from the left and computes the integral just from this point to
the x that we want to use. For the initial precomputation, the midpoint rule with 100
rectangles is used for each of the 10000 intervals and for the final integral, the midpoint
rule with 10 rectangles is used. Then for the Beurling-Ahlfors extension integrals we use
the midpoint rule with 100 rectangles. Even with these optimizations the graph of the
extension takes quite long to produce. It is my opinion that the computation time could
be further reduced by proper ”tuning” of the parameters and using better numerical
approximation methods for the integrals. Also a 4 times speedup could be achieved by
just optimizing the plotting routine which in fact calculates each point 4 times.

Similarly as before, when this code is run with PLOTGRID environment variable
set, just the grid will be produced. What follows is the C++ code used by ePix for

producing Figure 5.2.

#include "epix.h"
using namespace std;
using namespace ePiX;

#define SIZE 2
#define LABELGRID 0.5
#define GRID 0.075
#define NU 20
#define RECTS 100
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#define LAMBDA 0.5

static double
integral (double (* func) (double), double a, double b, int p)

{

double sum = 0.0;
double len = b-a;
double em = len/p;
int i;

if (len == 0.0)
return 0.0;

for (i = 0; i < p; i++) {
sum += (func (a + (len*i)/p + em/2) * em);

return sum,;

static int n[] = {1,2,5,11,23,47,95,191,383,767,1535,3071,6143,12287,

24575,49151,98303,196607,393215,786431};

static double
mu_prime (double x)

{

int i;
double prod = 1.0;
for (i = 0; i < NU; i++) {
prod *= 1+LAMBDA*std::cos(n[i]*x);
}

return prod;

#define CACHE_SIZE 10000

static int cache_inited = O;
static double fcache[CACHE_SIZE];

static void
init_cache (void)



int i;

double x, 1x;

fcache[0] = 0.0;

1x = 0.0;

for (1 = 1; 1 < CACHE_SIZE; i++) {
x = (i*2*M_PI)/CACHE_SIZE;
fcache[i] = integral (mu_prime, 1lx, x, RECTS) + fcache[i-1];
1x = x;

}

cache_inited = 1;

static double
mu (double x)
{
int i = 0;
int c;
if ( ! cache_inited)
init_cache ();
while (x > 2xM_PI) {
i++;
x —= 2xM_PI;
}
while (x < 0.0) {
i--;
x += 2xM_PI;
}
¢ = (int) ((x*CACHE_SIZE)/(2*M_PI));
return fcachel[c] + integral (mu_prime, (c*2*xM_PI)/CACHE_SIZE, x, 10)
+ i*2*M_PI;

static void
function (double x, double y, double *o0x, double *oy)
{

if (y == 0.0) {

*0x = mu (x);
xoy = 0.0;
} else {
xox = (1 / (2%y)) * integral (mu, x-y, x+y, 100);
xoy = (1 / (2*y)) * (integral (mu, x, x+y, 100) -



integral (mu, x-y, x, 100));

static int
out_of_bounds (double x, double y)
{
return (x < - SIZE || x > SIZE || y < 0.0 || y > SIZE);
}

int
main()
{
double x,y;

bounding_box (P(-SIZE,0), P(SIZE, SIZE));
picture (P(300, 150));
unitlength ("1pt");

begin (O ;

grid (2*SIZE/LABELGRID, SIZE/LABELGRID);
h_axis (P(-SIZE,0), P(SIZE,0), 2+SIZE/LABELGRID);
v_axis (P(0,0), P(0,SIZE), SIZE/LABELGRID);
h_axis_labels (P(-SIZE,0), P(SIZE,0), 2%SIZE/LABELGRID, P(0,-10), c);
v_axis_labels (P(0,LABELGRID), P(0,SIZE),
SIZE/LABELGRID-1, P(-4,0), 1);

for (x = -SIZE; x <= SIZE; x += GRID) {
int firstrow = 1;
for (y = 0; y <= SIZE; y += GRID) {
double fix, fly;
double f2x, f2y;
double f3x, f3y;
double f4x, fiy;
function (x, y, &filx, &fly);
function (x + GRID, y, &f2x, &f2y);
function (x + GRID, y + GRID, &f3x, &f3y);
function (x, y + GRID, &fé4x, &f4dy);
if ( ! out_of_bounds (fix, fly) &&
! out_of_bounds (f4x, fdy) &&
(out_of_bounds (f2x, f2y) ||
out_of_bounds (£f3x, £3y))) {
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}

if (getenv("PLOTGRID")) {
line (P(x,y+GRID), P(x,y));

} else {

line(P(f4x,f4y), P(fix,fly));

}
}
if (out_of_bounds
out_of_bounds
out_of_bounds
out_of_bounds
continue;

(f1ix,
(f2x,
(£3x,
(fax,

fiy) ||
f2y) ||
£3y) ||
f4y))

// Switch for pre/post function grid
if (getenv("PLOTGRID")) A{

if (firstrow)

line(P(x,y), P(x+GRID,y));
line(P(x+GRID,y+GRID), P(x,y+GRID));
line(P(x,y+GRID), P(x,y));

} else {
if (firstrow)

line(P(f1x,f1y), P(f2x,f2y));
if (abs(f3x-f4x) > 0.15) {
double ix, iy, iix, iiy;
function (x + GRID/3.0, y + GRID, &iix, &iiy);

function (x + 2.0%xGRID/3.0, y + GRID, &ix, &iy);

line (P(£3x,f3y), P(ix,iy));
line(P(ix,iy), P(iix,iiy));
line(P(iix,iiy), P(f4x,f4y));

} else {

line(P(£3x,f3y), P(f4x,f4y));

}

line(P(f4x,f4y), P(fix,fly));

}
firstrow = 0;
}
}

end ;

return O;
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ABSTRACT

Suppose that we have a homeomorphism of the real line onto itself, when and how can
we extend this to a quasiconformal homeomorphism of the upper half plane to itself?
In general we can consider any singly connected domain. First I will give a theorem
by Beurling and Ahlfors that there exists a quasiconformal extension if and only if the
boundary homeomorphism is a quasisymmetric mapping, that is when the boundary
homeomorphism is the equivalent of a quasiconformal map in one dimension. The suffi-
ciency part of the theorem is proved by an explicit construction of an extension. Later
Douady and Earle proved, again by explicit construction, that we can in fact make a con-
formally natural extension. That is we can compose the boundary homeomorphism with
two conformal automorphisms and then extend or first extend and then compose and we
will in fact end up with the same map. We can then compare these two constructions

and look at some applications.



