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Introduction

If you cannot prove a man wrong, don’t panic. You can always call him names.
—Oscar Wilde

The purpose of this book is to teach a one-semester graduate course in complex
analysis for incoming graduate students. 

*
 The first seven chapters is a natural first

semester in a two semester sequence where the second semester could be several
complex variables (e.g., [  L3 ]) or perhaps harmonic analysis. It could perhaps be used
for a more elementary two-semester sequence if the appendix is covered first, and
all the optional bits of the main text are also covered. We assume basic knowledge
of undergraduate analysis in the real variable, called advanced calculus in some
schools. The text assumes knowledge of metric spaces and differential calculus in
several variables, but if the reader is not confident on these topics or has not yet seen
them, the useful results are presented (with proofs) in the appendices. With that, a
basic prerequisite for the course would be at least a single semester of undergraduate
analysis if the appendices are also covered or read, and if the student has seen metric
spaces and mappings in ℝ2, then the course can just start in  Chapter 1  . Very basic
undergraduate linear and abstract algebra is also useful.

The analysis prerequisites can be mostly found in [  L1 ,  L2 ,  R1 ]. Further recom-
mended reading on complex analysis is [ B ,  C1 ,  C2 ,  R2 ,  U ]. See the aptly named  Further
Reading chapter.

This book takes the view that we do not need to redefine and reprove things that
we have done in a basic undergraduate real analysis course, especially with regards
to mappings of the plane. We can quite quickly jump to holomorphic functions
as solutions of the Cauchy–Riemann equations, for instance. The connection is to
understand both the derivative of a planar mapping and multiplication by a complex
number as a 2 × 2 real matrix. When we introduce line integrals, we connect them
to the line integrals the student has seen in calculus. The inverse function theorem
can be introduced early as a consequence of the inverse function theorem in ℝ2. An
outline of a pure complex analysis proof is left for later as an exercise. These are not
simply time saving measures. The point is to stress that we are not defining some
totally new and different world.

*I wrote it specifically to teach Math 5283 at Oklahoma State University.
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We also try to introduce the 𝑧, 𝑧̄ approach instead of just the purely 𝑥, 𝑦 approach.
For example, we introduce and use the Wirtinger operators. It is really a better way
to think about complex variables.

We try not to define any conflicting terminology or notation with what the reader
has learned before. Mainly, the term “differentiable” is generally left for the real
derivative and we use “complex differentiable” when needed. Although to be sure,
we generally write “(real) differentiable” or “differentiable (in the real sense)” to
make it clear when we mean real differentiability.

Finally, some sections early in the book are marked with a ★ and those can be
easily skipped on first reading (though it does not mean they are not important, just
not necessary for what follows). Skipping some may make it possible to cover other
later topics.

The general dependence of the non-appendix chapters is the following diagram.
The way I ran my semester course was to go through chapters  1 – 5 , skipping the
homotopy versions of Cauchy, to get through basic theory of holomorphic functions,
then getting to  6 (Montel and Riemann mapping), and some bits of  7 (harmonic
functions). There are some extra topics for a different plan such as  8 (Weierstrass
factorization),  9 (Runge), and  10 (analytic continuation).

 Ch. 1  Ch. 2  Ch. 3  Ch. 4 

 Ch. 5 

 Ch. 6  Ch. 7  Ch. 8 

 Ch. 9  Ch. 10 

The only reason why  9 (Runge) depends on  6 (Montel and Riemann mapping) is that
we prove  Lemma 6.3.7 (around every compact there exists a cycle homologous to
zero) as an example application of Riemann mapping.



1𝑖 \\ The Complex Plane

It’s clearly a budget. It’s got a lot of numbers in it.

—George W. Bush

1.1𝑖 \ Complex numbers

Modern 

†
 mathematics is taking a false statement such as “all polynomials have a

root” and redefining what a “root” could be, that is, redefining “number,” so that
the statement is true. In this instance, we arrive at the complex numbers. Although
this technique (moving the goalposts) feels like cheating, it gave us essentially all
the mathematics we know, both pure and applied. This same technique starts with
the natural numbers ℕ = {1, 2, 3, . . .}, the only numbers obvious from nature, and
gives us zero and negative numbers producing the integers ℤ, so that we can solve
equations such as 𝑛 + 2 = 1. From ℤ, we define the rational numbers ℚ to solve 

‡
 

equations such as 2𝑥 = 1. We extend ℚ to the real numbers ℝ to solve equations such
as 𝑥2 = 2. Actually our definition of the real numbers is such that we get theorems
like the intermediate value theorem, Bolzano–Weierstrass, etc. It is then not much of
a stretch to do the same thing when trying to solve 𝑧2 + 1 = 0. Just as with the real
numbers, the consequences of adding

√−1 to the mix are much more profound than
just finding roots of polynomials.

Interestingly, while the step into analysis with the real numbers is a step into
the abyss, the step into analysis with the complex numbers is a step into a fairytale
wonderland. A first-year real analysis course crushes the student’s hopes and dreams.
Most reasonable statements are false and bizarre counterexamples abound. On the
other hand, a complex analysis course fills the student with unrealistic optimism.
It is replete with naïve and silly statements that only a bad calculus student could
entertain. 

§
 The two are the good-cop bad-cop, the yin-yang, of contemporary analysis.

†In this context, modern means “later than the middle ages.”
‡Do we really solve 2𝑥 = 1 by writing 𝑥 = 1/2? After all, 1/2 is just a placeholder for an object that

we can’t describe in a way other than “whatever 1 divided by 2 would be if it existed.”
§E.g.: If you can differentiate once, you can differentiate twice. Every function acts sort of like a

linear function. If all derivatives are zero at a point, the function is constant. Etc.
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1.1.1𝑖 · The complex numbers as the plane
You have surely seen the complex number field, but let us review its definition anyway.
As a set, let the complex number field ℂ be the set ℝ2 = ℝ ×ℝ. The set is a plane, so we
call it the complex plane 

*
 . To make it a field, we define addition and product:

(𝑎, 𝑏) + (𝑐, 𝑑) def
= (𝑎 + 𝑏, 𝑐 + 𝑑),

(𝑎, 𝑏)(𝑐, 𝑑) def
= (𝑎𝑐 − 𝑏𝑑, 𝑏𝑐 + 𝑑𝑎).

Exercise 1.1.1: Check that ℂ is a field, where the additive identity is 0 = (0, 0) and the
multiplicative identity is 1 = (1, 0). That is, ℂ is an abelian group under addition, the
nonzero complex numbers are an abelian group under multiplication, and the distributive
law holds. Hint: The multiplicative inverse of (𝑎, 𝑏) is

(
𝑎

𝑎2+𝑏2 ,
−𝑏
𝑎2+𝑏2

)
.

When we write a real number 𝑥, we identify it with the complex number (𝑥, 0).
With this identification ℝ ⊂ ℂ. We also define the imaginary unit 

†
 

𝑖
def
= (0, 1).

With this notation, (𝑥, 𝑦) = 𝑥 + 𝑖𝑦. From now on, 𝑥 + 𝑖𝑦 is the only way we will write
the complex numbers in terms of the coordinates 𝑥 and 𝑦. We call 𝑥 + 𝑖𝑦 the cartesian
form of the complex number. The number 𝑖 has the magical property that

𝑖2 = −1.

For this reason we sometimes  

‡
 write 𝑖 =

√−1. Note that there is another square root
of −1, that is, −𝑖. The numbers 𝑖 and −𝑖 are the solutions to 𝑧2 + 1 = 0. We will prove
later that every polynomial has roots over the complex numbers.

Given a complex number 𝑧 = 𝑥 + 𝑖𝑦, its “evil twin” is the complex conjugate of 𝑧:

𝑧̄
def
= 𝑥 − 𝑖𝑦.

The number 𝑥 is called the real part and 𝑦 is called the imaginary part. We write

Re 𝑧 = Re(𝑥 + 𝑖𝑦) = 𝑧 + 𝑧̄
2 = 𝑥, Im 𝑧 = Im(𝑥 + 𝑖𝑦) = 𝑧 − 𝑧̄

2𝑖 = 𝑦.

A particularly useful observation is that we wrote the real part and the imaginary
part in terms of 𝑧 and 𝑧̄. Any expression we write in terms of the real and imaginary
parts of 𝑧, we can equally well write in terms of 𝑧 and 𝑧̄. And vice versa. For example,

𝑥3 + 𝑦3 + 3𝑖𝑥𝑦 =

( 𝑧 + 𝑧̄
2

)3
+

( 𝑧 − 𝑧̄
2𝑖

)3
+ 3𝑖

( 𝑧 + 𝑧̄
2

) ( 𝑧 − 𝑧̄
2𝑖

)
,

*Although there is that odd mathematician out there that thinks that the complex plane is ℂ2 = ℂ×ℂ.
If you hear someone say that, politely whack them over the head for me.

†Beware of engineers; they think it is called 𝑗, despite there being no “j” in “imaginary.”
‡There are those that always write

√−1 instead of 𝑖. Those people also deserve a good whack.
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or
𝑧2 − 𝑖 𝑧̄2 + 𝑧𝑧̄ = (𝑥 + 𝑖𝑦)2 − 𝑖(𝑥 − 𝑖𝑦)2 + (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦).

It may seem that an expression in terms of 𝑧 and 𝑧̄ is more complicated. Namely, 𝑧
and 𝑧̄ are not “independent variables.” However, it is particularly powerful to think
in terms of 𝑧 and 𝑧̄ instead of 𝑥 and 𝑦, and to pretend in many contexts as if 𝑧 and 𝑧̄
were actually independent variables.

1.1.2𝑖 · The geometry and topology of the plane
The size of 𝑧 is measured by the so-called modulus, which is just the euclidean distance
from the origin to 𝑧:

|𝑧 | def
=

√
𝑧𝑧̄ =

√
𝑥2 + 𝑦2.

More simply, |𝑧 |2 = 𝑧𝑧̄. Notice |𝑧 | ≥ 0, and |𝑧 | = 0 if and only if 𝑧 = 0.

Proposition 1.1.1 (Cauchy–Schwarz and the triangle inequality). If 𝑧, 𝑤 ∈ ℂ, then

(i) |Re 𝑧𝑤̄ | ≤ |𝑧 | |𝑤 | (Cauchy–Schwarz inequality 

*
 , note: Re 𝑧𝑤̄ is theℝ2 dot product),

(ii) |𝑧 + 𝑤 | ≤ |𝑧 | + |𝑤 | (Triangle inequality).

Proof. The modulus squared of a complex number is always nonnegative. Thus,

0 ≤ |𝑧𝑤̄ − 𝑧̄𝑤 |2
= (𝑧𝑤̄ − 𝑧̄𝑤)(𝑧̄𝑤 − 𝑧𝑤̄)
= 2𝑧𝑧̄𝑤𝑤̄ − 𝑧2𝑤̄2 − 𝑧̄2𝑤2

= 4𝑧𝑧̄𝑤𝑤̄ − (𝑧𝑤̄ + 𝑧̄𝑤)2
=

(
2|𝑧 | |𝑤 |)2 − (

2 Re 𝑧𝑤̄
)2
.

This proves Cauchy–Schwarz. We prove the triangle inequality via Cauchy–Schwarz:

|𝑧 + 𝑤 |2 = (𝑧 + 𝑤)(𝑧̄ + 𝑤̄)
= 𝑧𝑧̄ + 𝑤𝑤̄ + 𝑧𝑤̄ + 𝑧̄𝑤
≤ 𝑧𝑧̄ + 𝑤𝑤̄ + 2|𝑧 | |𝑤 |
=

(|𝑧 | + |𝑤 |)2
. □

Exercise 1.1.2: Prove the polarization identity 4𝑧𝑤̄ = |𝑧 + 𝑤 |2−|𝑧 − 𝑤 |2+𝑖 (|𝑧 + 𝑖𝑤 |2−
|𝑧 − 𝑖𝑤 |2) .
*The name is wrong. Some (wrongly) say it should be Cauchy–Bunyakovsky–Schwarz. Bun-

yakovsky and Schwarz proved the infinite-dimensional version. This version ought to be called Cauchy
inequality, but lamentably that name could refer to a different inequality, the Cauchy estimates.
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The distance between two numbers 𝑧 and 𝑤 is measured by

|𝑧 − 𝑤 |.
This distance makes ℂ into a complete metric space. By complete, we mean that
Cauchy sequences have limits. See  Appendix A for an introduction to metric spaces.

Proposition 1.1.2. Complex addition, multiplication, division, and conjugation are contin-
uous: Suppose {𝑎𝑛} and {𝑏𝑛} are two convergent sequences of complex numbers. Then,

(i) lim
𝑛→∞(𝑎𝑛 + 𝑏𝑛) =

(
lim
𝑛→∞ 𝑎𝑛

)
+

(
lim
𝑛→∞ 𝑏𝑛

)
,

(ii) lim
𝑛→∞ 𝑎𝑛𝑏𝑛 =

(
lim
𝑛→∞ 𝑎𝑛

) (
lim
𝑛→∞ 𝑏𝑛

)
,

(iii) lim
𝑛→∞

1
𝑎𝑛

= 1
lim
𝑛→∞ 𝑎𝑛

, as long as lim
𝑛→∞ 𝑎𝑛 ≠ 0,

(iv) lim
𝑛→∞ 𝑎̄𝑛 = lim

𝑛→∞ 𝑎𝑛 .

Exercise 1.1.3: Prove the proposition.

The basic neighborhood (that is, an open ball) in ℂ is called a disc. Given 𝑝 ∈ ℂ

and 𝑟 > 0, define the disc of radius 𝑟 around 𝑝 as

Δ𝑟(𝑝) def
=

{
𝑧 ∈ ℂ : |𝑧 − 𝑝 | < 𝑟

}
.

A disc centered at the origin of radius 1 is called the unit disc

𝔻
def
= Δ1(0) =

{
𝑧 ∈ ℂ : |𝑧 | < 1

}
.

The unit disc will come up often in this course, as it turns out that a lot of complex
analysis can be done by looking at just the unit disc.

A useful “version” of the unit disc is the upper half-plane:

ℍ
def
=

{
𝑧 ∈ ℂ : Im 𝑧 > 0

}
.

We will see in a moment that 𝔻 and ℍ are equivalent in a very nice way. Things done
on the unit disc can just as well be done on the upper half-plane.

The following definition is perhaps somewhat unnecessary, but it is easier to write
and say than open and connected, and it is commonly used in complex analysis. 

*
 

Definition 1.1.3. An open and connected set𝑈 ⊂ ℂ is called a domain. 

†
 

*We generally consider our sets also nonempty, but usually the statements of results for empty
open sets or domains are simply vacuous.

†Perhaps “domain” is a tad unfortunate since we also call the 𝑋 in 𝑓 : 𝑋 → 𝑌 a “domain” of the
function, even if 𝑋 is not a domain in the sense of topology.
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1.1.3𝑖 · Complex-valued functions

It is possible that the analysis you have seen so far in your mathematical career
has been for real-valued functions 𝑓 : 𝑋 → ℝ. In this book, we are concerned with
complex-valued functions 𝑓 : 𝑋 → ℂ. The results for real-valued functions are then
applied by thinking of either the components of 𝑓 separately or by thinking of ℂ as
the real vector space ℝ2.

When we find ourselves in the possession of a complex-valued function 𝑓 : 𝑋 → ℂ,
we write 𝑢 = Re 𝑓 and 𝑣 = Im 𝑓 for real-valued functions 𝑢, 𝑣 : 𝑋 → ℝ, and then

𝑓 = 𝑢 + 𝑖𝑣.

If 𝑋 ⊂ ℂ, we think of 𝑋 ⊂ ℝ2. A derivative in 𝑥 or 𝑦 (where 𝑧 = 𝑥 + 𝑖𝑦) is then
applied to the components (just as if 𝑓 was valued in ℝ2):

𝜕 𝑓

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖 𝜕𝑣

𝜕𝑥
and

𝜕 𝑓

𝜕𝑦
=

𝜕𝑢

𝜕𝑦
+ 𝑖 𝜕𝑣

𝜕𝑦
.

If 𝑋 ⊂ ℝ, that is, if 𝑓 is a complex-valued function of one real variable, then
𝑓 ′ = 𝑢′ + 𝑖𝑣′. Equivalently, we treat 𝑓 as a function from ℝ to ℝ2 and hence 𝑓 ′ is a
2 × 1 matrix—a column vector, or in other words 𝑓 ′ represents a complex number if
we are identifying ℂ and ℝ2.

Matters are similar for integration. For 𝑓 : [𝑎, 𝑏] → ℂ, we say 𝑓 is (Riemann)
integrable if 𝑢 and 𝑣 are, and then∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑏

𝑎

𝑢(𝑡) 𝑑𝑡 + 𝑖
∫ 𝑏

𝑎

𝑣(𝑡) 𝑑𝑡.

Indeed, that is the way one integrates vector-valued functions for any vector space,
and ℂ = ℝ2 is a vector space. Basic analysis tells us that if given a Riemann
integrable real-valued function 𝑢 : [𝑎, 𝑏] → ℝ, then |𝑢 | is Riemann integrable and���∫ 𝑏

𝑎
𝑢(𝑡) 𝑑𝑡

��� ≤ ∫ 𝑏

𝑎
|𝑢(𝑡)| 𝑑𝑡. Similar result holds for complex-valued functions.

Proposition 1.1.4. Suppose 𝑓 : [𝑎, 𝑏] → ℂ is (Riemann) integrable. Then | 𝑓 | is (Riemann)
integrable and �����∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡
����� ≤ ∫ 𝑏

𝑎

| 𝑓 (𝑡)| 𝑑𝑡.

Exercise 1.1.4: Prove the proposition. Hint: After you know integrability, consider a
Riemann sum and the regular triangle inequality.
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1.1.4𝑖 · Matrix representation of complex numbers

As ℂ is ℝ2, we can think of ℂ as a real two-dimensional vector space by forgetting
about the complex multiplication. The standard basis is 1 and 𝑖. To put multiplication
back into the picture, we think of linear operators on ℝ2. Given a complex number 𝜉,
the map 𝑧 ↦→ 𝜉𝑧 is a real-linear operator 

*
 . A real-linear operator on ℝ2 is given by a

2 × 2 real matrix. Namely, the complex number 𝜉 = 𝑎 + 𝑖𝑏 can be represented by the
2 × 2 matrix [

𝑎 −𝑏
𝑏 𝑎

]
. (1.1)

Let us check. If we think of a complex number 𝑎 + 𝑖𝑏 as a matrix and 𝑐 + 𝑖𝑑 as a
column vector, then complex multiplication makes sense as matrices:[

𝑎 −𝑏
𝑏 𝑎

] [
𝑐

𝑑

]
=

[
𝑎𝑐 − 𝑏𝑑
𝑏𝑐 + 𝑎𝑑

]
.

The matrices

1 “ = ′′
[
1 0
0 1

]
and 𝑖 “ = ′′

[
0 −1
1 0

]
are the identity and the rotation counterclockwise by 90 degrees respectively—
precisely what we expect multiplication by 1 and 𝑖 to do.

Complex conjugation is also a real-linear operator and can be represented by the
matrix

[ 1 0
0 −1

]
. Notice that complex conjugation is not a multiplication by a complex

number. Below you will prove, however, that multiplications by complex numbers
together with conjugation do in fact “generate” all the real-linear operators.

For those matrices representing complex numbers, we can also multiply the 2 × 2
matrices themselves, and this matrix multiplication is the same as multiplication
of the complex numbers. Similarly with addition. That is, we can view the field of
complex numbers as a subring of 𝑀2(ℝ) (exercise below).

Exercise 1.1.5: Prove that a) the matrix multiplication on matrices of the form ( 1.1 ) is
commutative and b) reproduces the complex number multiplication, and that these matrices
form a subring of 𝑀2(ℝ). c) Prove that nonzero matrices of this form are invertible (the
subring is a field). Specifically, notice the determinant appearing in the denominator for the
multiplicative inverse.

Exercise 1.1.6: Prove that if the 2 × 2 matrix 𝑀 represents a complex number 𝑎 + 𝑖𝑏, then
𝑀 has two eigenvalues: 𝑎 ± 𝑖𝑏 with the corresponding eigenvectors

[ 1∓𝑖
]
.

Exercise 1.1.7: Prove that every real-linear operator on ℂ (that is, every 2 × 2 real matrix
𝑀) can be represented by two complex numbers 𝜉 and 𝜁, and the formula 𝑧 ↦→ 𝜉𝑧 + 𝜁𝑧̄.
*𝐿 : ℂ → ℂ is real-linear if 𝐿(𝑎𝑧 + 𝑏𝑤) = 𝑎𝐿(𝑧) + 𝑏𝐿(𝑧) for all 𝑎, 𝑏 ∈ ℝ and 𝑧, 𝑤 ∈ ℂ.
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Exercise 1.1.8:
a) Suppose a 2 × 2 real matrix 𝑀 represents multiplication by 𝜉 ∈ ℂ. Show that

det𝑀 = |𝜉|2.
b) Suppose a 2× 2 real matrix 𝑀 is represented by 𝑧 ↦→ 𝜉𝑧 + 𝜁𝑧̄ (see previous exercise).

Show that det𝑀 = |𝜉|2 − |𝜁 |2.

This representation of complex numbers comes up quite often in applications.
For instance, an 𝑚 × 𝑛 complex matrix can be represented by a 2𝑚 × 2𝑛 real matrix
by replacing each entry by a 2 × 2 matrix. So software set up for working with real
matrices can easily be duped into working with complex matrices.

For us, the main application will be to understand the derivative of a complex-
valued function of a complex variable 𝑓 : ℂ → ℂ. Thinking of the function as a
mapping 𝑓 : ℝ2 → ℝ2, the real derivative of 𝑓 is a 2 × 2 matrix. The object of study of
complex analysis, the holomorphic (or analytic) functions, are those functions whose
real derivative matrix corresponds to a multiplication by a complex number.

1.2𝑖 \ Polar form and the exponential

1.2.1𝑖 · The exponential

The exponential is the most fundamental and useful function in complex analysis.
Assume we know 𝑒𝑥 for real numbers. Define 𝑒𝑧 for complex numbers (see  Figure 1.1 ):

exp(𝑧) = 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 def
= 𝑒𝑥𝑒 𝑖𝑦 = 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦.

x

y

x

y

Figure 1.1: Graphs of the real part (left) and imaginary part (right) of the complex
exponential 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 . The plot of the real exponential (𝑦 = 0) is marked in a bold line.
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The definition agrees with the standard exponential for real numbers (when
𝑦 = 0). Furthermore,

𝑒 𝑧̄ = 𝑒𝑥−𝑖𝑦 = 𝑒𝑥 cos 𝑦 − 𝑖𝑒𝑥 sin 𝑦 = 𝑒𝑧 ,

and
|𝑒𝑧 | = |𝑒𝑥+𝑖𝑦 | = 𝑒𝑥 .

It is possible to define the complex exponential without resorting to the real exponen-
tial, sine, and cosine, and we will do so in due course. But we are impatient and we
want something to play around with now, without waiting.

Proposition 1.2.1. For any two complex numbers 𝑧, 𝑤 ∈ ℂ,

𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 .

Exercise 1.2.1: Prove the proposition using the definition and trigonometric identities.

For real 𝜃, the definition of the exponential gives the so-called Euler’s formula:

𝑒 𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃.

In other words, 𝑒 𝑖𝜃 parametrizes the unit circle. The formula says that for real 𝜃,

cos𝜃 = Re 𝑒 𝑖𝜃 =
𝑒 𝑖𝜃 + 𝑒−𝑖𝜃

2 , sin𝜃 = Im 𝑒 𝑖𝜃 =
𝑒 𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖 .

We define cosine and sine for complex numbers by plugging those numbers into the
formulas above, now that we know how to evaluate the exponential:

cos 𝑧 def
=
𝑒 𝑖𝑧 + 𝑒−𝑖𝑧

2 , sin 𝑧 def
=
𝑒 𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 .

1.2.2𝑖 · Polar coordinates
As complex numbers are just the plane, we can use polar coordinates to represent
complex numbers. That is, 𝑥 = 𝑟 cos𝜃 and 𝑦 = 𝑟 sin𝜃. We write 𝑧 in polar form as

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒 𝑖𝜃 .

Here, 𝑟 = |𝑧 | = √
𝑥2 + 𝑦2 is the modulus, and 𝜃 is the angle that 𝑥 + 𝑖𝑦 makes with

the real axis (the 𝑥-axis). The 𝜃 is called the argument. See  Figure 1.2 . The reason for
the notation is the Euler’s formula, so

𝑧 = 𝑟𝑒 𝑖𝜃 = 𝑟 cos𝜃 + 𝑖𝑟 sin𝜃 = 𝑥 + 𝑖𝑦.
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𝜃
𝑟

𝑟𝑒 𝑖𝜃

Figure 1.2: Polar coordinates.

Polar form is particularly nice for multiplication and for powers. Suppose 𝑧 = 𝑟𝑒 𝑖𝜃

and 𝑤 = 𝑠𝑒 𝑖𝜓, then

𝑧𝑤 = 𝑟𝑒 𝑖𝜃𝑠𝑒 𝑖𝜓 = 𝑟𝑠𝑒 𝑖(𝜃+𝜓),
1
𝑧
=

1
𝑟𝑒 𝑖𝜃

=
1
𝑟
𝑒−𝑖𝜃 , 𝑧𝑛 =

(
𝑟𝑒 𝑖𝜃

)𝑛
= 𝑟𝑛𝑒 𝑖𝑛𝜃 .

Multiplication rotates by the argument and scales by the modulus. Namely, we see
again that multiplication by 𝑖 = 𝑒 𝑖𝜋/2 is rotation counterclockwise by 90 degrees. The
downside is that the polar form is particularly terrible for addition. You win some,
you lose some.

Exercise 1.2.2: Let 𝑧, 𝑤 be two nonzero complex numbers and let ℓ𝑧 and ℓ𝑤 be the lines
through the origin and 𝑧 and 𝑤 respectively. Write 𝜃 for the angle between ℓ𝑧 and ℓ𝑤 . Then
prove that Re 𝑧𝑤̄ = |𝑧 | |𝑤 | cos𝜃. Note that Re 𝑧𝑤̄ is the standard real dot product in ℝ2,
and so you are asked to prove the formula for the dot product from calculus.

1.2.3𝑖 · The argument

We attempt to define the argument of 𝑧 = 𝑟𝑒 𝑖𝜃 as

arg 𝑧 def?
= 𝜃,

but we run up against the problem that if 𝜃 is an argument of 𝑧, then so is 𝜃 + 2𝜋,
𝜃 − 2𝜋, or 𝜃 + 𝑘2𝜋 for any integer 𝑘. In other words, arg 𝑧 is not a function in the
classical sense, but a multivalued function 

*
 . The correct definition is

arg 𝑧 def
= . . . , 𝜃 − 4𝜋, 𝜃 − 2𝜋, 𝜃, 𝜃 + 2𝜋, 𝜃 + 4𝜋, . . .

One more minor issue remains. If 𝑧 = 0, then 𝑧 = 0 = 0𝑒 𝑖𝜃 for any 𝜃 whatsoever.
Therefore, we only define the argument for nonzero 𝑧.

*Non-complex analysts will sometimes claim that a multivalued function is nonsense, but you can
safely ignore those troublemakers.
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It may at times be useful to nail down a particular number for the argument. We
define the principal branch of arg as

Arg 𝑧 def
= 𝜃, where − 𝜋 < 𝜃 ≤ 𝜋.

It may seem like a good solution to the multivaluedness of arg, but one’s hopes are
dashed by the cruel reality of Arg not being continuous on the negative real axis. See

 Figure 1.3 . The principal branch is somewhat less useful than one may think. There
is also the issue that not everyone agrees on what “principal branch” means; some
mathematicians sacrifice the positive real axis and let 𝜃 be in the range [0, 2𝜋).

Re z
Im z

Figure 1.3: Graph of the principal branch of argument.

Exercise 1.2.3: Show that Arg as defined above is not a continuous function on ℂ \ {0}.

1.2.4𝑖 · Mapping properties of the exponential
Let us see what the exponential does to the complex plane. The identity 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤

implies that the exponential is never zero (exercise). From the known properties of
polar coordinates and the real exponential, it follows that the complex exponential is
onto ℂ \ {0}. The complex exponential is not one-to-one, it is infinitely-many-to-one.
For any integer 𝑘,

𝑒𝑧+𝑖𝑘2𝜋 = 𝑒𝑧𝑒 𝑖𝑘2𝜋 = 𝑒𝑧 . (1.2)

Exercise 1.2.4: Prove that ( 1.2 ) are the only such identities by showing that if 2𝑘𝜋 <
Im 𝑧 ≤ 2(𝑘 + 1)𝜋 and 2𝑘𝜋 < Im𝑤 ≤ 2(𝑘 + 1)𝜋, then 𝑒𝑧 = 𝑒𝑤 implies 𝑧 = 𝑤.

Exercise 1.2.5: Use 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 and 𝑒0 = 1 ≠ 0 to show that 𝑒𝑧 ≠ 0 for all 𝑧 ∈ ℂ. In
other words, show that if a function 𝑓 satisfies 𝑓 (𝑧 + 𝑤) = 𝑓 (𝑧) 𝑓 (𝑤) and 𝑓 (0) = 1, then
𝑓 (𝑧) ≠ 0 for all 𝑧.



18 CHAPTER 1. THE COMPLEX PLANE

Consider a vertical line given by 𝑥 = 𝑐. As

𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒 𝑖𝑦 ,

and |𝑒 𝑖𝑦 | = 1, the exponential takes the vertical line 𝑥 = 𝑐 to a circle of radius 𝑒 𝑐 . See
 Figure 1.4 . Thus, the exponential 𝑤 = 𝑒𝑧 takes the strip 𝑎 < 𝑥 < 𝑏 to the annulus{

𝑤 ∈ ℂ : 𝑒 𝑎 < |𝑤 | < 𝑒𝑏
}
.

On the other hand, the horizontal line 𝑦 = 𝑐 is taken to the ray from the origin
to infinity where 𝜃 = 𝑐 in polar coordinates. Again see  Figure 1.4 . Hence, the
exponential takes the strip 𝑎 < 𝑦 < 𝑏 to the sector{

𝑤 ∈ ℂ : “𝑎 < arg𝑤 < 𝑏′′
}
.

The reason for the quotation marks is that the inequality makes no sense without
interpreting it properly. It means that at least one of the values of arg𝑤 is between 𝑎
and 𝑏. In particular, the exponential 𝑒𝑧 takes the set given by 2𝑘𝜋 < Im 𝑧 ≤ 2(𝑘 + 1)𝜋
in a one-to-one fashion (see  Exercise 1.2.4 ) onto ℂ \ {0}.

Figure 1.4: Horizontal and vertical lines, and a horizontal and a vertical strip, mapped by
the exponential. Note that each horizontal line only goes to a ray from the origin.

1.3𝑖 \ The Riemann sphere
It is sometimes useful to extend the real numbers by adding ±∞. A similar concept
exists for the complex plane, although we only add one infinity. We write

ℂ∞ = ℂ ∪ {∞},
and we call ℂ∞ the Riemann sphere. We want the topology of ℂ∞ to be the same as
that of ℂ when we are away from infinity. Define the function 𝑔 : ℂ∞ → ℂ∞ by

𝑔(𝑧) =


1/𝑧 if 𝑧 ≠ 0 and 𝑧 ≠ ∞,
∞ if 𝑧 = 0,
0 if 𝑧 = ∞.
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The function 𝑔 is bĳective (one-to-one and onto). Any neighborhood of the origin in
ℂ is taken to a set that includes infinity and we call those the neighborhoods of ∞.
When talking about a neighborhood of infinity in ℂ∞, then we really want to think of
this map, and think of the corresponding neighborhood of the origin.

More concretely, we can giveℂ∞ a metric space structure. Let 𝑆2 be the unit sphere
in ℝ3, that is, the set described by 𝑥2 + 𝑦2 + 𝑧2 = 1 if (𝑥, 𝑦, 𝑧) are the coordinates. 

*
 The

plane ℝ2 with coordinates (𝑥, 𝑦) can be identified with ℂ with coordinate 𝜉 by taking
𝑥 + 𝑖𝑦 = 𝜉. Given any point 𝑝 ∈ 𝑆2 that is not the north pole (0, 0, 1) ∈ 𝑆2, there is a
unique line in ℝ3 through the point (0, 0, 1) and 𝑝. It is not difficult to prove that this
line is never parallel to the 𝑥𝑦-plane, that is, to ℂ, and hence it must intersect ℂ in a
unique point 𝜉 ∈ ℂ (a plane and a line intersect at a unique point unless the two are
parallel). Define

Φ(𝑝) = 𝜉.

Let Φ
((0, 0, 1)) = ∞, so that we have a map Φ : 𝑆2 → ℂ∞. This map is called the

stereographic projection. See  Figure 1.5 . The map is bĳective (exercise below), and so
define a metric on ℂ∞ by using a metric on 𝑆2, which can be the subspace metric
coming from the euclidean metric on ℝ3. Another possibility could be the great circle
distance,  Example A.1.7  . Both distances would lead to the same topology and so the
same limits.

∞ξ � Φ(p) p

Figure 1.5: Stereographic projection of the sphere 𝑆2 to the complex plane.

Exercise 1.3.1: Show that Φ is bĳective.

Exercise 1.3.2: Suppose (𝜙, 𝜃) are spherical coordinates on 𝑆2, where 0 ≤ 𝜙 ≤ 𝜋 is the
zenith (angle made with the 𝑧-axis) and −𝜋 < 𝜃 ≤ 𝜋 the azimuth, and we write points in
ℂ using polar coordinates 𝑟𝑒𝜃. Then prove that Φ takes (𝜙, 𝜃) to cot(𝜙/2) 𝑒 𝑖𝜃.

Exercise 1.3.3: Show that the topology induced on ℂ by the topology of 𝑆2 using Φ as
above is equivalent to the standard one. That is, show that a set 𝑈 ⊂ ℂ is open in the
euclidean metric on ℂ if and only if it is open using the metric coming from 𝑆2.

*This paragraph is possibly the only instance in this book where 𝑧 is a real number.
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The point of the Riemann sphere is to give the value ∞ to certain limits and to
allow limits as 𝑧 tends to ∞. For a function 𝑓 : 𝑈 ⊂ ℂ∞ → ℂ∞, we define

lim
𝑧→𝑧0

𝑓 (𝑧) = 𝐿

as the limit using the topology on the Riemann sphere, including the cases when
𝑧0 = ∞, 𝐿 = ∞, or both. Conveniently the Riemann sphere is compact. Indeed,
topologically, it is the same as the “one-point compactification” of ℂ.

Exercise 1.3.4: Suppose 𝐿 ∈ ℂ and 𝑧0 ∈ ℂ. Show that lim𝑧→𝑧0 𝑓 (𝑧) = 𝐿 in the sense
of the Riemann sphere if and only if lim𝑧→𝑧0 𝑓 (𝑧) = 𝐿 in the usual sense (the euclidean
metric on ℂ).

Exercise 1.3.5: Suppose 𝐿 ∈ ℂ. Show that lim𝑧→∞ 𝑓 (𝑧) = 𝐿 in the sense of the Riemann
sphere if and only if for every 𝜖 > 0 there exists an 𝑀 such that | 𝑓 (𝑧) − 𝐿| < 𝜖 whenever
|𝑧 | > 𝑀.

Exercise 1.3.6: Suppose 𝑧0 ∈ ℂ. Show that lim𝑧→𝑧0 𝑓 (𝑧) = ∞ in the sense of the Riemann
sphere if and only if for every 𝑀 > 0 there exists a 𝛿 > 0 such that | 𝑓 (𝑧)| > 𝑀 whenever
|𝑧 − 𝑧0 | < 𝛿.

Exercise 1.3.7: Suppose 𝐿 ∈ ℂ∞. Show that lim
𝑧→∞ 𝑓 (𝑧) = 𝐿 if and only if lim

𝑧→0
𝑓 (1/𝑧) = 𝐿.

Exercise 1.3.8: Suppose 𝑧0 ∈ ℂ∞. Show that lim
𝑧→𝑧0

𝑓 (𝑧) = ∞ if and only if lim
𝑧→𝑧0

1
𝑓 (𝑧) = 0.

It then makes sense to talk about the value of 1/𝑧 at the origin as ∞, and the value
of 𝑧 at ∞ as ∞. In fact, every nonconstant polynomial is ∞ at ∞.

Exercise 1.3.9: Suppose 𝑃(𝑧) = 𝑎𝑑𝑧
𝑑 + 𝑎𝑑−1𝑧

𝑑−1 + · · · + 𝑎1𝑧 + 𝑎0 is a polynomial where
𝑎0, . . . , 𝑎𝑑 ∈ ℂ. Prove that if 𝑑 ≥ 1 and 𝑎𝑑 ≠ 0 (𝑃 is nonconstant), then lim𝑧→∞ 𝑃(𝑧) = ∞.
Hint: If 𝑎𝑑 = 1, then using

��� 𝑎𝑑−1𝑧
𝑑−1+···+𝑎1𝑧+𝑎0

𝑧𝑑

���, one finds |𝑃(𝑧)| ≥ 1
2 |𝑧 |𝑑 for large 𝑧.

In calculus and in basic real analysis, you likely encountered infinite limits in the
sense of the extended reals. Despite that the two types of infinite limits, either in the
sense of the extended reals or in the sense of the Riemann sphere, look similar, and
despite using essentially the same notation, they are different. For example,

lim
𝑥→0

1
𝑥

does not exist, but lim
𝑧→0

1
𝑧
= ∞.

Here on the left-hand side we tacitly use the extended real sense (𝑥 is real, no?) and
on the right-hand side we tacitly use the Riemann sphere sense (𝑧 seems complex).
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Such implicit assumptions could, obviously, cause confusion. In this book, limits are
going to be in the Riemann sphere sense unless either otherwise noted or obvious. If
confusion could arise, we will write the extended real ∞ as +∞.

The (partial) arithmetic that one can reasonably define with the ∞ of the Riemann
sphere is quite different from the ∞ of the extended reals. For 𝑐 ≠ ∞, we could define
𝑐 +∞ = ∞, but neither ∞+∞ nor ∞−∞ makes sense. For instance, if 𝑓 (𝑧) = 𝑧 and
𝑔(𝑧) = 𝑐 − 𝑧, then lim𝑧→∞ 𝑓 (𝑧) = ∞, lim𝑧→∞ 𝑔(𝑧) = ∞, but lim𝑧→∞

(
𝑓 (𝑧) + 𝑔(𝑧)) = 𝑐,

so ∞+∞ does not make sense. Unlike for the extended reals, it is reasonable (and at
times useful) to define 𝑐/0 = ∞ for 𝑐 ≠ 0, 𝑐/∞ = 0 for 𝑐 ≠ ∞, and 𝑐 · ∞ = ∞ for 𝑐 ≠ 0.
The expressions 0 · ∞, 0/0, and ∞/∞ had better be left undefined.

1.4𝑖 \ Linear fractional transformations
A convenient set of transformations of the complex plane or the Riemann sphere are
the linear fractional transformations (LFT) (sometimes called the Möbius transformations).
A function

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

is a linear fractional transformation if 𝑎𝑑 ≠ 𝑏𝑐. The requirement on 𝑎, 𝑏, 𝑐, 𝑑 guarantees
that the ratio does not simplify and that the function is nonconstant.

If 𝑐 ≠ 0, the expression is really defined only on ℂ \ {−𝑑/𝑐}; however, as in the last
section, write

𝑓

(−𝑑
𝑐

)
= ∞, and 𝑓 (∞) = 𝑎

𝑐
.

If 𝑐 = 0, then set 𝑓 (∞) = ∞. In either case, 𝑓 is a map of the Riemann sphere to itself.

Exercise 1.4.1: Prove that an LFT is a bĳective mapping of the Riemann sphere to itself.

Exercise 1.4.2: Prove that an LFT extended to the Riemann sphere as above is continuous.

Any LFT is a composition of translations

𝑇𝑎(𝑧) = 𝑧 + 𝑎, 𝑎 ∈ ℂ,

complex dilations
𝐷𝑎(𝑧) = 𝑎𝑧, 𝑎 ∈ ℂ \ {0},

and inversions
𝐼(𝑧) = 1

𝑧
.

Consider an LFT 𝑓 (𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 . Without loss of generality, assume that either 𝑐 = 1 or

𝑐 = 0. Suppose 𝑐 = 1 first,

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑧 + 𝑑 =

𝑏 − 𝑎𝑑
𝑧 + 𝑑 + 𝑎 = 𝑇𝑎

(
𝐷𝑏−𝑎𝑑

(
𝐼
(
𝑇𝑑(𝑧)

) ))
.
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If 𝑐 = 0, then we can also assume that 𝑑 = 1 and so 𝑓 (𝑧) = 𝑎𝑧 + 𝑏. So

𝑓 (𝑧) = 𝑎𝑧 + 𝑏 = 𝑇𝑏
(
𝐷𝑎(𝑧)

)
.

Translations are easy to understand, they move everything in ℂ in one direction.
Complex dilation 𝐷𝑎 is the traditional euclidean plane geometry dilation by |𝑎 | and
rotation by arg 𝑎. The inversion is the euclidean plane geometry inversion across the
unit circle and complex conjugation, see  Figure 1.6 . The euclidean inversion across
the circle simply inverts the distance to the origin:

1
|𝑧 | 𝑒

𝑖 arg 𝑧 =
|𝑧 |
|𝑧 |2 𝑒

𝑖 arg 𝑧 =
1
𝑧̄
.

To get our complex inversion 𝐼(𝑧) we also conjugate. Translations and dilations both
take ∞ to ∞. The inversion swaps ∞ and 0.

𝑧

1
𝑧̄

1
𝑧

Figure 1.6: Complex inversion.

This sort of decomposition is quite useful in proving statements about LFTs that
are preserved under composition; one only needs to prove them for 𝑇𝑎 , 𝐷𝑎 , and 𝐼.
This technique will come in handy in the very next exercise. Let us include straight
lines in the set of circles. After all, a straight line is just a circle through infinity: Think
about the circle of radius 𝑟 centered at 𝑖𝑟 as 𝑟 → +∞. Then an LFT takes circles to
circles. We leave this fact as an exercise.

Exercise 1.4.3: Prove that if we include straight lines in the set of “circles,” then an LFT
takes circles to circles.

Exercise 1.4.4: Prove that given any circle or a straight line, there exists an LFT that takes
that circle or line to the real line.

One way to view an LFT is as a 2 × 2 complex matrix. For this purpose, we need
to view the Riemann sphere as the so-called one-dimensional projective space. Define
the equivalence relation ∼ on ℂ2 \ {0} by 𝑢 ∼ 𝑣 if and only if 𝑢 = 𝜆𝑣 for some 𝜆 ∈ ℂ.
The one-dimensional complex projective space is then defined as the quotient

ℂℙ1 def
=

ℂ2 \ {0}⧸∼ .
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In other words, ℂℙ1 is the set of “complex lines through the origin” in ℂ2, or yet in
other words, it is the set of one-dimensional vector subspaces of ℂ2.

We identify ℂℙ1 with ℂ∞ in the following way. Denote by [𝑧 : 𝑤] ∈ ℂℙ1 the
equivalence class (under ∼) of vectors in ℂ2 \ {0} that contains (𝑧, 𝑤) ∈ ℂ2 \ {0}.
Define the bĳection Ψ : ℂ∞ → ℂℙ1 as

Ψ(𝑧) =
{
[𝑧 : 1] if 𝑧 ∈ ℂ,

[1 : 0] if 𝑧 = ∞.

Exercise 1.4.5: Prove that the Ψ defined above is bĳective.

Let us check that an LFT
𝑓 (𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
corresponds to an invertible linear map given by the matrix

𝑀 =

[
𝑎 𝑏

𝑐 𝑑

]
.

An invertible 𝑀 takes one-dimensional subspaces to one-dimensional subspaces, so
it sounds plausible.

First, Ψ ◦ 𝑓 for 𝑧 ∈ ℂ \ {−𝑑/𝑐} (or 𝑧 ∈ ℂ if 𝑐 = 0) is equal to

Ψ ◦ 𝑓 (𝑧) =
[
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 : 1

]
= [𝑎𝑧 + 𝑏 : 𝑐𝑧 + 𝑑] ,

where the second equality follows by definition of ∼. When 𝑧 = −𝑑/𝑐, then 𝑐𝑧 + 𝑑 = 0,
and Ψ ◦ 𝑓 (𝑧) = Ψ(∞) = [1 : 0] = [𝑎𝑧 + 𝑏 : 𝑐𝑧 + 𝑑] as well.

Let us consider Ψ ◦ 𝑓 ◦Ψ−1. If 𝑤 ≠ 0, then [𝑧 : 𝑤] = [𝑧/𝑤 : 1]. So

Ψ ◦ 𝑓 ◦Ψ−1 ([𝑧 : 𝑤]) = Ψ ◦ 𝑓
( 𝑧
𝑤

)
=

[
𝑎
𝑧

𝑤
+ 𝑏 : 𝑐 𝑧

𝑤
+ 𝑑

]
= [𝑎𝑧 + 𝑏𝑤 : 𝑐𝑧 + 𝑑𝑤] .

And one checks that the same equality holds if 𝑤 = 0. As 𝑀 [ 𝑧𝑤 ] =
[
𝑎𝑧+𝑏𝑤
𝑐𝑧+𝑑𝑤

]
, the

function 𝑓 corresponds to the linear map 𝑣 ↦→ 𝑀𝑣 on ℂ2. The requirement 𝑎𝑑 ≠ 𝑏𝑐

implies det𝑀 ≠ 0, or in other words, 𝑀 is invertible. So every LFT is represented
by an invertible 2 × 2 matrix 𝑀 (not uniquely), and conversely every invertible 2 × 2
matrix 𝑀 corresponds to an LFT.

An invertible 2×2 matrix𝑀 gives a map fromℂ2\{0} toℂ2\{0}. Let𝜋 : ℂ2\{0} →
ℂℙ1 be the map  

*
 𝜋

((𝑧, 𝑤)) = [𝑧 : 𝑤]. The following commutative diagram 

†
 may

*The “quotient map” or the “natural projection.”
†A diagram is commutative if taking two different routes in the picture gives the same map.



24 CHAPTER 1. THE COMPLEX PLANE

illustrate the entire situation better:

ℂ2 \ {0} ℂ2 \ {0}

ℂℙ1 ℂℙ1

ℂ∞ ℂ∞

𝑀

𝜋 𝜋

Ψ◦ 𝑓 ◦Ψ−1

Ψ−1 Ψ−1

𝑓

Ψ Ψ

Example 1.4.1: A handy LFT is the Cayley map:

𝐶(𝑧) = 𝑧 − 𝑖
𝑧 + 𝑖 .

The map is clearly an LFT, and it takes the upper half-plane ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0}
to the unit disc 𝔻. Let us see why. The map takes 𝑧 ∈ ℂ to the unit disc if

1 >

����𝑧 − 𝑖𝑧 + 𝑖
���� = |𝑧 − 𝑖 |

|𝑧 + 𝑖 | .

In other words, |𝑧 + 𝑖 | > |𝑧 − 𝑖 |: The distance of 𝑧 to −𝑖 is larger than the distance of 𝑧
to 𝑖. It is straightforward plane geometry to see that 𝑧 ∈ ℍ. See  Figure 1.7 .

𝑖

−𝑖

𝑧 ℍ

Figure 1.7: Why does the Cayley map take ℍ to 𝔻.

Any LFT is bĳective if thought of as a map from ℂ∞ to itself, so 𝐶−1 exists, and it
is also a useful map. We leave it as an exercise to figure out the inverse.

Exercise 1.4.6: Figure out what 𝐶−1 (inverse of Cayley) is. Hint: Think of ℂ∞ as ℂℙ1

and 𝐶 as a matrix. It is really easy to invert 2 × 2 matrices.

Exercise 1.4.7: For every LFT 𝑓 (𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 , find 𝑓 −1. Hint: Same hint as above.

In the exercises, you have essentially just shown (or at least finished showing)
that LFTs form a group under composition, called the Möbius group. This group is
generated by the elements 𝑇𝑎 , 𝐷𝑎 , and 𝐼 for 𝑎 ∈ ℂ.
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1.5𝑖 \ Cross ratio ★

There is a certain quantity that is preserved by LFTs, the cross ratio:

(𝑧1, 𝑧2; 𝑧3, 𝑧4) = (𝑧3 − 𝑧1)(𝑧4 − 𝑧2)
(𝑧3 − 𝑧2)(𝑧4 − 𝑧1) =

𝑧3 − 𝑧1
𝑧3 − 𝑧2

: 𝑧4 − 𝑧1
𝑧4 − 𝑧2

,

where 𝑧1, 𝑧2, 𝑧3, 𝑧4 are complex numbers. The cross ratio was already described by
the ancient Greeks 

*
 and plays a key role in projective geometry. The definition is

extended to when one of the numbers is ∞ by simply erasing the affected terms from
the ratios. For instance, if 𝑧1 = ∞, then pretend that 𝑧3 −∞ is really equal to 𝑧4 −∞
and thus they cancel—which makes sense as lim𝑧→∞ 𝑧3−𝑧

𝑧4−𝑧 = 1. Consequently,

(∞, 𝑧2; 𝑧3, 𝑧4) = 𝑧4 − 𝑧2
𝑧3 − 𝑧2

, (𝑧1,∞; 𝑧3, 𝑧4) = 𝑧3 − 𝑧1
𝑧4 − 𝑧1

,

(𝑧1, 𝑧2;∞, 𝑧4) = 𝑧4 − 𝑧2
𝑧4 − 𝑧1

, (𝑧1, 𝑧2; 𝑧3,∞) = 𝑧3 − 𝑧1
𝑧3 − 𝑧2

.

By “preserved by LFTs” we mean:

Proposition 1.5.1. Suppose that 𝑓 is an LFT, then

(𝑧1, 𝑧2; 𝑧3, 𝑧4) =
(
𝑓 (𝑧1), 𝑓 (𝑧2); 𝑓 (𝑧3), 𝑓 (𝑧4)

)
.

Exercise 1.5.1: Prove  Proposition 1.5.1 .

Exercise 1.5.2: Prove that four distinct points are on a line or a circle if and only if the
cross ratio is real. Hint: See also  Exercise 1.4.4 .

Cross ratios give a convenient way to describe LFTs. For three distinct numbers
𝑧2, 𝑧3, 𝑧4, the function

𝑓 (𝑧) = (𝑧, 𝑧2; 𝑧3, 𝑧4)
is an LFT such that 𝑓 (𝑧2) = 1, 𝑓 (𝑧3) = 0 and 𝑓 (𝑧4) = ∞. In other words, (𝑧, 𝑧2; 𝑧3, 𝑧4) =(
𝑓 (𝑧), 1; 0,∞)

.

Exercise 1.5.3: Given two sets of distinct points 𝑧1, 𝑧2, 𝑧3 ∈ ℂ∞ and 𝑤1, 𝑤2, 𝑤3 ∈ ℂ∞,
explicitly find an LFT 𝑓 , such that 𝑓 (𝑧1) = 𝑤1, 𝑓 (𝑧2) = 𝑤2, and 𝑓 (𝑧3) = 𝑤3.

Exercise 1.5.4: Given distinct points 𝑧1, 𝑧2, 𝑧3 ∈ ℂ and using the cross ratio definition of
an LFT, explicitly find the equation of a circle (or the straight line) through the three points.
Hint: Inverse image of the real line is a circle or a straight line.

*By Pappus of Alexandria who lived in the early 4th century AD. So it’s not as impressively ancient
as say Thales’s theorem from about a thousand years earlier. Also, isn’t Alexandria in Egypt?



2𝑖 \\ Holomorphic and Analytic
Functions

If this is coffee, please bring me some tea; but if this is tea, please bring me some
coffee.
—Abraham Lincoln

2.1𝑖 \ Holomorphic functions and Cauchy–Riemann

2.1.1𝑖 · Holomorphic functions
The functions we wish to study are those that in some sense generalize polynomials
in 𝑧 ∈ ℂ; we wish to study functions that, at least locally, behave like 𝑃(𝑧) =

𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 + · · · + 𝑎1𝑧 + 𝑎0. Polynomials are easy to understand and easy to
work with. Alas, there aren’t that many of them. For instance, there is no nonzero
polynomial that solves the most basic of differential equations: 𝑓 ′ = 𝑓 . We must
enlarge our horizons a bit.

Consider a polynomial 𝑃(𝑧) and expand it near some 𝑧0 ∈ ℂ:

𝑃(𝑧) = 𝑐0 + 𝑐1(𝑧 − 𝑧0) + 𝑐2(𝑧 − 𝑧0)2 + · · · + 𝑐𝑛(𝑧 − 𝑧0)𝑛 .
In other words, 𝑃(𝑧0 + ℎ) = 𝑐0 + 𝑐1ℎ + 𝑐2ℎ

2 + · · · + 𝑐𝑛ℎ𝑛 . Then

lim
ℎ→0

𝑃(𝑧0 + ℎ) − 𝑃(𝑧0)
ℎ

= lim
ℎ→0

𝑃(𝑧0 + ℎ) − 𝑐0
ℎ

= 𝑐1.

So 𝑃(𝑧0 + ℎ) is approximated (locally) by 𝑐0 + 𝑐1ℎ up to an error that vanishes faster
than ℎ. We should emphasize that the limits are “as a complex ℎ goes to 0.”

Accordingly, we wish to study functions that are locally approximated by 𝑐0 + 𝑐1ℎ

in the same way. More formally, we want functions such that

𝑓 (𝑧0 + ℎ) = 𝑓 (𝑧0)︸︷︷︸
𝑐0

+ 𝜉ℎ︸︷︷︸
𝑐1ℎ

+𝑜(|ℎ |)

for some 𝜉 ∈ ℂ, where 𝑜(|ℎ |) means any function 𝜑(ℎ) such that limℎ→0
𝜑(ℎ)
|ℎ | = 0.
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Definition 2.1.1. Suppose𝑈 ⊂ ℂ is open. Given 𝑓 : 𝑈 → ℂ and 𝑧0 ∈ 𝑈 , we say 𝑓 is
complex differentiable at 𝑧0 if the limit

𝑓 ′(𝑧0) def
= lim

ℎ→0

𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0)
ℎ

(= 𝜉) (2.1)

exists. We call 𝑓 ′(𝑧0) the complex derivative of 𝑓 at 𝑧0. The notation 𝑑𝑓

𝑑𝑧
is also useful.

A function 𝑓 : 𝑈 → ℂ is holomorphic if it is complex differentiable at every point.
That is, if ( 2.1 ) exists for all 𝑧0 ∈ 𝑈 .

Above, we proved the following proposition, which justifies our motivation for
the complex derivative.
Proposition 2.1.2. If 𝑃(𝑧) is a polynomial, then 𝑃 : ℂ → ℂ is holomorphic.

The most basic result about holomorphic functions is that they are continuous.
This fact can be proved either directly from the definition (exercise), or using that a
holomorphic function is (real) differentiable as we will observe shortly.
Proposition 2.1.3. If𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic, then 𝑓 is continuous.

Exercise 2.1.1: Directly from the definition of the complex derivative, show that a holomor-
phic function is continuous (prove  Proposition 2.1.3 ).

Exercise 2.1.2: Show that 𝑓 (𝑧) = 𝑧̄ is not complex differentiable at any point.

Exercise 2.1.3: Show that 𝑓 (𝑧) = 𝑧𝑧̄ = |𝑧 |2 is complex differentiable at the origin, but
nowhere else.

2.1.2𝑖 · Cauchy–Riemann equations
Suppose𝑈 ⊂ ℂ is open, and let 𝑓 : 𝑈 → ℂ be a differentiable (in the real sense and as
a function of two real variables, see  section B.3  in the appendix) function. If we think
of ℂ as ℝ2, then the real derivative of 𝑓 is a 2 × 2 real matrix 𝐷 𝑓 that approximates 𝑓
locally. That is, 𝑓 is (real) differentiable at 𝑧0 if there exists a 2 × 2 real matrix 𝐷 𝑓 |𝑧0

such that
lim
ℎ→0

| 𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0) − (𝐷 𝑓 |𝑧0)ℎ |
|ℎ | = 0.

We think of ℎ as a column vector in ℝ2 to be able to apply it to the 2 × 2 real matrix
𝐷 𝑓 |𝑧0 . A key point here is that the limit is taken as ℎ moves in ℂ (or ℝ2 if you wish).
So 𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0) − (𝐷 𝑓 |𝑧0)ℎ is 𝑜(|ℎ |) as needed. The trick is to see when (𝐷 𝑓 |𝑧0)ℎ
corresponds to 𝜉ℎ for some 𝜉 ∈ ℂ.

Write 𝑓 = 𝑢 + 𝑖𝑣, that is, as a mapping into ℝ2 it is 𝑓 = (𝑢, 𝑣). Then

𝐷 𝑓 |𝑧0 =

[
𝜕𝑢
𝜕𝑥

��
𝑧0

𝜕𝑢
𝜕𝑦

��
𝑧0

𝜕𝑣
𝜕𝑥

��
𝑧0

𝜕𝑣
𝜕𝑦

��
𝑧0

]
.
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We have seen in the last chapter that only a matrix of the form
[
𝑎 −𝑏
𝑏 𝑎

]
corresponds to

multiplication a complex number 𝑎 + 𝑖𝑏. Ergo, the derivative 𝐷 𝑓 |𝑧0 corresponds to
multiplication by a complex number if only if it is of the form

[
𝑎 −𝑏
𝑏 𝑎

]
, in other words,

𝜕𝑢

𝜕𝑥

���
𝑧0
=

𝜕𝑣

𝜕𝑦

���
𝑧0
,

𝜕𝑣

𝜕𝑥

���
𝑧0
= −𝜕𝑢

𝜕𝑦

���
𝑧0
.

In that event, 𝐷 𝑓 |𝑧0 corresponds to multiplication by the number 𝜉 = 𝜕𝑢
𝜕𝑥

��
𝑧0
+ 𝑖 𝜕𝑣𝜕𝑥

��
𝑧0

,
which is equal to 𝜕𝑣

𝜕𝑦

��
𝑧0
− 𝑖 𝜕𝑢𝜕𝑦

��
𝑧0

. Consequently,

0 = lim
ℎ→0

| 𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0) − 𝜉ℎ |
|ℎ | = lim

ℎ→0

���� 𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0)
ℎ

− 𝜉

���� ,
that is to say,

lim
ℎ→0

𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0)
ℎ

= 𝜉.

So 𝑓 is complex differentiable at 𝑧0 and 𝑓 ′(𝑧0) = 𝜉.
We proved that if 𝑓 is differentiable at 𝑧0 (in the real sense), with 𝜕𝑢

𝜕𝑥

��
𝑧0
= 𝜕𝑣

𝜕𝑦

��
𝑧0

and
𝜕𝑣
𝜕𝑥

��
𝑧0
= −𝜕𝑢

𝜕𝑦

��
𝑧0

, then the complex derivative exists at 𝑧0. Conversely, if 𝑓 is complex
differentiable at 𝑧0, then it is real differentiable at 𝑧0, as the complex derivative 𝑓 ′(𝑧0)
gives the 𝐷 𝑓 |𝑧0 , and the two equations 𝜕𝑢

𝜕𝑥

��
𝑧0
= 𝜕𝑣

𝜕𝑦

��
𝑧0

and 𝜕𝑣
𝜕𝑥

��
𝑧0
= −𝜕𝑢

𝜕𝑦

��
𝑧0

must also hold.
Let us formalize what we just proved.
Proposition 2.1.4. Let 𝑈 ⊂ ℂ be open and 𝑓 = 𝑢 + 𝑖𝑣 : 𝑈 → ℂ be a function. Then
𝑓 is complex differentiable at 𝑧0 ∈ 𝑈 if and only if 𝑓 (real) differentiable at 𝑧0 ∈ 𝑈 with
𝜕𝑢
𝜕𝑥

��
𝑧0
= 𝜕𝑣

𝜕𝑦

��
𝑧0

and 𝜕𝑣
𝜕𝑥

��
𝑧0
= −𝜕𝑢

𝜕𝑦

��
𝑧0

. In this case, 𝑓 ′(𝑧0) = 𝜕𝑢
𝜕𝑥

��
𝑧0
+ 𝑖 𝜕𝑣𝜕𝑥

��
𝑧0
= 𝜕𝑣

𝜕𝑦

��
𝑧0
− 𝑖 𝜕𝑢𝜕𝑦

��
𝑧0

.

If the partial derivatives exist and are continuous, then 𝑓 is (real) differentiable
(see  section B.3 again). Consequently, we have the following, perhaps easier to apply,
result for continuously differentiable functions.
Corollary 2.1.5. Let 𝑈 ⊂ ℂ be open and let 𝑓 = 𝑢 + 𝑖𝑣 : 𝑈 → ℂ be a function such that
𝜕𝑢
𝜕𝑥 , 𝜕𝑢

𝜕𝑦 , 𝜕𝑣
𝜕𝑥 , and 𝜕𝑣

𝜕𝑦 exist and are continuous (that is, 𝑓 is continuously differentiable). Then

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,

𝜕𝑣

𝜕𝑥
= −𝜕𝑢

𝜕𝑦
(2.2)

if and only if 𝑓 is holomorphic (complex differentiable at all 𝑧 ∈ 𝑈), or in other words,

𝑓 ′(𝑧) = lim
ℎ→0

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

exists for all 𝑧 ∈ 𝑈 .

The equations ( 2.2 ) are called the Cauchy–Riemann equations 

*
 . Complex analysis,

then, is the study of their solutions.
*Interestingly, the equations first appeared in the work of d’Alembert, and it was Euler who first

connected them to analytic functions. Perhaps they had better be called the French-guy–German-guy
equations, except that Euler was really Swiss—he only lived in Germany for a long time.
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Hence, continuously differentiable functions satisfying the Cauchy–Riemann
equations are holomorphic. On the other hand, a holomorphic function is dif-
ferentiable in the real sense, and thus the partial derivatives exist and satisfy the
Cauchy–Riemann equations. We will show later that holomorphic functions are
continuously differentiable—and not just that, they are infinitely differentiable.

As an application of the Corollary, make sure to do the next exercise: The complex
exponential, sine, and cosine are all holomorphic functions.

Exercise 2.1.4: Show that the complex exponential function, and hence also sine and cosine,
is holomorphic, and show that exp′ = exp.

Exercise 2.1.5: Let 𝑈 ⊂ ℂ be a domain (open and connected), and 𝑓 : 𝑈 → ℝ be a
real-valued function that is holomorphic. Prove that 𝑓 is constant.

Exercise 2.1.6: Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ holomorphic. Write 𝑓 = 𝑢 + 𝑖𝑣. Show
that 𝑢 and 𝑣 are harmonic, that is, 𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2 = 0 and 𝜕2𝑣

𝜕𝑥2 + 𝜕2𝑣
𝜕𝑦2 = 0. Feel free to assume

that both 𝑢 and 𝑣 are twice continuously differentiable.

Exercise 2.1.7: Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ holomorphic. Write 𝑓 = 𝑢 + 𝑖𝑣. Show
that whenever the second derivative test applies to 𝑢 or 𝑣, you get a saddle, that is, prove
𝜕2𝑢
𝜕𝑥2

𝜕2𝑢
𝜕𝑦2 −

(
𝜕2𝑢
𝜕𝑥𝜕𝑦

)2
≤ 0 and 𝜕2𝑣

𝜕𝑥2
𝜕2𝑣
𝜕𝑦2 −

(
𝜕2𝑣
𝜕𝑥𝜕𝑦

)2
≤ 0. Feel free to assume that both 𝑢 and 𝑣

are twice continuously differentiable.

Exercise 2.1.8: Consider the polar coordinates 𝑧 = 𝑟𝑒 𝑖𝜃.
a) Show that the Cauchy–Riemann equations (outside the origin) on 𝑓 = 𝑢 + 𝑖𝑣 are

𝜕𝑢

𝜕𝑟
=

1
𝑟

𝜕𝑣

𝜕𝜃
,

𝜕𝑣

𝜕𝑟
=

−1
𝑟

𝜕𝑢

𝜕𝜃
.

b) Use the computation to (locally) find the form of all solutions to the Cauchy–Riemann
equations where Re 𝑓 = 𝑢 does not depend on the argument 𝜃. By “locally” we mean
only in some neighborhood𝑈 of every point 𝑝 ≠ 0.

2.2𝑖 \ Basic properties of holomorphic functions

2.2.1𝑖 · Elementary calculus
Let us solve a differential equation. A common technique in analysis to show an
equality is to differentiate and then show that the derivative is zero.
Proposition 2.2.1. Let 𝑈 ⊂ ℂ be a domain (open and connected), and 𝑓 : 𝑈 → ℂ be
holomorphic, and 𝑓 ′(𝑧) = 0 for all 𝑧 ∈ 𝑈 . Then 𝑓 is a constant.

Proof. Follows from the standard real result, see  Theorem B.3.10 in the appendix. □
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Next, what would calculus be without chain rule.
Proposition 2.2.2 (Chain rule). Let 𝑈 ⊂ ℂ and 𝑉 ⊂ ℂ be open, 𝑓 : 𝑈 → 𝑉 complex
differentiable at 𝑧 ∈ 𝑈 , and 𝑔 : 𝑉 → ℂ complex differentiable at 𝑓 (𝑧). Then the composition
𝑔 ◦ 𝑓 is complex differentiable at 𝑧 and (𝑔 ◦ 𝑓 )′(𝑧) = 𝑔′

(
𝑓 (𝑧)) 𝑓 ′(𝑧).

Proof. We offer two proofs. The first works only for holomorphic functions, and
the second allows a generalization to nonholomorphic functions with the Wirtinger
operators in the next section (an exercise).

Let ℎ ≠ 0, and let 𝑘 = 𝑓 (𝑧 + ℎ) − 𝑓 (𝑧). Assume first that 𝑘 ≠ 0. Then

(𝑔 ◦ 𝑓 )(𝑧 + ℎ) − (𝑔 ◦ 𝑓 )(𝑧)
ℎ

=
𝑔
(
𝑓 (𝑧 + ℎ)) − 𝑔

(
𝑓 (𝑧))

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)

ℎ

=
𝑔
(
𝑓 (𝑧) + 𝑘) − 𝑔

(
𝑓 (𝑧))

𝑘

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

.

A differentiable function is continuous, so 𝑘 → 0 as ℎ → 0. If 𝑘 = 0, then the
difference quotient for 𝑔 ◦ 𝑓 is zero, but 𝑘 = 0 only happens for arbitrarily small ℎ ≠ 0
if 𝑓 ′(𝑧) = 0. The proof then follows by continuity of complex multiplication and
taking the limit as ℎ → 0.

Let’s see the second proof. Complex differentiable functions are real differentiable,
so we apply the standard real chain rule ( Theorem B.3.7 ). Let 𝑤 = 𝑓 (𝑧) ∈ 𝑉 . Then

𝐷(𝑔 ◦ 𝑓 )|𝑧 = 𝐷𝑔 |𝑤𝐷 𝑓 |𝑧 .
The 2 × 2 matrices 𝐷𝑔 |𝑤 and 𝐷 𝑓 |𝑧 correspond to complex numbers 𝑔′(𝑤) and 𝑓 ′(𝑧)
as 𝑔 and 𝑓 are complex differentiable at 𝑤 and 𝑧 respectively. A product 𝐷𝑔 |𝑤𝐷 𝑓 |𝑧
of two such matrices again corresponds to a complex number, the product of the two.
So 𝐷(𝑔 ◦ 𝑓 )|𝑧 corresponds to the pertinent complex number. Hence 𝑔 ◦ 𝑓 is complex
differentiable at 𝑧 and the given equality holds. □

This simple statement of the chain rule still holds if we plug a real differentiable
function of one variable into a complex differentiable one. If 𝛾 : (𝑎, 𝑏) → ℂ is a (real)
differentiable function, where 𝛾 = 𝛼 + 𝑖𝛽, then write 𝛾′ = 𝛼′ + 𝑖𝛽′, which can also be
interpreted as a 2 × 1 matrix (column vector)

[
𝛼′
𝛽′

]
.

Proposition 2.2.3 (Chain rule). Let 𝑈 ⊂ ℂ be open, 𝛾 : (𝑎, 𝑏) → 𝑈 (real) differentiable
at 𝑡 ∈ (𝑎, 𝑏), and 𝑓 : 𝑈 → ℂ complex differentiable at 𝛾(𝑡). Then the composition 𝑓 ◦ 𝛾 is
(real) differentiable at 𝑡 and ( 𝑓 ◦ 𝛾)′(𝑡) = 𝑓 ′

(
𝛾(𝑡))𝛾′(𝑡).

Proof. The first proof follows almost in the same way. But it is useful to see how we
think of it in terms of real derivatives. Let 𝑧 = 𝛾(𝑡). Then

𝐷( 𝑓 ◦ 𝛾)|𝑡 = 𝐷 𝑓 |𝑧𝐷𝛾 |𝑡 .
That is an equation of real linear operators. Now 𝐷 𝑓 |𝑧 corresponds to multiplication
by the complex number 𝑓 ′(𝑧), and𝐷𝛾 |𝑡 is the 2×1 matrix (column vector) represented
by 𝛾′(𝑡). The result follows. □
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Finally, every calculus student needs linearity, product and quotient rules, and
the power rule.

Proposition 2.2.4. Let𝑈 ⊂ ℂ be open, and 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑈 → ℂ holomorphic.

(i) 𝑓 + 𝑔 is holomorphic and 𝑑
𝑑𝑧

[
𝑓 (𝑧) + 𝑔(𝑧)] = 𝑓 ′(𝑧) + 𝑔′(𝑧).

(ii) 𝑓 𝑔 is holomorphic and 𝑑
𝑑𝑧

[
𝑓 (𝑧)𝑔(𝑧)] = 𝑓 ′(𝑧)𝑔(𝑧) + 𝑓 (𝑧)𝑔′(𝑧).

(iii) 1/𝑔 is holomorphic on
{
𝑧 ∈ 𝑈 : 𝑔(𝑧) ≠ 0

}
and 𝑑

𝑑𝑧

[ 1
𝑔(𝑧)

]
=

−𝑔′(𝑧)(
𝑔(𝑧)

) 2 .

The proof is left as an exercise below. There are again several ways to do it. One
way is almost identical to the proof for functions of one real variable. Note that a
holomorphic function is continuous, and so the set

{
𝑧 ∈ 𝑈 : 𝑔(𝑧) ≠ 0

}
is open.

Proposition 2.2.5 (Power rule and its consequences).

(i) For every integer 𝑛, the function 𝑧 ↦→ 𝑧𝑛 is holomorphic where defined (outside the
origin if 𝑛 negative) and 𝑑

𝑑𝑧

[
𝑧𝑛

]
= 𝑛𝑧𝑛−1 if 𝑛 ≠ 0 and 𝑑

𝑑𝑧

[
𝑧0] = 0.

(ii) A polynomial 𝑃(𝑧) = ∑𝑑
𝑛=0 𝑐𝑛𝑧

𝑛 is holomorphic and 𝑃′(𝑧) = ∑𝑑−1
𝑛=0(𝑛 + 1)𝑐𝑛+1𝑧

𝑛 .

(iii) Rational functions 𝑃(𝑧)
𝑄(𝑧) are holomorphic on the set where 𝑄 is not zero.

The proof is again left as an exercise.

Exercise 2.2.1: Prove  Proposition 2.2.4  . Hint for product: 𝑓 (𝑧 + ℎ)𝑔(𝑧 + ℎ) − 𝑓 (𝑧)𝑔(𝑧) =
𝑓 (𝑧 + ℎ)𝑔(𝑧 + ℎ) − 𝑓 (𝑧)𝑔(𝑧 + ℎ) + 𝑓 (𝑧)𝑔(𝑧 + ℎ) − 𝑓 (𝑧)𝑔(𝑧).
Exercise 2.2.2: Prove the first item of  Proposition 2.2.5 , the power rule. Hint: First prove
that 𝑧 is holomorphic, then prove 𝑧𝑛 is holomorphic for positive 𝑛 (use product rule and
induction), and finally prove that 𝑧𝑛 is holomorphic for negative 𝑛. Note: You are proving
both that the complex derivative exists and computing it.

Exercise 2.2.3: Prove the last two items of  Proposition 2.2.5 : Polynomials 𝑃(𝑧) are holo-
morphic on ℂ (and compute their derivative), and rational functions 𝑃(𝑧)

𝑄(𝑧) are holomorphic
on the set where 𝑄 is nonzero.

Perhaps the reader may ask: Is every solution to the Cauchy–Riemann equations
holomorphic? Above, we saw that the answer is affirmative for continuously
differentiable functions, or at least functions differentiable as functions of two real
variables. Surprisingly, the answer is false 

*
 if we only assume the existence of partial

derivatives, as the following exercise shows.
*A good thorough account of this problem is: J. D. Gray and S. A. Morris, When is a Function that

Satisfies the Cauchy-Riemann Equations Analytic? The American Mathematical Monthly, Vol. 85, No. 4
(Apr., 1978), pp. 246–256.



32 CHAPTER 2. HOLOMORPHIC AND ANALYTIC FUNCTIONS

Exercise 2.2.4: Let 𝑓 (0) = 0 and 𝑓 (𝑧) = 𝑒−𝑧−4 for 𝑧 ≠ 0. Prove that partial derivatives
exist at every point (including the origin) and 𝑓 satisfies the Cauchy–Riemann equations at
every point, but 𝑓 is not complex differentiable at the origin ( 𝑓 is not even continuous).

2.2.2𝑖 · Wirtinger operators
Suppose 𝑧 = 𝑥 + 𝑖𝑦. The so-called Wirtinger operators,

𝜕

𝜕𝑧
def
=

1
2

(
𝜕

𝜕𝑥
− 𝑖 𝜕

𝜕𝑦

)
,

𝜕

𝜕𝑧̄
def
=

1
2

(
𝜕

𝜕𝑥
+ 𝑖 𝜕

𝜕𝑦

)
,

provide a way to understand the Cauchy–Riemann equations. 

*
 These operators are

determined by insisting

𝜕

𝜕𝑧
𝑧 = 1, 𝜕

𝜕𝑧
𝑧̄ = 0, 𝜕

𝜕𝑧̄
𝑧 = 0, 𝜕

𝜕𝑧̄
𝑧̄ = 1.

The Cauchy–Riemann equations are then expressed as

𝜕 𝑓

𝜕𝑧̄
= 0. (2.3)

That seems a far nicer statement of the equations than ( 2.2 ), and it is just one complex
equation. It says a function is holomorphic if and only if it depends on 𝑧 but not on
𝑧̄. That statement had better make no sense at first glance. After all, the Wirtinger
operators are not really derivatives with respect to actual variables, they are simply
formal operators. Also, and more importantly, how could something possibly depend
on 𝑧 but not on 𝑧̄. But let us humor ourselves and check what ( 2.3 ) means:

𝜕 𝑓

𝜕𝑧̄
=

1
2

(
𝜕 𝑓

𝜕𝑥
+ 𝑖 𝜕 𝑓

𝜕𝑦

)
=

1
2

(
𝜕𝑢

𝜕𝑥
+ 𝑖 𝜕𝑣

𝜕𝑥
+ 𝑖 𝜕𝑢

𝜕𝑦
− 𝜕𝑣

𝜕𝑦

)
=

1
2

(
𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)
+ 𝑖

2

(
𝜕𝑣

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦

)
.

This expression is zero if and only if the real and imaginary parts are zero. Namely,

𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦
= 0 and 𝜕𝑣

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦
= 0.

That is, the Cauchy–Riemann equations are satisfied. For emphasis, we state this
result as a proposition.

Proposition 2.2.6. Let𝑈 ⊂ ℂ be open. Then 𝑓 : 𝑈 → ℂ is holomorphic if and only if 𝑓 is
(real) differentiable and

𝜕 𝑓

𝜕𝑧̄
≡ 0.

*Despite the notation, these are not partial derivatives in 𝑧 and 𝑧̄ (whatever that would mean).
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The Wirtinger derivative in 𝑧 computes the holomorphic derivative if 𝑓 is holo-
morphic. We can write the 𝑧 derivative in two different ways:

𝜕 𝑓

𝜕𝑧
=

1
2

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦

)
+ 𝑖

2

(
𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦

)
=

𝜕𝑢

𝜕𝑥
+ 𝑖 𝜕𝑣

𝜕𝑥
=

𝜕 𝑓

𝜕𝑥

=
1
𝑖

(
𝜕𝑢

𝜕𝑦
+ 𝑖 𝜕𝑣

𝜕𝑦

)
=

1
𝑖

𝜕 𝑓

𝜕𝑦
.

In the second form, we want to think of the derivative in the imaginary direction as a
derivative in 𝑖𝑦 and not the partial derivative in 𝑦. That is why the 1/𝑖 is there. If 𝑓 is
complex differentiable, ℎ can approach zero from every direction:

𝑓 ′(𝑧) = lim
ℎ→0
ℎ∈ℂ

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

= lim
𝑡→0
𝑡∈ℝ

𝑓 (𝑧 + 𝑡) − 𝑓 (𝑧)
𝑡

=
𝜕𝑢

𝜕𝑥

���
𝑧
+ 𝑖 𝜕𝑣

𝜕𝑥

���
𝑧
=

𝜕 𝑓

𝜕𝑥

���
𝑧
,

and

𝑓 ′(𝑧) = lim
ℎ→0
ℎ∈ℂ

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

= lim
𝑡→0
𝑡∈ℝ

𝑓 (𝑧 + 𝑖𝑡) − 𝑓 (𝑧)
𝑖𝑡

=
1
𝑖

(
𝜕𝑢

𝜕𝑦

���
𝑧
+ 𝑖 𝜕𝑣

𝜕𝑦

���
𝑧

)
=

1
𝑖

𝜕 𝑓

𝜕𝑦

���
𝑧
.

So for a holomorphic function,

𝑓 ′ =
𝜕 𝑓

𝜕𝑧
.

The complex derivative 𝑓 ′, sometimes written as 𝑑𝑓

𝑑𝑧
, only exists for holomorphic

functions. The Wirtinger operators 𝜕 𝑓
𝜕𝑧 and 𝜕 𝑓

𝜕𝑧̄ make sense for every real differentiable
function. Do not confuse the notation even though 𝑑𝑓

𝑑𝑧
and 𝜕 𝑓

𝜕𝑧 look similar. Consider
a polynomial 𝑃 in 𝑥 and 𝑦, or equivalently in 𝑧 and 𝑧̄. 

*
 The Wirtinger operators apply

and work as if 𝑧 and 𝑧̄ really were independent variables. For example:

𝜕

𝜕𝑧

[
𝑧2 𝑧̄3 + 𝑧10] = 2𝑧𝑧̄3 + 10𝑧9 and 𝜕

𝜕𝑧̄

[
𝑧2 𝑧̄3 + 𝑧10] = 𝑧2(3𝑧̄2) + 0.

So at least for polynomials, a function is holomorphic if it does not depend on 𝑧̄. Note
that the function 𝑧2 𝑧̄3 + 𝑧10 is not holomorphic and 𝑑

𝑑𝑧

[
𝑧2 𝑧̄3 + 𝑧10] does not exist.

Exercise 2.2.5: Justify the statement about Wirtinger operators: Consider the function
𝑧𝑚 𝑧̄𝑛 for any nonnegative integers 𝑚 and 𝑛. Compute 𝜕

𝜕𝑧 [𝑧𝑚 𝑧̄𝑛] and 𝜕
𝜕𝑧̄ [𝑧𝑚 𝑧̄𝑛].

Exercise 2.2.6: Let 𝑓 : 𝑈 ⊂ ℂ → ℂ be real differentiable at 𝑝 ∈ 𝑈 . The derivative 𝐷 𝑓 |𝑝
can be represented by two numbers 𝜉 and 𝜁: It is the real linear map ℎ ↦→ 𝜉ℎ + 𝜁 ℎ̄ (see

 Exercise 1.1.7 ). Show that 𝜕 𝑓
𝜕𝑧

��
𝑝
= 𝜉 and 𝜕 𝑓

𝜕𝑧̄

��
𝑝
= 𝜁.

*Usually when we say “polynomial” in this book, we mean a polynomial in 𝑧, so we will always
explicitly mention if we mean a polynomial in 𝑥 and 𝑦, or 𝑧 and 𝑧̄.
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Exercise 2.2.7: Prove that 𝑖𝑥2 − 2𝑥𝑦 − 𝑖𝑦2 + 3𝑥 + 3𝑖𝑦 + 𝑖 is a holomorphic function of
𝑧 = 𝑥 + 𝑖𝑦, not by differentiating, but by writing as a polynomial in 𝑧 and not 𝑧̄. That is,
write 𝑥 and 𝑦 in terms of 𝑧 and 𝑧̄, and then show that 𝑧̄ cancels.

Exercise 2.2.8: Suppose 𝑓 : 𝑈 → ℂ is real differentiable and let 𝑓 denote the complex
conjugate of 𝑓 . Show (

𝜕 𝑓

𝜕𝑧

)
=

𝜕 𝑓

𝜕𝑧̄
and

(
𝜕 𝑓

𝜕𝑧̄

)
=

𝜕 𝑓

𝜕𝑧
.

Exercise 2.2.9: Let 𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ is such that both 𝑓 and its
conjugate 𝑓 are holomorphic. Show that 𝑓 is constant.

Exercise 2.2.10: Prove a Wirtinger operator version of the chain rule for real differentiable
functions: Let𝑈 ⊂ ℂ and 𝑉 ⊂ ℂ be open, and 𝑓 : 𝑈 → 𝑉 (real) differentiable at 𝑝 ∈ 𝑈 ,
𝑔 : 𝑉 → ℂ (real) differentiable at 𝑓 (𝑝) ∈ 𝑉 . Write 𝑓 for the function that is the complex
conjugate of 𝑓 . Then the composition 𝑔 ◦ 𝑓 is (real) differentiable at 𝑝 and

𝜕(𝑔 ◦ 𝑓 )
𝜕𝑧

���
𝑝
=

𝜕𝑔

𝜕𝑧

���
𝑓 (𝑝)

𝜕 𝑓

𝜕𝑧

���
𝑝
+ 𝜕𝑔

𝜕𝑧̄

���
𝑓 (𝑝)

𝜕 𝑓

𝜕𝑧

���
𝑝
,

and
𝜕(𝑔 ◦ 𝑓 )

𝜕𝑧̄

���
𝑝
=

𝜕𝑔

𝜕𝑧

���
𝑓 (𝑝)

𝜕 𝑓

𝜕𝑧̄

���
𝑝
+ 𝜕𝑔

𝜕𝑧̄

���
𝑓 (𝑝)

𝜕 𝑓

𝜕𝑧̄

���
𝑝
.

Remark: This chain rule almost makes it seem like a nonholomorphic function is a function
of not just 𝑧, but two “independent” variables 𝑧 and 𝑧̄.

Exercise 2.2.11: A function satisfying 𝜕 𝑓
𝜕𝑧 = 0 is called antiholomorphic. Suppose

𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ. Prove that if the following limit exists

𝑔(𝑧) = lim
ℎ→0

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ̄

for all 𝑧 ∈ 𝑈 (note the bar on the ℎ), then 𝑓 is real differentiable, and satisfies

𝜕 𝑓

𝜕𝑧
≡ 0, and

𝜕 𝑓

𝜕𝑧̄
≡ 𝑔.

Exercise 2.2.12:
a) Suppose𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic. Show that if 𝜕 𝑓

𝜕𝑧 is continuous,
then 𝜕 𝑓

𝜕𝑥 and 𝜕 𝑓
𝜕𝑦 are continuous.

b) Find an example of a function 𝑓 : ℂ → ℂ for which 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 exist at all points, 𝜕 𝑓
𝜕𝑧

is continuous, but 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 are discontinuous. Hint: Consider the conjugate of the
function from  Exercise 2.2.4 .
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2.2.3𝑖 · Inverse function theorem and automorphisms
To work with a new category of functions, one should always ask what are the right
changes of variables.

Definition 2.2.7. Let𝑈,𝑉 ⊂ ℂ be open sets. A holomorphic function 𝑓 : 𝑈 → 𝑉 that
is bĳective and such that the inverse 𝑓 −1 is also holomorphic 

*
 is called a biholomorphism.

If there exists a biholomorphism 𝑓 : 𝑈 → 𝑉 , we say that𝑈 and𝑉 are biholomorphic. If
𝑈 = 𝑉 , then a biholomorphism 𝑓 is called an automorphism 

†
 . Let Aut(𝑈) denote the

set of all automorphisms of𝑈 . Traditionally, a biholomorphism 𝑓 : 𝑈 → 𝑉 is called a
conformal mapping and then𝑈 and 𝑉 are said to be conformally equivalent. 

‡
 

For example, the Cayley map 𝐶(𝑧) = 𝑧−𝑖
𝑧+𝑖 takes the upper half-plane ℍ = {𝑧 ∈

ℂ : Im 𝑧 > 0} to the unit disc 𝔻 and has a holomorphic inverse. In other words,
𝐶 |ℍ : ℍ → 𝔻 is a biholomorphism making ℍ and 𝔻 biholomorphic.

The reader can check that for a nonempty open𝑈 ⊂ ℂ, the set Aut(𝑈) is a group
under composition, although we will not be too worried about the group structure.

Exercise 2.2.13: Check that Aut(𝑈) is a group under composition: Composition of two
automorphisms is an automorphism, there is an identity element, composition is associative,
and there exists an inverse for every element.

Exercise 2.2.14: Show that for any constants 𝑎, 𝑏 ∈ ℂ, 𝑎 ≠ 0, the function 𝑎𝑧 + 𝑏 is an
automorphism of ℂ.

A biholomorphism 𝑓 has the property that 𝑓 ′(𝑧) ≠ 0 for all 𝑧. Indeed, 𝑓 and 𝑓 −1

are holomorphic, so differentiate the equality 𝑓 −1 ( 𝑓 (𝑧)) = 𝑧 using the chain rule to
find ( 𝑓 −1)′ ( 𝑓 (𝑧)) 𝑓 ′(𝑧) = 1. Hence, 𝑓 ′(𝑧) cannot be zero. If 𝑤 = 𝑓 (𝑧), then

( 𝑓 −1)′(𝑤) = 1
𝑓 ′(𝑧) or 𝑓 ′(𝑧) = 1

( 𝑓 −1)′(𝑤) .

Locally, the relationship between nonzero derivative and invertibility is the inverse
function theorem. Consider a holomorphic function 𝑓 = 𝑢 + 𝑖𝑣, its real derivative
𝐷 𝑓 , and its complex derivative 𝑓 ′. The real derivative is, as a matrix,

𝐷 𝑓 =

[
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

]
.

*Surprisingly, we will (later) show that this condition is superfluous.
†The word automorphism is used in other contexts as well. It always means that it maps the

set to itself and is the right sort of equivalence in the context you are in. In topology it means a
homeomorphism, in differential geometry a diffeomorphism, in group theory an isomorphism.

‡In one complex variable only! In higher dimensions the definitions differ.
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Using the Cauchy–Riemann equations, we compute the Jacobian determinant,

det𝐷 𝑓 = 𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
=

(
𝜕𝑢

𝜕𝑥

)2
+

(
𝜕𝑣

𝜕𝑥

)2
=

�� 𝑓 ′(𝑧)��2.
The Jacobian determinant is nonzero (positive) and 𝐷 𝑓 is invertible whenever 𝑓 ′(𝑧)
is nonzero. The computation also implies that the determinant of 𝐷 𝑓 is always
nonnegative, so a holomorphic function preserves orientation. Why is it the modulus
of 𝑓 ′ squared? The determinant of𝐷 𝑓 measures how area changes, and if we multiply
a piece of the plane by 𝑟𝑒 𝑖𝜃, the area gets multiplied by 𝑟2.

The real inverse function theorem (  Theorem B.3.16 ) for continuously differentiable
functions of ℝ2 to ℝ2 says that if 𝐷 𝑓 is invertible at some point 𝑝, then 𝑓 takes a
neighborhood 𝑉 of 𝑝 bĳectively to a neighborhood 𝑓 (𝑉) of 𝑓 (𝑝) and the inverse on
that neighborhood is continuously differentiable with 𝐷( 𝑓 −1)| 𝑓 (𝑝) = (𝐷 𝑓 |𝑝)−1.

An inverse of a 2 × 2 matrix that represents a complex number also represents a
complex number (the reciprocal). Consequently, if 𝑓 satisfies the Cauchy–Riemann
equations, so does its inverse. We obtain the holomorphic inverse function theorem.

Theorem 2.2.8 (Inverse function theorem for holomorphic functions). Suppose𝑈 ⊂ ℂ

is open, 𝑓 : 𝑈 → ℂ is holomorphic, 𝑝 ∈ 𝑈 , and 𝑓 ′(𝑝) ≠ 0. Suppose further that 𝑓 is
continuously differentiable. Then there exist open sets 𝑉,𝑊 ⊂ ℂ such that 𝑝 ∈ 𝑉 ⊂ 𝑈 ,
𝑓 (𝑉) =𝑊 , the restriction 𝑓 |𝑉 is injective (one-to-one), and hence a 𝑔 : 𝑊 → 𝑉 exists such
that 𝑔(𝑤) = ( 𝑓 |𝑉)−1(𝑤) for all 𝑤 ∈𝑊 . Furthermore, 𝑔 is holomorphic and

𝑔′(𝑤) = 1
𝑓 ′

(
𝑔(𝑤)) for all 𝑤 ∈𝑊.

The hypothesis that 𝑓 is continuously differentiable is completely superfluous. 

*
 

Every holomorphic function is continuously differentiable, although you will have to
wait till around  Theorem 3.3.3 for why that is true.

A holomorphic function whose derivative is nonzero everywhere need not be
globally invertible. The exponential 𝑒𝑧 is never zero, and thus neither is its derivative.
However, 𝑒𝑧 = 𝑒𝑧+2𝜋𝑖 , so the exponential is not injective. That the inverse of the
exponential, the logarithm, has infinitely many values at each point is fundamental to
complex analysis. So much so that we’ve named a whole chapter after the logarithm.

Another interesting remark about biholomorphisms is that generally there are
very few biholomorphisms for a specific open sets𝑈 and 𝑉 . We will compute later
the automorphism group of a few sets such as the disc or the complex plane, and it is
in fact rather small. For instance, automorphisms of ℂ are simply the affine maps
𝑎𝑧 + 𝑏. On the other hand, at each point, there are a huge number of holomorphic
functions with nonzero derivative. So there are lots of local coordinate changes, but
few global coordinate changes.

*Cauchy (early 1800s) assumed continuity of the derivative for his work. It was Goursat more than
half a century later that showed that continuity of the derivative came for free.
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In the following exercises, you may want to apply the inverse function theorem to
show that the inverse is holomorphic.

Exercise 2.2.15:
a) Find a biholomorphism from the horizontal strip 𝑆 = {𝑧 ∈ ℂ : 0 < Im 𝑧 < 𝜋} to the

upper half-plane ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0}.
b) Find a biholomorphism from the horizontal strip 𝑆 to the unit disc 𝔻.

Exercise 2.2.16:
a) Show that 𝑧2 is 2-to-1 on ℂ \ {0} while its derivative is nonzero.
b) Show that 𝑧2 is a biholomorphism of the right half-plane {𝑧 ∈ ℂ : Re 𝑧 > 0} and the

slit plane ℂ \ (−∞, 0] = {𝑧 ∈ ℂ : Im 𝑧 ≠ 0 or Re 𝑧 > 0}.
Exercise 2.2.17: Consider 𝑓 (𝑧) = 𝑧 + 1/𝑧. Show that 𝑓 takes ℂ \𝔻 biholomorphically to
ℂ \ [−2, 2], and it also takes 𝔻 \ {0} biholomorphically to ℂ \ [−2, 2].
Exercise 2.2.18: Consider Δ1 a closed disc of radius 1 centered at 𝑖 and Δ2 a closed disc of
radius 1 centered −𝑖. Find a biholomorphism of ℂ \ (Δ1 ∪Δ2) onto the punctured unit disc
𝔻 \ {0}. Hint: Figure out what 1/𝑧 does to the two circles.

Exercise 2.2.19: Let 𝑓 (𝑧) = 1−𝑧4

1+𝑧4 and 𝑔(𝑧) = 𝑖
(

1−𝑧2

1+𝑧2

)2
. Let 𝑆 = {𝑧 ∈ ℂ : |𝑧 | < 1,Re 𝑧 >

0, Im 𝑧 > 0}. Find 𝑓 (𝑆) and 𝑔(𝑆). Then show that they are both biholomorphisms onto
their image. Think about the functions as composition.

Exercise 2.2.20:
a) Show that if Δ ⊂ ℂ is a disc such that 0 ∉ Δ, then there exist two distinct holomorphic

functions 𝑓 : Δ → ℂ such that
(
𝑓 (𝑧))2

= 𝑧. In other words, 𝑓 (𝑧) = ±√𝑧 and the
square root and its negative is holomorphic on Δ.

b) Show that there does not exist a continuous 𝑓 : ℂ \ {0} → ℂ such that
(
𝑓 (𝑧))2

= 𝑧.
That is, we cannot choose a continuous square root in the punctured plane. Hint:
Just consider the unit circle.

Exercise 2.2.21:
a) Suppose 𝑓 is antiholomorphic, that is, assume 𝑓 is (real) differentiable and 𝜕 𝑓

𝜕𝑧 = 0.
Show that det𝐷 𝑓

��
𝑝
= −��𝜕 𝑓

𝜕𝑧̄ (𝑝)
��2. In other words, the Jacobian determinant is

nonpositive, and 𝑓 flips orientation.
b) More generally, if 𝑓 is (real) differentiable, then det𝐷 𝑓

��
𝑝
=

��𝜕 𝑓
𝜕𝑧 (𝑝)

��2 − ��𝜕 𝑓
𝜕𝑧̄ (𝑝)

��2.

2.2.4𝑖 · Conformality ★

The actual definition of “conformal mapping” is a (real) differentiable bĳective
mapping 𝑓 : 𝑈 → 𝑉 of open𝑈,𝑉 ⊂ ℝ2 that preserves a) orientation, and b) angles.
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Both of these are taken in the infinitesimal sense, that is, they are statements about
what the linear mapping𝐷 𝑓 does to vectors. Consider two continuously differentiable
curves 𝛾 : (−𝜖, 𝜖) → ℝ2 and 𝛼 : (−𝜖, 𝜖) → ℝ2, such that 𝛾(0) = 𝛼(0) = 𝑝 ∈ ℝ2. By
preserving angles, we mean that the curves 𝑓 ◦ 𝛾 and 𝑓 ◦ 𝛼 meet at the same angle at
𝑓 (𝑝), see  Figure 2.1 . In other words,

angle between 𝐷 𝑓 |𝑝𝛾′(0) and 𝐷 𝑓 |𝑝𝛼′(0) = angle between 𝛾′(0) and 𝛼′(0).
As we are preserving orientation, we can take the angle to be the signed angle starting
at one vector and ending at the other vector.

𝜃

𝑓 (𝑝) 𝑓 ◦ 𝛼

𝑓 ◦ 𝛾

𝜃

𝛼

𝑝𝛾

𝑓

Figure 2.1: Preserving angles (and orientation).

By preserving angles we also mean that no vector can be taken to zero, as zero
does not make any well-defined angle with anything else. Thus𝐷 𝑓 must be invertible
at every point for a conformal map. We are really just doing linear algebra, so we
start with the relevant linear algebra statement.
Proposition 2.2.9. A 2 × 2 real matrix 𝑀 preserves orientation and angles between vectors
if and only if 𝑀 corresponds to the multiplication by a nonzero complex number.

Proof. Suppose that 𝑀 preserves orientation and angles. As we said 𝑀 must be
nonsingular. Let 𝑀 =

[
𝑎 𝑏
𝑐 𝑑

]
. As 𝑀 preserves angles, given two vectors 𝑣 and 𝑤 in

ℝ2, the angle between 𝑀𝑣 and 𝑀𝑤 is the same as the angle between 𝑣 and 𝑤. The
vectors 𝑣 =

[ 1
0
]

and 𝑤 =
[ 0

1
]

are orthogonal, and so 𝑀𝑣 and 𝑀𝑤 are orthogonal:

0 = 𝑀𝑣 ·𝑀𝑤 =

[
𝑎

𝑐

]
·
[
𝑏

𝑑

]
= 𝑎𝑏 + 𝑐𝑑.

As 𝑀 is nonsingular, either 𝑎 or 𝑐 is nonzero. In either case, there must exist some
nonzero 𝑟 ∈ ℝ such that

𝑀 =

[
𝑎 −𝑟𝑐
𝑐 𝑟𝑎

]
.

A similar calculation using 𝑣 =
[

1
1
]

and 𝑤 =
[

1−1
]

results in 𝑎2 + 𝑐2 = 𝑏2 + 𝑑2 =

𝑟2(𝑎2 + 𝑐2). Or in other words 𝑟 = ±1. That 𝑀 preserves orientation means det𝑀 > 0.
As det𝑀 = 𝑟(𝑎2 + 𝑐2), we find 𝑟 = 1. Hence,

𝑀 =

[
𝑎 −𝑐
𝑐 𝑎

]
.

In other words, 𝑀 corresponds to multiplication by the complex number 𝑎 + 𝑖𝑐.
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For the converse, assume 𝑀 is multiplication by the nonzero complex number 𝜉.
Let 𝑧 = |𝑧 |𝑒 𝑖𝜃 and 𝑤 = |𝑤 |𝑒 𝑖𝜓 be two nonzero complex numbers, thinking of them as
vectors in ℝ2. The (signed) angle between them, 𝜃 − 𝜓, can be computed using

𝑧𝑤̄

|𝑧 | |𝑤 | = 𝑒 𝑖(𝜃−𝜓).

Similarly, the angle between 𝜉𝑧 and 𝜉𝑤 can be computed using

𝜉𝑧𝜉𝑤

|𝜉𝑧 | |𝜉𝑤 | =
|𝜉|2𝑧𝑤

|𝜉|2 |𝑧 | |𝑤 | =
𝑧𝑤

|𝑧 | |𝑤 | = 𝑒 𝑖(𝜃−𝜓).

The (signed) angle is the same, so 𝑧 ↦→ 𝜉𝑧 preserves orientation and angles. □

Per  Exercise 1.1.7 , an arbitrary 𝑀 is given by 𝑀𝑧 = 𝜉𝑧 + 𝜁𝑧̄ for some 𝜉, 𝜁 ∈ ℂ.
The proposition says that 𝑀 preserves orientation and angles if and only if 𝜁 = 0.
Another way to see that if 𝑀𝑧 = 𝜉𝑧, then 𝑀 preserves orientation is to note that
det𝑀 = |𝜉|2 > 0.

Applying the proposition to 𝐷 𝑓 , we find:

Corollary 2.2.10. Let 𝑈 ⊂ ℂ be open. A real differentiable function 𝑓 : 𝑈 → ℂ preserves
orientation and angles if and only if 𝑓 is holomorphic and 𝑓 ′ never vanishes.

In other words, conformal maps are holomorphic, and holomorphic maps with
nonzero derivative preserve angles and orientation. Once we prove later that
holomorphic maps are continuously differentiable and we will be able to apply the
inverse function theorem we have just presented in the previous subsection, then we
will see that conformal maps are also biholomorphic.

Exercise 2.2.22: Prove that a 2 × 2 matrix 𝑀 preserves angles and reverses orientation if
and only if 𝑀 corresponds to the mapping ℎ ↦→ 𝜉 ℎ̄ for some 𝜉 ∈ ℂ.

Exercise 2.2.23: Let 𝑈 ⊂ ℂ be open. Prove that real differentiable function 𝑓 : 𝑈 → ℂ

preserves angles and reverses orientation if and only if the conjugate 𝑓 is holomorphic and
its derivative never vanishes.

2.3𝑖 \ Power series

2.3.1𝑖 · The function 𝑧𝑛

To understand holomorphic functions locally, it is sufficient to understand 𝑧 ↦→ 𝑧𝑛 .
We will prove that holomorphic functions are just power series and so we can always
factor a 𝑧𝑛 for some 𝑛 out of a power series that vanishes at the origin, which is,
after all, just a sum of such terms. Consequently, every holomorphic function really
behaves sort of like 𝑧𝑛 behaves near the origin for some 𝑛.
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Let’s first see what 𝑧𝑛 does to angles. If 𝑧 = 𝑟𝑒 𝑖𝜃, then

𝑧𝑛 = 𝑟𝑛𝑒 𝑖𝑛𝜃 .

So 𝑧2 takes sectors with vertex at the origin and doubles their angle. See  Figure 2.2  . It
takes the first quadrant {𝑧 ∈ ℂ : Re 𝑧 ≥ 0, Im 𝑧 ≥ 0} to the closed upper half-plane
{𝑧 ∈ ℂ : Im 𝑧 ≥ 0}. Similarly, it takes the second quadrant {𝑧 ∈ ℂ : Re 𝑧 ≤ 0, Im 𝑧 ≥ 0}
to the closed lower half-plane {𝑧 ∈ ℂ : Im 𝑧 ≤ 0}.

Figure 2.2: What 𝑧2 does to the sector −𝜋
4 ≤ Arg 𝑧 ≤ 𝜋

4 , |𝑧 | < 1.1.

Another key point about the function 𝑧 ↦→ 𝑧𝑛 is that it is 𝑛-to-1. That is, there are
𝑛 distinct 𝑛th roots of every complex number except 0, which in some sense also has
𝑛 roots, but they are all 0. For a nonzero number 𝑤, write 𝑤 = 𝑟𝑒 𝑖𝜃. It is easy to verify
that the 𝑛 𝑛th roots of 𝑤 are (using the polar form)

𝑟1/𝑛𝑒 𝑖𝜃/𝑛 , 𝑟1/𝑛𝑒 𝑖𝜃/𝑛+2𝜋𝑖/𝑛 , . . . , 𝑟1/𝑛𝑒 𝑖𝜃/𝑛+2𝜋𝑖(𝑛−1)/𝑛 .

Those are the 𝑛 different 𝑧s such that 𝑧𝑛 = 𝑤. They are equally spaced out on a circle
of radius 𝑟1/𝑛 , see  Figure 2.3 . The roots of 𝑤 = 1 are called the roots of unity.

𝑟1/8

Figure 2.3: The eight 8th roots of a positive number 𝑟: 𝑟1/8, 𝑟1/8𝑒 𝑖𝜋/4, 𝑟1/8𝑒 𝑖𝜋/2, etc.

Exercise 2.3.1: Prove that
a) If |𝑧 | < 1, then lim

𝑛→∞ 𝑧
𝑛 = 0.

b) If |𝑧 | > 1, then lim
𝑛→∞ 𝑧

𝑛 = ∞.
c) If 𝑧 ≠ 1 is such that |𝑧 | = 1, then 𝑧𝑛 diverges as 𝑛 → ∞.



2.3. POWER SERIES 41

Exercise 2.3.2 (Easy): On the unit circle parametrized by the angle 𝜃, write sin(𝑛𝜃) and
cos(𝑛𝜃) as a linear combination of powers (including negative) of 𝑧 = 𝑒 𝑖𝜃.

2.3.2𝑖 · Power series and radius of convergence
A power series around 𝑝 ∈ ℂ is simply the series

∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 ,

where 𝑐𝑛 are some complex numbers. Where it converges it defines a function of 𝑧.
As the series clearly converges at 𝑧 = 𝑝, we worry about convergence at other points.
We say the series is convergent if it converges at some 𝑧 ≠ 𝑝.

The most important series, and in some sense the only one that we really know
how to sum, is the geometric series.

Proposition 2.3.1 (Geometric series).

(i) For 𝑧 ∈ 𝔻,
1

1 − 𝑧 =

∞∑
𝑛=0

𝑧𝑛 .

(ii) For 𝑧 ∉ 𝔻,
∞∑
𝑛=0

𝑧𝑛 diverges.

(iii) Given 0 < 𝑟 < 1, then for all 𝑧 ∈ Δ𝑟(0) (that is, |𝑧 | ≤ 𝑟)����� 1
1 − 𝑧 −

𝑚∑
𝑛=0

𝑧𝑛

����� ≤ 𝑟𝑚+1

1 − 𝑟 .

Consequently, as 𝑟𝑚+1

1−𝑟 → 0, the geometric series converges uniformly on Δ𝑟(0).
Proof. All three items follow (details left as exercise) from

1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑚 =
1 − 𝑧𝑚+1

1 − 𝑧 ,

for all 𝑧 ≠ 1, which follows by expanding (1 − 𝑧)(1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑚). □

Exercise 2.3.3: Fill in the details of the proof of  Proposition 2.3.1 . Do not forget about the
boundary of the disc.



42 CHAPTER 2. HOLOMORPHIC AND ANALYTIC FUNCTIONS

A power series converges absolutely if the following series converges:
∞∑
𝑛=0

|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 .

For 𝑁 < 𝑀, ����� 𝑀∑
𝑛=𝑁+1

𝑐𝑛(𝑧 − 𝑝)𝑛
����� ≤ 𝑀∑

𝑛=𝑁+1
|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 .

Hence, if the sequence of partial sums of
∑|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 is Cauchy, so is the sequence of

partial sums of
∑
𝑐𝑛(𝑧 − 𝑝)𝑛 . Thus, an absolutely convergent series actually converges.

Let 𝑟 = |𝑧 − 𝑝 |, and consider the real series
∑|𝑐𝑛 |𝑟𝑛 . Define

𝑅 =
1

lim sup
𝑛→∞

𝑛
√
|𝑐𝑛 |

, (2.4)

where we interpret 1/∞ = 0 and 1/0 = ∞, so 𝑅 = ∞ is allowed.  

*
 By the standard root

test, the series
∑|𝑐𝑛 |𝑟𝑛 converges if

lim sup
𝑛→∞

𝑛
√
|𝑐𝑛 |𝑟𝑛 = 𝑟 lim sup

𝑛→∞
𝑛
√
|𝑐𝑛 | = 𝑟

1
𝑅

< 1.

So the power series converges absolutely when 𝑟 < 𝑅. If 𝑟 1
𝑅 > 1, then for infinitely

many 𝑛, |𝑐𝑛(𝑧 − 𝑝)𝑛 | > 1. So the series diverges if 𝑟 > 𝑅. See  Figure 2.4 . We proved:
Proposition 2.3.2 (Cauchy–Hadamard theorem  

†
 ). A power series

∑
𝑐𝑛(𝑧 − 𝑝)𝑛 converges

absolutely if |𝑧 − 𝑝 | < 𝑅 and diverges if |𝑧 − 𝑝 | > 𝑅, where 𝑅 is defined by ( 2.4 ).

𝑅

𝑝
does not converge

seriesabsolutely

series
converges

Figure 2.4: Radius of convergence.

The number 𝑅 is called the radius of convergence. The power series converges
absolutely in the disc Δ𝑅(𝑝), and diverges in the complement of the closure Δ𝑅(𝑝).
Convergence (or divergence) on the boundary circle 𝜕Δ𝑅(𝑝) is a tricky matter.

*We are not using the “extended reals sense” here, we are really extending just the nonnegative
reals, and so something like 1/0 = ∞ makes sense, for the same reason as on the Riemann sphere.

†Cauchy published this result in 1821, and Hadamard, despite also being French, didn’t know
about it and published it in his thesis in 1888.
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A useful criterion for convergence is that the sequence
{|𝑐𝑛 |𝑟𝑛} is bounded

whenever 0 < 𝑟 < 𝑅.

Proposition 2.3.3. The series
∑
𝑐𝑛(𝑧 − 𝑝)𝑛 converges in Δ𝑅(𝑝) for some 𝑅 > 0 if and only

if for every 𝑟 with 0 < 𝑟 < 𝑅, there exists an 𝑀 > 0 such that

|𝑐𝑛 | ≤ 𝑀

𝑟𝑛
for all 𝑛.

It is not necessarily true that
{|𝑐𝑛 |𝑅𝑛} is bounded if 𝑅 is the radius of convergence.

The two series
∑
𝑧𝑛 and

∑
𝑛𝑧𝑛 both have radius of convergence 1, while the sequence

of coefficients is bounded in the first case and not in the second. However, {𝑛𝑟𝑛} is
bounded for every 𝑟 < 1.

Proof. Suppose the series converges in Δ𝑅(𝑝) and 0 < 𝑟 < 𝑅. Then (by Cauchy–
Hadamard)

∑|𝑐𝑛 |𝑟𝑛 converges, and the terms of that series are bounded.
Conversely, fix 𝑟 with 0 < 𝑟 < 𝑅, suppose |𝑐𝑛 |𝑟𝑛 ≤ 𝑀 for all 𝑛, and suppose

0 < 𝑠 < 𝑟. Then
𝑛
√
|𝑐𝑛 |𝑠𝑛 =

𝑠

𝑟
𝑛
√
|𝑐𝑛 |𝑟𝑛 ≤ 𝑠

𝑟

𝑛
√
𝑀.

The limsup of the right-hand side is strictly less than 1 as 𝑠/𝑟 < 1. So the series
converges absolutely in Δ𝑠(𝑝) by the root test again. As 𝑠 and 𝑟 with 0 < 𝑠 < 𝑟 < 𝑅

were arbitrary, the series converges (absolutely) in Δ𝑅(𝑝). □

The proof is fairly typical for convergence results of power series. Convergence
in Δ𝑅(𝑝), means boundedness of {|𝑐𝑛 |𝑟𝑛} for a smaller Δ𝑟(𝑝), which only gets us
convergence in Δ𝑠(𝑝). See  Figure 2.5 . But since 𝑠 and 𝑟 are arbitrary, we get
convergence in Δ𝑅(𝑝).

𝑝
𝑟

𝑠

𝑅

Figure 2.5: The three discs from the convergence proof.

Exercise 2.3.4: Prove the triangle inequality for series. If
∑∞
𝑛=0 𝑐𝑛 converges, then��∑∞

𝑛=0 𝑐𝑛
�� ≤ ∑∞

𝑛=0 |𝑐𝑛 | (the right-hand side is possibly ∞).
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The convergence within the radius of convergence is even nicer than just absolute.
Let 𝐾 ⊂ ℂ be a set. A power series

∑
𝑐𝑛(𝑧 − 𝑝)𝑛 converges uniformly absolutely for

𝑧 ∈ 𝐾 when
∑|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 converges uniformly for 𝑧 ∈ 𝐾. Suppose a series converges

uniformly absolutely on 𝐾. It converges absolutely, so it converges, and����� ∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 −
𝑚∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛
����� =

����� ∞∑
𝑛=𝑚+1

𝑐𝑛(𝑧 − 𝑝)𝑛
����� ≤ ∞∑

𝑛=𝑚+1
|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 .

The right-hand side goes to zero uniformly in 𝑧 ∈ 𝐾 as 𝑚 → ∞, and so a uniformly
absolutely convergent series also converges uniformly. So the name fits the crime.

Proposition 2.3.4. Let
∑
𝑐𝑛(𝑧 − 𝑝)𝑛 be a power series with radius of convergence 𝑅 > 0.

If 0 < 𝑟 < 𝑅, then the power series converges uniformly absolutely on Δ𝑟(𝑝). Furthermore,
let 𝑈 = Δ𝑅(𝑝) if 𝑅 < ∞ and 𝑈 = ℂ if 𝑅 = ∞, and let 𝐾 ⊂ 𝑈 be compact. Then the series
converges uniformly absolutely on 𝐾.

Less formally, a power series converges uniformly (absolutely) on compact subsets
of its domain of convergence.

Proof. Without loss of generality suppose 𝑅 < ∞. Suppose 0 < 𝑟 < 𝑅. As
∑
𝑐𝑛(𝑧 − 𝑝)𝑛

converges absolutely on Δ𝑅(𝑝), the series
∑|𝑐𝑛 |𝑟𝑛 converges (and in particular any

tail of that series converges). Thus for 𝑧 ∈ Δ𝑟(𝑝),����� ∞∑
𝑛=0

|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 −
𝑚∑
𝑛=0

|𝑐𝑛 | |𝑧 − 𝑝 |𝑛
����� ≤ ∞∑

𝑛=𝑚+1
|𝑐𝑛 |𝑟𝑛 .

The right-hand side, which does not depend on 𝑧, goes to zero as 𝑚 → ∞, and hence
the series

∑|𝑐𝑛 | |𝑧 − 𝑝 |𝑛 converges uniformly on Δ𝑟(𝑝).
If 𝐾 ⊂ Δ𝑅(𝑝) is compact, then there exists some 𝑟 < 𝑅 such that 𝐾 ⊂ Δ𝑟(𝑝)

(consider an open cover of 𝐾 by discs Δ𝑟(𝑝) for all 𝑟 < 𝑅). The result follows. □

Exercise 2.3.5: Show that the series
∑∞
𝑛=1

1
𝑛2 𝑧

𝑛 has radius of convergence 1, and show
that it converges absolutely on the boundary of the unit disc. Hence it actually converges
uniformly on the entire closed unit disc.

Exercise 2.3.6: Show that
∑∞
𝑛=0 𝑛

𝑛𝑧𝑛
𝑛 has radius of convergence 1, while

∑∞
𝑛=0 𝑛

𝑛𝑧𝑛 is
not convergent at all.

Exercise 2.3.7: Suppose
∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 converges at 𝑧 = 1, but not absolutely. Prove that the
radius of convergence is 1.

Exercise 2.3.8 (Weierstrass 𝑀-test): Let 𝑋 be a set and suppose that 𝑓𝑛 : 𝑋 → ℂ is a
sequence of functions such that | 𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝑋 and 𝑛 ∈ ℕ. If

∑
𝑀𝑛 < ∞,

then
∑
𝑓𝑛(𝑥) converges uniformly absolutely on 𝑋 (

∑| 𝑓𝑛(𝑥)| converges uniformly on 𝑋).
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Exercise 2.3.9: Suppose
∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑧

𝑛 have a radius of convergence at least
𝑟 > 0. Show that the sum series

∑∞
𝑛=0(𝑎𝑛 + 𝑏𝑛)𝑧𝑛 has a radius of convergence at least 𝑟

and converges to the sum of the two series.

Exercise 2.3.10: Given an 𝑅 > 1, find two power series
∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑧

𝑛 , such
that both have radius of convergence exactly 1, but the sum

∑∞
𝑛=0(𝑎𝑛 + 𝑏𝑛)𝑧𝑛 has a radius of

convergence exactly 𝑅. Hint: First figure out a series with radius of convergence exactly 𝑅.

Exercise 2.3.11: Suppose
∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑧

𝑛 have a radius of convergence at least
𝑟 > 0. Let 𝑐𝑛 =

∑𝑛
𝑘=0 𝑎𝑛−𝑘𝑏𝑘 . Show that the series

∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 has a radius of convergence
at least 𝑟 and converges to the product of the two series. Hint: The key is to look at a point
where both series converge absolutely, then use the absolute convergence.

Exercise 2.3.12: If
∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑧

𝑛 converge and are equal in a disc Δ𝑟(0), then
𝑎𝑛 = 𝑏𝑛 for all 𝑛. Hint: First suppose 𝑏𝑛 = 0 for all 𝑛 and find the first 𝑛 where 𝑎𝑛 ≠ 0.

Remark 2.3.5. The last few exercises say we can add and multiply power series.
Addition of power series is straightforward, and we will need it momentarily.
Multiplication will be far easier later, after we will show power series are holomorphic
and vice versa, but you should still try the exercise now, it is good practice.

2.4𝑖 \ Analytic functions

2.4.1𝑖 · Definition
Functions that possess a convergent power series are called analytic. From the
beginnings of calculus until the 19th century, when mathematicians considered a
“function,” they really meant “analytic function” (or something like it) in modern
language. One can talk about both complex-analytic and real-analytic functions
depending on if the variables are real or complex, and they may depend on one or
several variables. We are interested in complex-analytic functions of one variable. As
there is little chance of confusion, we say just “analytic” instead of “complex-analytic.”
Definition 2.4.1. Let 𝑈 ⊂ ℂ be open. A function 𝑓 : 𝑈 → ℂ is analytic if for every
𝑝 ∈ 𝑈 , there exists an 𝑟 > 0 and a power series

∑
𝑐𝑛(𝑧 − 𝑝)𝑛 converging to 𝑓 on

Δ𝑟(𝑝) ⊂ 𝑈 .

Exercise 2.4.1 (Easy): Prove that polynomials 𝑃(𝑧) are analytic.
Exercise 2.4.2: Prove that 1/𝑧 is analytic in ℂ \ {0} by explicitly writing down a power
series at any 𝑝 ∈ ℂ \ {0} using the geometric series.
Exercise 2.4.3: Suppose 𝑓 (𝑧) = ∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 converges and defines a function on 𝔻 such

that 𝑓 (𝑧) = 𝑓 (−𝑧) for all 𝑧 ∈ 𝔻 ( 𝑓 is “even”). Prove that there exists a function defined by
a power series 𝑔(𝑧) = ∑∞

𝑛=0 𝑏𝑛𝑧
𝑛 converging in 𝔻 such that 𝑓 (𝑧) = 𝑔(𝑧2).
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2.4.2𝑖 · Analytic functions are holomorphic
Eventually, we will see that analytic functions and holomorphic functions are one
and the same.  

*
 We start by proving that analytic functions are holomorphic, that is,

they are complex differentiable.

Proposition 2.4.2. Let 𝑓 : Δ𝑅(𝑝) → ℂ be defined by

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 , converging in Δ𝑅(𝑝).

Then 𝑓 is complex differentiable at every 𝑧 ∈ Δ𝑅(𝑝), and

𝑓 ′(𝑧) =
∞∑
𝑛=1

𝑛𝑐𝑛(𝑧 − 𝑝)𝑛−1, converging in Δ𝑅(𝑝).

Proof. Without loss of generality, let 𝑝 = 0. Differentiate 𝑧𝑛 at some 𝑧0 by considering
the difference quotient

𝑧𝑛 − 𝑧𝑛0
𝑧 − 𝑧0

=

𝑛−1∑
𝑘=0

𝑧𝑘𝑧𝑛−1−𝑘
0 ,

which goes to 𝑛𝑧𝑛−1
0 as 𝑧 → 𝑧0, as the right-hand side is defined even if 𝑧 = 𝑧0. Apply

the formula to 𝑓 term-wise. For 𝑧0, 𝑧 ∈ Δ𝑅(0),

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

=

∞∑
𝑛=1

𝑐𝑛
𝑧𝑛 − 𝑧𝑛0
𝑧 − 𝑧0

=

∞∑
𝑛=1

𝑐𝑛

𝑛−1∑
𝑘=0

𝑧𝑘𝑧𝑛−1−𝑘
0 .

We must show that the expression on the right gives a continuous function of 𝑧 at 𝑧0.
It is continuous at 𝑧0 provided that the series in the expression converges uniformly
for 𝑧 in a neighborhood of 𝑧0.

The setup will be just like in  Figure 2.5 . Let 𝑟 and 𝑠 be such that 0 < 𝑠 < 𝑟 < 𝑅

and suppose that 𝑧0 and 𝑧 are in Δ𝑠(0).�����𝑐𝑛 𝑛−1∑
𝑘=0

𝑧𝑘𝑧𝑛−1−𝑘
0

����� ≤ 𝑛−1∑
𝑘=0

|𝑐𝑛 |𝑠𝑛−1 = 𝑛 |𝑐𝑛 |𝑠𝑛−1 = 𝑛 |𝑐𝑛 |𝑟𝑛−1
( 𝑠
𝑟

)𝑛−1
.

The expression |𝑐𝑛 |𝑟𝑛−1 is bounded by some 𝑀 > 0 for all 𝑛, because the series for 𝑓
converges in Δ𝑅(0) and 𝑟 < 𝑅. As

𝑛
√
𝑛 |𝑐𝑛 |𝑠𝑛−1 =

𝑛

√
𝑛 |𝑐𝑛 |𝑟𝑛−1

( 𝑠
𝑟

)𝑛−1
≤ 𝑛

√
𝑛𝑀

( 𝑠
𝑟

)𝑛−1
→

as 𝑛→∞
𝑠

𝑟
< 1,

*For this reason, some authors define “analytic” to mean complex differentiable, which is no
problem eventually, but right now it would be.
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the root test shows that
∑
𝑛 |𝑐𝑛 |𝑠𝑛−1 converges. So the series for the difference quotient,

∞∑
𝑛=1

𝑐𝑛

𝑛−1∑
𝑘=0

𝑧𝑘𝑧𝑛−1−𝑘
0 ,

converges uniformly in 𝑧 on Δ𝑠(𝑝), and we can swap the limit 𝑧 → 𝑧0 with the series
limit:

lim
𝑧→𝑧0

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

=

∞∑
𝑛=1

𝑐𝑛

𝑛−1∑
𝑘=0

𝑧𝑘0𝑧
𝑛−1−𝑘
0 =

∞∑
𝑛=1

𝑛𝑐𝑛𝑧
𝑛−1
0 .

As 𝑠 and 𝑟 were arbitrary, the convergence happens in all of Δ𝑅(0). □

So the derivative of a power series is again given by a power series. By induction,
it follows that a power series is infinitely complex differentiable.
Corollary 2.4.3. Let 𝑓 : Δ𝑅(𝑝) → ℂ be defined by

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 , converging in Δ𝑅(𝑝).

Then 𝑓 is infinitely complex differentiable in Δ𝑅(𝑝), and the 𝑘th derivative is given by

𝑓 (𝑘)(𝑧) =
∞∑
𝑛=𝑘

𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1)𝑐𝑛(𝑧 − 𝑝)𝑛−𝑘 , converging in Δ𝑅(𝑝).

Furthermore,

𝑐𝑛 =
𝑓 (𝑛)(𝑝)
𝑛! .

Exercise 2.4.4: Fill in the details of the proof of the corollary.

A consequence of this corollary that should be emphasized is that if 𝑓 is given
by the convergent power series in Δ𝑅(𝑝) as above, then the power series is unique.
We have seen this conclusion in an exercise before, here it follows from the formula
for the coefficients 𝑐𝑛 . In fact, the coefficients depend only on the values of 𝑓 in an
arbitrarily small neighborhood of 𝑝.

If we apply the corollary to analytic functions at every point, we find that they are
infinitely differentiable:
Corollary 2.4.4. An analytic function is infinitely complex differentiable and each derivative
is analytic.
Remark 2.4.5. A subtle issue is that while we proved that analytic functions are
complex differentiable because they have a power series representation, we did not
yet prove that a convergent power series defines an analytic function. What is left is to
prove that a power series convergent in Δ𝑅(𝑝) can be expanded about a different point
in Δ𝑅(𝑝). That will follow once we prove that holomorphic functions are analytic.
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Exercise 2.4.5: Suppose 𝑓 : Δ𝑅(0) → ℂ is given by a convergent power series 𝑓 (𝑧) =∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 . Suppose that for some 𝜖 > 0, 𝑓 (𝑥) = 0 for all 𝑥 ∈ (−𝜖, 𝜖) (an interval on the
real line). Using the corollary, prove that 𝑐𝑛 = 0 for all 𝑛 and hence 𝑓 is identically zero.

Exercise 2.4.6: Suppose 𝑓 : Δ𝑅(𝑝) → ℂ is given by a convergent power series 𝑓 (𝑧) =∑∞
𝑛=0 𝑐𝑛(𝑧 − 𝑝)𝑛 . Antidifferentiate: Show that there exists a power series converging in

Δ𝑅(𝑝) whose complex derivative is 𝑓 (𝑧).
Exercise 2.4.7: Suppose 𝑓 : Δ𝑅(0) → ℂ is given by a convergent power series 𝑓 (𝑧) =∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 and 𝑅 > 1. Show that there is an 𝑀 > 0 such that | 𝑓 (𝑛)(0)| ≤ 𝑛!𝑀 for all 𝑛.

2.4.3𝑖 · The exponential
We met the complex exponential 𝑒𝑧 before ( § 1.2.1 ), and we proved that it is holomor-
phic and its own derivative ( Exercise 2.1.4 ). We can now see this fact from a different
vantage point. 

*
 We claim we could have defined the exponential using a power series.

Proposition 2.4.6. The power series

𝑓 (𝑧) =
∞∑
𝑛=0

1
𝑛!𝑧

𝑛 ,

is the unique convergent power series at the origin such that 𝑓 (0) = 1 and 𝑓 ′ = 𝑓 . Moreover,
the series converges on ℂ and 𝑓 (𝑧) = 𝑒𝑧 .

Proof. We now know that power series are holomorphic and we know how to
differentiate them: We do it term-by-term, that is, “formally.” Suppose we possess a
convergent power series at the origin

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛𝑧
𝑛

such that 𝑓 (0) = 1 and 𝑓 ′ = 𝑓 . Obviously, 𝑓 (0) = 1 implies that 𝑐0 = 1. The trick is to
figure out the rest of the series. So,

𝑓 ′(𝑧) =
∞∑
𝑛=1

𝑛𝑐𝑛𝑧
𝑛−1 =

∞∑
𝑛=0

(𝑛 + 1)𝑐𝑛+1𝑧
𝑛 .

As the coefficients of the power series at zero are unique, we get 𝑐𝑛 = (𝑛 + 1)𝑐𝑛+1. By
induction, 𝑐𝑛 = 1

𝑛! . It is not hard to check directly (exercise) that the series a converges
in all of ℂ.

*That vantage point being the same as that dark place in your past that is the undergraduate
differential equations class when you covered power series methods for solving ODEs.
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Let us prove that 𝑓 is the exponential. Both functions are holomorphic, the
exponential is never zero, and both are equal to their derivatives. So,

𝑑

𝑑𝑧

[
𝑓 (𝑧)

exp(𝑧)
]
=
𝑓 ′(𝑧) exp(𝑧) − 𝑓 (𝑧) exp′(𝑧)(

exp(𝑧))2 =
𝑓 (𝑧) exp(𝑧) − 𝑓 (𝑧) exp(𝑧)(

exp(𝑧))2 = 0.

Hence, 𝑓 (𝑧) = 𝐶 exp(𝑧) for some constant ( Proposition 2.2.1 ). As 𝑓 (0) = exp(0) = 1,
we conclude 𝐶 = 1. □

Exercise 2.4.8: Prove that the series for the exponential converges by computing the radius
of convergence directly (e.g., show that the series converges for every 𝑧 ∈ ℂ).

Exercise 2.4.9: Compute the series for sin 𝑧 and cos 𝑧, then show that these satisfy
𝑓 ′′(𝑧) = − 𝑓 (𝑧).
Exercise 2.4.10: Show that there exists a holomorphic 𝑓 : ℂ → ℂ that solves 𝑓 ′(𝑧)+𝑧 𝑓 (𝑧) =
0 and such that 𝑓 (0) = 1. Hint: Solve formally as a power series, then see if you can guess
the answer in “closed form,” that is, in terms of the exponential. Hint #2: What is 𝑓 ′(0)?
Exercise 2.4.11: Given 𝑎, 𝑏 ∈ ℂ, show that there exists a holomorphic 𝑓 : ℂ → ℂ such that
𝑓 ′′(𝑧) = 𝑧 𝑓 (𝑧), and 𝑓 (0) = 𝑎 and 𝑓 ′(0) = 𝑏. Hint: Define formally and show convergence.
Note: These are the Airy functions, and they have some interesting behavior; on the real
line they oscillate like sine and cosine for negative 𝑧 and behave like an exponential for
positive 𝑧.

2.4.4𝑖 · The identity theorem
One of the main properties of analytic functions is that once you know them in a
neighborhood you know them everywhere. In fact, a much more general statement is
true; you only need to know an analytic function on a set with a limit point.

Theorem 2.4.7 (Identity). Suppose 𝑈 ⊂ ℂ is a domain, and 𝑓 : 𝑈 → ℂ analytic. If
𝑍 𝑓 =

{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) = 0

}
has a limit point in 𝑈 , then 𝑓 is identically zero. In other words,

all points of 𝑍 𝑓 are isolated unless 𝑓 ≡ 0.

Definition 2.4.8. The points in the set 𝑍 𝑓 are called the zeros of 𝑓 .

The “In other words” bit is one consequence of this theorem that we will use very
often. More concretely, if 𝑓 (𝑝) = 0, but 𝑓 is not identically zero, then there is a disc
Δ𝑟(𝑝) such that 𝑓 (𝑧) ≠ 0 for all 𝑧 ∈ Δ𝑟(𝑝) \ {0}.

Another common application of the theorem is the following weaker statement:
“If the function is zero on a nonempty open subset, then 𝑓 ≡ 0.” Think of the
implications: If 𝑓 : 𝑈 → ℂ is analytic, and we know 𝑓 in a tiny disc Δ𝑟(𝑝) for an
arbitrarily small 𝑟, then we know 𝑓 on all of𝑈 .
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Proof. Suppose 𝑓 is not identically zero. The set 𝑍 𝑓 is closed (in𝑈 , of course) as 𝑓 is
continuous. We must show that points of 𝑍 𝑓 are isolated. Without loss of generality,
suppose 0 ∈ 𝑈 and 0 ∈ 𝑍 𝑓 , and suppose 0 is not in the interior of 𝑍 𝑓 . Near 0, write

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛𝑧
𝑛 .

As 𝑓 (0) = 0, 𝑐0 = 0. Let 𝑘 be the smallest 𝑘 such that 𝑐𝑘 ≠ 0; this 𝑘 exists as otherwise
𝑓 would be identically zero near 0 and we assumed 0 is not in the interior of 𝑍 𝑓 . Then

𝑓 (𝑧) = 𝑧𝑘
∞∑
𝑛=𝑘

𝑐𝑛𝑧
𝑛−𝑘 = 𝑧𝑘 𝑔(𝑧).

The series 𝑔(𝑧) is a convergent power series and 𝑔(0) = 𝑐𝑘 ≠ 0. A power series is
continuous, and hence 𝑔(𝑧) ≠ 0 in a whole neighborhood of 0. As 𝑧𝑘 is only zero at 0,
we find that 0 is an isolated point of 𝑍 𝑓 .

So the only points of 𝑍 𝑓 that are not isolated are those that are in the interior of
𝑍 𝑓 . Let 𝑍′

𝑓
⊂ 𝑍 𝑓 be the set of nonisolated points of 𝑍 𝑓 . This set must be closed as 𝑍 𝑓

is closed, and no sequence of points in 𝑍′
𝑓

can have an isolated point of 𝑍 𝑓 as a limit.
We have proved above that nonisolated points must be interior points of 𝑍 𝑓 (and
hence of 𝑍′

𝑓
). So 𝑍′

𝑓
is both open and closed. As𝑈 is connected and that 𝑍′

𝑓
≠ 𝑈 , we

conclude 𝑍′
𝑓
= ∅. Thus all points of 𝑍 𝑓 are isolated. □

A useful idea from the proof that is worthwhile emphasizing is that if we have a
power series 𝑓 (𝑧) at 𝑎, and 𝑓 has a zero at 𝑎 (and not identically zero), we can factor
out some power of 𝑧 − 𝑎,

𝑓 (𝑧) = (𝑧 − 𝑎)𝑘 𝑔(𝑧),
where 𝑔(𝑧) is a power series at 𝑎 such that 𝑔(𝑎) ≠ 0.

Exercise 2.4.12: Suppose 𝑈 ⊂ ℂ is a domain, 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑈 → ℂ are analytic,
and the set

{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) = 𝑔(𝑧)} has a limit point in𝑈 . Prove that 𝑓 ≡ 𝑔.

Exercise 2.4.13:
a) Suppose 𝑈 ⊂ ℂ is a domain, 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑈 → ℂ are analytic, and

𝑓 (𝑧)𝑔(𝑧) = 0 for all 𝑧 ∈ 𝑈 . Prove that either 𝑓 or 𝑔 is identically zero. (In other
words, the ring of holomorphic functions on𝑈 is an integral domain.)

b) Find an open but disconnected𝑈 and holomorphic 𝑓 and 𝑔, such that still 𝑓 𝑔 = 0,
but neither 𝑓 nor 𝑔 is identically zero.

Exercise 2.4.14: Suppose𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is analytic and not constant.
Show that if 𝐾 ⊂ 𝑈 is compact, then 𝑍 𝑓 ∩ 𝐾 is finite.

Exercise 2.4.15: Suppose 𝑈 ⊂ ℂ is a domain, 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑈 → ℂ are analytic,
and 𝑝 ∈ 𝑈 . Suppose that 𝑓 (𝑘)(𝑝) = 𝑔(𝑘)(𝑝) for 𝑘 = 0, 1, 2, . . .. Prove that 𝑓 ≡ 𝑔.
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Exercise 2.4.16: Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is analytic. Prove that if
𝑓 ′(𝑧) = 0 for all 𝑧 in a neighborhood of some 𝑧0 ∈ 𝑈 , then 𝑓 is constant.

Exercise 2.4.17: Suppose 𝑈 ⊂ ℂ is a domain, 𝑎, 𝑏, 𝑐 ∈ ℂ, and 𝑧0 ∈ 𝑈 . Show that an
analytic solution 𝑓 on𝑈 to the linear equation 𝑓 ′(𝑧) = 𝑎 𝑓 (𝑧)+ 𝑏 given 𝑓 (𝑧0) = 𝑐 is unique.
Hint: Show that the power series at 𝑧0 is uniquely determined. Just show uniqueness, no
need to show existence.

One of the downsides of analytic functions is that there are no compactly supported
analytic functions on ℂ. The support of a function 𝑓 : 𝑈 → ℂ is the closure (in𝑈) of
the set

{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) ≠ 0

}
, that is, the support is𝑈 \ 𝑍 𝑓 ∩𝑈 .

Exercise 2.4.18: Let𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ is analytic and is not identically
zero. Show that the support of 𝑓 is𝑈 . In particular, the support cannot be compact.



3𝑖 \\ Line Integrals and Rudimentary
Cauchy Theorems

The Brain: Pinky, are you pondering what I am pondering?

Pinky: Uh, I think so, Brain, but we’ll never get a monkey to use dental floss.

3.1𝑖 \ Line integrals

3.1.1𝑖 · Paths

Definition 3.1.1. A piecewise-𝐶1 path or a path for short is a continuous complex-valued
piecewise continuously differentiable function 𝛾 : [𝑎, 𝑏] → ℂ such that 𝛾′(𝑡) and all
its one-sided limits are never 0. 

†
 A path 𝛾 is closed if 𝛾(𝑎) = 𝛾(𝑏). A path 𝛾 is simple

closed if 𝛾(𝑎) = 𝛾(𝑏) and 𝛾 |(𝑎,𝑏] is injective.

Our paths will essentially all be piecewise-𝐶1, so we may forget to mention it
sometime. By “piecewise-𝐶1,” we mean that there exist numbers 𝑡0 = 𝑎 < 𝑡1 <
· · · < 𝑡𝑘 = 𝑏 for some 𝑘 such that 𝛾 |[𝑡ℓ−1 ,𝑡ℓ ] is continuously differentiable (𝐶1) up
to the endpoints for every ℓ and its derivative is never zero. In other words, 𝛾 is
continuously differentiable inside all the subintervals (𝑡ℓ−1, 𝑡ℓ ), 𝛾′ is never zero, the
one-sided limits

lim
𝑡↑𝑡ℓ

𝛾′(𝑡) lim
𝑡↓𝑡ℓ

𝛾′(𝑡)

exist for all ℓ (except, of course, only one exists at 𝑎 or 𝑏), and these limits are nonzero.
Another way to say it is that 𝛾′(𝑡) extends to a nonzero continuous function on each
closed interval [𝑡ℓ−1, 𝑡ℓ ]. Allowing these “corners” makes working with paths easier
as we can define them easily piece-wise, and finitely many such corners make no
difference for integrals. Do note also that we are saying that paths are continuous.
We will allow discontinuities just a little later with “chains.”

When we say that 𝛾 is a path in 𝑈 ⊂ ℂ, we mean that 𝛾 : [𝑎, 𝑏] → 𝑈 is a path.
Another common abuse of notation we will freely and shamelessly commit is that if

†Some authors do not require the derivative to not be zero.
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we refer to 𝛾 as if it were a set, we mean the image 𝛾
([𝑎, 𝑏]) . Nowhere 

*
 will we really

use or need that 𝛾′ is never zero, but leaving that off would allow some paths that
one would generally not wish to call piecewise-𝐶1, as you will see in the exercises.

Example 3.1.2: The path 𝛾 : [0, 4] → ℂ, given by

𝛾(𝑡) =


𝑡 if 𝑡 ∈ [0, 1],
1 + 𝑖(𝑡 − 1) if 𝑡 ∈ (1, 2],
3 − 𝑡 + 𝑖 if 𝑡 ∈ (2, 3],
𝑖(4 − 𝑡) if 𝑡 ∈ (3, 4],

is a piecewise-𝐶1 simple closed path traversing the sides unit square. See  Figure 3.1 .
You should check that the conditions are satisfied. For example, on 𝑡 ∈ (0, 1), 𝛾′(𝑡) = 1,
and so lim𝑡↑1 𝛾

′(𝑡) = 1. Similarly lim𝑡↓1 𝛾
′(𝑡) = 𝑖, and so on.

t � 0 t � 1

t � 2t � 3

t � 4

Figure 3.1: The path 𝛾 traversing the unit square.

3.1.2𝑖 · The line integral

Definition 3.1.3. Given a piecewise-𝐶1 path 𝛾 : [𝑎, 𝑏] → ℂ and a continuous function
𝑓 on 𝛾, we define the line integral 

†
 ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 def

=

∫ 𝑏

𝑎

𝑓
(
𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡.

The right-hand side makes sense. The integrand is undefined at finitely many
points (where 𝛾′(𝑡) does not exist), but it is piecewise continuous, which is enough
to be Riemann integrable: On each closed interval [𝑡ℓ−1, 𝑡ℓ ], the integrand extends
to a continuous function. Note that the definition makes sense even if 𝛾′(𝑡) is zero
somewhere, and we will, from time to time, use it in that setting.

Let us compute the most important example of a line integral.
*That’s not strictly true, we will need it in an optional section.
†This integral is also called a path integral, a curve integral, or a contour integral.
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Example 3.1.4: Let 𝛾 : [0, 2𝜋] → ℂ given by 𝛾(𝑡) = 𝑟𝑒 𝑖𝑡 be the circle of radius 𝑟
oriented counterclockwise, that is, 𝜕Δ𝑟(0). See  Figure 3.2 . For 𝑛 ∈ ℤ, we claim that∫

𝛾
𝑧𝑛 𝑑𝑧 =

{
2𝜋𝑖 if 𝑛 = −1,
0 otherwise.

t � 0
t � 2π

t � π
2

t � π

Figure 3.2: The path 𝛾 traversing the circle.

First, 𝛾′(𝑡) = 𝑖𝑟𝑒 𝑖𝑡 . To prove the claim, we compute∫
𝛾
𝑧𝑛 𝑑𝑧 =

∫ 2𝜋

0
𝑟𝑛𝑒 𝑖𝑛𝑡 𝑖𝑟𝑒 𝑖𝑡 𝑑𝑡 = 𝑖𝑟𝑛+1

∫ 2𝜋

0
𝑒 𝑖(𝑛+1)𝑡 𝑑𝑡.

The result follows as the integral on the right-hand side is zero (exercise below),
unless 𝑛 + 1 = 0, in which case, the integral is 2𝜋 and 𝑟𝑛+1 = 1. Note in particular
that the value of the integral does not depend on 𝑟.

Exercise 3.1.1 (Easy): Prove that if 𝑘 ≠ 0, then
∫ 2𝜋

0 𝑒 𝑖𝑘𝑡 𝑑𝑡 = 0.

Exercise 3.1.2: Let 𝛾 be as in  Example 3.1.4 and 𝑓 (𝑧) = ∑𝑑
𝑛=−𝑑 𝑐𝑛𝑧

𝑛 . Compute
∫
𝛾
𝑓 (𝑧) 𝑑𝑧.

Exercise 3.1.3: Compute
∫
𝛾
𝑧̄𝑛 𝑑𝑧 for all 𝑛 ∈ ℤ and 𝛾 as in  Example 3.1.4 .

Our definition of the line integral is equivalent to the definition you have seen in
multivariable calculus. Actually, it is a special case of it. Let 𝛾(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡), for
𝑡 ∈ [𝑎, 𝑏], be a path, and let 𝑑𝑧 = 𝑑𝑥 + 𝑖 𝑑𝑦. Then∫

𝛾
𝑓 (𝑧) 𝑑𝑧 =

∫
𝛾
𝑓 (𝑧) (𝑑𝑥 + 𝑖 𝑑𝑦)

=

∫
𝛾
𝑓 (𝑧) 𝑑𝑥 + 𝑖 𝑓 (𝑧) 𝑑𝑦 =

∫ 𝑏

𝑎

(
𝑓
(
𝛾(𝑡))𝑥′(𝑡) + 𝑖 𝑓 (𝛾(𝑡))𝑦′(𝑡))︸                                 ︷︷                                 ︸

𝑓 (𝛾(𝑡))𝛾′(𝑡)

𝑑𝑡.
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In the second line you should recognize the definition of a line integral
∫
𝛾
𝑃 𝑑𝑥 +𝑄 𝑑𝑦

from calculus. An arbitrary line integral in the plane can be obtained if we also
include 𝑑𝑧̄. See the exercise below.

Exercise 3.1.4: Let 𝑑𝑧 = 𝑑𝑥 + 𝑖 𝑑𝑦 and 𝑑𝑧̄ = 𝑑𝑥 − 𝑖 𝑑𝑦. Show that for every (real- or
complex-valued) continuous 𝑃 and 𝑄, there exist continuous (complex-valued) 𝐹 and 𝐺
such that ∫

𝛾
𝑃 𝑑𝑥 +𝑄 𝑑𝑦 =

∫
𝛾
𝐹 𝑑𝑧 + 𝐺 𝑑𝑧̄.

Then show that every line integral can be computed even if you only know how to compute
integrals of the form

∫
𝛾
𝑓 (𝑧) 𝑑𝑧.

For injective paths, the value of the integral does not depend on how we
parametrize the image of the path, except that it does depend on orientation (which
direction we go). It is easy to see why when 𝛾 : [𝑎, 𝑏] → ℂ is continuously differen-
tiable and we have a continuously differentiable ℎ : [𝑐, 𝑑] → [𝑎, 𝑏] such that ℎ′ > 0
(increasing), ℎ(𝑐) = 𝑎, and ℎ(𝑑) = 𝑏. Then 𝛾 ◦ ℎ is a new 𝐶1 path that is a different
parametrization of 𝛾. Change of variable 𝑡 = ℎ(𝑠) from calculus says∫

𝛾
𝑓 (𝑧) 𝑑𝑧 =

∫ 𝑏

𝑎

𝑓
(
𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡

=

∫ 𝑑

𝑐

𝑓
(
𝛾
(
ℎ(𝑠)) )𝛾′ (ℎ(𝑠))ℎ′(𝑠) 𝑑𝑠 = ∫

𝛾◦ℎ
𝑓 (𝑧) 𝑑𝑧.

If, however, ℎ′ < 0 (decreasing), ℎ(𝑐) = 𝑏, and ℎ(𝑑) = 𝑎, then the sign flips in the
change of variables: ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 = −

∫
𝛾◦ℎ

𝑓 (𝑧) 𝑑𝑧.

The general version of this result, a version of which we state below, is a bit more
difficult to prove. As this result, while morally important, is actually more of a
technicality so that we only have to refer to the image rather than the actual path
parametrization, we will leave its proof as an exercise.

Proposition 3.1.5 (Reparametrization). Suppose 𝛾 : [𝑎, 𝑏] → ℂ and 𝛼 : [𝑐, 𝑑] → ℂ are
piecewise-𝐶1 paths such that 𝛾

([𝑎, 𝑏]) = 𝛼
([𝑐, 𝑑]) . Suppose either

(i) 𝛾 and 𝛼 are injective, or

(ii) 𝛾 |(𝑎,𝑏] and 𝛼 |(𝑐,𝑑] are injective and 𝛾(𝑎) = 𝛼(𝑐) = 𝛾(𝑏) = 𝛼(𝑑) (simple closed paths).

Then there exists a strictly monotone continuous ℎ : [𝑐, 𝑑] → [𝑎, 𝑏] such that 𝛾
(
ℎ(𝑡)) = 𝛼(𝑡)

for all 𝑡 ∈ [𝑐, 𝑑]. Furthermore:
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(i) If ℎ is increasing, then for every 𝑓 continuous on the path,∫
𝛾
𝑓 (𝑧) 𝑑𝑧 =

∫
𝛼
𝑓 (𝑧) 𝑑𝑧.

(ii) If ℎ is decreasing, then for every 𝑓 continuous on the path,∫
𝛾
𝑓 (𝑧) 𝑑𝑧 = −

∫
𝛼
𝑓 (𝑧) 𝑑𝑧.

Exercise 3.1.5: Prove the first case of  Proposition 3.1.5 , suppose 𝛾 and 𝛼 are injective.
a) Prove the existence of ℎ, its monotonicity, and continuity. Hint: First prove 𝛾−1 is a

continuous function on 𝛾
([𝑎, 𝑏]) using that closed subsets of [𝑎, 𝑏] are compact.

b) Prove the proposition for 𝑓 ≡ 1. Hint: the fundamental theorem of calculus.
c) Prove the proposition for continuous 𝑓 . Hint: Cut the path into small pieces where

you can approximate 𝑓 by a constant and apply the last part.

Exercise 3.1.6: Prove the second case of  Proposition 3.1.5 , that is, for simple closed paths
assuming only that 𝛾 |(𝑎,𝑏] and 𝛼 |(𝑐,𝑑] are injective and 𝛾(𝑎) = 𝛼(𝑐) = 𝛾(𝑏) = 𝛼(𝑑).
Exercise 3.1.7: A piecewise-𝐶1 path 𝛾 : [𝑎, 𝑏] → ℂ can be reparametrized to a 𝐶1 “path”
if the derivative is allowed to vanish. That is, there exists a strictly increasing continuous
ℎ : [𝑎, 𝑏] → [𝑎, 𝑏] such that 𝛾 ◦ ℎ is 𝐶1. Hint: Make the derivative zero at the “corners.”

Exercise 3.1.8 (Tricky): Consider infinitely many nested circles all touching at one point
and let that point be the origin: Suppose 𝑟𝑛 is the radius of the 𝑛th circle and the 𝑛th circle
is given by 𝑟𝑛𝑒 𝑖(−1)𝑛𝜃 − 𝑟𝑛 , for 0 ≤ 𝜃 ≤ 2𝜋 (they are traversed in alternating directions). If∑
𝑟𝑛 < ∞, then you can find a continuous 𝐶1 function 𝛾 : [0, 1] → ℂ that traverses all the

circles. If
∑
𝑟𝑛 = ∞, then you can find a continuous 𝛾 : [0, 1] → ℂ that is 𝐶1 on (0, 1],

but necessarily lim𝑡→0 𝛾′(𝑡) does not exist.

Remark 3.1.6. The last two exercises show why we must morally require that 𝛾′(𝑡)
never vanishes (including the one-sided limits) for piecewise-𝐶1 paths. We think of
the path as the set 𝛾

([𝑎, 𝑏]) , not the parametrization, and where the path is 𝐶1, we
want it to not have “corners.” In practical terms, we don’t often use this requirement,
but it does make some more geometric arguments quite a bit simpler.

Due to the reparametrization result above, we often write down the “boundary” of
a certain open set (as long as that boundary is piecewise-𝐶1 of course) and consider any
parametrization going counterclockwise when integrating over it, without explicitly
giving the parametrization. For instance, given a disc Δ𝑟(𝑝), we parametrize the
boundary 𝜕Δ𝑟(𝑝) by 𝛾 : [0, 2𝜋] → ℂ given by 𝛾(𝑡) = 𝑝 + 𝑟𝑒 𝑖𝑡 , and then we write∫

𝜕Δ𝑟(𝑝)
𝑓 (𝑧) 𝑑𝑧 =

∫
𝛾
𝑓 (𝑧) 𝑑𝑧.

This equality can be simply taken as a definition of integration over 𝜕Δ𝑟(𝑝).
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Finally, there is the “𝑢-substitution” from calculus.

Proposition 3.1.7. Let 𝑈,𝑉 ⊂ ℂ be open, 𝛾 : [𝑎, 𝑏] → 𝑉 piecewise-𝐶1 path, 𝑔 : 𝑉 → 𝑈

holomorphic (assume 𝑔′ is continuous  

*
 ), and 𝑓 : 𝑈 → ℂ continuous. Then 𝑔 ◦ 𝛾 is a

piecewise-𝐶1 path in𝑈 (possibly with vanishing derivative 

†
 , however, if 𝑔′ is zero on 𝛾) and∫

𝛾
𝑓
(
𝑔(𝑧)) 𝑔′(𝑧) 𝑑𝑧 = ∫

𝑔◦𝛾
𝑓 (𝑤) 𝑑𝑤.

Proof. That 𝑔 ◦ 𝛾 is a piecewise-𝐶1 path (except with perhaps vanishing derivative) is
obvious. To prove the equality, apply the chain rule, (𝑔 ◦ 𝛾)′(𝑡) = 𝑔′

(
𝛾(𝑡))𝛾′(𝑡):∫

𝛾
𝑓
(
𝑔(𝑧)) 𝑔′(𝑧) 𝑑𝑧 = ∫ 𝑏

𝑎

𝑓
(
𝑔
(
𝛾(𝑡)) ) 𝑔′ (𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡

=

∫ 𝑏

𝑎

𝑓
((𝑔 ◦ 𝛾)(𝑡))(𝑔 ◦ 𝛾)′(𝑡) 𝑑𝑡 =

∫
𝑔◦𝛾

𝑓 (𝑤) 𝑑𝑤. □

Exercise 3.1.9: Let 𝑓 : 𝜕𝔻 → ℂ be a continuous function. Prove that∫
𝜕𝔻
𝑓 (𝑧) 𝑑𝑧 =

∫
𝜕𝔻

𝑓
( 1
𝑧

)
𝑧2 𝑑𝑧 =

∫
𝜕𝔻
𝑓 (𝑧̄)𝑧̄2 𝑑𝑧.

3.1.3𝑖 · Arclength integral
We can also integrate with respect to arclength, the 𝑑𝑠 from calculus. We will write
𝑑𝑠 as |𝑑𝑧 |. For an 𝑓 continuous on a piecewise-𝐶1 path 𝛾 : [𝑎, 𝑏] → ℂ, we define∫

𝛾
𝑓 (𝑧) |𝑑𝑧 | def

=

∫ 𝑏

𝑎

𝑓
(
𝛾(𝑡)) |𝛾′(𝑡)| 𝑑𝑡.

Proposition 3.1.8 (Triangle inequality for line integrals). Suppose 𝛾 : [𝑎, 𝑏] → ℂ is a
piecewise-𝐶1 path and 𝑓 is a continuous function on 𝛾. Then����∫

𝛾
𝑓 (𝑧) 𝑑𝑧

���� ≤ ∫
𝛾
| 𝑓 (𝑧)| |𝑑𝑧 |.

In particular, if | 𝑓 (𝑧)| ≤ 𝑀 on 𝛾 and ℓ =
∫
𝛾
𝑑𝑠 =

∫
𝛾
|𝑑𝑧 | is the length of 𝛾, then����∫

𝛾
𝑓 (𝑧) 𝑑𝑧

���� ≤ 𝑀ℓ.

*We will soon see that 𝑔′ is always continuous.
†There does exist a reparametrization with nonvanishing derivative, if we really really wanted one.
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Proof. We estimate using  Proposition 1.1.4 ,����∫
𝛾
𝑓 (𝑧) 𝑑𝑧

���� = �����∫ 𝑏

𝑎

𝑓
(
𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡

����� ≤ ∫ 𝑏

𝑎

�� 𝑓 (𝛾(𝑡)) �� |𝛾′(𝑡)| 𝑑𝑡︸                      ︷︷                      ︸∫
𝛾
| 𝑓 (𝑧)| |𝑑𝑧 |

≤ 𝑀

∫ 𝑏

𝑎

|𝛾′(𝑡)| 𝑑𝑡. □

Arclength is not preserved under uniform convergence of the paths. In other
words, just because the images of two paths are very close to each other, does not
mean that the integrals over them will be the same. Same caveat holds for the 𝑑𝑧
integral as it does for the |𝑑𝑧 | integral. So one has to be careful when saying that two
paths are close to each other. You would need that the derivatives are close as well
since 𝛾′ appears under the integral.

Exercise 3.1.10:
a) Find a sequence of piecewise-𝐶1 paths 𝛾𝑛 : [0, 1] → ℂ that uniformly converge to a

constant function (one could say a path of length zero), but such that
∫
𝛾𝑛
|𝑑𝑧 | ≥ 𝑛.

b) Suppose a sequence of 𝐶1 paths 𝛾𝑛 : [0, 1] → ℂ converges uniformly to a 𝐶1 path
𝛾 : [0, 1] → ℂ such that 𝛾′

𝑛 converges uniformly to 𝛾′, then
∫
𝛾𝑛
|𝑑𝑧 | →

∫
𝛾
|𝑑𝑧 |.

3.1.4𝑖 · Chains
It is useful to combine paths; to have a certain “arithmetic” of paths. The resulting
objects are called chains, and they are just formal combinations of paths. For example,
if 𝛾 and 𝛼 are piecewise-𝐶1 paths, then the chain 𝛾 + 𝛼 is an object over which we
can integrate functions that are continuous on both paths:∫

𝛾+𝛼
𝑓 (𝑧) 𝑑𝑧 def

=

∫
𝛾
𝑓 (𝑧) 𝑑𝑧 +

∫
𝛼
𝑓 (𝑧) 𝑑𝑧.

Definition 3.1.9. A chain in𝑈 ⊂ ℂ is an expression

Γ = 𝑎1𝛾1 + · · · + 𝑎𝑛𝛾𝑛 ,
where 𝑎1, . . . , 𝑎𝑛 ∈ ℤ and 𝛾1, . . . , 𝛾𝑛 are piecewise-𝐶1 paths in𝑈 . We integrate over
Γ as ∫

Γ

𝑓 (𝑧) 𝑑𝑧 =
∫
𝑎1𝛾1+···+𝑎𝑛𝛾𝑛

𝑓 (𝑧) 𝑑𝑧 def
= 𝑎1

∫
𝛾1

𝑓 (𝑧) 𝑑𝑧 + · · · + 𝑎𝑛
∫
𝛾𝑛

𝑓 (𝑧) 𝑑𝑧.

Two chains Γ1 and Γ2 in𝑈 are equivalent (we will write Γ1 = Γ2) if∫
Γ1

𝑓 (𝑧) 𝑑𝑧 =
∫
Γ2

𝑓 (𝑧) 𝑑𝑧

for all continuous 𝑓 : 𝑈 → ℂ. We define the zero chain 0 by defining
∫

0 𝑓 (𝑧) 𝑑𝑧 = 0 for
all continuous 𝑓 : 𝑈 → ℂ.
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The chain arithmetic is done in the obvious way as formal sums of paths: If
Γ1 = 2𝛾1 + 𝛾2 and Γ2 = 3𝛾2 + 𝛾3, then Γ1 + Γ2 = 2𝛾1 + 4𝛾2 + 𝛾3. Similarly for scalar
multiplication: 3Γ1 = 6𝛾1 + 3𝛾2. We write −Γ for (−1)Γ. A chain Γ is equivalent to the
zero chain if ∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0

for all continuous 𝑓 , and the chains Γ1 and Γ2 are equivalent if Γ1 − Γ2 = 0. Chains in
this book are always composed of piecewise-𝐶1 paths, although that is not the most
general definition used in the literature.

Remark 3.1.10. For the equivalence, the set where the continuous 𝑓 is defined is not a
big deal. We could take 𝑓 to be continuous on𝑈 , ℂ, or just the images of Γ1 and Γ2. By
Tietze’s extension theorem (a theorem in any metric space), every continuous function
on a closed subset of ℂ (such as the images of Γ1 and Γ2) extends to a continuous
function on ℂ. The way we defined things, we do not need Tietze.

Remark 3.1.11. It is important that the definition of equivalence is for all continuous
functions. We will show later that if 𝑈 is say the disc, then for any closed Γ in 𝑈 ,∫
Γ
𝑓 (𝑧) 𝑑𝑧 = 0 for all holomorphic 𝑓 . Clearly that should not imply that Γ is equivalent

to the zero chain. See also  Exercise 3.1.13 .

Exercise 3.1.11: Let 𝛾1 : [𝑎, 𝑏] → ℂ and 𝛾2 : [𝑏, 𝑐] → ℂ be two piecewise-𝐶1 paths and
𝛾1(𝑏) = 𝛾2(𝑏). Prove that the function 𝛾 : [𝑎, 𝑐] → ℂ defined by 𝛾(𝑡) = 𝛾1(𝑡) if 𝑡 ∈ [𝑎, 𝑏]
and 𝛾(𝑡) = 𝛾2(𝑡) if 𝑡 ∈ [𝑏, 𝑐] is a piecewise-𝐶1 path, and for all 𝑓 continuous on the image
of 𝛾, we have ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 =

∫
𝛾1+𝛾2

𝑓 (𝑧) 𝑑𝑧.

Exercise 3.1.12: Let 𝜕𝔻 denote the counterclockwise path around the unit disc. Show
that for every integer 𝑛, the chain 𝑛𝜕𝔻 is equivalent to the path 𝛾 : [0, 2𝜋] → ℂ given by
𝛾(𝑡) = 𝑒 𝑖𝑛𝑡 , the path that goes 𝑛 times around the unit disc counterclockwise.

Exercise 3.1.13:
a) Suppose 𝑈 ⊂ ℂ is open and 𝛾 : [𝑎, 𝑏] → 𝑈 is a piecewise-𝐶1 path and 𝛾 |[𝑎,𝑏) is

injective, but possibly a closed path, so possibly 𝛾(𝑎) = 𝛾(𝑏). Show that as chains, 𝛾
is not equivalent to the zero chain. Note: Closed 𝛾 is trickier.

b) Find a piecewise-𝐶1 path 𝛾 : [𝑎, 𝑏] → ℂ that is equivalent to the zero chain. Note
that our definition of “path” prevents 𝛾 being constant.

Using  Exercise 3.1.11 , any chain that is put together from connecting paths can
be converted and integrated as a single path, and so in the sequel we may do this
procedure implicitly.
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Definition 3.1.12. Given two points 𝑧, 𝑤 ∈ ℂ, the segment [𝑧, 𝑤] is the path 𝛾 : [0, 1] →
ℂ given by 𝛾(𝑡) = (1− 𝑡)𝑧 + 𝑡𝑤. For the purposes of chain arithmetic, −[𝑧, 𝑤] = [𝑤, 𝑧].
A path is polygonal if it can be written as (is equivalent to) a chain [𝑧1, 𝑧2] + [𝑧2, 𝑧3] +
· · · + [𝑧𝑘−1, 𝑧𝑘] for some complex numbers 𝑧1, . . . , 𝑧𝑘 .

As the following exercise shows, we can, if we want to, get by with just polygonal
paths for most practical purposes. The paths that come up in applications are often
constructed out of segments and arcs anyhow.

Exercise 3.1.14 (Tricky): Suppose𝑈 ⊂ ℂ is open, 𝛾 : [𝑎, 𝑏] → 𝑈 is a piecewise-𝐶1 path,
and 𝑓 : 𝑈 → ℂ is continuous. Then for every 𝜖 > 0, there exists a polygonal path (or
chain) 𝛼 in𝑈 with the same beginning and end point, such that����∫

𝛼
𝑓 (𝑧) 𝑑𝑧 −

∫
𝛾
𝑓 (𝑧) 𝑑𝑧

���� < 𝜖.

Hint: Consider the Riemann sum. Also 𝑓 is uniformly continuous on some smaller𝑈 .

3.2𝑖 \ Starter versions of Cauchy

3.2.1𝑖 · Primitives, cycles, and Cauchy for derivatives
Definition 3.2.1. Let 𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ a function. A holomorphic
𝐹 : 𝑈 → ℂ with 𝑓 = 𝐹′ is called a (holomorphic) 

*
 primitive (or an antiderivative) of 𝑓 .

Primitives do not always exist, but if they do, then they are unique up to a constant.
Proposition 3.2.2. Suppose 𝑈 ⊂ ℂ is a domain, and 𝐹 : 𝑈 → ℂ and 𝐺 : 𝑈 → ℂ are
holomorphic functions such that 𝐹′ = 𝐺′. Then there is a constant 𝐶 such that 𝐹(𝑧) =

𝐺(𝑧) + 𝐶.

Exercise 3.2.1: Prove the proposition. Make sure you use that𝑈 is a domain (connected).

We have antiderivatives. We have integrals. We are in need of a fundamental
theorem.
Theorem 3.2.3 (Fundamental theorem of calculus for line integrals). Suppose𝑈 ⊂ ℂ

is open and 𝑓 : 𝑈 → ℂ is continuous with a primitive 𝐹 : 𝑈 → ℂ (so 𝐹′ = 𝑓 ). Let
𝛾 : [𝑎, 𝑏] → 𝑈 be a piecewise-𝐶1 path. Then∫

𝛾
𝑓 (𝑧) 𝑑𝑧 = 𝐹

(
𝛾(𝑏)) − 𝐹 (

𝛾(𝑎)) .
*We will usually say just “primitive” as it is generally clear that it must be a holomorphic primitive,

and besides, that is the only way that we will use the word anyway.
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Proof. We compute:∫
𝛾
𝐹′(𝑧) 𝑑𝑧 =

∫ 𝑏

𝑎

𝐹′
(
𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡 =

∫ 𝑏

𝑎

𝑑

𝑑𝑡

(
𝐹
(
𝛾(𝑡)) ) 𝑑𝑡 = 𝐹

(
𝛾(𝑏)) − 𝐹 (

𝛾(𝑎)) .
The computation uses the chain rule ( Proposition 2.2.3 ) and the fundamental theorem
of calculus, where the standard (real) fundamental theorem of calculus is applied to
the real and imaginary parts of the expression. □

Remark 3.2.4. The hypothesis that 𝑓 = 𝐹′ is continuous is extraneous. We will soon
prove that a derivative of a holomorphic function is holomorphic. As that is not yet
proved, we need 𝐹′ to be at least continuous so that the integral makes sense. 

*
 

Definition 3.2.5. A chain Γ is called a cycle if it is equivalent to 𝑎1𝛾1 + · · · + 𝑎𝑛𝛾𝑛 ,
where 𝛾1, . . . , 𝛾𝑛 are closed piecewise-𝐶1 paths and 𝑎1, . . . , 𝑎𝑛 ∈ ℤ.

Recall that a path 𝛾 : [𝑎, 𝑏] → ℂ is closed if 𝛾(𝑎) = 𝛾(𝑏). Note that we are not saying
that Γ is a sum of closed paths, we are saying it is equivalent to a sum of closed paths.
The square path in  Example 3.1.2 is a cycle, and could be written more conveniently
as a chain composed of four straight line segments [0, 1] + [1, 1 + 𝑖] + [1 + 𝑖 , 𝑖] + [𝑖 , 0].
The fundamental theorem has the following immediate corollary.

Corollary 3.2.6 (Cauchy’s theorem for derivatives). Suppose 𝑈 ⊂ ℂ is open and
𝑓 : 𝑈 → ℂ is continuous with a primitive 𝐹 : 𝑈 → ℂ. Let Γ be a cycle in𝑈 . Then∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

We will prove several versions of Cauchy’s theorem, although this one is somewhat
different from the others. Usually there will be a restriction on the 𝑈 or perhaps
the path or cycle Γ, while the function is usually just any holomorphic function. A
version of Cauchy’s theorem can be taken as an “independence of path” result saying
that we can define a function at 𝑧 by a line integral from some fixed point to 𝑧. The
result will be that such a function is a primitive. So the other versions of Cauchy’s
theorem will generally either restrict which Γ can be taken or restrict to only those𝑈
where every holomorphic function has a primitive.

The next corollary will be entirely subsumed into the more general version of
Cauchy we will prove later, but right now it is rather appealing.

Corollary 3.2.7 (Cauchy’s theorem for polynomials). Suppose 𝑃(𝑧) is a polynomial and
Γ is a cycle (in ℂ). Then ∫

Γ

𝑃(𝑧) 𝑑𝑧 = 0.

*A real derivative may only be integrable by a so-called gauge or Henstock–Kurzweil integral—
Riemann or even Lebesgue are not enough—so integrability is not an idle concern. If the reader is
willing to hunt ants with a sledgehammer, then the statement and proof of the proposition is perfectly
fine at this stage if one uses the gauge integral even without any hypothesis on 𝑓 .



62 CHAPTER 3. LINE INTEGRALS AND RUDIMENTARY CAUCHY THEOREMS

Exercise 3.2.2: Prove Cauchy’s theorem for polynomials.

Exercise 3.2.3: Suppose 𝑓 is given by a power series at 𝑝 that converges in Δ𝑅(𝑝). Let Γ
be a cycle in Δ𝑅(𝑝). Prove that ∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 3.2.4: Suppose𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ holomorphic, and Γ is a cycle in𝑈 .
Given a 𝑝 ∈ 𝑈 , find a holomorphic 𝑔 : 𝑈 → ℂ with 𝑔(𝑝) = 0 and 𝑔′(𝑝) = 0 such that∫
Γ
𝑔(𝑧) 𝑑𝑧 =

∫
Γ
𝑓 (𝑧) 𝑑𝑧.

Exercise 3.2.5: Let 𝑛 ≠ −1 be an integer and Γ a cycle in ℂ \ {0}. Compute∫
Γ

𝑧𝑛 𝑑𝑧.

Exercise 3.2.6: Using  Example 3.1.4  , argue that 1/𝑧 does not have a primitive in ℂ \ {0}.

3.2.2𝑖 · Cauchy–Goursat, the “Cauchy for triangles”
Definition 3.2.8. A set 𝑋 is convex if the segment [𝑎, 𝑏] ⊂ 𝑋 for all 𝑎, 𝑏 ∈ 𝑋. Let
𝑎, 𝑏, 𝑐 ∈ ℂ be distinct points in ℂ that do not lie on a straight line. A triangle 𝑇 with
vertices 𝑎, 𝑏, 𝑐 is the convex hull of {𝑎, 𝑏, 𝑐}, that is, the set of all points

𝑡1𝑎 + 𝑡2𝑏 + 𝑡3𝑐,
where 𝑡1, 𝑡2, 𝑡3 ∈ [0, 1] and 𝑡1 + 𝑡2 + 𝑡3 = 1.

Another way to define the convex hull is the intersection of all convex sets
containing {𝑎, 𝑏, 𝑐}. In particular, 𝑇 is the smallest convex set containing the vertices.
Do note that we have defined a triangle as the solid triangle, including the inside.

𝑇

𝑐

𝑏𝑎

Figure 3.3: Positively oriented triangle.

Order the vertices so that the boundary 𝜕𝑇 has positive orientation; if we travel
from 𝑎 to 𝑏 to 𝑐 the inside of the triangle is on the left. More precisely, if we translate
so that 𝑎 is the origin and rotate so that 𝑏 is on the positive real line, then 𝑐 has
positive imaginary part. See  Figure 3.3 . Define the boundary cycle of 𝑇 as

𝜕𝑇 = [𝑎, 𝑏] + [𝑏, 𝑐] + [𝑐, 𝑎].
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Theorem 3.2.9 (Cauchy–Goursat 

*
 ). Suppose𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic,

and 𝑇 ⊂ 𝑈 is a triangle. Then ∫
𝜕𝑇
𝑓 (𝑧) 𝑑𝑧 = 0.

It is important that 𝑇 ⊂ 𝑈 means that the inside of the triangle is in𝑈 , not just the
boundary. Otherwise the theorem would not be true.

Proof. We proceed by contrapositive. Suppose 𝑓 is at least continuous, and suppose
there is a triangle 𝑇 ⊂ 𝑈 over whose boundary the integral is not zero,����∫

𝜕𝑇
𝑓 (𝑧) 𝑑𝑧

���� = 𝑐 ≠ 0.

We will find a point where 𝑓 is not complex differentiable.
Cut 𝑇 into four subtriangles 𝑇1, 𝑇2, 𝑇3, 𝑇4 by cutting each side of 𝑇 in half. See

 Figure 3.4 .

𝑇3

𝑇4
𝑇1 𝑇2

Figure 3.4: Cutting a triangle into four triangles of half the size.

Each 𝑇𝑗 is positively oriented. The sides of the inner 𝑇4 triangle have orientation
opposite to the orientation of the inner sides of 𝑇1, 𝑇2, and 𝑇3, and so the line integral
over these sides cancels. Therefore,

𝑐 =

����∫
𝜕𝑇
𝑓 (𝑧) 𝑑𝑧

���� = ����∫
𝜕𝑇1

𝑓 (𝑧) 𝑑𝑧 +
∫
𝜕𝑇2

𝑓 (𝑧) 𝑑𝑧 +
∫
𝜕𝑇3

𝑓 (𝑧) 𝑑𝑧 +
∫
𝜕𝑇4

𝑓 (𝑧) 𝑑𝑧
���� .

One of the four integrals, say that over 𝜕𝑇𝑗 , must have modulus at least 𝑐/4. Label that
triangle 𝑇1 = 𝑇𝑗 : ����∫

𝜕𝑇1
𝑓 (𝑧) 𝑑𝑧

���� ≥ 𝑐

4 .

Now cut 𝑇1 into subtriangles 𝑇1
1 , 𝑇1

2 , 𝑇1
3 , 𝑇1

4 as above and repeat the procedure. There
is one of these four whose integral is at least 𝑐

42 , label it 𝑇2. Rinse and repeat. All in
all, for the 𝑘th triangle 𝑇 𝑘 , ����∫

𝜕𝑇 𝑘
𝑓 (𝑧) 𝑑𝑧

���� ≥ 𝑐

4𝑘
.

*What makes this theorem the Goursat theorem rather than just another statement of Cauchy’s
theorem is that in the proof, we are only assuming that the complex derivative exists and not that it is
continuous, which is what Cauchy assumed.
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Furthermore, 𝑇 𝑘 ⊂ 𝑇 𝑘−1 ⊂ · · · ⊂ 𝑇. In each step, the subtriangles are all similar
triangles (same angles), but with sides exactly halved. In particular, the largest
possible distance for two points in the triangle gets halved each iteration. In more
formal language: 

*
 

diam(𝑇 𝑘) = 1
2 diam(𝑇 𝑘−1) = 1

2𝑘
diam(𝑇).

As 𝑇 is compact and each 𝑇 𝑘 is closed, the nested intersection of the 𝑇 𝑘 must be
nonempty. As the diameter goes to zero, it must be a single point:

{𝑧0} =
∞⋂
𝑘=1

𝑇 𝑘 .

For some 𝛼 ∈ ℂ, write

𝑓 (𝑧) = 𝑓 (𝑧0) + 𝛼(𝑧 − 𝑧0) + 𝑔(𝑧).

Were 𝑓 complex differentiable at 𝑧0, there would be an 𝛼 so that 𝑔(𝑧)
𝑧−𝑧0

would go to
zero as 𝑧 → 𝑧0. Let us prove that it does not go to zero for any 𝛼. Fix 𝛼 and thus 𝑔. If
𝑔(𝑧0) ≠ 0, then we are done, so assume 𝑔(𝑧0) = 0.  Cauchy’s theorem for polynomials 

says ∫
𝜕𝑇 𝑘

𝑓 (𝑧) 𝑑𝑧 =
∫
𝜕𝑇 𝑘

(
𝑓 (𝑧0) + 𝛼(𝑧 − 𝑧0) + 𝑔(𝑧)) 𝑑𝑧 = ∫

𝜕𝑇 𝑘
𝑔(𝑧) 𝑑𝑧.

And so
𝑐

4𝑘
≤

����∫
𝜕𝑇 𝑘

𝑓 (𝑧) 𝑑𝑧
���� = ����∫

𝜕𝑇 𝑘
𝑔(𝑧) 𝑑𝑧

���� ≤ ∫
𝜕𝑇 𝑘

|𝑔(𝑧)| |𝑑𝑧 |.

Let ℓ be the sum of the lengths of the sides of 𝑇. The sum of the lengths of the sides
of 𝑇 𝑘 is ℓ

2𝑘 . By the mean value theorem for integrals 

†
 , there is a 𝑧𝑘 ∈ 𝜕𝑇 𝑘 such that

|𝑔(𝑧𝑘)| = 2𝑘

ℓ

∫
𝜕𝑇 𝑘

|𝑔(𝑧)| |𝑑𝑧 |.

We have 𝑧𝑘 ≠ 𝑧0 as 𝑔(𝑧0) = 0. Let 𝑑 = diam(𝑇). Then |𝑧𝑘 − 𝑧0 | ≤ 𝑑
2𝑘 and���� 𝑔(𝑧𝑘)𝑧𝑘 − 𝑧0

���� ≥ 2𝑘 |𝑔(𝑧𝑘)|
𝑑

=
4𝑘

𝑑ℓ

∫
𝜕𝑇 𝑘

|𝑔(𝑧)| |𝑑𝑧 | ≥ 4𝑘

𝑑ℓ

𝑐

4𝑘
=

𝑐

𝑑ℓ
.

Because 𝑧𝑘 → 𝑧0, we find that 𝑔(𝑧)
𝑧−𝑧0

does not go to zero as 𝑧 → 𝑧0. So 𝑓 is not complex
differentiable at 𝑧0. □

*Here diam(𝑇) = sup{|𝑝 − 𝑞 | : 𝑝, 𝑞 ∈ 𝑇} means the maximum distance between two points in 𝑇.
†If 𝜑 : [𝑎, 𝑏] → ℝ is continuous, then there is an 𝑥 ∈ [𝑎, 𝑏] such that 𝜑(𝑥) = 1

𝑏−𝑎
∫ 𝑏

𝑎
𝜑(𝑡) 𝑑𝑡. To apply

it here, parametrize the entire triangle with unit speed.
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Exercise 3.2.7: Suppose 𝑇 ⊂ ℂ is a triangle and 𝑓 : 𝑇 → ℂ a continuous function whose
restriction to the interior of 𝑇 is holomorphic. Prove that

∫
𝜕𝑇
𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 3.2.8: A closed rectangle 𝑅 ⊂ ℂ is a set
{
𝑧 ∈ ℂ : 𝑎 ≤ Re 𝑧 ≤ 𝑏, 𝑐 ≤ Im 𝑧 ≤ 𝑑

}
for real numbers 𝑎 < 𝑏, 𝑐 < 𝑑. The boundary is again oriented counterclockwise. Prove
Cauchy–Goursat for rectangles (replace 𝑇 in the theorem with 𝑅).

Exercise 3.2.9: Let 𝑅 be a rectangle with vertices −1− 𝑖, 1− 𝑖, 1+ 𝑖, and −1+ 𝑖 and notice
that 0 is in the interior. Compute

∫
𝜕𝑅

1
𝑧 𝑑𝑧, notice that it is nonzero, and argue why it does

not violate the Cauchy–Goursat theorem for rectangles (see the previous exercise). Hint: We
do not yet have the complex logarithm, so you can’t use that, but notice that for instance:

1
𝑡−𝑖 =

𝑡
𝑡2+1 + 𝑖 1

𝑡2+1 .

A triangle is one type of a convex set, but as convex sets come up often, let us give
some basic properties of convex sets as exercises. These may be good to do in order
and possibly use earlier ones in solving the later ones.

Exercise 3.2.10: Prove:
a) An arbitrary intersection of convex sets is convex.
b) The interior of a convex set is convex.
c) The closure of a convex set is convex.

Exercise 3.2.11: Let 𝑋 ⊂ ℂ be a convex set and 𝜉 ∈ 𝜕𝑋, then prove that there exists a
nonzero 𝑤 such that for all 𝑧 ∈ 𝑋, we have

Re 𝑧𝑤̄ ≥ Re 𝜉𝑤̄.

In other words, 𝑋 is in the closed half-plane bounded by a straight line containing 𝜉 and
orthogonal to 𝑤. Notice that Re 𝑧𝑤̄ is the standard dot product from vector calculus in ℝ2.

Exercise 3.2.12: Let 𝑋 ⊂ ℂ be a closed convex set. Prove that 𝑋 is an intersection of
closed half-planes (see previous exercise).

Exercise 3.2.13: Union of convex sets is normally not convex, but if {𝑋𝑛} is a sequence of
convex sets such that 𝑋𝑛 ⊂ 𝑋𝑛+1, then prove that the union

⋃
𝑛 𝑋𝑛 is convex.

3.2.3𝑖 · Cauchy for star-like sets
Definition 3.2.10. A set𝑈 ⊂ ℂ is called star-like (or more precisely star-like with respect
to 𝑧0) if there exists a point 𝑧0 ∈ 𝑈 such that the segment [𝑧0, 𝑧] ⊂ 𝑈 for every 𝑧 ∈ 𝑈 .
See  Figure 3.5 .

A convex set is star-like, but not vice versa.
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𝑧0
𝑧

Figure 3.5: A domain that is star-like with respect to 𝑧0.

Exercise 3.2.14: Prove that if𝑈 ⊂ ℂ is star-like with respect to 𝑧0 and [𝑎, 𝑏] ⊂ 𝑈 , then
the triangle 𝑇 with vertices 𝑧0, 𝑎, and 𝑏 is entirely contained in𝑈 .

Exercise 3.2.15: Suppose𝑈 ⊂ ℂ is open and star-like. Prove that𝑈 is connected.

Exercise 3.2.16:
a) Prove that if 𝑈1, . . . , 𝑈𝑛 ⊂ ℂ are convex and 𝑈1 ∩ · · · ∩𝑈𝑛 ≠ ∅, then the union
𝑈1 ∪ · · · ∪𝑈𝑛 is star-like.

b) Find an example of convex𝑈1, 𝑈2, 𝑈3 ⊂ ℂ where𝑈1 ∩𝑈2 ≠ ∅,𝑈1 ∩𝑈3 ≠ ∅, and
𝑈2 ∩𝑈3 ≠ ∅, but such that𝑈1 ∪𝑈2 ∪𝑈3 is not star-like.

Proposition 3.2.11. Suppose𝑈 ⊂ ℂ is open and star-like, 𝑓 : 𝑈 → ℂ is continuous, and∫
𝜕𝑇
𝑓 (𝑧) 𝑑𝑧 = 0

for every triangle 𝑇 ⊂ 𝑈 . Then 𝑓 has a primitive, that is, there exists a holomorphic
𝐹 : 𝑈 → ℂ such that 𝐹′ = 𝑓 .

Proof. Suppose𝑈 is star-like with respect to 𝑧0 ∈ 𝑈 . For 𝑧 ∈ 𝑈 , define

𝐹(𝑧) =
∫
[𝑧0 ,𝑧]

𝑓 (𝜁) 𝑑𝜁.

Consider a small disc Δ𝑟(𝑧) ⊂ 𝑈 . If |ℎ | < 𝑟, then 𝑧 + ℎ ∈ Δ𝑟(𝑧). The line between
𝑧 and 𝑧 + ℎ is in 𝑈 , and as 𝑈 is star-like with respect to 𝑧0, the entire triangle (or
the line segment if the points are collinear) with vertices 𝑧0, 𝑧, and 𝑧 + ℎ is in𝑈 , see

 Figure 3.6 (and  Exercise 3.2.14 ).
The hypothesis says (trivially true if the points are collinear)∫

[𝑧0 ,𝑧]+[𝑧,𝑧+ℎ]−[𝑧0 ,𝑧+ℎ]
𝑓 (𝜁) 𝑑𝜁 = 0.
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𝑧0

𝑈
𝑧

𝑧 + ℎ

Figure 3.6: Star-like domain and the triangle with vertices 𝑧0, 𝑧, and 𝑧 + ℎ.

So

𝐹(𝑧 + ℎ) − 𝐹(𝑧)
ℎ

=
1
ℎ

∫
[𝑧0 ,𝑧+ℎ]−[𝑧0 ,𝑧]

𝑓 (𝜁) 𝑑𝜁

=
1
ℎ

∫
[𝑧,𝑧+ℎ]

𝑓 (𝜁) 𝑑𝜁 =
1
ℎ

∫ 1

0
𝑓 (𝑧 + 𝑡ℎ)ℎ 𝑑𝑡 =

∫ 1

0
𝑓 (𝑧 + 𝑡ℎ) 𝑑𝑡.

In other words,����𝐹(𝑧 + ℎ) − 𝐹(𝑧)ℎ
− 𝑓 (𝑧)

���� = ����∫ 1

0
𝑓 (𝑧 + 𝑡ℎ) 𝑑𝑡 −

∫ 1

0
𝑓 (𝑧) 𝑑𝑡

����
≤

∫ 1

0
| 𝑓 (𝑧 + 𝑡ℎ) − 𝑓 (𝑧)| 𝑑𝑡.

By continuity of 𝑓 at 𝑧,

lim
ℎ→0

𝐹(𝑧 + ℎ) − 𝐹(𝑧)
ℎ

= 𝑓 (𝑧). □

Cauchy–Goursat ( Theorem 3.2.9 ) says that the integral around triangles is always
zero if 𝑓 is holomorphic. Thus we get the following immediate corollary.

Corollary 3.2.12. Suppose 𝑈 ⊂ ℂ is open and star-like and 𝑓 : 𝑈 → ℂ is holomorphic.
Then 𝑓 has a primitive, that is, there exists a holomorphic 𝐹 : 𝑈 → ℂ such that 𝐹′ = 𝑓 .

We also get another corollary, which we call a theorem as it is one of the
fundamental results.

Theorem 3.2.13 (Cauchy’s theorem for star-like domains). Suppose𝑈 ⊂ ℂ is open and
star-like, 𝑓 : 𝑈 → ℂ is holomorphic, and Γ is a cycle in𝑈 . Then∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

Proof.  Corollary 3.2.12 implies that there is a primitive 𝐹 : 𝑈 → ℂ. Cauchy’s theorem
for derivatives ( Corollary 3.2.6 ) then implies that the integral is zero. □
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Exercise 3.2.17: Suppose 𝑓 : ℂ \ {0} → ℂ is holomorphic and 𝛾 : [𝑎, 𝑏] → ℂ \ {0}
is a closed piecewise-𝐶1 path such that Re 𝛾(𝑡) < |𝛾(𝑡)| for all 𝑡 ∈ [𝑎, 𝑏]. Show that∫
𝛾
𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 3.2.18: Let 𝛾 be the upper semicircle of the unit circle oriented from 1 to −1.
Suppose 𝑓 : ℂ → ℂ is holomorphic and

∫ 1
0 𝑓 (𝑥2) 𝑑𝑥 = 𝜋. Compute

∫
𝛾
𝑓 (𝑧2) 𝑑𝑧.

Exercise 3.2.19: Suppose𝑈1, 𝑈2 ⊂ ℂ are star-like domains such that𝑈1∩𝑈2 is nonempty
and connected. Prove Cauchy’s theorem for 𝑈 = 𝑈1 ∪ 𝑈2, that is, if 𝑓 : 𝑈 → ℂ is
holomorphic and Γ is a cycle in𝑈 , then

∫
Γ
𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 3.2.20: Suppose𝑈 ⊂ ℂ is open and star-like and 𝑓 : 𝑈 → ℂ is antiholomorphic,
that is, it is the conjugate of a holomorphic function. Let 𝑑𝑧̄ = 𝑑𝑥 + 𝑖 𝑑𝑦 as before. Suppose
Γ is a cycle in𝑈 . Prove that

∫
Γ
𝑓 (𝑧) 𝑑𝑧̄ = 0.

Remark 3.2.14. A complex-valued function can be thought of as a vector-field on
ℝ2.  Corollary 3.2.12 is in fact a special case of a theorem you have seen in vector
calculus, a version of the Poincaré lemma: In a star-like domain 𝑈 ⊂ ℝ2, if a 𝐶1 vector
field (𝑢, 𝑣) : 𝑈 → ℝ2 satisfies 𝜕𝑢

𝜕𝑦 = 𝜕𝑣
𝜕𝑥 (the vector field is irrotational), then there exists a

real-valued 𝑓 : ℝ2 → ℝ such that ∇ 𝑓 = (𝑢, 𝑣) (the vector field is conservative, a gradient).
More concisely, an irrotational vector field in a star-like domain is conservative. See the
“conservative vector fields” section of your favorite calculus textbook. You can gain a
lot of intuition on the current material on holomorphic functions by reviewing the
vector calculus analogues.

Exercise 3.2.21: Use the result on irrotational vector fields from  Remark 3.2.14 to prove
 Corollary 3.2.12 . Assume you know that holomorphic functions are 𝐶1.

3.2.4𝑖 · Cauchy’s formula in a disc
Perhaps the most fundamental theorem in complex analysis in one variable, and
the root cause of all the amazing properties of holomorphic functions is the Cauchy
integral formula. Let us state it for a disc, and leave more general statements for later.
Theorem 3.2.15 (Cauchy integral formula in a disc). Suppose𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ

is holomorphic, and Δ𝑟(𝑝) ⊂ 𝑈 . Then for all 𝑧 ∈ Δ𝑟(𝑝),

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

What should be surprising about this theorem is that the values of a holomorphic
function inside the disc (a large set) are determined by their values on the circle (a
relatively small set).
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Proof. Fix 𝑧 ∈ Δ𝑟(𝑝) and write 𝛾 for the boundary of Δ𝑟(𝑝) oriented counterclockwise.
Let Δ𝑠(𝑧) be a small disc with Δ𝑠(𝑧) ⊂ Δ𝑟(𝑝), and write 𝛼 for the boundary of Δ𝑠(𝑧).

We connect 𝛼 to 𝛾 via two straight lines as in  Figure 3.7 . The two resulting regions
between 𝛼 and 𝛾 give closed paths 𝑐1 and 𝑐2 with the counterclockwise orientations
marked in the figure.

𝛾

𝛼

𝑐2

𝑐1

𝑧

Figure 3.7: Connecting 𝛾 and 𝛼.

As chains, 𝑐1 + 𝑐2 = 𝛾 − 𝛼. Each 𝑐 𝑗 lies in a star-like domain (some possibilities
marked by dashed lines in the figure), where 𝑓 (𝜁)

𝜁−𝑧 is holomorphic as a function of 𝜁
(since 𝑧 is outside each of these domains). By Cauchy’s theorem for star-like sets,∫

𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 −

∫
𝛼

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

∫
𝑐1

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 +

∫
𝑐2

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 = 0.

So
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
𝛼

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

Let 𝛼(𝑡) = 𝑧 + 𝑠𝑒 𝑖𝑡 be the parametrization. Then

1
2𝜋𝑖

∫
𝛼

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫ 2𝜋

0

𝑓 (𝑧 + 𝑠𝑒 𝑖𝑡)
𝑧 + 𝑠𝑒 𝑖𝑡 − 𝑧 𝑠𝑖𝑒

𝑖𝑡 𝑑𝑡 =
1

2𝜋

∫ 2𝜋

0
𝑓 (𝑧 + 𝑠𝑒 𝑖𝑡) 𝑑𝑡.

As the integral over 𝛾 (which does not depend on 𝑠) is equal to the integral over 𝛼 for
all 𝑠 > 0 small enough, we can take the limit as 𝑠 → 0. By continuity of 𝑓 at 𝑧,

lim
𝑠↓0

1
2𝜋𝑖

∫
𝛼

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 = lim

𝑠↓0

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑧 + 𝑠𝑒 𝑖𝑡) 𝑑𝑡 = 𝑓 (𝑧). □
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Exercise 3.2.22: Make the construction of 𝑐1 and 𝑐2 and the two star-like domains in the
proof explicit. That is, exactly describe the “cut” that makes 𝑐1 and 𝑐2, and describe two
star-like domains (you don’t have to do the two pictured).

Exercise 3.2.23: Show why the theorem should be surprising. Given 𝑎, 𝑏 ∈ ℂ and 𝑧 ∈ 𝔻,
construct a continuous 𝑓 : ℂ → ℂ such that 1

2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
𝜁−𝑧 𝑑𝜁 = 𝑎 and 𝑓 (𝑧) = 𝑏.

Exercise 3.2.24: Suppose 𝑓 is holomorphic in an open neighborhood of Δ𝑟(𝑝). Show that
𝑓 at 𝑝 is the average of the values on 𝜕Δ𝑟(𝑝). That is, show

𝑓 (𝑝) = 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑝 + 𝑟𝑒 𝑖𝑡) 𝑑𝑡.

Exercise 3.2.25: Suppose 𝑓 is holomorphic in an open neighborhood of Δ𝑟(𝑝). Show that
𝑓 at 𝑝 is the average of the values on Δ𝑟(𝑝). That is, show

𝑓 (𝑝) = 1
𝜋𝑟2

∫
Δ𝑟(𝑝)

𝑓 (𝑧) 𝑑𝐴,

where 𝑑𝐴 = 𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝜃 is the area measure.

Exercise 3.2.26: Compute ∫
𝛾

cos(𝑧2) + 𝑧
𝑧(𝑧 − √

𝜋) 𝑑𝑧

if 𝛾 is:
a) The circle of radius 1 centered at the origin oriented counterclockwise.
b) The circle of radius 2 centered at the origin oriented counterclockwise. Hint: partial

fractions.
c) The circle of radius 5 centered at 𝑖 + 1 oriented clockwise.

Exercise 3.2.27: Strengthen the theorem: Show that the conclusion holds if we only assume
that 𝑓 : Δ𝑟(𝑝) → ℂ is continuous and 𝑓 is holomorphic on Δ𝑟(𝑝).

3.3𝑖 \ Consequences of Cauchy

3.3.1𝑖 · Holomorphic functions are analytic

Perhaps the most profound consequence of Cauchy’s formula is that holomorphic
functions are analytic. We have already seen that analytic functions are holomorphic,
and now we prove the converse.
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Theorem 3.3.1. Let 𝑈 ⊂ ℂ be open, 𝑓 : 𝑈 → ℂ be holomorphic, 𝑝 ∈ 𝑈 , and Δ𝑅(𝑝) ⊂ 𝑈 .
Then there exists a power series

∑
𝑐𝑛(𝑧 − 𝑝)𝑛 such that for all 𝑧 ∈ Δ𝑅(𝑝),

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 .

Moreover,

𝑐𝑛 =
1

2𝜋𝑖

∫
𝛾

𝑓 (𝑧)
(𝑧 − 𝑝)𝑛+1 𝑑𝑧,

where 𝛾 is any circle of radius 𝑟, 0 < 𝑟 < 𝑅, centered at 𝑝 oriented counterclockwise.

Proof. First fix an 𝑟 such that 0 < 𝑟 < 𝑅. ThusΔ𝑟(𝑝) ⊂ 𝑈 , and in particular, 𝜕Δ𝑟(𝑝) ⊂ 𝑈 .
Fix a 𝑧 ∈ Δ𝑟(𝑝). For 𝜁 ∈ 𝜕Δ𝑟(𝑝), ���� 𝑧 − 𝑝𝜁 − 𝑝

���� = |𝑧 − 𝑝 |
𝑟

< 1.

So the geometric series in 𝑧−𝑝
𝜁−𝑝 converges, that is,

∞∑
𝑛=0

(
𝑧 − 𝑝
𝜁 − 𝑝

)𝑛
=

1
1 − 𝑧−𝑝

𝜁−𝑝
=

𝜁 − 𝑝
𝜁 − 𝑧 .

Write 𝑓 (𝑧) using the Cauchy integral formula:

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁

=
1

2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑝

𝜁 − 𝑝
𝜁 − 𝑧 𝑑𝜁

=
1

2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑝

∞∑
𝑛=0

(
𝑧 − 𝑝
𝜁 − 𝑝

)𝑛
𝑑𝜁

=

∞∑
𝑛=0

(
1

2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁

)
︸                             ︷︷                             ︸

𝑐𝑛

(𝑧 − 𝑝)𝑛 .

In the last equality, we were allowed to interchange the limit on the sum with the
integral via uniform convergence (uniform in the 𝜁 ∈ 𝜕Δ𝑟(𝑝)): 𝑧 is fixed and if 𝑀 is
the supremum of

�� 𝑓 (𝜁)
𝜁−𝑝

�� = | 𝑓 (𝜁)|
𝑟 on 𝜕Δ𝑟(𝑝) (a compact set), then���� 𝑓 (𝜁)𝜁 − 𝑝

(
𝑧 − 𝑝
𝜁 − 𝑝

)𝑛 ���� ≤ 𝑀

( |𝑧 − 𝑝 |
𝑟

)𝑛
, and

|𝑧 − 𝑝 |
𝑟

< 1.
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Thus,
∑ ��� 𝑓 (𝜁)𝜁−𝑝

(
𝑧−𝑝
𝜁−𝑝

)𝑛 ��� converges uniformly in 𝜁 ∈ 𝜕Δ𝑟(𝑝), and so
∑ 𝑓 (𝜁)

𝜁−𝑝
(
𝑧−𝑝
𝜁−𝑝

)𝑛
converges

uniformly absolutely (and hence uniformly).
We found a power series converging to 𝑓 (𝑧) for all 𝑧 ∈ Δ𝑟(𝑝). By uniqueness of the

power series (see  Corollary 2.4.3 ), the 𝑐𝑛 we compute are the same for every 𝑟 < 𝑅.
Hence, we get the same series for every 𝑟 and it converges in Δ𝑅(𝑝). □

The key point in the proof is writing the Cauchy kernel 1
𝜁−𝑧 as

1
𝜁 − 𝑧 =

1
𝜁 − 𝑝

𝜁 − 𝑝
𝜁 − 𝑧

and then using the geometric series. The proof illustrates a common technique: Given
an integral of a function against a kernel, take a feature of the kernel, in this case
having a series, and prove that the integral has that same feature. In the proof above,
the trick is to figure out how to massage the kernel so that in the geometric series we
get terms that are something times (𝑧 − 𝑝)𝑛 .

Not only have we proved that 𝑓 has a power series, we computed that the radius
of convergence is at least 𝑅, where 𝑅 is the maximum 𝑅 such that Δ𝑅(𝑝) ⊂ 𝑈 . See

 Figure 3.8 . That is a surprisingly powerful result. Nothing like that is true for power
series in a real variable, see  Exercise 3.3.3 . It allows for computation of the radius
of convergence (or at least a lower bound for it) just from knowing the domain of
definition of a holomorphic function. The radius of convergence then gives us bounds
on the derivatives, and so we know quite a bit about the size of the derivatives of a
function just from knowing how far away from a point is it still holomorphic.

𝑅

𝑝𝑈

Figure 3.8: Largest disc around 𝑝 that fits in𝑈 is where the series at 𝑝 for a holomorphic
𝑓 : 𝑈 → ℂ converges.

Let us state the main conclusion of this subsection once more.

Corollary 3.3.2. Let 𝑈 ⊂ ℂ be an open set. A function 𝑓 : 𝑈 → ℂ is holomorphic if and
only if 𝑓 is analytic.

As a corollary of this corollary, we find that all the results that we proved for
analytic functions are true for holomorphic functions. And it goes the other way
too. For example, it is easy to show that the composition of holomorphic functions
is holomorphic (the chain rule), and so it is true for analytic functions. It is much
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harder to prove directly that composition of power series is again a power series.
Similarly for a product of power series. And we have just proved what we postponed
in a remark: A convergent power series defines an analytic function. We only proved
before that it defines a holomorphic function.

Exercise 3.3.1: Consider 𝑓 (𝑧) = sin(𝑧)
𝑧 defined on ℂ \ {0}. The theorem gives you that the

power series at 𝑧 = 1 converges in a disc of radius 1. Prove that the radius of convergence is
actually infinity. Hint: Write sin(𝑧) as a power series at the origin first.

Exercise 3.3.2: Find the radius of convergence of the series at zero of the holomorphic
function 𝑓 (𝑧) = 𝑒𝑧

7 sin
(
cos

(
𝑒𝑧

𝑧2−25

))
𝑒

𝑧
𝑧+4 . Hint: Showing that it is at least something is

the easier part, showing it can be no larger than what you think it is, that is the harder part.

Exercise 3.3.3: Show that for the so-called real-analytic functions, the radius of convergence
cannot be read-off from the domain: Prove that the function 𝑓 (𝑥) = 1

1+𝑥2 , which is defined
on the entire real line, can be expressed (locally) as a real power series

∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 for

every 𝑎 ∈ ℝ, but this power series always has a finite radius of convergence. Compute this
radius of convergence for every 𝑎. Hint: Consider the holomorphic function 1

1+𝑧2 .

Exercise 3.3.4: Suppose that 𝑓 : 𝔻 → ℂ is holomorphic and suppose that 𝑓 is expanded in
a power series around some 𝑝 ∈ 𝔻.

a) Write the best lower estimate of the radius of convergence in terms of |𝑝 |.
b) Given a 𝑝, find a function 𝑓 whose radius of convergence is precisely given by the

formula you found above.

Exercise 3.3.5: Suppose 𝑓 : 𝔻 → ℂ is holomorphic such that 𝑓 (𝑧) = 𝑓 (𝑖𝑧) for all 𝑧 ∈ 𝔻.
Show that there exists a holomorphic 𝑔 : 𝔻 → ℂ such that 𝑓 (𝑧) = 𝑔(𝑧4).
Exercise 3.3.6: Suppose𝑈 ⊂ ℂ is a domain such that 𝔻 ⊂ 𝑈 , the function 𝑓 : 𝑈 → ℂ is
holomorphic, and ∫

𝜕𝔻
𝑓 (𝑧)𝑧̄𝑛 𝑑𝑧 = 0

for all 𝑛 ∈ ℕ. Prove that 𝑓 is identically zero.

Exercise 3.3.7: Suppose that 𝑔 : 𝔻 → ℂ is such that

lim
ℎ→0

𝑔(𝑧 + ℎ) − 𝑔(𝑧)
ℎ̄

exists for all 𝑧 ∈ 𝔻 (note that conjugate on the ℎ). Prove that there exists a sequence {𝑐𝑛}
such that for all 𝑧 ∈ 𝔻,

𝑔(𝑧) =
∞∑
𝑛=0

𝑐𝑛 𝑧̄
𝑛 .
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3.3.2𝑖 · Derivative is holomorphic and Morera’s theorem
Let us restate  Corollary 2.4.4  in terms of holomorphic functions, now that we know
that holomorphic functions are analytic.

Theorem 3.3.3. Let 𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ holomorphic. Then 𝑓 is infinitely
complex differentiable. In particular, 𝑓 ′ is holomorphic.

The “in particular” is an important consequence. It is also a somewhat surprising
consequence. It says that if 𝑓 is differentiable in some way, then so is the derivative.
Nothing like that is true for the real derivative: Any continuous 𝑔 : (𝑎, 𝑏) → ℝ is
the derivative of a real differentiable function (e.g., 𝑓 (𝑥) =

∫ 𝑥

𝑐
𝑔(𝑡) 𝑑𝑡 for 𝑐 ∈ (𝑎, 𝑏)),

and continuous functions need not be differentiable anywhere. Even worse, the real
derivative could even be discontinuous.

Exercise 3.3.8: Let 𝑓 : ℝ → ℝ be defined by 𝑓 (0) = 0 and 𝑓 (𝑥) = 𝑥2 sin(1/𝑥) for 𝑥 ≠ 0.
a) Show that 𝑓 is differentiable everywhere (including at 0), but 𝑓 ′ is not continuous.
b) Modify 𝑓 so that it is still differentiable everywhere, but 𝑓 ′ is not even bounded.

The derivatives of a holomorphic function can be computed by integration 

*
 via

the Cauchy integral formula as well. Yeah that does sound weird. It is definitely not
something that you should expect for any old functions.

Theorem 3.3.4 (Cauchy integral formula for derivatives). Suppose 𝑈 ⊂ ℂ is open,
𝑓 : 𝑈 → ℂ is holomorphic, Δ𝑟(𝑝) ⊂ 𝑈 . Then for all 𝑧 ∈ Δ𝑟(𝑝) and all 𝑘 ∈ ℕ,

𝑓 (𝑘)(𝑧) = 𝑘!
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+1 𝑑𝜁.

Proof. We know that 𝑓 is infinitely complex differentiable, and we can compute the
derivatives using the Wirtinger operator. For induction, suppose the theorem holds
for some 𝑘 (the standard formula says it is true for 𝑘 = 0). Fix some 𝑧 ∈ Δ𝑟(𝑝).

𝑓 (𝑘+1)(𝑧) = 𝜕

𝜕𝑧

[
𝑓 (𝑘)(𝑧)] = 𝜕

𝜕𝑧

[
𝑘!

2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+1 𝑑𝜁

]
=

𝑘!
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁) 𝜕
𝜕𝑧

[
1

(𝜁 − 𝑧)𝑘+1

]
𝑑𝜁

=
(𝑘 + 1)!

2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+2 𝑑𝜁.

Here, we are really passing the partial derivatives in 𝑥 and 𝑦 (where 𝑧 = 𝑥 + 𝑖𝑦)
underneath the integral, which can be done by the Leibniz integral rule,  Theorem B.2.3 ,

*Complex analysis allows you to integrate to find the derivative and to differentiate to find an
integral. Now tell that to your calculus students.
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for instance. Actually it requires the simple generalization in  Exercise B.2.7  . We
have used that the 𝑥 and 𝑦 partial derivatives of 𝑓 (𝜁)

(𝜁−𝑧)𝑘+1 are continuous functions of
(𝑧, 𝜁) ∈ Δ𝑟(𝑝) × 𝜕Δ𝑟(𝑝). □

We could have also used the difference quotient instead of the Wirtinger operator.
That approach requires slightly more care—you have to show uniform convergence of
a certain limit of functions—but we would not have needed the result that holomorphic
functions are analytic. In fact, it could give an independent proof that holomorphic
functions are infinitely complex differentiable. We leave it as an exercise.

Exercise 3.3.9: Compute ∫
𝜕𝔻

𝑧2𝑒𝑧

(2𝑧 − 1)3 𝑑𝑧.

Exercise 3.3.10: Give a different proof of the Cauchy formula for derivatives by using the
difference quotient. First show the formula for 𝑓 ′, then again using the difference quotient
and the fact that the kernel (the function inside) is holomorphic in 𝑧, show the formula for
𝑓 ′′, etc. For this procedure to work it is not necessary to assume that 𝑓 ′ is holomorphic, it
will follow from your work.

Exercise 3.3.11: Suppose 𝑓 (𝑧, 𝑡) is a continuous function of (𝑧, 𝑡) ∈ 𝑈 × (𝑎, 𝑏), where
𝑈 ⊂ ℂ is open, and for every fixed 𝑡 ∈ (𝑎, 𝑏), the function 𝑧 ↦→ 𝑓 (𝑧, 𝑡) is holomorphic.
Prove that 𝜕 𝑓

𝜕𝑧 is a continuous function of𝑈 × (𝑎, 𝑏). As a consequence, show that 𝜕 𝑓
𝜕𝑥 and

𝜕 𝑓
𝜕𝑦 are continuous (where 𝑧 = 𝑥 + 𝑖𝑦).

Exercise 3.3.12: The previous exercise may seem trivial, but the key is that we can prove
(using Cauchy’s formula) that the partials are continuous as a function of𝑈×(𝑎, 𝑏) by using
continuity of 𝑓 on𝑈 × (𝑎, 𝑏). No such result is true for nonholomorphic functions. Prove
that the function defined by 𝑓 (𝑥, 𝑡) = 𝑡 sin(𝑥/𝑡) for 𝑡 ≠ 0 and 𝑓 (𝑥, 0) = 0 is continuous as
a function of ℝ2, and for each fixed 𝑡, the function 𝑥 ↦→ 𝑓 (𝑥, 𝑡) is differentiable (infinitely
differentiable in fact), but 𝜕 𝑓

𝜕𝑥 is not continuous as a function of both 𝑥 and 𝑡.

The fact that 𝑓 ′ is holomorphic, surprisingly, gives us a certain converse to Cauchy.
Morera’s theorem is quite a useful tool for showing holomorphicity as it is often
easier to integrate a continuous function than to compute a derivative.
Theorem 3.3.5 (Morera). Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ continuous. Suppose that∫

𝜕𝑇
𝑓 (𝑧) 𝑑𝑧 = 0

for every triangle such that 𝑇 ⊂ 𝑈 . Then 𝑓 is holomorphic.

Proof. As holomorphicity is a local property, we can assume that 𝑈 is a disc.
 Proposition 3.2.11 then says that 𝑓 has a primitive 𝐹 in the disc 𝑈 , and 𝑓 = 𝐹′
is thus holomorphic as complex derivatives are holomorphic. □
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We remark that in the proof, the reduction to a disc (or some other simpler set) is
important. It is not true that every function satisfying the hypotheses of Morera’s
theorem has a primitive in 𝑈 for a general 𝑈 . For example, 1/𝑧 is holomorphic in
𝑈 = ℂ \ {0} and satisfies the hypotheses of Morera’s theorem; however, it does not
have a primitive in ℂ \ {0}. We will see much more of its (nonexistent) primitive, the
logarithm, shortly.

Exercise 3.3.13: Show that if 𝑓 : ℂ → ℂ is continuous and holomorphic on ℂ \ℝ, then 𝑓

is holomorphic everywhere.

Exercise 3.3.14: Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ continuous. Write 𝑑𝑧̄ = 𝑑𝑥 − 𝑖 𝑑𝑦.
Suppose that for every triangle such that 𝑇 ⊂ 𝑈 , we have∫

𝜕𝑇
𝑓 (𝑧) 𝑑𝑧̄ = 0.

Prove that 𝑓 is antiholomorphic, that is, the conjugate of 𝑓 is holomorphic.

Exercise 3.3.15: Let𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ continuous. Suppose that∫
𝜕𝑇

Re 𝑓 (𝑧) 𝑑𝑧 = 0 and
∫
𝜕𝑇

Im 𝑓 (𝑧) 𝑑𝑧 = 0

for every triangle such that 𝑇 ⊂ 𝑈 . Prove that 𝑓 is constant.

Exercise 3.3.16: Prove Morera for rectangles. That is, suppose that 𝑈 ⊂ ℂ is open,
𝑓 : 𝑈 → ℂ is continuous, and ∫

𝜕𝑅
𝑓 (𝑧) 𝑑𝑧 = 0

for every rectangle 𝑅 ⊂ 𝑈 of the form 𝑎 < Re 𝑧 < 𝑏, 𝑐 < Im 𝑧 < 𝑑. Prove that 𝑓 is
holomorphic. Hint: You may need to prove an analogue of  Proposition 3.2.11 for rectangles,
which is trickier with rectangles.

3.3.3𝑖 · The maximum modulus principle
A simple and yet surprisingly useful consequence of Cauchy’s formula is the so-called
maximum modulus principle (sometimes just maximum principle), which has several
different versions. We prove one statement and leave other versions as exercises. The
main idea is that the modulus of a holomorphic function never achieves a maximum.
In other words, | 𝑓 (𝑧)| is bounded by the supremum of its values near the boundary
of the domain or near ∞. The basic idea of the proof is that Cauchy’s integral formula
tells us that 𝑓 (𝑧) is an average of the values of 𝑓 in a circle around 𝑧, and the average
can’t be bigger than the numbers we’re averaging.



3.3. CONSEQUENCES OF CAUCHY 77

Theorem 3.3.6 (Maximum modulus principle). Suppose 𝑈 ⊂ ℂ is a domain and
𝑓 : 𝑈 → ℂ is holomorphic. If | 𝑓 (𝑧)| achieves a local maximum on𝑈 , then 𝑓 is constant.

Proof. Suppose | 𝑓 (𝑧)| achieves a local maximum at 𝑝 ∈ 𝑈 . Without loss of generality,
suppose 𝑝 = 0. Also assume that 𝑓 (0) is nonnegative and real—otherwise multiply
by some 𝑒 𝑖𝜃. We write 

*
 that as 𝑓 (0) ≥ 0.

Take a closed disc Δ𝑟(0) ⊂ 𝑈 . As 0 is a local maximum, suppose that 𝑟 is small
enough so that | 𝑓 (𝑧)| ≤ | 𝑓 (0)| = 𝑓 (0) whenever |𝑧 | ≤ 𝑟. Cauchy’s formula says

𝑓 (0) = | 𝑓 (0)| =
���� 1
2𝜋𝑖

∫
𝜕Δ𝑟(0)

𝑓 (𝑧)
𝑧

𝑑𝑧

���� = ���� 1
2𝜋𝑖

∫ 2𝜋

0

𝑓 (𝑟𝑒 𝑖𝑡)
𝑟𝑒 𝑖𝑡

𝑟𝑖𝑒 𝑖𝑡 𝑑𝑡

����
≤ 1

2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒 𝑖𝑡)| 𝑑𝑡 ≤ 1

2𝜋

∫ 2𝜋

0
𝑓 (0) 𝑑𝑡 = 𝑓 (0).

Hence, all the inequalities above are equalities. Because 𝑓 (0) − | 𝑓 (𝑟𝑒 𝑖𝑡)| ≥ 0,∫ 2𝜋

0

(
𝑓 (0) − | 𝑓 (𝑟𝑒 𝑖𝑡)|

)
𝑑𝑡 = 0

means | 𝑓 (𝑟𝑒 𝑖𝑡)| = 𝑓 (0) for all 𝑡. By applying Cauchy’s formula again, we find

1
2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒 𝑖𝑡)| 𝑑𝑡 = 𝑓 (0) = 1

2𝜋

∫ 2𝜋

0
𝑓 (𝑟𝑒 𝑖𝑡) 𝑑𝑡

or

0 = Re
∫ 2𝜋

0

(
| 𝑓 (𝑟𝑒 𝑖𝑡)| − 𝑓 (𝑟𝑒 𝑖𝑡)

)
𝑑𝑡 =

∫ 2𝜋

0

(
| 𝑓 (𝑟𝑒 𝑖𝑡)| − Re 𝑓 (𝑟𝑒 𝑖𝑡)

)
𝑑𝑡.

The inequality |𝑤 | − Re𝑤 ≥ 0 holds for all 𝑤 ∈ ℂ, so | 𝑓 (𝑟𝑒 𝑖𝑡)| − Re 𝑓 (𝑟𝑒 𝑖𝑡) ≥ 0 for all 𝑡
and hence, as the integral is zero, | 𝑓 (𝑟𝑒 𝑖𝑡)| = Re 𝑓 (𝑟𝑒 𝑖𝑡) for all 𝑡. Thus Im 𝑓 (𝑟𝑒 𝑖𝑡) = 0
and 𝑓 (𝑟𝑒 𝑖𝑡) = | 𝑓 (𝑟𝑒 𝑖𝑡)| = 𝑓 (0) for all 𝑡. This reasoning works for every small enough 𝑟,
and consequently the set where 𝑓 (𝑧) = 𝑓 (0) contains a small disc. As holomorphic
functions are analytic, the identity theorem ( Theorem 2.4.7 ) implies that 𝑓 is constant
in𝑈 . □

We will find much use of the following version: If 𝑓 is holomorphic on a bounded
𝑈 and continuous on𝑈 , then | 𝑓 | achieves its maximum on the boundary 𝜕𝑈 .

Corollary 3.3.7 (Maximum modulus principle, part deux). Suppose𝑈 ⊂ ℂ is nonempty,
open, and bounded (so𝑈 is compact). If 𝑓 : 𝑈 → ℂ is continuous and the restriction 𝑓 |𝑈 is
holomorphic, then | 𝑓 (𝑧)| achieves a maximum on 𝜕𝑈 . In other words,

sup
𝑧∈𝑈

| 𝑓 (𝑧)| ≤ sup
𝑧∈𝜕𝑈

| 𝑓 (𝑧)|.

*Perhaps you’re thinking to yourself: Of course we write that 𝜉 is nonnegative by writing 𝜉 ≥ 0.
But we mean that “𝜉 ≥ 0” is a shortcut to “𝜉 ∈ ℝ and 𝜉 ≥ 0.”
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Exercise 3.3.17: Prove  Corollary 3.3.7 .

Exercise 3.3.18 (Minimum modulus principle): Suppose 𝑈 ⊂ ℂ is a domain and
𝑓 : 𝑈 → ℂ is holomorphic.

a) Prove that if | 𝑓 (𝑧)| has a local minimum at 𝑝 ∈ 𝑈 and 𝑓 (𝑝) ≠ 0, then 𝑓 is constant.
b) Show by example that the hypothesis 𝑓 (𝑝) ≠ 0 cannot be removed.

Exercise 3.3.19 (Maximum modulus principle, part trois): Suppose 𝑈 ⊂ ℂ is a
domain, 𝑓 : 𝑈 → ℂ is holomorphic, and 𝑀 > 0 is such that lim sup𝑧→𝑝 | 𝑓 (𝑧)| ≤ 𝑀 for
all 𝑝 ∈ 𝜕𝑈 . If𝑈 is unbounded, then also lim sup𝑧→∞ | 𝑓 (𝑧)| ≤ 𝑀. Prove that | 𝑓 (𝑧)| ≤ 𝑀

for all 𝑧 ∈ 𝑈 . Note: For 𝑔 : 𝑈 → ℝ, by definition, lim sup𝑧→𝑝 𝑔(𝑧) = inf𝑟>0 sup
{
𝑔(𝑧) :

𝑧 ∈ 𝑈 ∩ Δ𝑟(𝑝)
}

and lim sup𝑧→∞ 𝑔(𝑧) = inf𝑅>0 sup
{
𝑔(𝑧) : 𝑧 ∈ 𝑈 and |𝑧 | > 𝑅

}
.

Exercise 3.3.20: Suppose 𝑈 ⊂ ℂ is a bounded domain, 𝑓 : 𝑈 → ℂ is continuous and
the restriction 𝑓 |𝑈 is holomorphic, and there is a constant 𝑀 such that | 𝑓 (𝑧)| = 𝑀 for all
𝑧 ∈ 𝜕𝑈 . Prove that 𝑓 is either constant or 𝑓 (𝑧) = 0 for some 𝑧 ∈ 𝑈 .

Exercise 3.3.21: Suppose𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic. Let 𝑀 > 0 be
fixed and define 𝑋 =

{
𝑧 ∈ 𝑈 : | 𝑓 (𝑧)| < 𝑀

}
. Prove that 𝑋 is open and the closure of 𝑋 (in

𝑈 , so 𝑋 ∩𝑈) is the set
{
𝑧 ∈ 𝑈 : | 𝑓 (𝑧)| ≤ 𝑀

}
.

Exercise 3.3.22: Let 𝑃(𝑧) be a nonconstant polynomial. Show that for every 𝑐 > 0, each
component of the set

{
𝑧 ∈ ℂ : |𝑃(𝑧)| < 𝑐

}
contains at least one zero (root) of 𝑃. Hint: Do

the two previous exercises first.

Exercise 3.3.23: Let 𝑓 : Δ𝑅(𝑝) → ℂ be holomorphic and nonconstant. Prove that
𝑀(𝑟) = sup

{| 𝑓 (𝑧)| : 𝑧 ∈ 𝜕Δ𝑟(𝑝)
}

is a strictly increasing function of 𝑟 ∈ [0, 𝑅).

3.3.4𝑖 · Cauchy estimates, Liouville, and the fundamental theorem
of algebra

It may seem we are cramming quite a bit into one subsection, but we have the
tools to make three fundamental results just pop out with little work. The triangle
inequality on the integral formula for the coefficients of the power series obtains an
estimate on their size. These estimates immediately give Liouville’s theorem on entire
holomorphic functions, which at once gives the fundamental theorem of algebra.
Some analysts like to make fun of algebraists at this stage, saying that the standard
proof of their fundamental theorem uses analysis. One can go even further. It is not a
theorem of algebra at all! It is a theorem in complex analysis. 

*
 

*There! It’s ours now and you can’t have it back.
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For a set 𝐾, denote the supremum norm or uniform norm:

∥ 𝑓 ∥𝐾 def
= sup

𝑧∈𝐾
| 𝑓 (𝑧)|.

Theorem 3.3.8 (Cauchy estimates). Let𝑈 ⊂ ℂ be open, 𝑓 : 𝑈 → ℂ be holomorphic, and
Δ𝑟(𝑝) ⊂ 𝑈 be a closed disc. Expand 𝑓 (𝑧) = ∑

𝑐𝑛(𝑧 − 𝑝)𝑛 . Then for all 𝑛,

|𝑐𝑛 | =
����� 𝑓 (𝑛)(𝑝)𝑛!

����� ≤ ∥ 𝑓 ∥𝜕Δ𝑟(𝑝)
𝑟𝑛

.

In other words, the sequence
{|𝑐𝑛 |𝑟𝑛} is bounded by ∥ 𝑓 ∥𝜕Δ𝑟(𝑝). Compare to

 Proposition 2.3.3 .

Proof. The proof is a brute force estimation:

|𝑐𝑛 | =
����� 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁

����� ≤ 1
2𝜋

∫
𝜕Δ𝑟(𝑝)

∥ 𝑓 ∥𝜕Δ𝑟(𝑝)
𝑟𝑛+1 |𝑑𝜁 | = ∥ 𝑓 ∥𝜕Δ𝑟(𝑝)

𝑟𝑛
. □

A better estimate is not possible given only the information𝑀 = ∥ 𝑓 ∥𝜕Δ𝑟(𝑝). Cauchy
estimates say that |𝑐𝑛 | ≤ 𝑀

𝑟𝑛 . But if 𝑓 (𝑧) = 𝑀
𝑟𝑛 (𝑧 − 𝑝)𝑛 , then ∥ 𝑓 ∥𝜕Δ𝑟(𝑝) = 𝑀 and |𝑐𝑛 | = 𝑀

𝑟𝑛 .
It is an exercise that up to multiplication by 𝑒 𝑖𝜃, this example is the only one.

Exercise 3.3.24 (Easy): Suppose 𝑓 : 𝔻 → ℂ is holomorphic and for each 𝑀 > 0, there
exists an 𝑛 ∈ ℕ such that ����� 𝑓 (𝑛)(0)𝑛!

����� ≥ 𝑀.

Prove that 𝑓 is unbounded.

Exercise 3.3.25 (Easy): Suppose 𝑓 : 𝔻 → 𝔻 is holomorphic.
a) Prove that | 𝑓 (𝑛)(0)| ≤ 𝑛! for all 𝑛.
b) For every 𝑛, find an example 𝑓 : 𝔻 → 𝔻 such that | 𝑓 (𝑛)(0)| = 𝑛!.

Exercise 3.3.26: Let ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0} be the upper half-plane and 𝑓 : ℍ → 𝔻

holomorphic. Prove
lim
𝑡→∞
𝑡∈ℝ,𝑡>0

𝑓 ′(𝑖𝑡) = 0.

Exercise 3.3.27: Suppose𝑈 ⊂ ℂ is a domain, Δ𝑟(0) ⊂ 𝑈 , and 𝑓 : 𝑈 → ℂ is holomorphic
such that ∥ 𝑓 ∥𝜕Δ𝑟(0) = 𝑀. Cauchy estimates say that for every 𝑛, | 𝑓 (𝑛)(0)| ≤ 𝑛!𝑀

𝑟𝑛 . Prove
that if for some 𝑛, | 𝑓 (𝑛)(0)| = 𝑛!𝑀

𝑟𝑛 , then 𝑓 (𝑧) = 𝑐𝑧𝑛 for some 𝑐 ∈ ℂ. Hint: The inequalities
are equalities in the proof (there are really two inequalities in the proof).



80 CHAPTER 3. LINE INTEGRALS AND RUDIMENTARY CAUCHY THEOREMS

Definition 3.3.9. A holomorphic function 𝑓 : ℂ → ℂ is called an entire holomorphic
function or perhaps just entire for short.

Polynomials are one type of entire functions and we saw that nonconstant
polynomials are unbounded. While in general the behavior of entire functions such
as exp 𝑧 as we approach infinity is wilder than that of the polynomials, they are
unbounded.
Theorem 3.3.10 (Liouville 

*
 ). If 𝑓 is entire and bounded, then 𝑓 is constant.

Proof. Let 𝑓 be entire and suppose | 𝑓 (𝑧)| ≤ 𝑀 for all 𝑧 ∈ ℂ. Expand 𝑓 at the origin:

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛𝑧
𝑛 ,

which converges for all 𝑧. As 𝑓 is holomorphic on a disc of arbitrary radius, the
Cauchy estimates say

|𝑐𝑛 | ≤
∥ 𝑓 ∥𝜕Δ𝑟(𝑝)

𝑟𝑛
≤ 𝑀

𝑟𝑛
for all 𝑟 > 0.

Letting 𝑟 → ∞ shows that 𝑐𝑛 = 0 for 𝑛 ≥ 1. In other words, 𝑓 (𝑧) = 𝑐0 for all 𝑧. □

Exercise 3.3.28: Suppose 𝑓 is entire and | 𝑓 (𝑧)| ≤ 𝑒Re 𝑧 for all 𝑧 ∈ ℂ. Show that 𝑓 (𝑧) = 𝑐𝑒𝑧

for some constant 𝑐 ∈ ℂ.

Exercise 3.3.29: Suppose 𝑓 is entire, 𝑛 ∈ ℕ, 𝑀 > 0, and | 𝑓 (𝑧)| ≤ 𝑀(1 + |𝑧 |)𝑛 for all
𝑧 ∈ ℂ. Show that 𝑓 is a polynomial of degree at most 𝑛.

Exercise 3.3.30: Suppose 𝑓 is entire and Im 𝑓 (𝑧) > 0 for all 𝑧 ∈ ℂ. Prove 𝑓 is constant.

Exercise 3.3.31: Suppose 𝑓 : ℂ → ℂ is holomorphic and misses a segment, that is, there
exists a segment [𝑎, 𝑏] such that 𝑓 (ℂ) ⊂ ℂ \ [𝑎, 𝑏]. Show that 𝑓 is constant. Hint: See the
map from  Exercise 2.2.17 .

Exercise 3.3.32: While there doesn’t exist a nonconstant holomorphic function 𝑓 : ℂ → 𝔻,
there do exist surjective holomorphic functions 𝑓 : 𝔻 → ℂ. Find one.

Theorem 3.3.11 (Fundamental theorem of algebra). If 𝑃(𝑧) is a nonconstant polynomial,
then 𝑃 has a root.

Proof. If 𝑃(𝑧) does not have a root, then 𝑅(𝑧) = 1
𝑃(𝑧) is an entire holomorphic function.

Suppose 𝑃(𝑧) is nonconstant. In  Exercise 1.3.9 you proved that lim𝑧→∞ 𝑃(𝑧) = ∞ and
so lim𝑧→∞ 𝑅(𝑧) = 0. In other words, 𝑅(𝑧) is bounded. Liouville says that 𝑅(𝑧) and
therefore 𝑃(𝑧) must be constant, a contradiction. □

*Liouville proved a different (though similar) theorem. This particular one was proved by Cauchy
(what a showoff). But calling it Cauchy’s theorem would be unhelpful.
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Exercise 3.3.33: Prove that a polynomial 𝑃(𝑧) of degree 𝑑 can be written as

𝑃(𝑧) = 𝑎

𝑑∏
𝑛=1

(𝑧 − 𝑧𝑛) = 𝑎(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑑),

for some 𝑎 ∈ ℂ and 𝑧1, . . . , 𝑧𝑑 ∈ ℂ. Hint: Prove that𝑃(𝑧0) = 0 implies𝑃(𝑧) = 𝑄(𝑧)(𝑧−𝑧0)
for some polynomial 𝑄 of degree 𝑑 − 1.

Exercise 3.3.34 (Easy): Prove the one-dimensional version of the Jacobian conjecture:
Suppose that 𝑃(𝑧) is a polynomial and 𝑃′(𝑧) is nonzero for all 𝑧, then 𝑃 is an automorphism
of ℂ, that is, 𝑃(𝑧) = 𝑎𝑧 + 𝑏 and 𝑎 ≠ 0.

Exercise 3.3.35 (Easy): Let 𝑃 : ℂ → ℂ be a nonconstant polynomial. Show that 𝑃 is onto.

Exercise 3.3.36: Suppose 𝑓 is entire and is never zero. For 𝑀 > 0, let 𝑋𝑀 =
{
𝑧 ∈ ℂ :

| 𝑓 (𝑧)| = 𝑀
}

(note that 𝑋𝑀 is closed).
a) Show that 𝑋𝑀 is nonempty for all 𝑀 > 0.
b) Show that for every 𝑀, the set 𝑋𝑀 has no bounded topological components.

Hint: See the exercises for the maximum modulus principle.

3.4𝑖 \ The Cauchy transform and convergence

3.4.1𝑖 · Holomorphic functions via integrals
It is common to define functions using integrals, for instance, the Cauchy integral
itself (usually called the Cauchy transform).

Lemma 3.4.1. Suppose 𝑈 ⊂ ℂ is open, and 𝜓 : 𝑈 × [0, 1] → ℂ is a continuous function
such that for each fixed 𝑡 ∈ [0, 1], the function 𝑧 ↦→ 𝜓(𝑧, 𝑡) is holomorphic. Then

ℎ(𝑧) =
∫ 1

0
𝜓(𝑧, 𝑡) 𝑑𝑡

is a holomorphic function on𝑈 .

This kind of lemma has two common proofs, and as they are both useful in other
places, let us do both of them.

Proof A. One proof is to use Morera’s theorem (  Theorem 3.3.5 ) together with Fubini
 Theorem B.2.2 ), and Cauchy–Goursat ( Theorem 3.2.9 ). Let 𝑇 ⊂ 𝑈 be a triangle. Then∫

𝜕𝑇
ℎ(𝑧) 𝑑𝑧 =

∫
𝜕𝑇

∫ 1

0
𝜓(𝑧, 𝑡) 𝑑𝑡 𝑑𝑧 =

∫ 1

0

∫
𝜕𝑇

𝜓(𝑧, 𝑡) 𝑑𝑧 𝑑𝑡 =
∫ 1

0
0 𝑑𝑡 = 0.
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We used Fubini’s theorem to swap the integrals: The integral over 𝜕𝑇 is really a sum
of integrals over an interval and the integrand is continuous (as a function of both
variables), so Fubini applies. Morera’s theorem now says that ℎ(𝑧) is holomorphic. □

Proof B. The second proof 

*
 is to apply Wirtinger derivatives and differentiate under

the integral:

𝜕

𝜕𝑧̄

[
ℎ(𝑧)] = 𝜕

𝜕𝑧̄

∫ 1

0
𝜓(𝑧, 𝑡) 𝑑𝑡 =

∫ 1

0

𝜕

𝜕𝑧̄

[
𝜓(𝑧, 𝑡)] 𝑑𝑡 = ∫ 1

0
0 𝑑𝑡 = 0.

As once before, we are really passing the partial derivatives in 𝑥 and 𝑦 under the
integral via the Leibniz integral rule,  Theorem B.2.3  (or again really  Exercise B.2.7 ).
Leibniz rule applies because  Exercise 3.3.11 says that the partial derivatives are
continuous as functions of both variables. Leibniz also implies that ℎ is continuously
(real) differentiable, and thus the Cauchy–Riemann equations ( Proposition 2.2.6 ) now
say that ℎ(𝑧) is holomorphic. □

In either case, the idea is to swap some limits (something that must always be
justified), and the two techniques above are two kinds of swaps that come up often
(Fubini, and differentiating under the integral). By writing each path in a chain as an
integral of one real variable, we obtain the following corollary.
Corollary 3.4.2. Suppose𝑈 ⊂ ℂ is open, Γ is a chain, and 𝜓 : 𝑈 × Γ → ℂ is a continuous
function such that for each fixed 𝑤 ∈ Γ, the function 𝑧 ↦→ 𝜓(𝑧, 𝑤) is holomorphic. Then

ℎ(𝑧) =
∫
Γ

𝜓(𝑧, 𝑤) 𝑑𝑤

is a holomorphic function on𝑈 .
For a continuous 𝑓 : 𝜕Δ𝑟(𝑝) → ℂ, define the Cauchy transform 𝐶 𝑓 : Δ𝑟(𝑝) → ℂ by

𝐶 𝑓 (𝑧) def
=

1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

Corollary 3.4.3. For a continuous 𝑓 : 𝜕Δ𝑟(𝑝) → ℂ, the Cauchy transform 𝐶 𝑓 : Δ𝑟(𝑝) → ℂ

is holomorphic.

The corollary gives a converse to Cauchy’s formula. If 𝑓 : Δ𝑟(𝑝) → ℂ is continuous
and

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 for all 𝑧 ∈ Δ𝑟(𝑝),

then 𝑓 |Δ𝑟(𝑝) is holomorphic.
It is not necessarily true that 𝐶 𝑓 tends to 𝑓 as we approach the boundary of the

disc unless 𝑓 came from a holomorphic function to begin with. That is, 𝐶 𝑓 might (or
might not) have limits at the boundary of the disc, and they need not be equal to 𝑓 .

*For no good rational reason, this proof is the one I have seen more often, possibly because complex
analysts are often PDE people and they rather differentiate than integrate.
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Exercise 3.4.1: Explicitly compute the Cauchy transform 𝐶 𝑓 on 𝔻 for 𝑓 : 𝜕𝔻 → ℂ given
by 𝑓 (𝑧) = 𝑧̄. Then note that 𝐶 𝑓 does not tend to 𝑓 as 𝑧 goes to 𝜕𝔻. Hint: 𝜁̄ = 1

𝜁 for
𝜁 ∈ 𝜕𝔻 and 1/𝜁

𝜁−𝑧 =
1

𝑧(𝜁−𝑧) − 1
𝑧𝜁 .

Exercise 3.4.2: Suppose 𝑔 : 𝜕Δ𝑟(𝑝) → ℂ and there exists a continuous 𝑓 : Δ𝑟(𝑝) → ℂ

that is holomorphic in Δ𝑟(𝑝), where 𝑔 = 𝑓 |𝜕Δ𝑟(𝑝). Prove that 𝐶𝑔 extends to a continuous
function on Δ𝑟(𝑝) such that 𝐶𝑔(𝑧) = 𝑔(𝑧) for 𝑧 ∈ 𝜕Δ𝑟(𝑝). In other words, if 𝑔 is the
boundary value of a holomorphic function, then 𝐶𝑔 does indeed tend to 𝑔 as 𝑧 tends to the
boundary 𝜕Δ𝑟(𝑝). Hint: See  Exercise 3.2.27 .

Exercise 3.4.3 (Easy): Suppose 𝑔 : 𝑈 × [𝑎, 𝑏] → ℂ is continuous, for each fixed 𝑡 ∈ [𝑎, 𝑏],
𝑧 ↦→ 𝑔(𝑧, 𝑡) is holomorphic, and |𝑔(𝑧, 𝑡)| ≤ 𝑀 for all (𝑧, 𝑡) ∈ 𝑈 × [𝑎, 𝑏]. Prove that

𝑓 (𝑧) =
∫ 𝑏

𝑎

𝑔(𝑧, 𝑡) 𝑑𝑡

is a holomorphic function on𝑈 such that | 𝑓 (𝑧)| ≤ 𝑀(𝑏 − 𝑎) for all 𝑧 ∈ 𝑈 .

Exercise 3.4.4: Suppose 𝑔 : [−1, 1] → ℂ is continuous and define

𝑓 (𝑧) =
∫ 1

−1

𝑔(𝑡)
𝑡 − 𝑧 𝑑𝑡.

Show that 𝑓 is holomorphic in ℂ \ [−1, 1] and lim𝑧→∞ 𝑓 (𝑧) = 0.

3.4.2𝑖 · Convergence of sequences of holomorphic functions
When dealing with a class of functions, any analyst worth their salt  

*
 will ask about the

right topology for this class of functions. Another consequence of Cauchy’s formula
is that the right topology for holomorphic functions is the same as that for continuous
functions: uniform convergence on compact subsets. In fact, that’s the convergence
that we used for power series.

Definition 3.4.4. A sequence of functions 𝑓𝑛 : 𝑈 → ℂ converges uniformly on compact
subsets to 𝑓 : 𝑈 → ℂ if 𝑓𝑛 |𝐾 converges uniformly to 𝑓 |𝐾 for every compact 𝐾 ⊂ 𝑈 .

What do we mean by “the right topology” for a class of functions? Well, we
mean the most natural topology that preserves the class (limits in that topology
are still in that class). Results from introductory analysis (see  Theorem B.1.7 and

 Corollary B.1.10  ) say that a uniform limit of a continuous functions is continuous. By
concentrating on a compact neighborhood such as Δ𝑟(𝑝), we can see that uniform

*Apparently the salt thing comes from Roman times, soldiers were paid partly with salt to preserve
their meats. So if you didn’t ask, you will have to eat only vegetables.
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convergence on compact subsets is enough. In other words, uniform convergence on
compact subsets is the right topology for continuous functions.

It is rather surprising that this topology is the right one for holomorphic functions.
For real differentiable functions it is not the right one: |𝑥 |1+1/𝑛 is 𝐶1 on ℝ and
converges uniformly on compact subsets to |𝑥 |, which is not differentiable.
Theorem 3.4.5. Suppose 𝑈 ⊂ ℂ is open and 𝑓𝑛 : 𝑈 → ℂ is a sequence of holomorphic
functions converging uniformly on compact subsets to 𝑓 : 𝑈 → ℂ. Then 𝑓 is holomorphic.
Moreover, for every ℓ , the ℓ th derivative 𝑓 (ℓ )𝑛 converges uniformly on compact subsets to 𝑓 (ℓ ).

Proof. Let 𝑝 ∈ 𝑈 be fixed. Take a closed disc Δ𝑟(𝑝) ⊂ 𝑈 . For any 𝑧 ∈ Δ𝑟(𝑝),

𝑓𝑛(𝑧) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓𝑛(𝜁)
𝜁 − 𝑧 𝑑𝜁.

The set 𝜕Δ𝑟(𝑝) is compact. Let 𝛿 > 0 be the distance of 𝑧 to 𝜕Δ𝑟(𝑝). For 𝜁 ∈ 𝜕Δ𝑟(𝑝),���� 𝑓𝑛(𝜁)𝜁 − 𝑧 − 𝑓 (𝜁)
𝜁 − 𝑧

���� = | 𝑓𝑛(𝜁) − 𝑓 (𝜁)|
|𝜁 − 𝑧 | ≤ 1

𝛿
| 𝑓𝑛(𝜁) − 𝑓 (𝜁)|.

So as 𝑓𝑛 → 𝑓 uniformly on 𝜕Δ𝑟(𝑝), 𝜁 ↦→ 𝑓𝑛(𝜁)
𝜁−𝑧 converges to 𝜁 ↦→ 𝑓 (𝜁)

𝜁−𝑧 uniformly on
𝜕Δ𝑟(𝑝). We can, therefore, take the limit as 𝑛 → ∞ underneath the integral to obtain

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

This formula holds for all 𝑧 ∈ Δ𝑟(𝑝). The function 𝑓 |𝜕Δ𝑟(𝑝) is continuous by uniform
convergence, and 𝑓 on Δ𝑟(𝑝) is equal to the Cauchy transform 𝐶[ 𝑓 |𝜕Δ𝑟(𝑝)], which is
holomorphic. In other words, 𝑓 is holomorphic.

Let’s attack the “Moreover.” Suppose 𝐾 ⊂ 𝑈 is compact. If 𝑈 ≠ ℂ, then the
distance of 𝐾 and 𝜕𝑈 is positive, say 𝑑 > 0. If𝑈 = ℂ, take an arbitrary 𝑑 > 0. Consider

𝐾′ =
⋃
𝑧∈𝐾

Δ𝑑/2(𝑧).

Clearly 𝐾 ⊂ 𝐾′ ⊂ 𝑈 . See  Figure 3.9 .
The set 𝐾′ is also compact: It is clearly bounded, let us show it is closed. Suppose

that 𝑝 is not in 𝐾′. By compactness of 𝐾, there is a 𝑞 ∈ 𝐾 such that |𝑝 − 𝑞 | is the
distance of 𝑝 to 𝐾. As 𝑝 ∉ 𝐾′, |𝑝 − 𝑞 | > 𝑑/2. Every point in Δ|𝑝−𝑞 |−𝑑/2(𝑝) is also further
than 𝑑/2 from 𝐾, so complement of 𝐾′ is open.

As { 𝑓𝑛} converges uniformly on compact subsets, it converges uniformly on 𝐾′.
Given an 𝜖 > 0, find an 𝑁 such that | 𝑓𝑛(𝑧) − 𝑓 (𝑧)| < 𝜖 for all 𝑧 ∈ 𝐾′ and all 𝑛 ≥ 𝑁 . For
any 𝑝 ∈ 𝐾, use the Cauchy estimates in a 𝑑/2 disc on 𝑓𝑛− 𝑓 , and note that 𝜕Δ𝑑/2(𝑝) ⊂ 𝐾′:��� 𝑓 (ℓ )𝑛 (𝑝) − 𝑓 (ℓ )(𝑝)

��� ≤ ℓ ! ∥ 𝑓𝑛 − 𝑓 ∥𝜕Δ𝑑/2(𝑝)
(𝑑/2)ℓ

≤ ℓ !2ℓ

𝑑ℓ
𝜖.

Thus the sequence
{
𝑓
(ℓ )
𝑛

}
converges uniformly to 𝑓 (ℓ ) on 𝐾. □
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𝑈𝐾
𝐾′

𝑑

Figure 3.9: Enlarging the set 𝐾 by half the distance to the boundary. One of the closed
discs Δ𝑑/2(𝑝) is marked in dashed line.

The fact that we can write all the derivatives as integrals of the function, and hence
obtain Cauchy estimates, allows us to use a far weaker topology than one would
think. Integration is a far nicer operation than differentiation, and for holomorphic
functions, we can differentiate by integrating.

Exercise 3.4.5: Let 𝑈 ⊂ ℂ be open, 𝐾 ⊂ 𝑈 be compact, 𝑟 > 0, and 𝐾′ =
⋃
𝑧∈𝐾 Δ𝑟(𝑧) is

such that 𝐾′ ⊂ 𝑈 . If 𝑓 : 𝑈 → ℂ is holomorphic, prove that for every nonnegative integer ℓ

∥ 𝑓 (ℓ )∥𝐾 ≤ ℓ !
𝑟ℓ
∥ 𝑓 ∥𝐾′ .

Exercise 3.4.6: Suppose 𝑈 ⊂ ℂ is a bounded domain, and 𝑓𝑛 : 𝑈 → ℂ are continuous
functions holomorphic on 𝑈 such that the restrictions 𝑓𝑛 |𝜕𝑈 converge uniformly. Prove
that 𝑓𝑛 converge uniformly on𝑈 to a continuous function 𝑓 : 𝑈 → ℂ that is holomorphic
in𝑈 . Hint: Maximum modulus principle gives that the sequence { 𝑓𝑛} is Cauchy at each
point (actually uniformly Cauchy). Feel free to use the fact that uniform limit of continuous
functions is continuous.

Exercise 3.4.7: Consider 𝑓𝑛(𝑧) = sin(𝑛𝑧)
𝑛 . Note that 𝑓𝑛 |ℝ converge uniformly to zero.

a) Show that for no interval [𝑎, 𝑏] ⊂ ℝ is there a 𝛿 > 0 such that 𝑓𝑛 converge uniformly
on the rectangle 𝑅 =

{
𝑧 ∈ ℂ : 𝑎 ≤ Re 𝑧 ≤ 𝑏,−𝛿 ≤ Im 𝑧 ≤ 𝛿

}
.

b) In every [𝑎, 𝑏] ⊂ ℝ, find an 𝑥 such that { 𝑓 ′𝑛(𝑥)} does not converge.

Exercise 3.4.8: Weierstrass approximation theorem says that every continuous function on
an interval [𝑎, 𝑏] ⊂ ℝ is uniformly approximated (on [𝑎, 𝑏]) by polynomials 𝑃(𝑧). Prove
why such a theorem cannot hold on a closed curve such as the unit circle 𝜕𝔻. That is, find a
continuous function 𝑓 : 𝜕𝔻 → ℂ that is not the uniform limit of a sequence polynomials
𝑃𝑛(𝑧) on 𝜕𝔻.

Exercise 3.4.9: Prove:
a) For every holomorphic 𝑓 : 𝔻 → ℂ there is a sequence of polynomials 𝑃𝑛(𝑧) that

converges uniformly on compact subsets of 𝔻 to 𝑓 .
b) For every holomorphic 𝑓 : ℍ → ℂ (ℍ is the upper half-plane) there is a sequence of

polynomials 𝑃𝑛(𝑧) that converges uniformly on compact subsets of ℍ to 𝑓 .
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Exercise 3.4.10: Suppose 𝑓 : [0,∞) → ℝ is a continuous function such that there is some
𝑐 > 0, some 𝑀 > 0, and some 𝑇 > 0 such that | 𝑓 (𝑡)| ≤ 𝑀𝑒−𝑐𝑡 for all 𝑡 ≥ 𝑇 ( 𝑓 is of
exponential order). Let𝑈 = {𝑧 ∈ ℂ : Re 𝑧 > 𝑐}. Prove that the Laplace transform exists
on𝑈 and is holomorphic, that is, prove that

𝐹(𝑧) =
∫ ∞

0
𝑓 (𝑡)𝑒−𝑧𝑡 𝑑𝑡 = lim

𝑟→∞

∫ 𝑟

0
𝑓 (𝑡)𝑒−𝑧𝑡 𝑑𝑡

converges uniformly on compact subsets to a holomorphic function on𝑈 . Note: To use our
setup, consider every sequence {𝑟𝑛} of real numbers converging to +∞.

3.5𝑖 \ Schwarz’s lemma and automorphisms of the disc

3.5.1𝑖 · Schwarz’s lemma
The following statement may seem technical and specialized, but surprisingly it is
incredibly powerful. 

*
 Any disc can be translated and rescaled to unit disc 𝔻, and any

bounded function can be rescaled to be valued in 𝔻.
Lemma 3.5.1 (Schwarz’s lemma). Suppose 𝑓 : 𝔻 → 𝔻 is holomorphic and 𝑓 (0) = 0, then

(i) | 𝑓 (𝑧)| ≤ |𝑧 | for all 𝑧 ∈ 𝔻, and

(ii) | 𝑓 ′(0)| ≤ 1.

Furthermore, if | 𝑓 (𝑧0)| = |𝑧0 | for some 𝑧0 ∈ 𝔻 \ {0} or | 𝑓 ′(0)| = 1, then there is a 𝜃 ∈ ℝ

such that 𝑓 (𝑧) = 𝑒 𝑖𝜃𝑧 for all 𝑧 ∈ 𝔻.

Proof. As 𝑓 (0) = 0, the constant term is zero when 𝑓 is expanded at 0, and hence

𝑓 (𝑧) =
∞∑
𝑛=1

𝑐𝑛𝑧
𝑛 = 𝑧

∞∑
𝑛=1

𝑐𝑛𝑧
𝑛−1 = 𝑧𝑔(𝑧),

where 𝑔(𝑧) is a holomorphic function of 𝔻. Consider 0 < 𝑟 < 1. For 𝑧 ∈ 𝜕Δ𝑟(0),

|𝑔(𝑧)| = | 𝑓 (𝑧)|
|𝑧 | ≤ 1

𝑟
.

The maximum modulus principle says |𝑔(𝑧)| ≤ 1
𝑟 holds for all 𝑧 ∈ Δ𝑟(0). Fix 𝑧 ∈ 𝔻

and take the limit as 𝑟 ↑ 1. You find |𝑔(𝑧)| ≤ 1, or | 𝑓 (𝑧)| ≤ |𝑧 |, for all 𝑧 ∈ 𝔻. Then

| 𝑓 ′(0)| =
����lim𝑧→0

𝑓 (𝑧)
𝑧

���� = |𝑔(0)| ≤ 1.

*In graduate school, on an exam in complex analysis, I solved all the problems with a combination
of Schwarz’s lemma and the Riemann mapping theorem (which we will see later). My advisor felt
compelled to remind me that there do exist other theorems in complex analysis.
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If | 𝑓 (𝑧0)| = |𝑧0 | for some 𝑧0 ∈ 𝔻 \ {0}, then 𝑔 attains a maximum inside 𝔻 and
hence is constant. It must be that 𝑓 (𝑧) = 𝑒 𝑖𝜃𝑧. As 𝑔(0) = 𝑓 ′(0), the same conclusion,
for the same reason, holds if | 𝑓 ′(0)| = 1. □

To illustrate the lemma, consider the statement for 𝑓 (𝑧) = 𝑧𝑛 for an integer 𝑛 > 1.
The function 𝑓 takes the disc to the disc and 𝑓 (0) = 0. For 𝑧 ∈ 𝔻 \ {0},

|𝑧𝑛 | = |𝑧 |𝑛 < |𝑧 |.
As 𝑓 ′(𝑧) = 𝑛𝑧𝑛−1, we get | 𝑓 ′(0)| = 0 < 1, but notice that a bound on the derivative
does not hold at other points: By picking the right 𝑧 and 𝑛, we can make | 𝑓 ′(𝑧)|
as large as we want. For a bound at other points, see the Schwarz–Pick lemma in

 Exercise 3.5.10  . We can make |𝑧𝑛 | arbitrarily small for a fixed 𝑧 ∈ 𝔻 by picking a
large enough 𝑛, though we cannot make it bigger than |𝑧 |. What is interesting is that
Schwarz’s lemma says that all holomorphic functions behave this way, not just 𝑧𝑛 .

Exercise 3.5.1: State and prove a version of Schwarz’s lemma for a holomorphic function
𝑓 : Δ𝑟(𝑝) → Δ𝑠(𝑞) with 𝑓 (𝑝) = 𝑞.

Exercise 3.5.2: Let ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0} be the upper half-plane. Prove that if
𝑓 : ℍ → ℍ holomorphic such that 𝑓 (𝑖) = 𝑖, then����� 𝑓 (𝑧) − 𝑖𝑓 (𝑧) − 𝑖

����� ≤ ����𝑧 − 𝑖𝑧̄ − 𝑖
���� and | 𝑓 ′(𝑖)| ≤ 1.

Exercise 3.5.3 (Tricky): Prove a certain generalization of Schwarz’s lemma called the
Cartan’s uniqueness theorem: Suppose 𝑈 ⊂ ℂ is a bounded domain, 𝑓 : 𝑈 → 𝑈 is
holomorphic, 𝑝 ∈ 𝑈 , and 𝑓 (𝑝) = 𝑝.

a) Show | 𝑓 ′(𝑝)| ≤ 1.
b) Show that if 𝑓 ′(𝑝) = 1, then 𝑓 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑈 .
c) Find counterexamples to both statements for some unbounded𝑈 .

Hint: Normalize to have 𝑝 = 0. Consider the power series expansions of 𝑓 ℓ , the ℓ th

composition of 𝑓 with itself, 𝑓 ( 𝑓 ( 𝑓 (· · · 𝑓 (𝑧) · · · ))). For a), consider the linear term of 𝑓 ℓ
when | 𝑓 ′(𝑝)| > 1. For b), consider the first term other than the linear term that is nonzero,
and compute it for 𝑓 ℓ in terms of the one for 𝑓 . Then apply Cauchy estimates.

3.5.2𝑖 · Automorphisms of the disc
Let us compute the automorphism 

*
 group of the disc using Schwarz’s lemma. We

start with certain specific automorphisms. For 𝑎 ∈ 𝔻, define 

†
 

𝜑𝑎(𝑧) def
=

𝑧 − 𝑎
1 − 𝑎̄𝑧 .

*Recall an automorphism of𝑈 is a biholomorphism of𝑈 to itself.
†Careful when reading literature, some authors use 𝑎−𝑧

1−𝑎̄𝑧 as the definition.
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Proposition 3.5.2. For every 𝑎 ∈ 𝔻,

(i) 𝜑𝑎(𝑎) = 0, 𝜑𝑎(0) = −𝑎, 𝜑′
𝑎(0) = 1 − |𝑎 |2, 𝜑′

𝑎(𝑎) = 1
1−|𝑎 |2 ,

(ii) 𝜑𝑎(𝜕𝔻) = 𝜕𝔻, and 𝜑𝑎(𝔻) = 𝔻,

(iii) 𝜑𝑎 restricted to 𝔻 is an automorphism of the disc and

𝜑−1
𝑎 = 𝜑−𝑎 .

Exercise 3.5.4: Prove the proposition. Hint: (i) is a direct computation, for (ii) remember
that 𝜑𝑎 is an LFT and what an LFT does to circles, and (iii) is a direct computation.

See  Figure 3.10 for an example of what 𝜑𝑎 does to the disc. Next, we prove that
up to a rotation, all automorphisms of 𝔻 are 𝜑𝑎 .

Figure 3.10: What 𝜑𝑎 does to the unit disc when 𝑎 = −0.4. The positions of 𝑎 and
0 = 𝜑𝑎(𝑎) are marked with dots.

Proposition 3.5.3. If 𝑓 ∈ Aut(𝔻), then there exists an 𝑎 ∈ 𝔻 and 𝜃 ∈ ℝ such that

𝑓 (𝑧) = 𝑒 𝑖𝜃
𝑧 − 𝑎

1 − 𝑎̄𝑧 = 𝑒 𝑖𝜃𝜑𝑎(𝑧).

Proof. Let 𝑎 = 𝑓 (0). Consider 𝑔 = 𝜑𝑎 ◦ 𝑓 , which is an automorphism, and 𝑔(0) = 0 as
𝜑𝑎(𝑎) = 0. As in the proof of Schwarz’s lemma, we find a holomorphic ℎ(𝑧) such that
𝑔(𝑧) = 𝑧ℎ(𝑧). By Schwarz’s lemma, if 𝑧 ∈ 𝔻 \ {0}, then

|ℎ(𝑧)| = |𝑔(𝑧)|
|𝑧 | ≤ 1.

Consequently, ℎ is a map of the disc to the closed disc.
But ℎ can have no zeros: ℎ(𝑧) = 𝑔(𝑧)

𝑧 cannot be zero for 𝑧 ≠ 0 as 𝑔 is injective
and it cannot have a zero at 𝑧 = 0 as ℎ(0) = lim𝑧→0

𝑔(𝑧)
𝑧 = 𝑔′(0) ≠ 0. As 𝑔 is a

biholomorphism, 𝑔−1 is continuous. So 𝑔−1(𝐾) is compact for any compact 𝐾 ⊂ 𝔻.
In other words, |𝑔(𝑧)| must approach 1 as 𝑧 approaches the boundary 𝜕𝔻. Then
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so must |ℎ(𝑧)|. The function |ℎ(𝑧)| must, therefore, attain a minimum inside 𝔻, or
in other words

�� 1
ℎ(𝑧)

�� must attain a maximum inside 𝔻. So ℎ(𝑧) is a constant, and
𝑔(𝑧) = 𝛼𝑧 for some constant 𝛼. Clearly, |𝛼 | = 1 or 𝛼 = 𝑒 𝑖𝜃. Applying 𝜑−𝑎 to both
sides of 𝑒 𝑖𝜃𝑧 = 𝜑𝑎 ◦ 𝑓 we obtain 𝑓 (𝑧) = 𝜑−𝑎(𝑧𝑒 𝑖𝜃) = 𝑒 𝑖𝜃𝜑−𝑎𝑒−𝑖𝜃(𝑧). □

Exercise 3.5.5: Justify the claim in the proof. If a continuous 𝑔 : 𝔻 → 𝔻 is such that
𝑔−1(𝐾) is compact for every compact 𝐾 ⊂ 𝔻, then if {𝑧𝑛} is a sequence in 𝔻 such that
|𝑧𝑛 | → 1, then |𝑔(𝑧𝑛)| → 1.

Exercise 3.5.6: Given two distinct 𝑎, 𝑏 ∈ 𝔻, show that there exists a unique 𝑓 ∈ Aut(𝔻)
such that 𝑓 (𝑎) = 𝑏 and 𝑓 (𝑏) = 𝑎.

Exercise 3.5.7: Prove that if ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0} is the upper half-plane and
𝑓 : ℍ → ℍ is an automorphism of ℍ, then

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

for real numbers 𝑎, 𝑏, 𝑐, 𝑑 such that 𝑎𝑑 − 𝑏𝑐 > 0.

Exercise 3.5.8: Suppose 𝑈 ⊂ ℂ is a domain, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 → ℂ is holomorphic.
Suppose | 𝑓 (𝑧)| = 1 whenever |𝑧 | = 1, that is, 𝑓 (𝜕𝔻) ⊂ 𝜕𝔻. Find a formula for 𝑓 . Use the
following outline:

a) Show that 𝑓 must have finitely many zeros in 𝔻. That is, 𝑓 (𝑧) = 0 for at most finitely
many 𝑧 ∈ 𝔻.

b) Suppose that 𝑓 has no zeros in 𝔻. Prove that 𝑓 is constant (and what sort of constant).
c) If 𝑓 (𝑎) = 0, then prove that 𝑧 ↦→ 𝑓 (𝑧)

𝜑𝑎(𝑧) is still holomorphic in𝑈 (i.e., can be defined
at 𝑎 to be holomorphic in𝑈) and still takes the circle to the circle.

d) Now find a general formula for 𝑓 .

Exercise 3.5.9: Suppose 𝑓 : 𝔻 → 𝔻 is a holomorphic function with zeros at 𝑧1, . . . , 𝑧𝑛 ,
that is, 𝑓 (𝑧ℓ ) = 0 for ℓ = 1, . . . , 𝑛. Prove that

| 𝑓 (𝑧)| ≤ |𝜑𝑧1(𝑧)𝜑𝑧2(𝑧) · · · 𝜑𝑧𝑛 (𝑧)|.
Exercise 3.5.10: Prove the Schwarz–Pick lemma: If 𝑓 : 𝔻 → 𝔻 is holomorphic, then����� 𝑓 (𝑧) − 𝑓 (𝜁)

1 − 𝑓 (𝜁) 𝑓 (𝑧)

����� ≤ ���� 𝑧 − 𝜁

1 − 𝜁𝑧

���� and
| 𝑓 ′(𝑧)|

1 − | 𝑓 (𝑧)|2
≤ 1

1 − |𝑧 |2

for all 𝑧, 𝜁 ∈ 𝔻. If equality holds in one of the inequalities for some 𝑧 ≠ 𝜁, then 𝑓 is an
automorphism of 𝔻. Conversely, if 𝑓 is an automorphism of 𝔻, then equality holds in both
inequalities for all 𝑧, 𝜁 ∈ 𝔻.
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In particular, the Schwarz–Pick lemma ( Exercise 3.5.10 ) gives a bound on the
derivative at all points. If 𝑓 : 𝔻 → 𝔻 is holomorphic, nonconstant, and 𝑓 (𝑎) = 𝑏, then

| 𝑓 ′(𝑎)| ≤ 1 − |𝑏 |2
1 − |𝑎 |2 .

If equality holds, then 𝑓 (𝑧) = 𝜑−𝑏
(
𝑒 𝑖𝜃𝜑𝑎(𝑧)

)
for some 𝜃 ∈ ℝ.



4𝑖 \\ The Logarithm and Cauchy

Never doubt the courage of the French. They were the ones who discovered that
snails are edible.
—Doug Larson

4.1𝑖 \ The logarithm and the winding number

4.1.1𝑖 · The logarithm

Let us ponder over the primitives of 𝑧𝑛 for 𝑛 ∈ ℤ. 

†
 When 𝑛 ≥ 0, then 𝑧𝑛 is defined in

the entire plane, and a primitive is simply 𝑧𝑛+1

𝑛+1 . If 𝑛 < −1, then 𝑧𝑛 is defined in the
punctured plane ℂ \ {0}, and again a primitive is 𝑧𝑛+1

𝑛+1 . What about 𝑧−1 = 1/𝑧? It has a
primitive, but never defined in the entire punctured plane.

We demonstrated that in any star-like domain, a holomorphic function has a
primitive. Consider the so-called slit plane

𝑈 = ℂ \ (−∞, 0] = ℂ \ {
𝑧 ∈ ℂ : Re 𝑧 ≤ 0, Im 𝑧 = 0

}
.

It is a star-like domain and so there exists a primitive for 1/𝑧 in𝑈 . If we require that
this primitive is 0 at 𝑧 = 1, we get a function

Log: 𝑈 → ℂ,

called the principal branch of the logarithm. We saw another gadget before called the
“principal branch,” the principal branch of the argument, Arg. Let us show that

Log 𝑧 = log|𝑧 | + 𝑖Arg 𝑧,

where log|𝑧 | is just the standard real logarithm of |𝑧 |. Set 𝐿(𝑧) = log|𝑧 | + 𝑖Arg 𝑧, and
let us show that 𝐿 = Log. We have 𝐿(1) = 0 = Log(1), so far so good. Observe

𝑒𝐿(𝑧) = 𝑒 log|𝑧 |𝑒 𝑖Arg 𝑧 = |𝑧 |𝑒 𝑖Arg 𝑧 = 𝑧.

†It appears, doesn’t it, that elementary complex analysis is the study of 𝑧𝑛 .
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So 𝐿 is the inverse of the exponential, at least for 𝑧 ∈ 𝑈 . In particular, 𝐿 is holomorphic
by the inverse function theorem. Take the derivative of both sides of 𝑧 = 𝑒𝐿(𝑧),

1 = 𝐿′(𝑧)𝑒𝐿(𝑧) = 𝐿′(𝑧)𝑧.

Et voilà! 

*
 We have 𝐿′(𝑧) = 1/𝑧, so 𝐿 = Log.

If we use a different branch of the argument we get another antiderivative of 1/𝑧.
We make the definition

log 𝑧 def
= log|𝑧 | + 𝑖 arg 𝑧.

This definition is totally bonkers at first glance. First, the log on the left is a different
log than the log on the right. On the right, it is the standard real log, that is,
log: (0,∞) → ℝ, where log 1 = 0. But the log on the left is not even a function, it has
infinitely many values for every 𝑧, since the arg on the right-hand side has infinitely
many values. The value of log(−1) is 𝜋𝑖, but also −𝜋𝑖, 3𝜋𝑖, or (𝜋+ 2𝜋𝑘)𝑖 for any 𝑘 ∈ ℤ.
So log is a function just as much as arg is a function. See  Figure 4.1  . The double duty
of “log” is almost never a problem and it is generally clear which log one is talking
about based on what sort of things are being plugged into it.

Re z Im z
Re z Im z

Figure 4.1: “Graphs” of the real part (left) and imaginary part (right) of the complex
logarithm log 𝑧 = log|𝑧 | + 𝑖 arg 𝑧. The imaginary part is an infinite spiral, only two turns
are pictured. A path on the graph around the unit circle is marked.

While log is not really a function—it is a multivalued function 

†
 —it is the definition

that we want. The principal branch, useful when one wants to get some actual
numbers, is often not what we need; it is not as useful as one would think. And
beware that computers like to give back the principal branch even when it doesn’t
make any sense.

So how do we use log? Well it comes up in line integrals, which are used to count
and classify zeros (roots) and/or singularities of functions, or vice versa—zeros and
singularities are used to compute line integrals. Let us compute the integral of 1/𝑧

*Cauchy was French, n’est pas?
†Cauchy: Quel Malheur! Je déteste le logarithme! Je veux devenir plombier.
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around the unit circle 𝜕𝔻, oriented counterclockwise as usual (parametrized by 𝑒 𝑖𝑡).
Suppose we start and end the integration at 𝑧 = 1:∫

𝜕𝔻

1
𝑧
𝑑𝑧 = log 1 − log 1 = 2𝜋𝑖.

That makes no sense, no? Well, it should really only be done with quotation marks:∫
𝜕𝔻

1
𝑧
𝑑𝑧 “=” log 1 − log 1 “=” 2𝜋𝑖.

That’s a lot better, no? 

*
 The equalities are only true morally. Interpreted correctly, it

is exactly what is happening. You really do subtract one of the values of log 1 from
another value of log 1. To figure out which from which, start with say log 1 = 0, and
follow the function along the circle slowly and notice that 𝑖 arg 𝑧 grows from 0 to 2𝜋𝑖.
So the log 1 at the end is 2𝜋𝑖. See the path marked on  Figure 4.1  , the jump in the
imaginary part between the beginning and the end is precisely that 2𝜋𝑖.

To make working with log easier, we usually talk about a branch of the logarithm.
So 𝐿 : 𝑈 → ℂ is a branch of the logarithm if 𝐿 is holomorphic, 𝐿′(𝑧) = 1/𝑧, and 𝐿(𝑧) is
equal to some value of log 𝑧 for every 𝑧 ∈ 𝑈 . It is not possible to define a branch of
the logarithm in every 𝑈 , but for example we can do it in every star-like 𝑈 where
0 ∉ 𝑈 . In general, one can define a branch of the logarithm in every simply connected
domain, that is, a domain without holes, that does not contain zero. More on that
later. Similarly, we define branches of log(𝑧 − 𝑝), a primitive of 1

𝑧−𝑝 , in which case the
domain should not contain 𝑝.

We may also talk about branches more loosely, and talk about following them
along a path. We don’t define a single branch—we define a branch in some small
open set, follow its values for a while, then switch to another branch that happens
to agree with the first branch at the point where we switch. See  Figure 4.2 . Really,
we did precisely that in the “computation” above: We followed log from 1 along the
circle until we ended up at 1 again, and the branches that we followed ended up 2𝜋𝑖
off. We will see this procedure used more formally in just a moment.

Figure 4.2: Following a branch. The branches are defined in the discs (they do not have
to be discs). Points where the branches are supposed to equal are marked.

*Non! Je veux aussi devenir plombier maintenant!
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Exercise 4.1.1: Suppose 𝑎 ∈ ℂ \ {0}, and 𝑅𝑎 = {𝜆𝑎 ∈ ℂ : 𝜆 ≥ 0} is the ray from the
origin through 𝑎. Prove that there exists a branch of the log in ℂ \ 𝑅𝑎 .
Exercise 4.1.2: For 𝑛 ∈ ℕ, let 𝛾 : [0, 2𝜋] → ℂ be 𝛾(𝑡) = 𝑒 𝑖𝑛𝑡 , the unit circle traversed 𝑛
times counterclockwise. Compute

∫
𝛾

1
𝑧 𝑑𝑧. Argue by splitting up the integral into pieces

and using branches of the log.

Exercise 4.1.3: Suppose𝑈 ⊂ ℂ is open with 𝜕𝔻 ⊂ 𝑈 , 𝑓 : 𝑈 → ℂ is holomorphic, such
that 𝑓 (𝑧) is never negative real or zero. Compute

∫
𝜕𝔻

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧.

Exercise 4.1.4: Suppose 𝛾 : [𝑎, 𝑏] → ℂ \ {0} is a piecewise-𝐶1 path such that 𝛾(𝑎) =
𝛾(𝑏) = −1, but 𝛾(𝑡) is never negative real for any 𝑡 ∈ (𝑎, 𝑏). Using the principal branch of
the log, prove that ∫

𝛾

1
𝑧
𝑑𝑧 = −2𝜋𝑖 , 0, or 2𝜋𝑖.

Explicitly find three 𝛾s that achieve each of these three possibilities.

4.1.2𝑖 · Winding numbers
OK. Let’s get more rigorous.

Definition 4.1.1. Let Γ be a cycle, and 𝑝 ∉ Γ. Then

𝑛(Γ; 𝑝) def
=

1
2𝜋𝑖

∫
Γ

1
𝑧 − 𝑝 𝑑𝑧

is called the winding number of Γ around 𝑝, or the index of Γ with respect to 𝑝.

Intuitively, the winding number is the number of times that Γ winds around 𝑝,
counterclockwise. This intuition is confirmed by integrating 1/𝑧 for the path 𝑒 𝑖𝑡 for
𝑡 ∈ [0, 2𝜋] to get a winding number 1 around 𝑝 = 0, as it goes once counterclockwise
around zero. If we do the integral with 𝑒2𝑖𝑡 , we go around zero twice counterclockwise,
and the winding number really is 2. Similarly, if we use 𝑒−𝑖𝑡 , then we go around zero
once in the clockwise direction, and the winding number is −1.

The first thing to observe is that the winding number is an integer.

Proposition 4.1.2. Suppose Γ is a cycle and 𝑝 ∉ Γ. Then 𝑛(Γ; 𝑝) is an integer.

The proof is to take a closed path 𝛾 and to follow a branch of log around 𝛾, and
see by how much it changes. See  Figure 4.2 , where we go all the way around a loop.
Since we follow the argument and we go some number of times around 𝑝 along 𝛾,
the argument changes by some multiple of 2𝜋.

Proof. A cycle is (equivalent to) a linear combination (over the integers) of closed paths,
so we only need to consider closed piecewise-𝐶1 paths. Let 𝛾 : [0, 1] → ℂ be the path.
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The path 𝛾 as a set is compact. It can be covered by finitely many discs𝐷1, . . . , 𝐷𝑛 , none
of which contain 𝑝, and such that there is a partition 0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 = 1
such that 𝛾

([𝑡 𝑗−1, 𝑡 𝑗]
) ⊂ 𝐷𝑗 . Each 𝐷𝑗 is star-like and does not contain 𝑝, so in each one

there exists a branch of log(𝑧 − 𝑝), call it 𝐿 𝑗 , such that 𝐿 𝑗
(
𝛾(𝑡 𝑗)

)
= 𝐿 𝑗+1

(
𝛾(𝑡 𝑗)

)
. Pick 𝐿1

arbitrarily, then pick 𝐿2, . . . , 𝐿𝑛 accordingly. Call 𝑧0 = 𝛾(0) = 𝛾(1). So

𝑛(𝛾; 𝑝) = 1
2𝜋𝑖

∫
𝛾

1
𝑧 − 𝑝 𝑑𝑧 =

1
2𝜋𝑖

∫ 1

0

𝛾′(𝑡)
𝛾(𝑡) − 𝑝 𝑑𝑡 =

1
2𝜋𝑖

𝑛∑
𝑗=1

∫ 𝑡 𝑗

𝑡 𝑗−1

𝛾′(𝑡)
𝛾(𝑡) − 𝑝 𝑑𝑡

=
1

2𝜋𝑖

𝑛∑
𝑗=1

𝐿 𝑗
(
𝛾(𝑡 𝑗)

) − 𝐿 𝑗 (𝛾(𝑡 𝑗−1)
)
=

1
2𝜋𝑖

(
𝐿𝑛(𝑧0) − 𝐿1(𝑧0)

)
.

As 𝐿𝑛 and 𝐿1 are both branches of log(𝑧 − 𝑝), their difference is 2𝜋𝑘𝑖 for some 𝑘 ∈ ℤ,
as each is log|𝑧0 − 𝑝 | + 𝑖 arg(𝑧0 − 𝑝) for some value of arg. □

Exercise 4.1.5: Fill in the details in the existence of the partition. That is, once you cover 𝛾
by finitely many discs that do not contain 𝑝 show that the partition 𝑡0, . . . , 𝑡𝑛 exists. Hint:
Some of the discs may “repeat,” but make sure that you do not get “stuck” before reaching 1.

The second thing to observe is that 𝑛(Γ; 𝑧) is constant as long as we do not cross Γ.

Proposition 4.1.3. Given a cycle Γ, the function 𝑧 ↦→ 𝑛(Γ; 𝑧) is constant on the topological
components of ℂ \ Γ. Furthermore, 𝑛(Γ; 𝑧) = 0 for 𝑧 on the unbounded component of ℂ \ Γ.

As Γ is compact, there must be a unique unbounded component of the complement
ℂ \ Γ, and possibly several bounded components. See  Figure 4.3 for example.

Γ

unbounded component

𝑛(Γ; 𝑧) = 1

𝑛(Γ; 𝑧) = 0

𝑛(Γ; 𝑧) = −2

𝑛(Γ; 𝑧) = −1

Figure 4.3: Components of ℂ \ Γ with the winding number around points in those
components marked.

Proof. Let us show that the function

𝑝 ↦→ 𝑛(Γ; 𝑝) = 1
2𝜋𝑖

∫
Γ

1
𝑧 − 𝑝 𝑑𝑧
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is continuous on ℂ \ Γ. Fix 𝑝0 ∈ ℂ \ Γ, and let 𝑑 = 𝑑(𝑝0, Γ) be the distance from 𝑝0 to
Γ, namely 𝑑 = inf

{|𝑧 − 𝑝0 | : 𝑧 ∈ Γ
}
. As Γ is compact, 𝑑 > 0. For any 𝑝 ∈ Δ𝑑/2(𝑝0), we

have |𝑧 − 𝑝 | ≥ 𝑑/2 for every 𝑧 ∈ Γ. Let ℓ be the length of Γ, that is, ℓ =
∫
Γ
|𝑑𝑧 |. Then

|𝑛(Γ; 𝑝0) − 𝑛(Γ; 𝑝)| =
���� 1
2𝜋𝑖

∫
Γ

𝑝0 − 𝑝
(𝑧 − 𝑝0)(𝑧 − 𝑝) 𝑑𝑧

���� ≤ 1
2𝜋

∫
Γ

|𝑝0 − 𝑝 |
|𝑧 − 𝑝0 | |𝑧 − 𝑝 | |𝑑𝑧 |

≤ ℓ

𝜋𝑑2 |𝑝0 − 𝑝 |.
So, 𝑛(Γ; 𝑝) is a continuous function of 𝑝. As it is continuous and integer-valued, it is
constant on every connected component of ℂ \ Γ (the set where it is defined).

For any 𝑝 ∈ ℂ \ Γ,

|𝑛(Γ; 𝑝)| ≤ 1
2𝜋

∫
Γ

1
|𝑧 − 𝑝 | |𝑑𝑧 | ≤

1
2𝜋

ℓ

𝑑(𝑝, Γ) .

On the unbounded component—as Γ is compact—there are 𝑝 with 𝑑(𝑝, Γ) arbitrarily
large, so 𝑛(Γ; 𝑝) is arbitrarily small on this component. As it is constant, it is zero. □

Exercise 4.1.6: Show that 𝑛
(
𝜕Δ𝑟(𝑝); 𝑧

)
= 0 if 𝑧 ∉ Δ𝑟(𝑝) and 𝑛

(
𝜕Δ𝑟(𝑝); 𝑧

)
= 1 if

𝑧 ∈ Δ𝑟(𝑝).
Exercise 4.1.7: Let 𝑛 ∈ ℤ and 𝛾 : [0, 2𝜋] → ℂ, where 𝛾(𝑡) = 𝑝 + 𝑟𝑒 𝑖𝑛𝑡 be a path, a path
that goes 𝑛 times counterclockwise around 𝜕Δ𝑟(𝑝). Prove that 𝑛

(
𝛾; 𝑧

)
= 𝑛 if 𝑧 ∈ Δ𝑟(𝑝).

Exercise 4.1.8: Suppose 0 < 𝑟1 < 𝑟2 < ∞. Let Γ = 𝜕Δ𝑟2(𝑝) − 𝜕Δ𝑟1(𝑝) (that is, the outside
circles goes counterclockwise, the inside circle goes clockwise). Prove that if 𝑧 ∈ ℂ is such
that |𝑧 − 𝑝 | < 𝑟1, then 𝑛(Γ; 𝑧) = 0. If 𝑟1 < |𝑧 − 𝑝 | < 𝑟2, then 𝑛(Γ; 𝑧) = 1. If 𝑟2 < |𝑧 − 𝑝 |,
then 𝑛(Γ; 𝑧) = 0.

Exercise 4.1.9: Suppose 𝛾 : [𝑎, 𝑏] → ℂ is a closed 𝐶1 path such that 𝛾(𝑎) = 𝛾(𝑏) is
some real negative number. Suppose that 𝛾(𝑡) is real and negative for only 𝑘 distinct 𝑡
(that includes 𝑡 = 𝑎 and 𝑡 = 𝑏, so 𝑘 ≥ 2), and whenever 𝛾(𝑡) is real and negative, then
Im 𝛾′(𝑡) < 0. Prove that 𝑛(𝛾; 0) = 𝑘 − 1. Hint: Use the principal branch.

4.2𝑖 \ Homology versions of Cauchy
Definition 4.2.1. Let 𝑈 ⊂ ℂ be open and Γ a cycle in 𝑈 such that 𝑛(Γ; 𝑝) = 0 for all
𝑝 ∈ ℂ \𝑈 , then we say Γ is homologous to zero in𝑈 .

What homologous to zero means is that Γ does not wind around any point in the
complement of𝑈 . Do note that “homologous to zero” does not mean “equivalent to
zero.” For instance, if𝑈 = ℂ, then every Γ is homologous to zero trivially. Also note
the dependence on𝑈 . The unit circle is homologous to zero in 𝑈 = ℂ, but it is not
homologous to zero in𝑈 = ℂ \ {0}.
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Theorem 4.2.2 (Cauchy integral formula (homology version)). Suppose 𝑈 ⊂ ℂ is
open, 𝑓 : 𝑈 → ℂ is holomorphic, and Γ is a cycle in 𝑈 homologous to zero in 𝑈 . Then for
𝑧 ∈ 𝑈 \ Γ,

𝑛(Γ; 𝑧) 𝑓 (𝑧) = 1
2𝜋𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

In the proof 

*
 , rather strangely, we will take the difference of the two sides of the

equation and extend it to an entire function (even though𝑈 may be small) and then
we will use Liouville’s theorem ( Theorem 3.3.10 ) to show that this difference is zero.

Proof. Define 𝑔 : 𝑈 ×𝑈 → ℂ by

𝑔(𝜁, 𝑧) =
{
𝑓 (𝜁)− 𝑓 (𝑧)

𝜁−𝑧 if 𝜁 ≠ 𝑧,

𝑓 ′(𝜁) if 𝜁 = 𝑧.

Exercise 4.2.1: Prove that 𝑔(𝜁, 𝑧) is continuous in𝑈×𝑈 , and that the function 𝑧 ↦→ 𝑔(𝜁, 𝑧)
is holomorphic for every fixed 𝜁 ∈ 𝑈 . Hint: The only nontrivial piece of this proof is
showing that 𝑧 ↦→ 𝑔(𝜁, 𝑧) is holomorphic at 𝑧 = 𝜁.

Let

ℎ(𝑧) =
{∫

Γ
𝑔(𝜁, 𝑧) 𝑑𝜁 if 𝑧 ∈ 𝑈,∫

Γ

𝑓 (𝜁)
𝜁−𝑧 𝑑𝜁 if 𝑧 ∉ Γ and 𝑛(Γ; 𝑧) = 0.

(4.1)

As 𝑛(Γ; 𝑧) = 0 for all 𝑧 ∈ ℂ \𝑈 (Γ is homologous to zero) the function ℎ(𝑧) is defined
for every 𝑧 ∈ ℂ. Unfortunately, at some points we have two definitions. To show that
ℎ(𝑧) is well-defined, we must show that if 𝑧 ∈ 𝑈 \ Γ and 𝑛(Γ; 𝑧) = 0, then the two
definitions agree. Consider such a 𝑧 (in particular, 𝑧 ∉ Γ). Then,∫

Γ

𝑔(𝜁, 𝑧) 𝑑𝜁 =

∫
Γ

𝑓 (𝜁) − 𝑓 (𝑧)
𝜁 − 𝑧 𝑑𝜁 =

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − 𝑓 (𝑧)(2𝜋𝑖)𝑛(Γ; 𝑧) =

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

So ℎ : ℂ → ℂ is well-defined.
Next we show that ℎ is holomorphic. Holomorphicity is a local property, so we

only need to prove it in a neighborhood of every point. The set where 𝑛(Γ; 𝑧) = 0 is
open as it is a union of some topological components of ℂ \ Γ. So each point in ℂ has
a neighborhood where ℎ is defined entirely by one or the other expression in ( 4.1 ).
Given any point in ℂ, take a neighborhood where one of the expressions defines ℎ
and apply  Corollary 3.4.2 .

The unbounded component of ℂ \ Γ is contained in the set where 𝑛(Γ; 𝑧) = 0,
so on this component, ℎ is defined by the second expression. Consider a 𝑧 in this
component. Suppose | 𝑓 (𝜁)| ≤ 𝑀 for 𝜁 ∈ Γ, let ℓ be the length of Γ, and let 𝑑(𝑧, Γ) be
the distance of 𝑧 to Γ. Then

|ℎ(𝑧)| =
����∫

Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁

���� ≤ ∫
Γ

���� 𝑓 (𝜁)𝜁 − 𝑧
���� |𝑑𝜁 | ≤ 𝑀ℓ

𝑑(𝑧, Γ) .
*This elegant proof is relatively recent, from 1971 due to John Dixon.
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As 𝑧 → ∞, so does 𝑑(𝑧, Γ) → ∞, and so ℎ(𝑧) → 0. In particular, ℎ is an entire
bounded function and Liouville says that ℎ is constant. Moreover, that constant must
be zero. So suppose 𝑧 ∈ 𝑈 \ Γ. Then

0 = ℎ(𝑧) =
∫
Γ

𝑓 (𝜁) − 𝑓 (𝑧)
𝜁 − 𝑧 𝑑𝜁 =

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − 𝑓 (𝑧)(2𝜋𝑖)𝑛(Γ; 𝑧). □

Cauchy’s theorem follows immediately using the integral formula. In fact, the
two theorems are equivalent, see the exercises.
Theorem 4.2.3 (Cauchy’s theorem (homology version)). Suppose 𝑈 ⊂ ℂ is open,
𝑓 : 𝑈 → ℂ is holomorphic, and Γ is a cycle in𝑈 homologous to zero in𝑈 . Then∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

Proof. Fix 𝑧 ∈ 𝑈\Γ. Apply the Cauchy integral formula for the function 𝜁 ↦→ (𝜁−𝑧) 𝑓 (𝜁)
at 𝜁 = 𝑧:

0 = 𝑛(Γ; 𝑧)(𝑧 − 𝑧) 𝑓 (𝑧) = 1
2𝜋𝑖

∫
Γ

(𝜁 − 𝑧) 𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
Γ

𝑓 (𝜁) 𝑑𝜁. □

Definition 4.2.4. Two cycles Γ0 and Γ1 in 𝑈 ⊂ ℂ are homologous in 𝑈 if 𝑛(Γ0; 𝑝) =
𝑛(Γ1; 𝑝) for all 𝑝 ∈ ℂ \𝑈 .

Equivalently, Γ0 and Γ1 are homologous in𝑈 if 𝑛(Γ0 − Γ1; 𝑝) = 0 for all 𝑝 ∈ ℂ \𝑈 ,
that is, Γ0 − Γ1 is homologous to zero in𝑈 .
Corollary 4.2.5. Let 𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ holomorphic. If two cycles Γ0 and Γ1
in𝑈 are homologous in𝑈 , then ∫

Γ0

𝑓 (𝑧) 𝑑𝑧 =
∫
Γ1

𝑓 (𝑧) 𝑑𝑧.

The proof is immediate by applying Cauchy’s theorem to Γ0 − Γ1.

Exercise 4.2.2 (Easy): Suppose that Γ is a cycle such that 0 ∉ Γ and 𝑛(Γ; 0) = 𝑘. Compute∫
Γ

cos 𝑧
𝑧

𝑑𝑧.

Exercise 4.2.3: Let Γ be a cycle in ℂ \ {0}. Prove that Γ is homologous in ℂ \ {0} to 𝑛𝜕𝔻
for some 𝑛 ∈ ℤ.

Exercise 4.2.4:
a) Show that being homologous in𝑈 is an equivalence relation on cycles.
b) Prove that the addition of cycles makes the set of equivalence classes into an abelian

group, the first homology group of𝑈 , usually written 𝐻1(𝑈).
c) Compute 𝐻1(ℂ \ {0}) (that is, find what group it is isomorphic to).
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Exercise 4.2.5: Prove that the two theorems (the homology versions of Cauchy’s theorem
and the Cauchy integral formula) are equivalent logically, that is, one follows from the other.
We have already proved that the Cauchy integral formula implies Cauchy’s theorem. So
prove that Cauchy’s theorem implies the Cauchy integral formula.

Exercise 4.2.6: Let 𝑈 ⊂ ℂ is open and Γ is a cycle in 𝑈 homologous to zero in 𝑈 .
Suppose that 𝑛(Γ; 𝑧1) = 𝑘1 and 𝑛(Γ; 𝑧2) = 𝑘2 for some two distinct 𝑧1, 𝑧2 ∈ 𝑈 \ Γ. Let
𝑓 : 𝑈 \ {𝑧1, 𝑧2} → ℂ be holomorphic. Suppose 0 < 𝜖 < |𝑧1 − 𝑧2 | is small enough that
Δ𝜖(𝑧 𝑗) ⊂ 𝑈 for 𝑗 = 1, 2, and that

∫
𝜕Δ𝜖(𝑧1) 𝑓 (𝑧) 𝑑𝑧 = 𝐴 and

∫
𝜕Δ𝜖(𝑧2) 𝑓 (𝑧) 𝑑𝑧 = 𝐵. In terms

of 𝑘1, 𝑘2, 𝐴, and 𝐵, compute ∫
Γ

𝑓 (𝑧) 𝑑𝑧.

4.3𝑖 \ Simply connected domains

A simply connected domain 

*
 is one without any holes. The following is perhaps not

the standard definition, but for domains in ℂ (connected open sets) it is equivalent to
the correct one. We will define the term properly once we get to homotopy.  

†
 We may

sometimes say “simply connected in the sense of homology” to emphasize that we
are using this particular definition.

Definition 4.3.1. A domain𝑈 ⊂ ℂ is simply connected if every cycle in𝑈 is homologous
to zero in𝑈 .

In other words, 𝑈 is simply connected if 𝑛(Γ; 𝑝) = 0 for every cycle Γ in 𝑈 and
every 𝑝 ∈ ℂ\𝑈 . So in a simply connected domain, no cycle in𝑈 can wind around any
point of ℂ \𝑈 . Examples of simply connected domains are ℂ, 𝔻, or ℍ. An example
of a domain that is not simply connected is ℂ \ {0}. See the exercises below.

Exercise 4.3.1:
a) Prove that every star-like domain (e.g., ℂ, 𝔻, and ℍ) in ℂ is simply connected.
b) Prove that ℂ \ {0} is not simply connected.

Exercise 4.3.2: Prove that if𝑈 ⊂ ℂ is biholomorphic to 𝔻, then𝑈 is simply connected.

Exercise 4.3.3: Prove that a domain 𝑈 ⊂ ℂ is simply connected if and only if the first
homology group 𝐻1(𝑈) is isomorphic to the trivial group {0}. See  Exercise 4.2.4 .

*There is no agreement among various mathematicians (I’ve asked a few) if a (path-)disconnected
set can be “simply connected.” To avoid heated arguments with topologists of various stripes, it’s best
to just not define the term for disconnected sets. Hence, we only define it for domains.

†Homotopy is in an optional section, which is the reason why we make this “wrong” definition.
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A special (but common) case of the homology version of Cauchy,  Theorem 4.2.3 ,
can be stated as the simply connected case of Cauchy.

Theorem 4.3.2 (Cauchy’s theorem (simply connected version)). Let𝑈 ⊂ ℂ be a simply
connected domain and 𝑓 : 𝑈 → ℂ holomorphic. If Γ is a cycle in𝑈 , then∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

The proof follows at once from  Theorem 4.2.3 , since if𝑈 is simply connected, then
every Γ in𝑈 is homologous to zero in𝑈 . In simply connected domains, as Cauchy’s
theorem holds for all cycles, we have primitives (antiderivatives).

Theorem 4.3.3. Let𝑈 ⊂ ℂ be a simply connected domain and let 𝑓 : 𝑈 → ℂ be holomorphic.
Then 𝑓 has a primitive in𝑈 .

Proof. Fix some 𝑝 ∈ 𝑈 . As 𝑈 is path connected, for every 𝑧 ∈ 𝑈 , pick some
piecewise-𝐶1 path 𝛾 from 𝑝 to 𝑧 and define

𝐹(𝑧) =
∫
𝛾
𝑓 (𝜁) 𝑑𝜁.

A priory, the function 𝐹(𝑧) depends on 𝛾, but if 𝛼 is another path from 𝑝 to 𝑧, then
𝛾 − 𝛼 is a cycle in𝑈 and Cauchy’s theorem says that∫

𝛾
𝑓 (𝜁) 𝑑𝜁 −

∫
𝛼
𝑓 (𝜁) 𝑑𝜁 =

∫
𝛾−𝛼

𝑓 (𝜁) 𝑑𝜁 = 0.

So 𝐹 is well-defined without specifying the path.
Let us reduce the proof to the proof for star-like domains ( Proposition 3.2.11 and

 Corollary 3.2.12 ). Let 𝑞 ∈ 𝑈 be a point and consider a disc Δ𝑟(𝑞) ⊂ 𝑈 (which is
star-like with respect to 𝑞 in particular). We take 𝛾 to be the path from 𝑝 to 𝑞. As 𝐹
does not depend on the path taken, then for 𝑧 ∈ Δ𝑟(𝑞),

𝐹(𝑧) =
∫
𝛾+[𝑞,𝑧]

𝑓 (𝜁) 𝑑𝜁 =

∫
𝛾
𝑓 (𝜁) 𝑑𝜁 +

∫
[𝑞,𝑧]

𝑓 (𝜁) 𝑑𝜁.

The first term in the sum is a constant, and the second term is precisely the primitive of
𝑓 from the proof of  Proposition 3.2.11 , that is, a primitive in Δ𝑟(𝑞). See  Figure 4.4  . □

Corollary 4.3.4. Let𝑈 ⊂ ℂ be a simply connected domain and 𝑓 : 𝑈 → ℂ a nowhere zero
holomorphic function. Then there exists a holomorphic 𝑔 : 𝑈 → ℂ such that

𝑒 𝑔(𝑧) = 𝑓 (𝑧).
In particular, if 𝑈 ⊂ ℂ \ {0} is a simply connected domain, then there exists a

branch of the logarithm, that is, a holomorphic 𝐿 : 𝑈 → ℂ such that

𝑒𝐿(𝑧) = 𝑧.
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𝑞𝑝 𝑈

𝛾

𝑧

Figure 4.4: Existence of primitive in a simply connected domain with Δ𝑟(𝑞) marked.

Proof. The function 𝑓 ′(𝑧)
𝑓 (𝑧) is holomorphic on𝑈 . Find its primitive 𝑔(𝑧). Compute,

𝑑

𝑑𝑧

[
𝑒 𝑔(𝑧)

𝑓 (𝑧)
]
=
𝑒 𝑔(𝑧)𝑔′(𝑧) 𝑓 (𝑧) − 𝑒 𝑔(𝑧) 𝑓 ′(𝑧)(

𝑓 (𝑧))2 =
𝑒 𝑔(𝑧) 𝑓 ′(𝑧) − 𝑒 𝑔(𝑧) 𝑓 ′(𝑧)(

𝑓 (𝑧))2 = 0.

Thus, 𝑒 𝑔(𝑧)
𝑓 (𝑧) is constant ( Proposition 2.2.1 ). It follows that there is a 𝐶 ∈ ℂ such that

𝑒 𝑔(𝑧)+𝐶 = 𝑓 (𝑧). □

If we have the logarithm, we can take roots.

Corollary 4.3.5. Let 𝑈 ⊂ ℂ be a simply connected domain, 𝑓 : 𝑈 → ℂ a nowhere zero
holomorphic function, and 𝑘 ∈ ℕ. Then there exists a holomorphic 𝑔 : 𝑈 → ℂ such that(

𝑔(𝑧)) 𝑘 = 𝑓 (𝑧).

Proof. Find a 𝜓 : 𝑈 → ℂ such that 𝑒𝜓(𝑧) = 𝑓 (𝑧). Let 𝑔(𝑧) = 𝑒
1
𝑘
𝜓(𝑧). Check:(

𝑔(𝑧)) 𝑘 = (
𝑒

1
𝑘
𝜓(𝑧)

) 𝑘
= 𝑒𝜓(𝑧) = 𝑓 (𝑧). □

On the other hand, the existence of primitives, or Cauchy’s theorem without
restriction on Γ, or existence of logs guarantees simply-connectedness. In particular,
we have the following set of equivalent versions of simply-connectedness for domains.

Proposition 4.3.6. Let𝑈 ⊂ ℂ be a domain. The following are equivalent:

(i) 𝑈 is simply connected (in the homology sense).

(ii) Every holomorphic 𝑓 : 𝑈 → ℂ has a primitive.

(iii) For every nowhere zero holomorphic 𝑓 : 𝑈 → ℂ, there exists a holomorphic 𝑔 : 𝑈 → ℂ

such that 𝑒 𝑔(𝑧) = 𝑓 (𝑧).
(iv) 1

𝑧−𝑝 has a primitive in𝑈 for every 𝑝 ∈ ℂ \𝑈 .
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(v) For every holomorphic 𝑓 : 𝑈 → ℂ and every cycle Γ in𝑈 , we have∫
Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

(vi) For every 𝑝 ∈ ℂ \𝑈 and every cycle Γ in𝑈 , we have∫
Γ

1
𝑧 − 𝑝 𝑑𝑧 = 0.

Proof. The logic of the proof is the following diagram:

 (ii)  (iii) 

 (i)  (v)  (iv) 

 (vi) 

We proved  (i) ⇒  (ii) above, and  (ii) ⇒  (iii) is the same as proof of  Corollary 4.3.4 .
Next, suppose  (iii) is true. For 𝑝 ∈ ℂ \𝑈 , find a 𝑔 such that 𝑒 𝑔(𝑧) = 𝑧 − 𝑝. Differentiate

1 =
𝑑

𝑑𝑧
[𝑧 − 𝑝] = 𝑑

𝑑𝑧

[
𝑒 𝑔(𝑧)

]
= 𝑒 𝑔(𝑧)𝑔′(𝑧) = (𝑧 − 𝑝)𝑔′(𝑧).

So  (iv) follows. Using Cauchy’s theorem for derivatives ( Corollary 3.2.6 ),  (iv) implies∫
Γ

1
𝑧 − 𝑝 𝑑𝑧 = 0

for every 𝑝 ∈ ℂ \𝑈 , and hence  (vi) is true. As

𝑛(Γ; 𝑝) = 1
2𝜋𝑖

∫
Γ

1
𝑧 − 𝑝 𝑑𝑧,

 (vi) is simply a restatement of  (i) . Again by Cauchy’s theorem for derivatives,  (ii) ⇒
 (v) . Finally,  (v) ⇒  (vi) is immediate. □

The existence of roots, in particular the square root, can also be put on the list, but
the proof is a little trickier. For the square root it will follow for example from the
proof of the Riemann mapping theorem in  § 6.3.1 .

There is a simple topological criterion for simply-connectedness of domains in
the complex plane (simply-connectedness is, after all, a topological concept). The
proposition below should actually be an “if and only if,” but the other direction
is more difficult and so we just prove the easy direction at this point. The harder
direction will be easier to prove once we have the Riemann mapping theorem, see

 § 6.3.3 for the proof.

Proposition 4.3.7. Let 𝑈 ⊂ ℂ be a domain. If ℂ∞ \ 𝑈 is connected, then 𝑈 is simply
connected.
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Proof. Take 𝑆 = ℂ∞ \ 𝑈 and let Γ be a cycle in 𝑈 . The function 𝜑(𝑧) = 𝑛(Γ; 𝑧) is
continuous on ℂ \Γ. On the unbounded component of ℂ \Γ, the function is zero, and
so 𝜑 is zero in a neighborhood of ∞. If we set 𝜑(∞) = 0, the function is continuous
on ℂ∞ \ Γ and hence on 𝑆. As 𝑆 is connected, it is contained in a single component of
ℂ∞ \ Γ. So 𝜑 is constant on 𝑆. As 𝜑(∞) = 0 and ∞ ∈ 𝑆, we have 𝜑 |𝑆 ≡ 0. In other
words,𝑈 is simply connected. □

It is important to use ℂ∞ and not ℂ in the proposition. If 𝑈 = ℂ \ {0} is the
punctured plane, then ℂ\𝑈 = {0} is connected, but ℂ∞ \𝑈 = {0,∞} is not connected.

Exercise 4.3.4: Suppose𝑈 ⊂ ℂ is a domain, 𝜕Δ𝑟(𝑝) ⊂ 𝑈 , but there is a 𝑧 ∈ Δ𝑟(𝑝) such
that 𝑧 ∉ 𝑈 . Prove that𝑈 is not simply connected.

Exercise 4.3.5: Let𝐾 ⊂ ℂ be nonempty and compact. Prove that the unbounded component
of ℂ \ 𝐾 is not a simply connected domain.

Exercise 4.3.6: Let 𝑈1, 𝑈2 ⊂ ℂ be two simply connected domains such that 𝑈1 ∩𝑈2 is
nonempty and connected. Prove that𝑈 = 𝑈1 ∪𝑈2 is a simply connected domain.

Exercise 4.3.7: Let 𝑈1, 𝑈2 ⊂ ℂ be two simply connected domains such that 𝑈1 ∩𝑈2 is
nonempty and connected. Prove that 𝑈 = 𝑈1 ∩𝑈2 is a simply connected domain. Note:
This result is true in the plane, but it is no longer true in the Riemann sphere.

Exercise 4.3.8: Find two nonempty simply connected domains 𝑈1, 𝑈2 ⊂ ℂ such that
𝑈1 ∩𝑈2 is nonempty and both

1) 𝑈1 ∪𝑈2 is not a simply connected domain.
2) 𝑈1 ∩𝑈2 is not a simply connected domain (emphasis on domain).

Exercise 4.3.9: Suppose 𝑈 ⊂ ℂ is a simply connected domain such that 0 ∉ 𝑈 , the set
(0,∞) ∩ 𝑈 is nonempty and connected, and suppose 𝑟 ∈ ℝ. Show that there exists a
holomorphic 𝑓 : 𝑈 → ℂ such that 𝑓 (𝑥) = 𝑥𝑟 for all 𝑥 > 0 in𝑈 .

Exercise 4.3.10: Find a simply connected domain𝑈 ⊂ ℂ such that ℂ \𝑈 has infinitely
many components (ℂ∞ \𝑈 is still going to have just one component).

4.4𝑖 \ Laurent series
One can also define a series for a holomorphic function around a hole, or a singularity.

Definition 4.4.1. Given 0 ≤ 𝑟1 < 𝑟2 ≤ ∞ and 𝑝 ∈ ℂ, define

ann(𝑝; 𝑟1, 𝑟2) def
= {𝑧 ∈ ℂ : 𝑟1 < |𝑧 − 𝑝 | < 𝑟2}.

When 0 < 𝑟1 < 𝑟2 < ∞ we call this set an annulus 

*
 .

*Q: What do you call a banana with a hole? A: A banannulus.
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A common case is when 𝑟1 = 0, that is, the punctured disc

ann(𝑝; 0, 𝑟) = Δ𝑟(𝑝) \ {𝑝}.
When 𝑟2 = ∞ on the other hand, ann(𝑝; 𝑟,∞) = ℂ \ Δ𝑟(𝑝) (if 𝑟 > 0). We will, however,
avoid temptation calling ann(𝑝; 𝑟,∞) an “annulus.” 

*
 

Theorem 4.4.2 (Existence of Laurent series). Suppose that 0 ≤ 𝑟1 < 𝑟2 ≤ ∞ and
𝑓 : ann(𝑝; 𝑟1, 𝑟2) → ℂ is holomorphic. Then there exist unique numbers 𝑐𝑛 ∈ ℂ for 𝑛 ∈ ℤ

such that

𝑓 (𝑧) =
∞∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛 ,

converging uniformly absolutely on compact subsets of ann(𝑝; 𝑟1, 𝑟2). The numbers 𝑐𝑛 are
given by

𝑐𝑛 =
1

2𝜋𝑖

∫
𝛾

𝑓 (𝑧)
(𝑧 − 𝑝)𝑛+1 𝑑𝑧,

where 𝛾 is any circle of radius 𝑠, 𝑟1 < 𝑠 < 𝑟2, centered at 𝑝 oriented counterclockwise.
Recall that convergence of a double series such as

∞∑
𝑛=−∞

𝑎𝑛

means
∞∑

𝑛=−∞
𝑎𝑛 = lim

𝑁→−∞

−1∑
𝑛=𝑁

𝑎𝑛 + lim
𝑀→∞

𝑀∑
𝑛=0

𝑎𝑛 .

That is, the limits are taken independently. For the Laurent series, we will generally
have absolute convergence, so the limit may be taken in any way and in any order.
However, it is still useful to split the Laurent series into two parts like that. Write a
Laurent series as

∞∑
𝑛=−∞

𝑐𝑛(𝑧 − 𝑝)𝑛 =

∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 +
−1∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛

=

∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 +
∞∑
𝑛=1

𝑐−𝑛
(

1
𝑧 − 𝑝

)𝑛
.

So the Laurent series behaves like two power series: one in 𝑧 − 𝑝 and one in 1
𝑧−𝑝 .

You can therefore apply what you know about power series. For example, the first
one converges (uniformly absolutely on compact subsets) in Δ𝑟2(𝑝) for some 𝑟2, and
the second one converges in ℂ \ Δ𝑟1(𝑝) for some 𝑟1. If 𝑟1 < 𝑟2, then the full series
converges (uniformly absolutely on compact subsets) in ann(𝑝; 𝑟1, 𝑟2).

*“Holey plane” perhaps? A punctured disc also ought not to be called an “annulus,” and calling
ann(0; 0,∞) = ℂ \ {0} an “annulus” is right out!
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Proof of the theorem. Choose two numbers 𝑠1 and 𝑠2 such that 𝑟1 < 𝑠1 < 𝑠2 < 𝑟2. Define
the cycle

Γ = 𝜕Δ𝑠2(𝑝) − 𝜕Δ𝑠1(𝑝).
That is, Γ goes around the larger (𝑠2) circle counterclockwise and around the smaller
(𝑠1) circle clockwise. See  Figure 4.5 .

𝑟1

𝑠1

𝑧

𝑠2𝑟2

𝑝

Figure 4.5: The two annuli, the smaller annulus is shaded darker. The two pieces of Γ are
noted with the circular arrows.

If 𝑞 ∈ ℂ \ ann(𝑝; 𝑟1, 𝑟2), then 𝑛(Γ; 𝑞) = 0: If 𝑞 is in the “hole” of the annulus
ann(𝑝; 𝑟1, 𝑟2), then 𝑛

(
𝜕Δ𝑠 𝑗 (𝑝); 𝑞

)
= 1 for both 𝑗 = 1, 2, and if 𝑞 is outside the annulus

altogether, then 𝑛
(
𝜕Δ𝑠 𝑗 (𝑝); 𝑞

)
= 0 for both 𝑗 = 1, 2 (see  Exercise 4.1.6 or  Exercise 4.1.8 ).

So Γ is homologous to zero in the annulus ann(𝑝; 𝑟1, 𝑟2). On the other hand, if 𝑧 is in
the (smaller) annulus ann(𝑝; 𝑠1, 𝑠2), then for similar reasons, 𝑛(Γ; 𝑧) = 1.

Via Cauchy’s integral formula ( Theorem 4.2.2 ), for every 𝑧 ∈ ann(𝑝; 𝑠1, 𝑠2),

𝑓 (𝑧) = 1
2𝜋𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
𝜕Δ𝑠2 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − 1

2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

We expand the two bits separately. First if 𝜁 ∈ 𝜕Δ𝑠2 , then
�� 𝑧−𝑝
𝜁−𝑝

�� = |𝑧−𝑝 |
𝑠2

< 1 and so
we follow the logic of  Theorem 3.3.1  . The reason that we can swap the integral and
the series limit is the same as in that theorem.

1
2𝜋𝑖

∫
𝜕Δ𝑠2 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
𝜕Δ𝑠2 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑝

1
1 − 𝑧−𝑝

𝜁−𝑝
𝑑𝜁

=
1

2𝜋𝑖

∫
𝜕Δ𝑠2 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑝

∞∑
𝑛=0

(
𝑧 − 𝑝
𝜁 − 𝑝

)𝑛
𝑑𝜁

=

∞∑
𝑛=0

(
1

2𝜋𝑖

∫
𝜕Δ𝑠2 (𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁

)
︸                              ︷︷                              ︸

𝑐𝑛

(𝑧 − 𝑝)𝑛 .
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Similarly, if 𝜁 ∈ 𝜕Δ𝑠1 , then
�� 𝜁−𝑝
𝑧−𝑝

�� = 𝑠1
|𝑧−𝑝 | < 1, and so

− 1
2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
𝑧 − 𝑝

1
1 − 𝜁−𝑝

𝑧−𝑝
𝑑𝜁

=
1

2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
𝑧 − 𝑝

∞∑
𝑚=0

(
𝜁 − 𝑝
𝑧 − 𝑝

)𝑚
𝑑𝜁

=

∞∑
𝑚=0

(
1

2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)(𝜁 − 𝑝)𝑚 𝑑𝜁
)
(𝑧 − 𝑝)−𝑚−1

=

−1∑
𝑛=−∞

(
1

2𝜋𝑖

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁

)
︸                              ︷︷                              ︸

𝑐𝑛

(𝑧 − 𝑝)𝑛 .

Adding these together we have the right thing, except that the formula for 𝑐𝑛 is
not quite right. Given any 𝑠 such that 𝑟1 < 𝑠 < 𝑟2, the cycle 𝜕Δ𝑠(𝑝) − 𝜕Δ𝑠1(𝑝) is
homologous to zero in ann(𝑝; 𝑟1, 𝑟2), and 𝑧 ↦→ 𝑓 (𝑧)

(𝑧−𝑝)𝑛+1 is holomorphic in ann(𝑝; 𝑟1, 𝑟2).
Cauchy’s theorem ( Theorem 4.2.3 ) thus says

0 =

∫
𝜕Δ𝑠(𝑝)−𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁 =

∫
𝜕Δ𝑠(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁 −

∫
𝜕Δ𝑠1 (𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁.

Similarly for 𝑠2, and hence

𝑐𝑛 =
1

2𝜋𝑖

∫
𝜕Δ𝑠(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑛+1 𝑑𝜁.

So we get the same 𝑐𝑛 no matter which 𝑠 we pick.
Next, convergence. For any 𝜖 > 0, the geometric series used for the first part

converges uniformly absolutely when
�� 𝑧−𝑝
𝜁−𝑝

�� = |𝑧−𝑝 |
𝑠2

≤ 1 − 𝜖. In other words, the series
converges uniformly absolutely on compact subsets of Δ𝑠2(𝑝) (when |𝑧 − 𝑝 | < 𝑠2).
The geometric series used for the second part converges uniformly absolutely when�� 𝜁−𝑝
𝑧−𝑝

�� = 𝑠1
|𝑧−𝑝 | ≤ 1 − 𝜖. In other words, the series converges uniformly absolutely on

compact subsets of ℂ \ Δ𝑠1(𝑝) (when |𝑧 − 𝑝 | > 𝑠1). Hence both parts (and so the
entire series) converge uniformly absolutely on compact subsets of ann(𝑝; 𝑠1, 𝑠2). As
𝑠1 and 𝑠2 were arbitrary such that 𝑟1 < 𝑠1 < 𝑠2 < 𝑟2, we get that the series converges
uniformly absolutely on compact subsets of ann(𝑝; 𝑟1, 𝑟2).

Finally, uniqueness of 𝑐𝑛 . Suppose {𝑑𝑛} is another sequence such that

𝑓 (𝑧) =
∞∑

𝑛=−∞
𝑑𝑛(𝑧 − 𝑝)𝑛 ,
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converging uniformly absolutely on compact subsets of ann(𝑝; 𝑟1, 𝑟2). Then

𝑐𝑚 =
1

2𝜋𝑖

∫
𝜕Δ𝑠(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑝)𝑚+1 𝑑𝜁 =

1
2𝜋𝑖

∫
𝜕Δ𝑠(𝑝)

( ∞∑
𝑛=−∞

𝑑𝑛(𝜁 − 𝑝)𝑛
)

1
(𝜁 − 𝑝)𝑚+1 𝑑𝜁

=
1

2𝜋𝑖

∞∑
𝑛=−∞

𝑑𝑛

∫
𝜕Δ𝑠(𝑝)

(𝜁 − 𝑝)𝑛−𝑚−1 𝑑𝜁

= 𝑑𝑚 ,

as the only 𝑛 for which
∫
𝜕Δ𝑠(𝑝) (𝜁 − 𝑝)𝑛−𝑚−1 𝑑𝜁 is nonzero is when 𝑛 = 𝑚, that is, when

we are integrating (𝜁 − 𝑝)−1, in which case we get 2𝜋𝑖. □

Similarly to the power series, due to the uniqueness of the Laurent series, it does
not matter how we obtain it. For example, the function 𝑒1/𝑧 has the Laurent series

𝑒1/𝑧 =
∞∑
𝑛=0

1
𝑛!

(
1
𝑧

)𝑛
=

0∑
𝑛=−∞

1
(−𝑛)!𝑧

𝑛 ,

which converges uniformly absolutely on compact subsets of ℂ \ {0}.
The rational function 1

1−𝑧 that leads to the geometric series can be expanded in a
slightly different way if we want its Laurent series expansion in ann(0; 1,∞) = ℂ \𝔻:

1
1 − 𝑧 =

−1
𝑧

1
1 − 1

𝑧

=
−1
𝑧

∞∑
𝑛=0

(
1
𝑧

)𝑛
=

−1∑
𝑛=−∞

−𝑧𝑛 .

While in general a Laurent series is not a power series, it could very well be when
all the 𝑐𝑛 for negative 𝑛 are zero.

Finally, we can differentiate and antidifferentiate formally, in the same way as we
did it for power series. The one minor hiccup is that we cannot antidifferentiate the
𝑐−1(𝑧 − 𝑝)−1 term. The proof is left as an exercise.

Proposition 4.4.3. Suppose 𝑝 ∈ ℂ, 0 ≤ 𝑟1 < 𝑟2 ≤ ∞, and 𝑓 : ann(𝑝; 𝑟1, 𝑟2) → ℂ is defined
by

𝑓 (𝑧) =
∞∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛 ,

converging uniformly on compact subsets of ann(𝑝; 𝑟1, 𝑟2). Then:

(i) The function 𝑓 is holomorphic and its derivative is defined by

𝑓 ′(𝑧) =
∞∑

𝑛=−∞
𝑛𝑐𝑛(𝑧 − 𝑝)𝑛−1,

converging uniformly on compact subsets of ann(𝑝; 𝑟1, 𝑟2).
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(ii) If 𝑐−1 = 0, then

𝐹(𝑧) =
∞∑

𝑛=−∞,𝑛≠−1

𝑐𝑛

𝑛 + 1(𝑧 − 𝑝)
𝑛+1

converges uniformly on compact subsets ann(𝑝; 𝑟1, 𝑟2) and 𝐹′ = 𝑓 .

Exercise 4.4.1: Prove  Proposition 4.4.3 . Hint: Remember  § 3.4.2 .

Exercise 4.4.2 (Easy): Suppose 𝑓 : Δ𝑟(𝑝) → ℂ is holomorphic, and suppose you expand 𝑓
in a Laurent series in ann(𝑝; 𝑟1, 𝑟2) for 0 ≤ 𝑟1 < 𝑟2 ≤ 𝑟. Prove that 𝑐𝑛 = 0 for all negative
𝑛 and that 𝑐𝑛 for nonnegative 𝑛 are the coefficients of the power series of 𝑓 at 𝑝.

Exercise 4.4.3 (Easy): Suppose 𝑓 and 𝑔 are holomorphic functions defined on ann(𝑝; 𝑟1, 𝑟2).
Let 𝑎𝑛 be the coefficients in the Laurent series for 𝑓 and 𝑏𝑛 be the coefficients in the Laurent
series for 𝑔. Suppose that 𝛼, 𝛽 ∈ ℂ. Show that the Laurent series for the function 𝛼 𝑓 + 𝛽𝑔
has coefficients 𝛼𝑎𝑛 + 𝛽𝑏𝑛 .

Exercise 4.4.4 (Easy): Suppose
∑𝑚
𝑛=−∞ 𝑐𝑛(𝑧 − 𝑝)𝑛 is a Laurent series with only finitely

many positive terms. Show that either the series converges nowhere in ℂ \ {𝑝}, or there
exists a number 𝑟 ≥ 0 such that the series converges uniformly and absolutely on compact
subsets of ann(𝑝; 𝑟,∞).
Exercise 4.4.5: Expand the function 1

(𝑧−1)(𝑧−2) using Laurent (or power) series in
a) ann(0; 0, 1) = 𝔻 \ {0},
b) ann(0; 1, 2),
c) ann(0; 2,∞).

Exercise 4.4.6: Suppose𝑈 = ann(𝑝; 𝑟1, 𝑟2) and 𝑟1 < 𝑟 < 𝑟2. Show that every cycle Γ in
𝑈 is homologous in𝑈 to 𝑘𝜕Δ𝑟(𝑝) for some integer 𝑘.

Exercise 4.4.7: Suppose 𝑓 : ann(𝑝; 𝑟1, 𝑟2) → ℂ is holomorphic, 𝑟1 < 𝑠 < 𝑟2, and∫
𝜕Δ𝑠(𝑝)

𝑓 (𝑧)(𝑧 − 𝑝)𝑛 𝑑𝑧 = 0

for all nonnegative integers 𝑛. Prove that 𝑓 extends through the hole: There exists a
holomorphic 𝑔 : Δ𝑟2(𝑝) → ℂ such that 𝑓 = 𝑔 on ann(𝑝; 𝑟1, 𝑟2).
Exercise 4.4.8: Suppose 𝑓 is a holomorphic function defined in a domain that contains the
unit circle 𝜕𝔻, such that ∫

𝜕𝔻
𝑓 (𝑧)𝑧̄𝑛 𝑑𝑧 = 0

for all integers 𝑛 ∈ ℤ. Prove that 𝑓 ≡ 0.

Exercise 4.4.9: Show that for a Laurent series it is again enough to show convergence
somewhere. Suppose

∑∞
𝑛=−∞ 𝑐𝑛(𝑧 − 𝑝)𝑛 is a Laurent series that converges at two points,

𝑧1 and 𝑧2, where 0 < |𝑧1 − 𝑝 | < |𝑧2 − 𝑝 | < ∞. Prove that the series converges uniformly
absolutely on compact subsets of ann

(
𝑝; |𝑧1 − 𝑝 |, |𝑧2 − 𝑝 |

)
.



4.5. HOMOTOPY VERSION OF CAUCHY ★ 109

4.5𝑖 \ Homotopy version of Cauchy ★

4.5.1𝑖 · Homotopy
Slowly (continuously) deforming one path into another path is called homotopy. Let
us define it for closed paths, where in this section by “path” we mean only continuous
and not necessarily piecewise-𝐶1.

Definition 4.5.1. Let𝑈 ⊂ ℂ be open. Two continuous functions 𝛾0 : [𝑎, 𝑏] → 𝑈 and
𝛾1 : [𝑎, 𝑏] → 𝑈 where 𝛾𝑗(𝑎) = 𝛾𝑗(𝑏) (two closed paths) are homotopic in𝑈 (or relative
to 𝑈) if there exists a continuous function 𝐻 : [𝑎, 𝑏] × [0, 1] → 𝑈 such that for all
𝑡 ∈ [𝑎, 𝑏] and 𝑠 ∈ [0, 1],

𝐻(𝑡 , 0) = 𝛾0(𝑡), 𝐻(𝑡 , 1) = 𝛾1(𝑡), and 𝐻(𝑎, 𝑠) = 𝐻(𝑏, 𝑠).
See  Figure 4.6  . We also write 𝛾𝑠 , where 𝛾𝑠(𝑡) = 𝐻(𝑡 , 𝑠), for the paths in the homotopy.

𝛾0

𝛾1
𝛾𝑠

Figure 4.6: Homotopy of two closed paths 𝛾0 and 𝛾1 with intermediate paths 𝛾𝑠 marked
in gray.

Exercise 4.5.1: Show that homotopy is an equivalence relation on continuous functions
𝛾 : [𝑎, 𝑏] → ℂ with 𝛾(𝑎) = 𝛾(𝑏).

Example 4.5.2: Let 𝛾 : [𝑎, 𝑏] → 𝔻 be continuous and 𝛾(𝑎) = 𝛾(𝑏). Define 𝐻 : [𝑎, 𝑏] ×
[0, 1] → 𝔻 by

𝐻(𝑡 , 𝑠) = (1 − 𝑠)𝛾(𝑡).
This is clearly a homotopy in 𝔻, 𝐻(𝑡 , 0) = 𝛾(𝑡), and 𝐻(𝑡 , 1) = 0, so 𝛾 is homotopic to
the zero function. So every path in 𝔻 is homotopic to a constant.

What we want to do is to prove that if 𝛾0 and 𝛾1 are piecewise-𝐶1 paths homotopic
in 𝑈 and 𝑓 : 𝑈 → ℂ is holomorphic, then

∫
𝛾0
𝑓 (𝑧) 𝑑𝑧 =

∫
𝛾1
𝑓 (𝑧) 𝑑𝑧. Consider the

intermediate paths 𝛾𝑠(𝑡) = 𝐻(𝑡 , 𝑠). The path 𝛾𝑠 is very close to 𝛾𝑠+𝜖 and so it should
not be hard to prove that their winding number around various points is the same.
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Everything is going swimmingly until we realize that
∫
𝛾𝑠
𝑓 (𝑧) 𝑑𝑧 makes no sense

whatsoever. The problem is that 𝛾𝑠 is only continuous and not a piecewise-𝐶1 path.
We can’t even define 𝑛(𝛾𝑠 ; 𝑧) using our prior definition. OK, so first we need to define
𝑛(𝛾𝑠 ; 𝑧) in a way that makes sense for any continuous closed path.

Lemma 4.5.3. Suppose 𝛾 : [𝑎, 𝑏] → ℂ is continuous and 𝑝 ∉ 𝛾. Given any 𝜃0 ∈ ℝ such
that 𝛾(𝑎) − 𝑝 = |𝛾(𝑎) − 𝑝 |𝑒 𝑖𝜃0 , that is, 𝜃0 is an argument of 𝛾(𝑎) − 𝑝. Then there exists a
continuous 𝜃 : [𝑎, 𝑏] → ℝ with 𝜃(𝑎) = 𝜃0 such that

𝛾(𝑡) − 𝑝 = |𝛾(𝑡) − 𝑝 |𝑒 𝑖𝜃(𝑡)

for all 𝑡 ∈ [𝑎, 𝑏], that is, 𝜃(𝑡) is an argument of 𝛾(𝑡) − 𝑝.
Furthermore, if 𝛾 is a piecewise-𝐶1 path, then

1
2𝜋𝑖

∫
𝛾

1
𝑧 − 𝑝 𝑑𝑧 =

𝜃(𝑏) − 𝜃(𝑎)
2𝜋 − 𝑖 log|𝛾(𝑏)| − log|𝛾(𝑎)|

2𝜋 .

Again, what we’ll do is follow log (or arg) around 𝛾 and see how much it changes.
The proof follows the same logic as in  Proposition 4.1.2 .

Proof. The image 𝛾
([𝑎, 𝑏]) is compact, so it can be covered by finitely many discs

𝐷1, . . . , 𝐷𝑛 , none of which contain 𝑝, and such that there is a partition 𝑎 = 𝑡0 <
𝑡1 < 𝑡2 < · · · < 𝑡𝑛 = 𝑏 such that 𝛾

([𝑡 𝑗−1, 𝑡 𝑗]
) ⊂ 𝐷𝑗 . Each 𝐷𝑗 is star-like and does

not contain 𝑝, so in each one there exists a branch of log(𝑧 − 𝑝), call it 𝐿 𝑗 , such that
𝐿 𝑗

(
𝛾(𝑡 𝑗)

)
= 𝐿 𝑗+1

(
𝛾(𝑡 𝑗)

)
. We also ensure that Im 𝐿1

(
𝛾(𝑎)) = 𝜃0. On each [𝑡 𝑗−1, 𝑡 𝑗] define

𝜃(𝑡) = Im 𝐿 𝑗
(
𝛾(𝑡)) .

On [𝑡 𝑗−1, 𝑡 𝑗] the function 𝜃 is continuous as 𝐿 𝑗 is continuous on 𝛾
([𝑡 𝑗−1, 𝑡 𝑗]

)
. The

definitions match up at 𝑡 𝑗−1 and 𝑡 𝑗 with 𝐿 𝑗−1 and 𝐿 𝑗+1 respectively. Thus 𝜃 is a
continuous function on [𝑎, 𝑏]. The formula 𝛾(𝑡) − 𝑝 = |𝛾(𝑡) − 𝑝 |𝑒 𝑖𝜃(𝑡) follows as 𝐿 𝑗 is a
branch of the log.

The “Furthermore” bit follows as before:

1
2𝜋𝑖

∫
𝛾

1
𝑧 − 𝑝 𝑑𝑧 =

1
2𝜋𝑖

𝑛∑
𝑗=1

∫ 𝑡 𝑗

𝑡 𝑗−1

𝛾′(𝑡)
𝛾(𝑡) − 𝑝 𝑑𝑡

=
1

2𝜋𝑖

𝑛∑
𝑗=1

𝐿 𝑗
(
𝛾(𝑡 𝑗)

) − 𝐿 𝑗 (𝛾(𝑡 𝑗−1)
)
=

1
2𝜋𝑖

(
𝐿𝑛

(
𝛾(𝑏)) − 𝐿1

(
𝛾(𝑎)) )

=
𝜃(𝑏) − 𝜃(𝑎)

2𝜋 − 𝑖 log|𝛾(𝑏)| − log|𝛾(𝑎)|
2𝜋 . □

The lemma allows us to define the winding number for continuous closed paths
by using the function 𝜃. The “Furthermore” part of the lemma makes sure that the
following definition agrees with our previous definition ( Definition 4.1.1 ).
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Definition 4.5.4. Let 𝛾 : [𝑎, 𝑏] → ℂ be continuous, 𝛾(𝑎) = 𝛾(𝑏), and 𝑝 ∉ 𝛾
([𝑎, 𝑏]) . Let

𝜃 be as in  Lemma 4.5.3 . Define the winding number of 𝛾 around 𝑝 or the index of 𝛾
with respect to 𝑝 as

𝑛(𝛾; 𝑝) def
=

𝜃(𝑏) − 𝜃(𝑎)
2𝜋 .

For a closed 𝛾, as two different arguments of a complex number differ by a multiple
of 2𝜋, we see that 𝑛(𝛾; 𝑝) is always an integer. Let us see how the 𝜃, and therefore
𝑛(𝛾; 𝑝), changes as 𝛾 changes (for instance in a homotopy).

Lemma 4.5.5. Suppose 𝛾 : [𝑎, 𝑏] → ℂ and 𝜃 : [𝑎, 𝑏] → ℝ are continuous, 𝑝 ∉ 𝛾, and
𝛾(𝑡)−𝑝 = |𝛾(𝑡) − 𝑝 |𝑒 𝑖𝜃(𝑡) for all 𝑡. For every 𝜖 > 0 there is a 𝛿 > 0 such that if 𝛾̃ : [𝑎, 𝑏] → ℂ

is continuous, 𝑝 ∉ 𝛾̃, and |𝛾(𝑡) − 𝛾̃(𝑡)| < 𝛿 for all 𝑡 ∈ [𝑎, 𝑏], there exists a 𝜃 : [𝑎, 𝑏] → ℝ

such that |𝜃(𝑡) − 𝜃(𝑡)| < 𝜖 for all 𝑡 ∈ [𝑎, 𝑏] and 𝛾̃(𝑡) − 𝑝 = |𝛾̃(𝑡) − 𝑝 |𝑒 𝑖𝜃(𝑡).
Proof. Let 𝑡 𝑗 , 𝐷𝑗 , 𝐿 𝑗 be the same as in the proof of  Lemma 4.5.3 , and fix some 𝜖 > 0.
Let 𝛿 > 0 be small enough so that if |𝑧 − 𝜁 | < 𝛿 and 𝑧, 𝜁 ∈ 𝐷𝑗 , then |𝐿 𝑗(𝑧) − 𝐿 𝑗(𝜁)| < 𝜖.
Such a 𝛿 exists as 𝐷𝑗 could be picked slightly smaller if needed to make sure that
𝑝 ∉ 𝐷𝑗 and so that each 𝐿 𝑗 is uniformly continuous on 𝐷𝑗 and therefore on 𝐷𝑗 .

Next make 𝛿 > 0 possibly even smaller so that a 𝛿-neighborhood of each 𝛾
([𝑡 𝑗−1, 𝑡 𝑗]

)
is within 𝐷𝑗 . Then for 𝛾̃ that is uniformly within 𝛿 of 𝛾 we get 𝛾̃

([𝑡 𝑗−1, 𝑡 𝑗]
) ⊂ 𝐷𝑗 .

The 𝐿 𝑗 and 𝐿 𝑗−1 agree at one point of 𝐷𝑗−1 ∩ 𝐷𝑗 (at 𝛾(𝑡 𝑗−1)) and since they are both
branches of log(𝑧 − 𝑝), they agree in the entire connected set 𝐷𝑗−1 ∩ 𝐷𝑗 . Thus they
also agree at 𝛾̃(𝑡 𝑗−1). So

𝜃(𝑡) = Im 𝐿 𝑗
(
𝛾(𝑡))

is the function from  Lemma 4.5.3 , as long as we make 𝜃0 = Im 𝐿1
(
𝛾(𝑎)) . Hence,��𝜃(𝑡) − 𝜃(𝑡)�� ≤ ��𝐿 𝑗 (𝛾(𝑡)) − 𝐿 𝑗 (𝛾̃(𝑡)) �� < 𝜖. □

We can now check how 𝑛(𝛾; 𝑝) changes, or not, by a homotopy.

Proposition 4.5.6. Suppose 𝑈 ⊂ ℂ is open and suppose 𝛾0 and 𝛾1 are closed paths in 𝑈
that are homotopic in𝑈 . Then

𝑛(𝛾0; 𝑝) = 𝑛(𝛾1; 𝑝) for all 𝑝 ∈ ℂ \𝑈.

Proof. Let 𝛾𝑠(𝑡) = 𝐻(𝑡 , 𝑠) be the maps from the homotopy.  Lemma 4.5.5 says that
𝑠 ↦→ 𝑛(𝛾𝑠 ; 𝑝) is a continuous function. As 𝑠 ↦→ 𝑛(𝛾𝑠 ; 𝑝) is integer-valued it must be
constant. □

In particular, we’ve proved that 𝛾0 and 𝛾1 are homologous if they are homotopic.
The converse is not true. Let us just mention that the path in  Figure 4.7 is not
homotopic to a constant but it is homologous to the zero chain.

The following corollary is an immediate consequence of  Corollary 4.2.5 and
 Proposition 4.5.6 .
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1−1

Figure 4.7: A path that is homologous to the zero chain in ℂ \ {−1, 1} but not homotopic
to a constant in ℂ \ {−1, 1}.

Corollary 4.5.7. Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic, and suppose 𝛾0 and
𝛾1 are closed piecewise-𝐶1 paths in𝑈 that are homotopic in𝑈 . Then∫

𝛾0

𝑓 (𝑧) 𝑑𝑧 =
∫
𝛾1

𝑓 (𝑧) 𝑑𝑧.

A corollary of the corollary is the homotopy version of Cauchy’s theorem. While
a constant is not technically a path in the way that we defined “path,” the integral
can easily be defined on it (it is zero), and the integral of any function over it is zero.
The following version of Cauchy is then just a special case of the corollary above.

Theorem 4.5.8 (Cauchy’s theorem (homotopy version)). Suppose 𝑈 ⊂ ℂ is open,
𝑓 : 𝑈 → ℂ is holomorphic, and 𝛾 is a piecewise-𝐶1 path in 𝑈 that is homotopic in 𝑈 to a
constant. Then ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 4.5.2: Let𝑈 ⊂ ℂ be open and let 𝛾 : [𝑎, 𝑏] → 𝑈 is continuous and 𝛾(𝑎) = 𝛾(𝑏).
Prove that 𝛾 is homotopic in 𝑈 to a closed piecewise-𝐶1 path 𝛼 in 𝑈 . Hint: Make 𝛼 a
polygonal path.

Exercise 4.5.3: We could take a different approach to solving our issues with the regularity
of the homotopy. Let𝑈 ⊂ ℂ be open and let 𝛾0 and 𝛾1 be closed piecewise-𝐶1 paths in𝑈
that are homotopic in𝑈 . Show that there exists a homotopy (possibly different one) such
that each 𝛾𝑠(𝑡) = 𝐻(𝑡 , 𝑠) is a closed piecewise-𝐶1 path. Hint: See previous exercise.

Exercise 4.5.4: Let 𝛾 be a closed piecewise-𝐶1 path in ℂ \ {0}.
a) Show that 𝛾 is homotopic in ℂ \ {0} to a piecewise-𝐶1 path whose image is in 𝜕𝔻.

The tricky bit is to make sure that the derivative is never zero.
b) Using part a), show that 𝛾 is in fact homotopic to a path 𝛼 : [0, 2𝜋] → ℂ given by

𝛼(𝑡) = 𝑒 𝑖𝑛𝑡 for some 𝑛 ∈ ℤ.
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4.5.2𝑖 · The real definition of simply connected
Let us give the real definition of simply connected. For domains in ℂ it turns out
that both definitions we give are equivalent. We will prove one direction of this
equivalence in this section, and we will wait with the other direction until we prove
the Riemann mapping theorem in  section 6.3 , because that theorem makes the other
direction trivial, see  Corollary 6.3.5 .

Definition 4.5.9. A domain 𝑈 ⊂ ℂ is simply connected (in the sense of homotopy) if
every continuous 𝛾 : [𝑎, 𝑏] → 𝑈 such that 𝛾(𝑎) = 𝛾(𝑏) is homotopic in𝑈 to a constant
function. 

*
 

Without further ado, here is the simple direction of the equivalence.

Proposition 4.5.10. If a domain𝑈 ⊂ ℂ is simply connected in the sense of homotopy, then
it is simply connected in the sense of  Definition 4.3.1 .

Proof. Let 𝛾 be a closed piecewise-𝐶1 path. We need to show that 𝑛(𝛾; 𝑝) = 0 for all
𝑝 ∈ ℂ \𝑈 . We know that 𝛾 is homotopic to a constant 𝐶 ∈ 𝑈 , and it is trivial to see
that 𝑛(𝐶; 𝑝) = 0 (the 𝜃 is a constant, also notice that 𝑝 ≠ 𝐶). Thus 𝑛(𝛾; 𝑝) = 0. □

Example 4.5.11: In lieu of a proof of the other direction, simply note that ℂ, 𝔻, or the
upper half-plane ℍ are simply connected in the sense of homotopy. For ℂ and 𝔻, we
employ the homotopy of example  Example 4.5.2 . For the half-plane, we modify the
homotopy of to 𝐻(𝑡 , 𝑠) = (1 − 𝑠)𝛾(𝑡) + 𝑠𝑖 to get 𝛾 homotopic to the constant 𝑖.

A consequence of the proposition is that the simply connected version of Cauchy’s
theorem holds in the same sense if we define simply-connectedness in terms of
homotopy. For completeness, let us state the theorem again in the context of this
section.

Theorem 4.5.12 (Cauchy’s theorem (simply connected version)). Suppose𝑈 ⊂ ℂ is a
simply connected domain (in the sense of homotopy), 𝑓 : 𝑈 → ℂ is holomorphic, and 𝛾 is a
piecewise-𝐶1 path in𝑈 . Then ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 = 0.

Exercise 4.5.5: Prove that a star-like domain is simply connected in the sense of homotopy.

Exercise 4.5.6: Let𝑈,𝑉 ⊂ ℂ be domains such there exists a homeomorphism 𝑓 : 𝑈 → 𝑉 ,
that is, 𝑓 is bĳective, and 𝑓 and 𝑓 −1 are continuous. Prove that𝑈 is simply connected in
the sense of homotopy if and only if 𝑉 is simply connected in the sense of homotopy.

*This definition is the correct one (i.e., unlikely to anger a topologist) for any path connected
topological space𝑈 .
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4.6𝑖 \ Cauchy via Green’s ★

4.6.1𝑖 · Green’s theorem in the complex plane
Cauchy’s theorem and Cauchy’s integral formula can be obtained via Green’s theorem.
We review Green’s theorem first. Write 𝑑𝑧 = 𝑑𝑥 + 𝑖 𝑑𝑦 and 𝑑𝑧̄ = 𝑑𝑥 + 𝑖 𝑑𝑦 as before.
Given a piecewise-𝐶1 path 𝛾 : [𝑎, 𝑏] → ℂ, we define∫

𝛾
𝐹(𝑧) 𝑑𝑧 + 𝐺(𝑧) 𝑑𝑧̄ def

=

∫ 𝑏

𝑎

(
𝐹
(
𝛾(𝑡))𝛾′(𝑡) + 𝐺 (

𝛾(𝑡))𝛾′(𝑡)
)
𝑑𝑡,∫

𝛾
𝑃(𝑧) 𝑑𝑥 +𝑄(𝑧) 𝑑𝑦 def

=

∫ 𝑏

𝑎

(
𝑃
(
𝛾(𝑡)) Re 𝛾′(𝑡) +𝑄 (

𝛾(𝑡)) Im 𝛾′(𝑡)
)
𝑑𝑡.

Actually, we only need to define one and then get the other via a simple computation,
see  Exercise 3.1.4 .

Let us state a version of Green’s theorem without proof. The hypotheses on the
domain𝑈 and the 𝑓 are given variously in the literature, so if the reader is working off
of a different version of Green’s, then the hypotheses of its corollaries in this section
must be modified to suit. We’re using a version that is the simplest to state in our
context. See the next section for a perhaps more common version of the hypotheses.

Theorem 4.6.1 (Green’s theorem). Let Γ be a cycle such that 𝑛(Γ; 𝑧) = 1 or 0 for all
𝑧 ∉ Γ and let 𝑈 = {𝑧 ∈ ℂ \ Γ : 𝑛(Γ; 𝑧) = 1}. Suppose 𝑃, 𝑄 are continuously differentiable
functions defined in a neighborhood of𝑈 . Then∫

Γ

𝑃(𝑧) 𝑑𝑥 +𝑄(𝑧) 𝑑𝑦 =

∫
𝑈

(
𝜕𝑄

𝜕𝑥
(𝑧) − 𝜕𝑃

𝜕𝑦
(𝑧)

)
𝑑𝐴.

Suppose 𝐹, 𝐺 are continuously differentiable functions defined in a neighborhood of 𝑈 . In
terms of the Wirtinger derivatives, 𝑑𝑧, and 𝑑𝑧̄,∫

Γ

𝐹(𝑧) 𝑑𝑧 + 𝐺(𝑧) 𝑑𝑧̄ = (−2𝑖)
∫
𝑈

(
𝜕𝐺

𝜕𝑧
(𝑧) − 𝜕𝐹

𝜕𝑧̄
(𝑧)

)
𝑑𝐴.

Exercise 4.6.1: Show that the second form of Green’s theorem in terms of the Wirtinger
derivatives (the second equation in the theorem) is equivalent to the first form.

Exercise 4.6.2: Show that to prove Green’s, it would be sufficient to prove∫
Γ

𝐹(𝑧) 𝑑𝑧 = 2𝑖
∫
𝑈

𝜕𝐹

𝜕𝑧̄
(𝑧) 𝑑𝐴.

Cauchy’s theorem is an immediate corollary of Green’s theorem: In the Wirtinger
version of the formula let 𝐺 = 0 and let 𝐹 be holomorphic.
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Corollary 4.6.2. Let Γ be a cycle such that 𝑛(Γ; 𝑧) = 1 or 0 for all 𝑧 ∉ Γ and let 𝑈 = {𝑧 ∈
ℂ \ Γ : 𝑛(Γ; 𝑧) = 1}. Suppose 𝑓 is a holomorphic function defined in a neighborhood of𝑈 .∫

Γ

𝑓 (𝑧) 𝑑𝑧 = 0.

4.6.2𝑖 · Generalized Cauchy integral formula
Let us prove a more general version of Cauchy’s formula for all functions, not just
holomorphic functions. This version is called the Cauchy–Pompeiu integral formula.

Theorem 4.6.3 (Cauchy–Pompeiu). Let Γ be a cycle such that 𝑛(Γ; 𝑧) = 1 or 0 for all 𝑧 ∉ Γ

and let 𝑈 = {𝑧 ∈ ℂ \ Γ : 𝑛(Γ; 𝑧) = 1}. Suppose 𝑓 is a continuously differentiable function
defined in a neighborhood of𝑈 . Then for 𝑧 ∈ 𝑈:

𝑓 (𝑧) = 1
2𝜋𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − 1

𝜋

∫
𝑈

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴.

If 𝑓 is holomorphic, then the second term is zero, and we obtain the standard
Cauchy integral formula. Note that we cheated a little bit in the statement. The
integral on the right-hand side is not an integral of a continuous function. There is a
singularity, but it turns out that it is still integrable. That is, we write the improper
integral ∫

𝑈

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴 = lim
𝑟↓0

∫
𝑈\Δ𝑟(𝑧)

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴.

That the integral exists is left as an exercise.

Exercise 4.6.3: Observe the singularity in the second term of the Cauchy–Pompeiu formula,
and prove that the integral still makes sense (the function is integrable). Hint: Use polar
coordinates.

Exercise 4.6.4: The reader may be tempted to differentiate in 𝑧̄ under the second integral in
the Cauchy–Pompeiu formula. Why is that not possible? Notice that it would lead to an
impossible result.

Proof. Fix 𝑧 ∈ 𝑈 . We wish to apply Green’s theorem, but the integrand is not even
continuous at 𝑧. Let Δ𝑟(𝑧) be a small disc such that Δ𝑟(𝑧) ⊂ 𝑈 . Green’s now applies
on𝑈 \ Δ𝑟(𝑧). See  Figure 4.8 . We compute∫

Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 −

∫
𝜕Δ𝑟(𝑧)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 = 2𝑖

∫
𝑈\Δ𝑟(𝑧)

𝜕

𝜕𝜁̄

(
𝑓 (𝜁)
𝜁 − 𝑧

)
𝑑𝐴 = 2𝑖

∫
𝑈\Δ𝑟(𝑧)

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴.
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𝑈
Δ𝑟(𝑧)𝑧

Γ

Figure 4.8: Proof of Cauchy–Pompeiu.

The second equality follows because the denominator is holomorphic in 𝜁. We now
let the radius 𝑟 go to zero. The integral over𝑈 is computed as the improper integral∫

𝑈

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴 = lim
𝑟↓0

∫
𝑈\Δ𝑟(𝑧)

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴 =
1
2𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − lim

𝑟↓0

1
2𝑖

∫
𝜕Δ𝑟(𝑧)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

By continuity of 𝑓 ,

lim
𝑟↓0

1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑧)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 = lim

𝑟↓0

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑧 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 = 𝑓 (𝑧).

The theorem follows. □

Exercise 4.6.5: Let𝑈 ⊂ ℂ, Γ, and 𝑓 be as in the theorem, but let 𝑧 ∉ 𝑈 . Show that

1
2𝜋𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 − 1

𝜋

∫
𝑈

𝜕 𝑓

𝜕𝜁̄
(𝜁)

𝜁 − 𝑧 𝑑𝐴 = 0.

4.7𝑖 \ Domains with piecewise-𝐶1 boundary ★

The way Green’s theorem, and hence Cauchy’s theorem, is often given, and the way
it is most often used, is for a domain with piecewise-𝐶1 boundary. To treat open sets
with piecewise-𝐶1 boundary, we must prove the so-called Jordan curve theorem that
is the rather obvious (but surprisingly nontrivial to prove) statement that a simple
closed path divides the plane into two components, the interior and the exterior.

Definition 4.7.1. A bounded 

*
 open set 𝑈 ⊂ ℂ has piecewise-𝐶1 boundary if 𝜕𝑈 is a

disjoint union of finitely many simple closed piecewise-𝐶1 paths and every 𝑝 ∈ 𝜕𝑈 is
in the closure of ℂ \𝑈 .

*It is trickier to handle the unbounded case, see the exercises.
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Recall that 𝛾 : [𝑎, 𝑏] → ℂ is simple closed if 𝛾(𝑎) = 𝛾(𝑏) and 𝛾 |(𝑎,𝑏] is injective. The
condition that every 𝑝 in the boundary is in the closure of ℂ \𝑈 means that at every
point, the boundary divides the plane into what’s inside𝑈 and what’s outside𝑈 . Let
us consider the local question of what a path does, that is, an injective path divides
the plane into two pieces.
Lemma 4.7.2. Let 𝛾 : [𝑎, 𝑏] → ℂ be an injective piecewise-𝐶1 path. Then for every
𝑝 ∈ 𝛾

((𝑎, 𝑏)) , there is a connected open neighborhood 𝑊 of 𝑝 such that 𝑊 \ 𝛾 has exactly
two components.

Recall that for a piecewise-𝐶1 path, 𝛾′ is never zero, including the one-sided limits
of the derivative at the “corners” or the end points. A 𝐶1 path is thus locally a graph:
If 𝛾 : [−1, 1] → ℂ is a continuously differentiable function, 𝛾(0) = 0, and Re 𝛾′(0) ≠ 0,
then 𝑧 = 𝑥 + 𝑖𝑦 = 𝛾(𝑡), or really the two equations 𝑥 = Re 𝛾(𝑡) and 𝑦 = Im 𝛾(𝑡), can
be solved for 𝑡 and 𝑦 in terms of 𝑥 near 0 by the implicit function theorem. In other
words, 𝛾 near 0 is a graph 𝑦 = 𝑓 (𝑥) for a 𝐶1 function 𝑓 .

Proof. By rotating, choosing a small neighborhood of 𝑝, and scaling, we assume that
𝑎 = −1, 𝑏 = 1, and 𝑝 = 𝛾(0). We further assume that 𝑝 = 0, Re 𝛾(−1) = −1, 𝛾′ exists
for all 𝑡 ≠ 0 (it may or may not exist at 𝑡 = 0), and Re 𝛾′(𝑡) is never zero, including the
one-sided limits at 𝑡 = 0.

Without loss of generality, Re 𝛾′(𝑡) > 0 for all 𝑡 from−1 to 0, including the left-hand
one-sided limit at 0. Using the implicit function theorem the set 𝛾

([−1, 0]) is a graph
of 𝑦 over 𝑥, that is, there is a 𝐶1 function 𝑓1 : [−1, 0] → ℝ such that 𝑦 = 𝑓1(𝑥) gives
𝛾
([−1, 0]) (as usual 𝑧 = 𝑥 + 𝑖𝑦).

If the right-hand one-sided limit of 𝛾′(𝑡) at 𝑡 = 0 also has positive real part, then
Re 𝛾′(𝑡) > 0 for all 𝑡 > 0 as it is never zero. By the same argument as above, 𝛾

([0, 1])
is a graph 𝑦 = 𝑓2(𝑥) for 𝑥 ∈ [0, 1]. In other words, the entire 𝛾 is a graph, 𝑦 = 𝑓 (𝑥). If
𝑀 > 0 is such that −𝑀 < 𝑓 (𝑥) < 𝑀 for all 𝑥, then we choose𝑊 = (−1, 1) × (−𝑀,𝑀).
It is not hard to see that a graph separates the rectangle𝑊 into two parts.

Now suppose that the right-hand side limit of 𝛾′(𝑡) has negative real part. In this
case, we write 𝛾

([0, 1]) as a graph 𝑦 = 𝑓2(𝑥) for 𝑥 ∈ [−1, 0]. Without loss of generality
suppose 𝑓2(𝑥) > 𝑓1(𝑥) for some 𝑥 < 0, then by injectivity of 𝛾 and intermediate value
theorem, we have 𝑓2(𝑥) > 𝑓1(𝑥) for all 𝑥 ∈ [−1, 0). Pick𝑊 in the same way (𝑀 is such
that −𝑀 < 𝑓𝑗(𝑥) < 𝑀 for 𝑥 ∈ [−1, 1]), it is not hard to see that the set where either
𝑥 ≥ 0, or where 𝑦 > 𝑓2(𝑥) or where 𝑦 < 𝑓1(𝑥) is connected, and it is disconnected
from the set between the graphs, that is where 𝑥 < 0 and 𝑓1(𝑥) < 𝑦 < 𝑓2(𝑥). Again
𝑊 \ 𝛾 has two components. See  Figure 4.9 . □

Exercise 4.7.1: Show that𝑊 can be also chosen to be a disc. It is not as trivial as it may
seem. Think about 𝛾 oscillating wildly and going in and out of the disc.

Exercise 4.7.2: Find an example injective piecewise-𝐶1 path that is not a graph of a function
near some point even after an arbitrary rotation, that is, an example where the second case
of the proof is really necessary.
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𝑊𝑦 = 𝑓1(𝑥)

𝑦 = 𝑓2(𝑥)

𝑊

𝑦 = 𝑓2(𝑥)
𝑦 = 𝑓1(𝑥)

Figure 4.9: A path divides the plane into two pieces, the first case, Re 𝛾′(𝑡) > 0 for all 𝑡, is
on the left, and the second case, Re 𝛾′(𝑡) < 0 for 𝑡 > 0, is on the right.

Exercise 4.7.3: Find an example piecewise-𝐶1 path that is not injective and such that the
lemma fails.

Exercise 4.7.4: Find an example of a bounded open set𝑈 whose boundary is a union of
infinitely many disjoint simple closed curves such that there is some point on 𝑝 ∈ 𝜕𝑈 such
that for every neighborhood𝑊 of 𝑝, the set𝑊 \ 𝜕𝑈 has infinitely many components. (In
particular,𝑈 is not an open set with piecewise-𝐶1 boundary.)

The next theorem is usually stated for just continuous paths, but that makes it
harder to prove. For piecewise-𝐶1 paths, the proof, apart from some technicalities, is
not hard, and we have actually already proved the local part of it. The main issue
with paths that are continuous only is that locally they may not be a graph of a
function. A 𝐶1 path is always locally a graph with respect to one of the variables,
and a piecewise-𝐶1 path, as we saw above, is almost a graph.

Theorem 4.7.3 (Jordan curve theorem for piecewise-𝐶1 paths). Suppose 𝛾 is a simple
closed piecewise-𝐶1 path. Then ℂ \ 𝛾 has two components, and 𝑛(𝛾; 𝑧) = 1 or 𝑛(𝛾; 𝑧) = −1
for 𝑧 on the bounded component.

The bounded component of ℂ \ 𝛾 is called the interior of 𝛾 and the unbounded
component of ℂ \ 𝛾 is called the exterior of 𝛾.

Proof. A ray is a set that is a straight line starting at some point 𝑞 going to infinity at
some angle. Consider intersections of 𝛾 with vertical lines. For some vertical line,
the intersection with 𝛾 with the largest 𝑦 coordinate (𝑧 = 𝑥 + 𝑖𝑦) is at a point where
𝛾′ exists and does not point along the vertical line (otherwise simply move the line
a little, there are only finitely many points where 𝛾′ does not exist). Then near this
intersection, the set 𝛾 can be written as a graph 𝑦 = 𝑓 (𝑥) using the implicit function
theorem. Pick a point 𝑞 to be some point slightly below this graph, and let 𝑅 be the
ray going vertically up from 𝑞. Note that 𝑅 intersects 𝛾 exactly once. See  Figure 4.10 .

Without loss of generality after rotation and scaling, let 𝑞 be the origin and the ray
𝑅 be the negative real axis. Then 𝛾 intersects the negative real axis at exactly one point.
We reparametrize so that this negative real intersection is the beginning and ending
point of 𝛾 : [0, 1] → ℂ. This point is a point where 𝛾 is 𝐶1 and hence 𝛾′(0) = 𝛾′(1).
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𝑞
𝛾

𝑅

Figure 4.10: A ray that goes from the inside of 𝛾 and intersects 𝛾 only once.

Also 𝛾′(0) = 𝛾′(1) does not point along the ray, that is, either Im 𝛾′(0) = Im 𝛾′(1) > 0
or it is negative. We then apply  Exercise 4.1.9 to find that 𝑛(𝛾; 0) = 1 or 𝑛(𝛾; 0) = −1 if
the derivative was negative.

In any case, ℂ \ 𝛾 has the unbounded component and at least one bounded
component that contains 𝑞, in which the winding number is 1 or −1. We need to
show there is no other component. Let𝑈 be the component of ℂ \ 𝛾 that contains 𝑞.

For any point 𝑝 ∈ 𝛾, we find a small connected open neighborhood𝑊 such that
𝑊 \ 𝛾 has exactly two components. If 𝑝 is the point on the ray (the negative real axis),
then one of the components of𝑊 \ 𝛾 is a subset of𝑈 and one of them is a subset of
the unbounded component of ℂ \ 𝛾.

As 𝛾 is compact, then there are only finitely many such𝑊 needed. Suppose𝑊1 is
the neighborhood that contains the negative real point of the boundary. Take a𝑊2 be
one of these neighborhoods such that the intersection𝑊1 ∩𝑊2 ∩ 𝛾 is nonempty. As
some point of 𝛾 is in both𝑊1 and𝑊2, then each component of𝑊2 \ 𝛾 must intersect
one of the components of𝑊1 \ 𝛾. In particular, one of the components of𝑊2 \ 𝛾 must
be a subset of 𝑈 , and one must be a subset of the unbounded component of ℂ \ 𝛾.
After finitely many steps, as 𝛾 is connected, we make this conclusion for all𝑊𝑗 .

In particular, 𝛾 ⊂ 𝜕𝑈 . But as𝑈 is a component of ℂ \ 𝛾, we get 𝜕𝑈 ⊂ 𝛾 and hence
𝜕𝑈 = 𝛾. If𝑈′ is any component of ℂ \ 𝛾, then it must have nonempty boundary and
𝜕𝑈′ ⊂ 𝛾. But the points near 𝛾 are only points of𝑈 or the unbounded component, so
it must be that𝑈′ = 𝑈 or𝑈′ is the unbounded component. □

Using the Jordan curve theorem, we can piece together boundaries.

Proposition 4.7.4. Suppose 𝑈 ⊂ ℂ is a bounded open set with piecewise-𝐶1 boundary.
Then there exists a cycle Γ that is composed of the paths comprising the boundary 𝜕𝑈 such
that 𝑛(Γ; 𝑧) = 1 for all 𝑧 ∈ 𝑈 and 𝑛(Γ; 𝑧) = 0 for all 𝑧 ∉ 𝑈 .

By a slight abuse of notation we write 𝜕𝑈 for Γ and we use the boundary as a
cycle. Because the winding number is 1 around the interior, we say that the boundary
is positively oriented.



120 CHAPTER 4. THE LOGARITHM AND CAUCHY

Proof. Without loss of generality, we assume that𝑈 is connected by taking one com-
ponent. Let 𝛾1, . . . , 𝛾𝑘 be the disjoint simple closed piecewise-𝐶1 paths comprising
the boundary of𝑈 , suppose that they are all positively oriented, that is, the winding
number around their interiors is 1. The set ℂ \𝑈 has one unbounded component and
suppose 𝛾1 is a subset of the unbounded component of ℂ \𝑈 . Let𝑈′ be the interior
of 𝛾1. As𝑈 is connected it must therefore be that𝑈 ⊂ 𝑈′. In particular, no other 𝛾𝑗 is
in the exterior of 𝛾1 and so 𝛾2, . . . , 𝛾𝑘 ⊂ 𝑈′. See  Figure 4.11 .

𝛾2

𝑈

𝛾1

𝛾3

Figure 4.11: The curves comprising the boundary.

Let Γ = 𝛾1 − 𝛾2 − · · · − 𝛾𝑘 . We need to prove that the set of 𝑧 such that 𝑛(Γ; 𝑧) = 1
is equal to𝑈 and 𝑛(Γ; 𝑧) = 0 for all 𝑧 in the complement of𝑈 .

First suppose that 𝑧 ∈ 𝑈 . Then 𝑧 ∈ 𝑈′ so 𝑛(𝛾1; 𝑧) = 1. If 𝑗 ≠ 1, then no point of
the interior of 𝛾𝑗 can be in 𝑈 , as the exterior of 𝛾𝑗 contains 𝛾1 and therefore points
of 𝑈 . So 𝑈 is a subset of the intersection of 𝑈′ and the exterior of 𝛾𝑗 . So 𝑧 is in the
exterior of 𝛾𝑗 and 𝑛(𝛾𝑗 ; 𝑧) = 0. Hence, 𝑛(Γ; 𝑧) = 1.

On the other hand, if 𝑧 is in the complement of𝑈 , then either it is in the exterior
of 𝛾1 and hence in the exterior of all the 𝛾𝑗 , or it is in the interior of 𝛾1 and also in the
interior of some 𝛾𝑗 . As𝑈 is connected and contains exterior points of all 𝛾2, . . . , 𝛾𝑘 ,
it is not possible for a point to be in the interior of two of these paths. Thus, if
𝑧 ∈ 𝑈′, there is exactly one 𝑗 ≠ 1 such that 𝑧 is in the interior of 𝛾𝑗 . In either case,
𝑛(Γ; 𝑧) = 0. □

Green’s theorem and the Cauchy integral formula for open sets with piecewise-𝐶1

boundary follow immediately using 𝜕𝑈 instead of Γ. For example, let us state the
Green’s theorem in the short version as in  Exercise 4.6.2 for brevity.

Theorem 4.7.5 (Green’s theorem). Let 𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1

boundary oriented positively. If 𝐹 is a continuously differentiable function defined in a
neighborhood of𝑈 , then ∫

𝜕𝑈
𝐹(𝑧) 𝑑𝑧 = 2𝑖

∫
𝑈

𝜕𝐹

𝜕𝑧̄
(𝑧) 𝑑𝐴.

In fact, the conditions on 𝐹 can be weakened considerably. For example, a common
and easy to prove statement is that 𝐹 needs to be continuous on𝑈 and 𝐶1 only inside
𝑈 , but it needs to have bounded partial derivatives in order for the right-hand side to
be integrable.
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Exercise 4.7.5: If one uses the Lebesgue integral, or a carefully defined improper integral,
we can easily reduce the regularity of 𝐹 needed in Green’s theorem above. Using the
theorem, obtain the conclusion with the assumption on 𝐹 being that 𝐹 is continuous on𝑈 ,
continuously differentiable on𝑈 with bounded partial derivatives on𝑈 .

Exercise 4.7.6: Suppose we drop the requirement that each point in 𝜕𝑈 is in the closure
of ℂ \𝑈 but require only that 𝜕𝑈 is still composed of disjoint simple closed piecewise-𝐶1

curves (and still bounded). Find an explicit counterexample to the Green’s theorem as given
above. Hint: Consider the boundary being two circles, and one of these circles is not in the
closure of ℂ \𝑈 .

Exercise 4.7.7: Prove that the following definition of piecewise-𝐶1 boundary is equivalent
to the one we gave for bounded open sets: An open𝑈 ⊂ ℂ has piecewise-𝐶1 boundary if
for every 𝑝 ∈ 𝜕𝑈 there exists an open neighborhood𝑊 of 𝑝 and an injective piecewise-𝐶1

path 𝛾 : [𝑎, 𝑏] → ℂ such that𝑊 ∩ 𝜕𝑈 = 𝛾
((𝑎, 𝑏)) , and every 𝑝 ∈ 𝜕𝑈 is in the closure of

ℂ \𝑈 .



5𝑖 \\ Counting Zeros and Singularities

If you can count your money, you don’t have a billion dollars.
—J. Paul Getty

5.1𝑖 \ Zeros of holomorphic functions
Per the identity theorem, zeros of a holomorphic function are isolated (or the function
is identically zero). Let us investigate how a holomorphic function behaves near a
zero. We expand upon an idea we used several times before.

Lemma 5.1.1. Let𝑈 ⊂ ℂ be open, 𝑓 : 𝑈 → ℂ be holomorphic, 𝑝 ∈ 𝑈 , and 𝑓 has an isolated
zero at 𝑝. Then there exists a unique 𝑘 ∈ ℕ and a holomorphic 𝑔 : 𝑈 → ℂ such that

𝑓 (𝑧) = (𝑧 − 𝑝)𝑘 𝑔(𝑧)
and 𝑔(𝑝) ≠ 0. Furthermore, 𝑘 is the smallest integer such that the 𝑘th derivative 𝑓 (𝑘)(𝑝) ≠ 0.

Before we prove the lemma, let us give a name to this integer 𝑘.

Definition 5.1.2. Suppose 𝑓 and 𝑘 are as in the lemma. The 𝑘 is called the order of the
zero at 𝑝. If the order is 1, we say 𝑝 is a simple zero. We will also call the order, for
reasons that will be obvious very soon, the multiplicity 

†
 of the zero at 𝑝.

Another way 

‡
 of saying that a zero of 𝑓 has order 𝑘 at 𝑝 is to say that 𝑘 is the

largest integer such that 𝑓 (𝑧)
(𝑧−𝑝)𝑘 is bounded near 𝑝. That these possible definitions are

equivalent follows from the lemma. See  Exercise 5.1.1 below.
The conclusion of the lemma holds also when 𝑓 (𝑝) ≠ 0, in which case 𝑘 = 0 and

𝑔 = 𝑓 . So one can (if one is really inclined to) say that when 𝑓 (𝑝) ≠ 0, then 𝑝 is a zero
of order 0, which sounds somewhat idiotic, but it all fits a general picture, and we
will see that negative orders might also make sense in just a little while. However,
when we say “ 𝑓 has a zero at 𝑝,” we never mean that it has a “zero of order zero,” we
mean an honest zero, 𝑓 (𝑝) = 0.

†To be anally retentive: 𝑓 is of order 𝑘 at 𝑝, and 𝑝 is a zero of 𝑓 of multiplicity 𝑘. Potayto, potahto.
‡Which is really the standard way of defining order of a zero for nonholomorphic functions.
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If 𝑓 (𝑘)(𝑝) = 0 for all 𝑘, then all coefficients of the power series of 𝑓 at 𝑝 are zero
and 𝑓 is identically zero. In other words, every isolated zero of a holomorphic function is
of finite order. In yet other words, only the zero function has a zero of infinite order. No
such thing is true for real differentiable functions (see the exercises).

Proof of the lemma. On𝑈 \ {𝑝} the function 𝑔(𝑧) = 𝑓 (𝑧)
(𝑧−𝑝)𝑘 is holomorphic for any 𝑘, so

the trick is only near 𝑝. We expand 𝑓 at 𝑝, that is, for 𝑧 in some disc Δ𝑟(𝑝),

𝑓 (𝑧) =
∞∑
𝑛=0

𝑐𝑛(𝑧 − 𝑝)𝑛 =

∞∑
𝑛=𝑘

𝑐𝑛(𝑧 − 𝑝)𝑛 = (𝑧 − 𝑝)𝑘
∞∑
𝑛=0

𝑐𝑛+𝑘(𝑧 − 𝑝)𝑛 ,

where 𝑘 is the smallest 𝑛 such that 𝑐𝑛 ≠ 0 (hence the “Furthermore”). Clearly 𝑘 > 0.
The series

∑∞
𝑛=0 𝑐𝑛+𝑘(𝑧 − 𝑝)𝑛 is equal to 𝑓 (𝑧)

(𝑧−𝑝)𝑘 on the punctured disc Δ𝑟(𝑝)\ {𝑝}, where
the series for 𝑓 converges. So it can define 𝑔 near 𝑝. Uniqueness follows rather easily:
Suppose (𝑧 − 𝑝)𝑘1 𝑔1(𝑧) = (𝑧 − 𝑝)𝑘2 𝑔2(𝑧), where 𝑔1(𝑝) ≠ 0 and 𝑔2(𝑝) ≠ 0. Without loss
of generality, 𝑘1 ≤ 𝑘2. Then 𝑔1(𝑧) = (𝑧 − 𝑝)𝑘2−𝑘1 𝑔2(𝑧). Plug in 𝑧 = 𝑝 to see 𝑘2 = 𝑘1. □

Next, near a zero of order 𝑘, a holomorphic function really acts like the function
𝑧𝑘 acts near the origin.
Theorem 5.1.3. Suppose𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic. Suppose 𝑝 ∈ 𝑈 is
a zero 

*
 of 𝑓 of order 𝑘 ∈ ℕ. Then there exists an open neighborhood𝑉 of 𝑝 and a holomorphic

𝑔 : 𝑉 → ℂ with 𝑔(𝑝) = 0 and 𝑔′(𝑝) ≠ 0, such that

𝑓 (𝑧) = (
𝑔(𝑧)) 𝑘 .

In more fancy language, 𝑔 is a local biholomorphic change of variables near 𝑝 (see
 Theorem 2.2.8 ) that makes 𝑝 into the origin, and makes 𝑓 into 𝑧𝑘 .

Proof. Let𝑉 = Δ𝑟(𝑝) be a disc such that 𝑓 (𝑧) ≠ 0 for any 𝑧 ∈ Δ𝑟(𝑝)\{𝑝}. Use the lemma
to get a function ℎ holomorphic on Δ𝑟(𝑝) such that ℎ(𝑝) ≠ 0 and 𝑓 (𝑧) = (𝑧 − 𝑝)𝑘ℎ(𝑧).
In particular, ℎ(𝑧) ≠ 0 for any 𝑧 ∈ Δ𝑟(𝑝). As ℎ is nowhere zero on Δ𝑟(𝑝), which is
simply connected, there exists a holomorphic function 𝜑 on Δ𝑟(𝑝) such that 𝜑𝑘 = ℎ.
Let 𝑔(𝑧) = (𝑧 − 𝑝)𝜑(𝑧). As 𝑔′(𝑧) = (𝑧 − 𝑝)𝜑′(𝑧) + 𝜑(𝑧), we have 𝑔′(𝑝) = 𝜑(𝑝) ≠ 0. □

Exercise 5.1.1: Suppose 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ holomorphic. Show that 𝑓 has
a zero of order 𝑘 at 𝑝 ∈ 𝑈 if and only if there is a disc Δ𝑟(𝑝) ⊂ 𝑈 and some 𝐶1 > 0 and
𝐶2 > 0 such that for all 𝑧 ∈ Δ𝑟(𝑝),

𝐶1 |𝑧 − 𝑝 |𝑘 ≤ | 𝑓 (𝑧)| ≤ 𝐶2 |𝑧 − 𝑝 |𝑘 .
Exercise 5.1.2 (Easy): Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 has zeros at 𝑧1, 𝑧2, . . . , 𝑧𝑛 of
orders 𝑘1, 𝑘2, . . . , 𝑘𝑛 and no other zeros. Then there exists a holomorphic 𝑔 : 𝑈 → ℂ that
is never zero such that 𝑓 (𝑧) = (𝑧 − 𝑧1)𝑘1(𝑧 − 𝑧2)𝑘2 · · · (𝑧 − 𝑧𝑛)𝑘𝑛 𝑔(𝑧).
*As we said, by this we mean that this is an honest zero of 𝑓 and 𝑘 > 0.
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Exercise 5.1.3 (Easy): Strengthen the statement of the theorem. Suppose𝑈 ⊂ ℂ is simply
connected and 𝑓 : 𝑈 → ℂ is holomorphic.

a) Suppose 𝑓 has a zero at 𝑝 of order 𝑘 and no other zeros. Then there exists a holomorphic
𝑔 : 𝑈 → ℂ with 𝑔(𝑝) = 0, 𝑔′(𝑝) ≠ 0 such that 𝑓 (𝑧) = (

𝑔(𝑧)) 𝑘 .
b) Suppose 𝑓 has a zero at 𝑝 of order 𝑘, and it also has zeros at 𝑧1, 𝑧2, . . . , 𝑧𝑛 of orders

𝑘1, 𝑘2, . . . , 𝑘𝑛 and no other zeros. Then there exists a holomorphic 𝑔 : 𝑈 → ℂ with
𝑔(𝑝) = 0, 𝑔′(𝑝) ≠ 0 such that 𝑓 (𝑧) = (𝑧 − 𝑧1)𝑘1(𝑧 − 𝑧2)𝑘2 · · · (𝑧 − 𝑧𝑛)𝑘𝑛

(
𝑔(𝑧)) 𝑘 .

Exercise 5.1.4: The zero set of Re 𝑓 looks like Re 𝑧𝑘 : Show that if 𝑓 : 𝑈 → ℂ has a zero of
order 𝑘 ∈ ℕ at 𝑝 ∈ 𝑈 , then there exist 𝐶1 curves 𝛾𝑗 : (−𝜖, 𝜖) → ℂ for 𝑗 = 1, . . . , 𝑘 with
𝛾𝑗(0) = 𝑝 and 𝛾′

𝑗
(0) ≠ 0, such that the curves only intersect one another at 𝑝, and such

that Re 𝑓
(
𝛾𝑗(𝑡)

)
= 0 for all 𝑡 ∈ (−𝜖, 𝜖).

Exercise 5.1.5: Suppose 𝑓 is holomorphic in an open neighborhood of a point 𝑝 and suppose
Re 𝑓 has a critical point at 𝑝 (derivative is zero). Prove that 𝑝 is a saddle point of Re 𝑓
(neither a local minimum nor a local maximum). Hint: Apply the theorem and show that
𝑘 ≥ 2. Note that Re 𝑧𝑘 has a saddle point at the origin.

Exercise 5.1.6:
a) For 𝑥 ∈ ℝ, let 𝑓 (𝑥) = 𝑒−1/𝑥2 if 𝑥 ≠ 0 and 𝑓 (0) = 0. Prove that 𝑓 is infinitely (real)

differentiable, the origin is an isolated zero (the only zero in fact), and 𝑓 (𝑘)(0) = 0 for
all 𝑘 = 0, 1, 2, . . .. That is, the origin is a zero of infinite order.

b) Prove that if we define 𝑓 (𝑧) = 𝑒−1/𝑧2 for 𝑧 ∈ ℂ \ {0}, then the function, while
holomorphic in ℂ \ {0}, cannot be made continuous at the origin, no matter how
we’d try to define 𝑓 (0).

Exercise 5.1.7: Prove L’Hôpital’s rule: If 𝑓 and 𝑔 are holomorphic near 𝑝, both with an
isolated zero at 𝑝, then lim𝑧→𝑝

𝑓 (𝑧)
𝑔(𝑧) exists (including possibly ∞) and equals lim𝑧→𝑝

𝑓 ′(𝑧)
𝑔′(𝑧) .

5.2𝑖 \ Isolated singularities

5.2.1𝑖 · Types of singularities and Riemann extension

Definition 5.2.1. Suppose 𝑈 ⊂ ℂ is open and 𝑝 ∈ 𝑈 . A holomorphic function
𝑓 : 𝑈 \ {𝑝} → ℂ is said to have an isolated singularity at 𝑝. An isolated singularity
is removable if there exists a holomorphic 𝐹 : 𝑈 → ℂ such that 𝑓 (𝑧) = 𝐹(𝑧) for all
𝑧 ∈ 𝑈 \ {𝑝}. An isolated singularity 𝑝 is a pole if

lim
𝑧→𝑝

𝑓 (𝑧) = ∞.

An isolated singularity that is neither removable nor a pole is an essential singularity.
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In other words, 𝑓 has an isolated singularity at 𝑝 if it is defined and holomorphic in
a punctured neighborhood Δ𝑟(𝑝) \ {𝑝}. It is removable if the function extends across,
a pole if 𝑓 goes to infinity (e.g., 1/𝑧), and essential otherwise (e.g., 𝑒1/𝑧). A holomorphic
function must blow up in some way if a singularity is not removable. That is a rather
surprising property of holomorphic functions with a rather surprisingly simple proof.
Theorem 5.2.2 (Riemann extension theorem). Suppose 𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and
𝑓 : 𝑈 \ {𝑝} → ℂ is holomorphic. If 𝑓 is bounded (near 𝑝 suffices), then 𝑝 is a removable
singularity of 𝑓 .

Proof. Define 𝑔(𝑧) = (𝑧 − 𝑝)2 𝑓 (𝑧) for 𝑧 ≠ 𝑝 and 𝑔(𝑝) = 0. The function 𝑔 is clearly
holomorphic for 𝑧 ≠ 𝑝. Consider the difference quotient 𝑔(𝑧)−𝑔(𝑝)

𝑧−𝑝 = (𝑧 − 𝑝) 𝑓 (𝑧).
Supposing 𝑓 is bounded,

lim
𝑧→𝑝

𝑔(𝑧) − 𝑔(𝑝)
𝑧 − 𝑝 = lim

𝑧→𝑝
(𝑧 − 𝑝) 𝑓 (𝑧) = 0.

So 𝑔 is also complex differentiable at 𝑝 and so holomorphic on 𝑈 . The order 𝑘 of
the zero of 𝑔 at 𝑝 is at least 2 (as 𝑔(𝑝) = 0 and 𝑔′(𝑝) = 0). Write 𝑔(𝑧) = (𝑧 − 𝑝)𝑘ℎ(𝑧),
where ℎ is holomorphic on 𝑈 . Then 𝑓 (𝑧) = (𝑧 − 𝑝)𝑘−2ℎ(𝑧), or in other words, 𝑝 is a
removable singularity. □

Exercise 5.2.1: Suppose that 𝑆 ⊂ ℂ is a closed discrete set (each point is isolated),
𝑓 : ℂ \ 𝑆 → ℂ is holomorphic, and 𝑓 (ℂ \ 𝑆) ⊂ 𝔻. Show that 𝑓 is constant.
Exercise 5.2.2: Prove that if 𝑓 : 𝔻 \ {0} → 𝔻 \ {0} is an automorphism, then 𝑓 (𝑧) = 𝑒 𝑖𝜃𝑧

for some 𝜃.
Exercise 5.2.3: Prove that if 𝑓 : 𝔻 \ {

0, 1/2
} → 𝔻 \ {

0, 1/2
}

is an automorphism, then
𝑓 (𝑧) = 𝑧 or 𝑓 (𝑧) = 1−2𝑧

2−𝑧 .
Exercise 5.2.4: Suppose 𝑈 ⊂ ℂ is open and {𝑧𝑛} is a sequence in 𝑈 converging to
𝑝 ∈ 𝑈 . Let 𝑆 = {𝑧𝑛 : 𝑛 ∈ ℕ} ∪ {𝑝} and let 𝑓 : 𝑈 \ 𝑆 → ℂ be a bounded holomorphic
function. Prove that 𝑓 extends through 𝑆: There exists a holomorphic 𝐹 : 𝑈 → ℂ such that
𝐹 |𝑈\𝑆 = 𝑓 .
Exercise 5.2.5: The Riemann extension theorem is (of course) not true for functions that
are not holomorphic. Prove that 𝑥𝑦

𝑥2+𝑦2 is a bounded infinitely (real) differentiable function
on ℝ2 \ {(0, 0)} with an isolated singularity, and this function does not extend through the
singularity even continuously.
Exercise 5.2.6: Suppose that 𝑓 is an entire holomorphic function such that | 𝑓 (𝑧)| ≤ 𝑒 |Im 𝑧 |
for all 𝑧 and such that 𝑓 ′(0) = 1 and 𝑓 (𝑛𝜋) = 0 for all integers 𝑛. Prove that 𝑓 (𝑧) = sin 𝑧.
Exercise 5.2.7: Suppose that 𝑓 and 𝑔 are entire functions and | 𝑓 | ≤ |𝑔 | everywhere. Show
that 𝑓 = 𝑐𝑔 for some 𝑐 ∈ ℂ. Hint: Make sure to handle the zeros of 𝑓 and 𝑔.
Exercise 5.2.8: Prove that there does not exist a holomorphic 𝑓 : Δ𝑟(0) → ℂ (for any
𝑟 > 0) that is not identically zero and such that 𝑓 (𝑧)𝑒1/𝑧 is bounded in Δ𝑟(0) \ {0}.
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Using the Riemann extension, we will show that at nonessential isolated singular-
ities a holomorphic function blows up to a finite integral order. We obtain a criterion
for poles, and we classify poles according to order just like zeros.
Corollary 5.2.3. Suppose𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \ {𝑝} → ℂ holomorphic.

(i) If 𝑝 is a pole, then there exists a 𝑘 ∈ ℕ such that

𝑔(𝑧) = (𝑧 − 𝑝)𝑘 𝑓 (𝑧)
has a removable singularity at 𝑝.

(ii) Conversely, if there exists a 𝑘 ∈ ℕ such that 𝑔(𝑧) = (𝑧 − 𝑝)𝑘 𝑓 (𝑧) is bounded near 𝑝
(has a removable singularity), then 𝑓 has a pole or a removable singularity at 𝑝.

Proof. Suppose 𝑓 has a pole at 𝑝. Then 𝑓 is not zero in some punctured neighborhood
Δ𝑟(𝑝) \ {𝑝} as it goes to infinity. As 𝑓 goes to infinity, 1/𝑓 goes to zero, and so it is
bounded in some Δ𝑟(𝑝) \ {𝑝}. Thus, 1/𝑓 has a removable singularity at 𝑝 by Riemann
extension. Let ℎ be holomorphic in Δ𝑟(𝑝) such that ℎ(𝑧) = 1/𝑓 (𝑧) for 𝑧 ≠ 𝑝. By
continuity, ℎ(𝑝) = 0. Hence ℎ(𝑧) = (𝑧 − 𝑝)𝑘𝜓(𝑧) for some holomorphic 𝜓 and 𝑘 ∈ ℕ,
where 𝜓(𝑝) ≠ 0. As ℎ is not zero in Δ𝑟(𝑝) \ {𝑝}, then 𝜓 is not zero in Δ𝑟(𝑝) and 1/𝜓 is
holomorphic in Δ𝑟(𝑝). First item follows as for 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝},

𝑔(𝑧) = (𝑧 − 𝑝)𝑘 𝑓 (𝑧) = (𝑧 − 𝑝)𝑘 1
(𝑧 − 𝑝)𝑘𝜓(𝑧)

=
1

𝜓(𝑧) .

The converse statement follows by noting that if 𝑔(𝑧) has a removable singularity,
then 𝑔(𝑧) = (𝑧 − 𝑝)ℓ𝜑(𝑧) where 𝜑(𝑝) ≠ 0 and ℓ ≥ 0 is an integer. Thus

𝑓 (𝑧) = (𝑧 − 𝑝)ℓ−𝑘𝜑(𝑧),
and this expression either goes to ∞ if 𝑘 > ℓ ( 𝑓 has a pole) or is bounded near 𝑝 if
𝑘 ≤ ℓ ( 𝑓 has a removable singularity). □

Definition 5.2.4. Given a holomorphic function 𝑓 with a pole at 𝑝, the smallest 𝑘 ∈ ℕ

such that (𝑧 − 𝑝)𝑘 𝑓 (𝑧) is bounded near 𝑝 is called the order of the pole. A pole of order
1 is called a simple pole.

What we have proved is that if 𝑓 has a pole at 𝑝, 𝑓 can be written as

𝑓 (𝑧) = 𝑔(𝑧)
(𝑧 − 𝑝)𝑘

,

where 𝑔 is holomorphic, 𝑔(𝑝) ≠ 0, and 𝑘 is the order of the pole. There is a symmetry
between zeros and poles: If 𝑓 has a zero of order 𝑘 at 𝑝, then 1/𝑓 has a pole of order
𝑘 at 𝑝. If 𝑓 has a pole of order 𝑘 at 𝑝, then 1/𝑓 has a removable singularity, and the
extended function has a zero of order 𝑘 at 𝑝. In other words, if 𝑓 has a pole or a
removable singularity, we can write 𝑓 (𝑧) = (𝑧 − 𝑝)ℓ 𝑔(𝑧) for some ℓ ∈ ℤ and some
holomorphic 𝑔 such that 𝑔(𝑝) ≠ 0. The point 𝑝 is a zero of order ℓ if ℓ > 0, and it is a
pole of order −ℓ if ℓ < 0.
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Exercise 5.2.9: Suppose 𝑓 has a pole of order 𝑘 ∈ ℕ at 𝑝. Show that there exists a
holomorphic 𝑔 defined near 𝑝 such that 𝑔(𝑝) = 0 and 𝑔′(𝑝) ≠ 0 and such that near 𝑝

𝑓 (𝑧) = 1(
𝑔(𝑧)) 𝑘 .

Exercise 5.2.10: Suppose𝑈 ⊂ ℂ is open, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 \ {0} → ℂ is holomorphic.
Suppose 𝑓 has a simple pole at 0. Prove that for all 𝑧 ∈ 𝔻 \ {0},

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 + 1

𝑧

1
2𝜋𝑖

∫
𝜕𝔻
𝑓 (𝜁) 𝑑𝜁.

Exercise 5.2.11: Suppose 𝑓 has an isolated singularity at 𝑝. Suppose that {𝑧𝑛} and {𝜁𝑛}
are two sequences such that lim 𝑧𝑛 = lim 𝜁𝑛 = 𝑝 and lim 𝑓 (𝑧𝑛) ≠ lim 𝑓 (𝜁𝑛) (both limits
exist). Show that 𝑓 has an essential singularity at 𝑝.

Exercise 5.2.12: Suppose 𝑓 : 𝔻 \ {0} → ℂ is holomorphic, not identically zero, and 𝑓 has
infinitely many zeros in Δ1/2(0) \ {0}. Prove that 𝑓 has an essential singularity at 0.

5.2.2𝑖 · Singularities and the Laurent series

The terms of the Laurent series may be used to classify a singularity.

Proposition 5.2.5. Suppose 𝑓 : Δ𝑟(𝑝) \ {𝑝} → ℂ is holomorphic, and

𝑓 (𝑧) =
∞∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛

is the corresponding Laurent series. The singularity at 𝑝 is

(i) removable if and only if 𝑐𝑛 = 0 for all 𝑛 < 0,

(ii) a pole of order 𝑘 ∈ ℕ if and only if 𝑐𝑛 = 0 for all 𝑛 < −𝑘 and 𝑐−𝑘 ≠ 0,

(iii) essential if and only if 𝑐𝑛 ≠ 0 for infinitely many negative 𝑛.

The fundamental point is that a Laurent series in a punctured disc Δ𝑟(𝑝) \ {𝑝} is
unique, so if the singularity is removable, the power series for the extended function
must equal the Laurent series.

Exercise 5.2.13: Prove the proposition.
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Definition 5.2.6. At an isolated singularity, the negative part of the Laurent series
−1∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛

is called the principal part.
A singularity is removable if the principal part is zero, it is a pole if the principal

part is finite, and it is essential if the principal part is infinite. Consider

𝑒1/𝑧 =
0∑

𝑛=−∞

1
(−𝑛)!𝑧

𝑛 .

The principal part is infinite and 𝑒1/𝑧 has an essential singularity at 0. This function is
the first one anyone ever thinks of if asked for an example of an essential singularity.

Suppose 𝑃(𝑧) is the principal part of 𝑓 (𝑧) at an isolated singularity. It is sometimes
useful to consider 𝑓 (𝑧) − 𝑃(𝑧), which then has a removable singularity, as it is defined
by a power series.

For entire functions, we can talk about the “singularity at infinity.” If we think of
ℂ ⊂ ℂ∞, then this phrase makes perfect sense. The mapping 𝑧 ↦→ 1/𝑧 is a self-mapping
of the Riemann sphere ℂ∞ that takes infinity to zero. Given 𝑓 : ℂ → ℂ, the function
𝑧 ↦→ 𝑓 (1/𝑧) has an isolated singularity at the origin, and that is the singularity at
infinity of 𝑓 . That’s exactly what happened with 𝑒1/𝑧 above. The function 𝑒𝑧 has an
essential singularity at infinity.

Exercise 5.2.14: Prove that if 𝑓 has a pole at the origin and 𝑔 has an essential singularity
at the origin, then 𝑓 + 𝑔 has an essential singularity at the origin.

Exercise 5.2.15: Find holomorphic functions 𝑓 and 𝑔 (different pairs for each part) with
essential singularities at 𝑝, such that

a) 𝑓 + 𝑔 has a removable singularity at 𝑝,
b) 𝑓 𝑔 has a removable singularity at 𝑝.

Exercise 5.2.16: Suppose 𝑓 is a nonconstant holomorphic function defined in an open
neighborhood of the origin such that 𝑓 (0) = 0 and 𝑔 is holomorphic with an isolated
singularity at the origin. Write 𝑔 ◦ 𝑓 for the composition where it is defined. Show that
𝑔 ◦ 𝑓 has an isolated singularity of the same type (removable, pole, essential) as 𝑔. Moreover,
if 𝑓 ′(0) ≠ 0 and 𝑔 has a pole of order 𝑘, then 𝑔 ◦ 𝑓 has a pole of order 𝑘.

Exercise 5.2.17: If 𝑓 has a pole at 𝑝, then 𝑒 𝑓 (𝑧) has an essential singularity at 𝑝. Hint:
First do it for a simple pole.

Exercise 5.2.18: Show that an entire holomorphic 𝑓 : ℂ → ℂ has a pole at infinity if and
only if it is a nonconstant polynomial. The order of the pole is the degree of the polynomial.

Exercise 5.2.19: Show that if 𝑓 : ℂ → ℂ is an automorphism, then 𝑓 (𝑧) = 𝑎𝑧 + 𝑏 for
some constants 𝑎 ≠ 0 and 𝑏. Hint: Show that 𝑓 has a simple pole at infinity.
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5.2.3𝑖 · Wild world of essential singularities, Casorati–Weierstrass
Functions near an essential singularity achieve essentially every value arbitrarily
close to the singularity. The function is very wild (and getting wilder and wilder) as
it gets close to an essential singularity.

Theorem 5.2.7 (Casorati–Weierstrass 

*
 ). Suppose 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 \ {𝑝} → ℂ

is holomorphic with an essential singularity at 𝑝 ∈ 𝑈 . Then for every punctured disc
Δ𝑟(𝑝) \ {𝑝} ⊂ 𝑈 , the image

𝑓
(
Δ𝑟(𝑝) \ {𝑝}

)
=

{
𝑤 ∈ ℂ : 𝑤 = 𝑓 (𝑧), 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝}

}
is dense in ℂ.

There is a stronger version of this theorem called the Picard theorem saying that
in any punctured neighborhood, 𝑓 achieves all values with at most one exception:
𝑓
(
Δ𝑟(𝑝) \ {𝑝}

)
= ℂ or 𝑓

(
Δ𝑟(𝑝) \ {𝑝}

)
= ℂ \ {𝑧0} for some 𝑧0. But that is much harder

to prove.
The intuitive idea of the proof of Casorati–Weierstrass is that if there is a whole

disc Δ𝑠(𝑞) missing from the image, then take 𝑞 to ∞ by an LFT and Δ𝑠(𝑞) will become
the complement of a bounded closed disc, allowing one to use  Riemann extension .

Proof. Suppose 𝑓 : 𝑈 \ {𝑝} → ℂ is holomorphic, Δ𝑟(𝑝) ⊂ 𝑈 , and that there is a 𝑞 ∈ ℂ

and 𝑠 > 0 such that Δ𝑠(𝑞) ⊂ ℂ \ 𝑓 (Δ𝑟(𝑝) \ {𝑝}) . Consider 𝑔 : Δ𝑟(𝑝) \ {𝑝} → ℂ given by

𝑔(𝑧) = 1
𝑓 (𝑧) − 𝑞 .

By assumption, | 𝑓 (𝑧) − 𝑞 | ≥ 𝑠 for 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝}. Hence |𝑔(𝑧)| ≤ 1/𝑠, and 𝑔 has a
removable singularity at 𝑝 by Riemann extension. So assume that 𝑔 is defined and
holomorphic on all of Δ𝑟(𝑝). For 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝},

𝑓 (𝑧) = 1
𝑔(𝑧) + 𝑞.

If 𝑔 has a zero at 𝑝, then 𝑓 has a pole at 𝑝. If 𝑔 does not have a zero at 𝑝, then 𝑓 has a
removable singularity. In either case, 𝑓 does not have an essential singularity at 𝑝. □

Exercise 5.2.20: Prove the converse of Casorati–Weierstrass. Let𝑈 ⊂ ℂ be open, 𝑝 ∈ 𝑈 ,
and 𝑓 : 𝑈 \ {𝑝} → ℂ holomorphic. Prove that if 𝑓

(
Δ𝑟(𝑝) \ {𝑝}

)
is dense in ℂ for all 𝑟 > 0

such that Δ𝑟(𝑝) ⊂ 𝑈 , then 𝑓 has an essential singularity at 𝑝.
*Some people say it should be called Casorati–Sochocki(–Weierstrass) theorem as Casorati and

Sochocki both published it in 1868, (Casorati in Italian and Sochocki, who was Polish, in Russian)
while Weierstrass published it in 1876 (in German). But really it first appeared in a book by Briot and
Bouquet in 1859 (in French), so really it should be called the Briot–Bouquet theorem, no? If we all still
published in Latin, we wouldn’t be in this mess.
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Exercise 5.2.21: Suppose that 𝑔 : Δ𝑟(𝑝) \ {𝑝} → ℂ has an isolated singularity. Prove that
𝑓 (𝑧) = 𝑒 𝑔(𝑧) has either a removable singularity, in which case 𝑔 has a removable singularity,
or 𝑓 has an essential singularity. Remark: See also  Exercise 5.2.17 .

Exercise 5.2.22: Suppose 𝑓 : ℂ → ℂ is holomorphic and nonconstant. Prove that 𝑓 (ℂ)
is dense in ℂ. Remark: The so-called “little Picard theorem” says that 𝑓 (ℂ) is actually
everything minus possibly one point, but that is much harder to prove.

Exercise 5.2.23: Suppose𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \ {𝑝} → ℂ holomorphic with
an essential singularity at 𝑝.

a) Prove a “Picard for modulus” theorem: For every 𝑟 > 0 such that Δ𝑟(𝑝) ⊂ 𝑈 , the set
of all moduli of all the values of 𝑓 on Δ𝑟(𝑝) \ {𝑝}, that is,�� 𝑓 (Δ𝑟(𝑝) \ {𝑝}) �� = {|𝑤 | ∈ ℝ : 𝑤 = 𝑓 (𝑧), 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝}

}
,

is (0,∞) or [0,∞).
b) Show by example that both (0,∞) and [0,∞) are possible.

Exercise 5.2.24: Suppose 𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \ {𝑝} → ℂ is holomorphic
with an essential singularity at 𝑝 ∈ 𝑈 . Then for every disc Δ𝑟(𝑝) ⊂ 𝑈 and every segment
[𝑎, 𝑏] ⊂ ℂ, we have 𝑓

(
Δ𝑟(𝑝) \ {𝑝}

) ∩ [𝑎, 𝑏] ≠ ∅. Hint: See  Exercise 2.2.17 .

5.2.4𝑖 · Meromorphic functions
Definition 5.2.8. A holomorphic function 𝑓 : 𝑈 \ 𝑆 → ℂ with poles on a discrete set
𝑆 ⊂ 𝑈 is said to be meromorphic.

A meromorphic function can be extended to a function

𝑓 : 𝑈 → ℂ∞

by simply setting 𝑓 (𝑝) = ∞ at all the poles. By the definition of a pole, the extended
function is then continuous. In fact, a way to define a meromorphic function is as a
“holomorphic function 𝑓 : 𝑈 → ℂ∞.” Holomorphicity at a pole can be rephrased as
holomorphicity of the function 1

𝑓 (𝑧) at 𝑝. There is a small technicality: Should one
consider the function that is constantly ∞ as a meromorphic function or not? We will
take the view that it is not a meromorphic function.

From now on, when we say that 𝑓 is meromorphic, we mean that it is a holomorphic
function with possible poles in𝑈 . We will assume that 𝑓 is defined to be∞ at the poles,
and we will write 𝑓 : 𝑈 → ℂ∞. That is, even though we could just say “ 𝑓 : 𝑈 → ℂ∞
is holomorphic,” we will, for emphasis, usually say “ 𝑓 : 𝑈 → ℂ∞ is meromorphic.”

Similarly, we can define a function on subsets of ℂ∞, just as we did with LFTs.
We define holomorphicity at ∞ when𝑈 ⊂ ℂ∞ by saying that 𝑓 is holomorphic at ∞ if
𝑓 (1/𝑧) is holomorphic at 0. With this terminology, an LFT is a biholomorphic mapping
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𝑓 : ℂ∞ → ℂ∞. It is left as an exercise that these are the only biholomorphisms of the
Riemann sphere and so Aut(ℂ∞) consists of all the LFTs.

Exercise 5.2.25: Show that a holomorphic 𝑓 : ℂ∞ → ℂ∞ has at most finitely many poles
and finitely many zeros.

Exercise 5.2.26: Show that a holomorphic 𝑓 : ℂ∞ → ℂ∞ is either constant or onto.

Exercise 5.2.27: Show that a holomorphic 𝑓 : ℂ∞ → ℂ∞ is a rational function (a
polynomial divided by a polynomial).

Exercise 5.2.28: Show that an injective holomorphic 𝑓 : ℂ∞ → ℂ∞ is an LFT.

5.3𝑖 \ Residue theorem

If 𝑓 has an isolated singularity at 𝑝, expand 𝑓 in the Laurent series on Δ𝑟(𝑝) \ {𝑝}:

𝑓 (𝑧) =
∞∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑝)𝑛 . (5.1)

The only power (𝑧 − 𝑝)𝑛 that does not have a primitive in Δ𝑟(𝑝) \ {𝑝} is (𝑧 − 𝑝)−1. It is
the only power a line integral of 𝑓 around 𝑝 “sees,” that is, it is what’s left, or the
“residue” 

*
 of integrating 𝑓 (𝑧) around a closed path.

Definition 5.3.1. Let 𝑓 be a holomorphic function with an isolated singularity at 𝑝.
Let the residue of 𝑓 at 𝑝 be

Res( 𝑓 ; 𝑝) def
= 𝑐−1,

where 𝑐−1 is the coefficient of (𝑧 − 𝑝)−1 in the Laurent series expansion ( 5.1 ) in a
punctured disc Δ𝑟(𝑝) \ {𝑝}.

We know how to compute 𝑐−1: For small enough 𝑠 > 0,

Res( 𝑓 ; 𝑝) = 1
2𝜋𝑖

∫
𝜕Δ𝑠(𝑝)

𝑓 (𝑧) 𝑑𝑧.

Via Cauchy’s theorem, we relate any integral around a cycle to the residues that lie
inside the cycle. With that, we can state a theorem that is often used for computing
integrals—even integrals that do not at all seem like line integrals or have any complex
numbers in them.

*Q: Why did the mathematician name their dog Cauchy? A: Because it left a residue at every pole.
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Theorem 5.3.2 (Residue theorem). Suppose𝑈 ⊂ ℂ is open, 𝑆 ⊂ 𝑈 is a finite subset, and
Γ is a cycle in 𝑈 \ 𝑆 homologous to zero in 𝑈 . 

*
 Suppose 𝑓 : 𝑈 \ 𝑆 → ℂ is holomorphic

(isolated singularities on 𝑆). Then
1

2𝜋𝑖

∫
Γ

𝑓 (𝑧) 𝑑𝑧 =
∑
𝑝∈𝑆

𝑛(Γ; 𝑝)Res( 𝑓 ; 𝑝).

Proof. Let 𝑤1, . . . , 𝑤ℓ denote the elements of 𝑆. Let 𝑟1, . . . , 𝑟ℓ be positive numbers
such that the closed discs Δ𝑟1(𝑤1), . . . ,Δ𝑟ℓ (𝑤ℓ ) are mutually disjoint (no pair of them
intersects), and Δ𝑟𝑗 (𝑤 𝑗) ⊂ 𝑈 for all 𝑗. See  Figure 5.1 .

𝑤1

𝑤2 𝑤3

Γ

Figure 5.1: Proof of residue theorem by putting small discs around all singularities. Note
that 𝑛(Γ;𝑤1) = 1, 𝑛(Γ;𝑤2) = 0, and 𝑛(Γ;𝑤3) = 2.

Define the cycle

Λ = Γ − 𝑛(Γ;𝑤1) 𝜕Δ𝑟1(𝑤1) − · · · − 𝑛(Γ;𝑤ℓ ) 𝜕Δ𝑟ℓ (𝑤ℓ ).
We claim that

𝑛(Λ; 𝑝) = 0
for all 𝑝 ∉ 𝑈 \ 𝑆. The winding number is defined by an integral and so

𝑛(Λ; 𝑝) = 𝑛(Γ; 𝑝) − 𝑛(Γ;𝑤1) 𝑛(𝜕Δ𝑟1(𝑤1); 𝑝) − · · · − 𝑛(Γ;𝑤ℓ ) 𝑛(𝜕Δ𝑟ℓ (𝑤ℓ ); 𝑝).
If 𝑝 ∉ 𝑈 , then 𝑛(Γ; 𝑝) = 0 as Γ is homologous to zero in 𝑈 , and as Δ𝑟 𝑗 (𝑤 𝑗) ⊂ 𝑈

for all 𝑗, we get 𝑛
(
𝜕Δ𝑟𝑗 (𝑤 𝑗); 𝑝

)
= 0, and the claim follows. If 𝑝 = 𝑤𝑘 ∈ 𝑆, then

𝑛
(
𝜕Δ𝑟𝑗 (𝑤 𝑗); 𝑝

)
= 0 if 𝑗 ≠ 𝑘, and 𝑛

(
𝜕Δ𝑟𝑘 (𝑤𝑘); 𝑝

)
= 1. The claim again follows.

By the homology version of the Cauchy theorem,  Theorem 4.2.3 , we find

0 =
1

2𝜋𝑖

∫
Λ

𝑓 (𝑧) 𝑑𝑧 = 1
2𝜋𝑖

∫
Γ

𝑓 (𝑧) 𝑑𝑧 −
ℓ∑
𝑘=1

𝑛(Γ;𝑤𝑘) 1
2𝜋𝑖

∫
𝜕Δ𝑟𝑘 (𝑤𝑘)

𝑓 (𝑧) 𝑑𝑧.

We recognize the formula for the 𝑐−1 term of the Laurent series at 𝑤𝑘 , that is,

1
2𝜋𝑖

∫
𝜕Δ𝑟𝑘 (𝑤𝑘)

𝑓 (𝑧) 𝑑𝑧 = Res( 𝑓 ;𝑤𝑘). □

*As usual, this statement means that 𝑛(Γ; 𝑧) = 0 for all 𝑧 ∈ ℂ \𝑈 .



5.3. RESIDUE THEOREM 133

The residue theorem is supposed to be useful in computing line integrals. But at
first glance it seems ridiculous. How does one compute 𝑐−1? By an integral. Well
how does that help then? It helps because there are easier ways to compute 𝑐−1 than
by the line integral. The first one is almost criminally trivial, but it may be good to
emphasize all of them by making them propositions.

Proposition 5.3.3. Suppose 𝑓 is holomorphic in an open neighborhood of 𝑝 and 𝑔 is
holomorphic with an isolated singularity at 𝑝, then Res( 𝑓 + 𝑔; 𝑝) = Res(𝑔; 𝑝).
Proof. For a small enough 𝜖 > 0,

Res( 𝑓 + 𝑔; 𝑝) = 1
2𝜋𝑖

∫
𝜕Δ𝜖(𝑝)

(
𝑓 (𝑧) + 𝑔(𝑧)) 𝑑𝑧

=
�����������:01
2𝜋𝑖

∫
𝜕Δ𝜖(𝑝)

𝑓 (𝑧) 𝑑𝑧 + 1
2𝜋𝑖

∫
𝜕Δ𝜖(𝑝)

𝑔(𝑧) 𝑑𝑧 = Res(𝑔; 𝑝). □

Proposition 5.3.4. Suppose a meromorphic 𝑓 has a pole at 𝑝. If 𝑝 is a simple pole of 𝑓 , then

Res( 𝑓 ; 𝑝) = lim
𝑧→𝑝

(𝑧 − 𝑝) 𝑓 (𝑧).

More generally, if 𝑝 is a pole of 𝑓 of order 𝑘, then

Res( 𝑓 ; 𝑝) = 1
(𝑘 − 1)! lim

𝑧→𝑝

𝑑𝑘−1

𝑑𝑧𝑘−1

[(𝑧 − 𝑝)𝑘 𝑓 (𝑧)] .
Exercise 5.3.1: Prove the proposition.

Proposition 5.3.5. Suppose 𝑓 (𝑧) = ℎ(𝑧)
𝑔(𝑧) where ℎ and 𝑔 are holomorphic at 𝑝 and 𝑔 has a

simple zero at 𝑝 (so 𝑓 has a simple pole at 𝑝). Then

Res( 𝑓 ; 𝑝) = ℎ(𝑝)
𝑔′(𝑝) .

Exercise 5.3.2: Prove the proposition.

A common application of the residue theorem is to compute certain real integrals
that are difficult by classical calculus. Let us work a couple of examples.

Example 5.3.6: ∫ ∞

−∞
1

1 + 𝑥2 𝑑𝑥.

OK, this one is easy to compute by classical calculus, but let us ignore that fact for the
sake of the simplicity of the example.
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𝑟−𝑟

𝛾𝑟

−𝑖

𝑖

Figure 5.2: The cycle Γ𝑟 .

Define the cycle Γ𝑟 = [−𝑟, 𝑟] + 𝛾𝑟 , where 𝛾𝑟(𝑡) = 𝑟𝑒 𝑖𝑡 for 𝑡 ∈ [0,𝜋], that is, 𝛾𝑟
is the upper semi-circle of the circle of radius 𝑟 centered at the origin oriented
counterclockwise. See  Figure 5.2 .

We “complexify” 1
1+𝑥2 to make it 1

1+𝑧2 . That’s just a fancy way of saying we are
going to plug complex numbers into a real formula. By partial fractions,

1
1 + 𝑧2 =

1
(𝑧 + 𝑖)(𝑧 − 𝑖) =

𝑖

2
1

𝑧 + 𝑖 −
𝑖

2
1

𝑧 − 𝑖 .

There are isolated singularities at ±𝑖, both simple poles. The cycle Γ𝑟 goes around
𝑖 once, so 𝑛(Γ𝑟 ; 𝑖) = 1, but not around −𝑖, that is, 𝑛(Γ𝑟 ;−𝑖) = 0. So we only need to
compute the residue around 𝑖. We can use any one of the three propositions:

Res
(

1
1 + 𝑧2 ; 𝑖

)
= Res

(−𝑖
2

1
𝑧 − 𝑖 ; 𝑖

)
=

−𝑖
2 , Res

(
1

1 + 𝑧2 ; 𝑖
)
= lim

𝑧→𝑖

𝑧 − 𝑖
1 + 𝑧2 =

1
2𝑖 =

−𝑖
2 ,

Res
(

1
1 + 𝑧2 ; 𝑖

)
=

1
2𝑖 =

−𝑖
2 .

The Residue theorem says

𝜋 = 2𝜋𝑖 Res
(

1
1 + 𝑧2 ; 𝑖

)
=

∫
Γ𝑟

1
1 + 𝑧2 𝑑𝑧 =

∫ 𝑟

−𝑟
1

1 + 𝑥2 𝑑𝑥 +
∫
𝛾𝑟

1
1 + 𝑧2 𝑑𝑧.

Let us find the limit as 𝑟 → ∞ of the second term. Assume 𝑟 > 1. The length of 𝛾𝑟 is
𝑟𝜋, and on 𝛾𝑟 , |1 + 𝑧2 | ≥ 𝑟2 − 1. So����∫

𝛾𝑟

1
1 + 𝑧2 𝑑𝑧

���� ≤ 𝑟𝜋
1

𝑟2 − 1
→

as 𝑟→∞ 0.

Hence, ∫ ∞

−∞
1

1 + 𝑥2 𝑑𝑥 = lim
𝑟→∞

∫ 𝑟

−𝑟
1

1 + 𝑥2 𝑑𝑥 = 𝜋.

Why taking the symmetric limit is sufficient to compute the double improper integral
is left to the reader. After all, usually one has to take two independent limits.
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Exercise 5.3.3: Rigorously prove that in the example above, 𝑛(Γ𝑟 ; 𝑖) = 1 and 𝑛(Γ𝑟 ;−𝑖) = 0.

Another application to real integrals is to recognize a path integral. For example,
integrals of trigonometric functions are often integrals over the unit circle. On the
unit circle, 𝑧̄ = 1/𝑧. So if 𝑧 = 𝑒 𝑖𝜃, then cos𝜃 = Re 𝑧 = 𝑧+1/𝑧

2 and sin𝜃 = Im 𝑧 =
𝑧−1/𝑧

2𝑖 .

Example 5.3.7: If 𝑐 > 1, then∫ 2𝜋

0

1
𝑐 + cos𝜃 𝑑𝜃 =

∫
𝜕𝔻

1
𝑐 + 𝑧+1/𝑧

2

1
𝑖𝑧
𝑑𝑧 = −2𝑖

∫
𝜕𝔻

1
𝑧2 + 2𝑐𝑧 + 1

𝑑𝑧.

The function 1
𝑧2+2𝑐𝑧+1 has two simple poles −𝑐 ±

√
𝑐2 − 1, one inside and one outside

the unit circle. Thus∫ 2𝜋

0

1
𝑐 + cos𝜃 𝑑𝜃 = (−2𝑖)(2𝜋𝑖)Res

(
1

𝑧2 + 2𝑐𝑧 + 1
;−𝑐 +

√
𝑐2 − 1

)
=

2𝜋√
𝑐2 − 1

.

Exercise 5.3.4: For all integers 𝑛 ∈ ℤ, compute∫
𝜕𝔻
𝑧𝑛𝑒1/𝑧 𝑑𝑧.

Exercise 5.3.5: Compute using the residue theorem (hint: cos(3𝑥) = Re 𝑒 𝑖3𝑥):

a)
∫ ∞

−∞
1

(𝑥2 + 1)2
𝑑𝑥, b)

∫ ∞

−∞
cos(3𝑥)
𝑥4 + 1

𝑑𝑥.

Exercise 5.3.6 (Inverse Laplace transform): A common integral computed via the Residue
theorem is the inverse Laplace transform via Mellin’s inversion formula. Given 𝐹(𝑠),

𝑓 (𝑡) = L−1 [𝐹(𝑠)] = 1
2𝜋𝑖 lim

𝑟→∞

∫ 𝑐+𝑖𝑟

𝑐−𝑖𝑟
𝑒 𝑠𝑡𝐹(𝑠) 𝑑𝑠, 𝑡 ≥ 0,

is the inverse as long as 𝑐 ∈ ℝ is bigger than the real part of all the singuarities of 𝐹(𝑠).
Compute (using the residue theorem):

a) L−1
[

1
𝑠(𝑠+1)

]
, b) L−1

[
𝑠2

(𝑠+2)2(𝑠2+1)
]
.

Hint: Pick a vertical line (pick a 𝑐) and an arc that goes around all the poles.

Exercise 5.3.7: Compute using the residue theorem:

a)
∫ 2𝜋

0

cos𝜃
2 + cos𝜃 𝑑𝜃, b)

∫ 𝜋

0

sin2 𝜃
2 + cos𝜃 𝑑𝜃.

Exercise 5.3.8: Suppose that 𝑟 > 1, 𝑓 : Δ𝑟(0) \ {1} → ℂ is holomorphic, and suppose 𝑓
has a simple pole with Res( 𝑓 ; 1) = 1. If the power series for 𝑓 at 0 is

∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 , show that
lim𝑛→∞ 𝑐𝑛 exists and compute what it is. Hint: Try subtracting the pole away.
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Exercise 5.3.9: Suppose 𝑓 is holomorphic on 𝑈 = {𝑧 ∈ ℂ : |𝑧 | > 𝑅} for some 𝑅 > 0.
Define the residue of 𝑓 at ∞, Res( 𝑓 ;∞), to be the residue of 𝑔(𝑧) = −𝑧−2 𝑓 (𝑧−1) at 0.

a) Prove that for all 𝑟 > 𝑅,

Res( 𝑓 ;∞) = −1
2𝜋𝑖

∫
𝜕Δ𝑟(0)

𝑓 (𝑧) 𝑑𝑧.

That is, going around a circle in reverse is going around infinity rather than the
center (if what we are “going around” is defined to be whatever is on our left).

b) Suppose 𝑓 is holomorphic on ℂ except for finitely many isolated singularities. Prove
that the sum of all residues of 𝑓 including the residue at ∞ is zero.

Exercise 5.3.10: Use the function 𝑓 (𝑧) = 𝑒−𝑧2/2

1+𝑒−√𝜋(1+𝑖)𝑧 and the rectangular path with vertices
−𝑟, 𝑟, 𝑟 + 𝑖√𝜋, and −𝑟 + 𝑖√𝜋 to compute the integral

∫ ∞
−∞ 𝑒

−𝑥2/2 𝑑𝑥. 

*
 

5.4𝑖 \ Counting zeros and poles

5.4.1𝑖 · The argument principle
Integration picks out singularities, and so it can count zeros and poles of a function.

Theorem 5.4.1 (Argument principle). Suppose 𝑈 ⊂ ℂ is open and Γ is a cycle in 𝑈
homologous to zero in𝑈 . Suppose 𝑓 : 𝑈 → ℂ∞ is a meromorphic function with no zeros or
poles on Γ. Let 𝑧1, . . . , 𝑧𝑛 denote the zeros of 𝑓 counted with multiplicity, and let 𝑝1, . . . , 𝑝ℓ
denote the poles of 𝑓 counted with multiplicity. Then

1
2𝜋𝑖

∫
Γ

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

𝑛∑
𝑘=1

𝑛(Γ; 𝑧𝑘) −
ℓ∑
𝑘=1

𝑛(Γ; 𝑝𝑘).

Furthermore, if ℎ : 𝑈 → ℂ is holomorphic, then

1
2𝜋𝑖

∫
Γ

ℎ(𝑧) 𝑓
′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

𝑛∑
𝑘=1

𝑛(Γ; 𝑧𝑘)ℎ(𝑧𝑘) −
ℓ∑
𝑘=1

𝑛(Γ; 𝑝𝑘)ℎ(𝑝𝑘).

By zeros counted with multiplicity, we mean that if a zero has multiplicity (order) 𝑚,
we repeat it 𝑚 times. For instance, 𝑓 (𝑧) = 𝑧2(𝑧 − 1)3 has the zeros 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5 =

0, 0, 1, 1, 1. Same with poles. The number of zeros or poles of a meromorphic function
inside an open set is possibly countably infinite (unless 𝑓 is identically zero). But
there are only ever finitely many zeros or poles for which 𝑛(Γ; 𝑧) ≠ 0 (see exercises

*This nifty solution is due to H. Kneser. The tricky bit with using the residue theorem is that 𝑒−𝑧2/2

has no singularities itself, so one has to find a function that does.
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below), as long as Γ is homologous to zero. One can even find a slightly smaller𝑈
that only includes finitely many zeros and poles and Γ is still homologous to zero in
that smaller𝑈 , and so a theorem for finitely many zeros and poles is sufficient.

Why do we say that the theorem counts the number of zeros and poles? Suppose
Γ only goes around every point in 𝑧 ∈ 𝑈 at most once in the positive direction or not
at all. That is, 𝑛(Γ; 𝑧) = 1 or 0 for all 𝑧 ∈ 𝑈 . We think of the “inside of Γ” as the points
where 𝑛(Γ; 𝑧) = 1. If 𝑓 has 𝑛 zeros and ℓ poles (counting multiplicity) inside Γ, then

1
2𝜋𝑖

∫
Γ

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑛 − ℓ .

The name “argument principle” comes from the fact that for a path 𝛾, the integral∫
𝛾
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 computes 𝑖 times the change in the argument of 𝑓 as we traverse 𝛾: The

antiderivative of 𝑓 ′(𝑧)
𝑓 (𝑧) is log 𝑓 (𝑧). We take some value of log 𝑓 (𝑧) = log| 𝑓 (𝑧)|+ 𝑖 arg 𝑓 (𝑧)

at the beginning of 𝛾, we follow it around 𝛾, and subtract the value of log 𝑓 (𝑧) at the
end. Another way to look at the integral is to write

1
2𝜋𝑖

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

1
2𝜋𝑖

∫
𝑓 ◦𝛾

1
𝜁
𝑑𝜁 = 𝑛( 𝑓 ◦ 𝛾; 0).

The argument principle counts the number of times 𝑓 ◦ 𝛾 winds around zero.

Proof of the argument principle. We prove the “Furthermore” as that proves the first
part by considering ℎ ≡ 1. The function ℎ(𝑧) 𝑓 ′(𝑧)

𝑓 (𝑧) has isolated singularities at the
zeros and poles of 𝑓 . Let 𝑆 be the set of zeros and poles of 𝑓 , and apply the residue
theorem:

1
2𝜋𝑖

∫
Γ

ℎ(𝑧) 𝑓
′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

∑
𝑝∈𝑆

𝑛(Γ; 𝑝)Res
(
ℎ
𝑓 ′

𝑓
; 𝑝

)
.

We simply compute the residues. Consider a zero of 𝑓 of multiplicity 𝑚 or a
pole of order −𝑚, and without loss of generality suppose it is the origin. Write
𝑓 (𝑧) = 𝑧𝑚𝐹(𝑧) where 𝐹 is holomorphic near 0, 𝐹(0) ≠ 0, and ℎ(𝑧) = ℎ(0) + 𝑧𝐻(𝑧).
Then 𝑓 ′(𝑧) = 𝑚𝑧𝑚−1𝐹(𝑧) + 𝑧𝑚𝐹′(𝑧), and so

ℎ(𝑧) 𝑓
′(𝑧)
𝑓 (𝑧) =

(
ℎ(0) + 𝑧𝐻(𝑧))𝑚𝑧𝑚−1𝐹(𝑧) + 𝑧𝑚𝐹′(𝑧)

𝑧𝑚𝐹(𝑧)
= 𝑚 ℎ(0)1

𝑧
+ ℎ(0)𝐹

′(𝑧)
𝐹(𝑧) + 𝐻(𝑧)𝑚𝐹(𝑧) + 𝑧𝐹

′(𝑧)
𝐹(𝑧) .

Everything except 𝑚 ℎ(0)1
𝑧 is holomorphic near 0. Hence, Res

(
ℎ
𝑓 ′
𝑓
; 0

)
= 𝑚 ℎ(0). The

theorem follows. □

Besides the theoretical implications we will see, there are some immediate
practical ones. The argument principle can be used to locate zeros of polynomials (or
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holomorphic functions more generally) by numerical computations. If we numerically
estimate the integral to within a precision of at least 0.5 (no need to be extremely
precise), then we know the number of zeros of the polynomial enclosed by the cycle.
A related application is computing the power sums of the zeros. Given a cycle Γ

going at most once around a certain region, such that 𝑧1, . . . , 𝑧𝑛 are the zeros of 𝑓
inside Γ, then

1
2𝜋𝑖

∫
Γ

𝑧𝑘
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑧𝑘1 + · · · + 𝑧𝑘𝑛 .

If there is one simple zero 𝑧0 of 𝑓 enclosed within Γ, then

1
2𝜋𝑖

∫
Γ

𝑧
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑧0.

One particular useful consequence is that zeros of a polynomial 𝑓 vary continuously
(interpreted in the right way) as the coefficients of 𝑓 change.

Exercise 5.4.1: Suppose𝑈 ⊂ ℂ is open, Γ is a cycle in𝑈 homologous to zero in𝑈 , and
𝑓 : 𝑈 → ℂ∞ is meromorphic with no zeros or poles on Γ. Show that there are only finitely
many zeros and poles 𝑧 of 𝑓 such that 𝑛(Γ; 𝑧) ≠ 0.

Exercise 5.4.2: Suppose𝑈 ⊂ ℂ is open, Γ is a cycle in𝑈 homologous to zero in𝑈 , and
𝑓 : 𝑈 → ℂ∞ is meromorphic with no zeros or poles on Γ. Show that there exists an open
𝑈′ ⊂ 𝑈 with Γ a cycle in𝑈′ homologous to zero in𝑈′, such that the only zeros or poles 𝑧
of the restriction 𝑓 |𝑈′ are such that 𝑛(Γ; 𝑧) ≠ 0.

Exercise 5.4.3: Compute
∫
𝜕𝔻

𝑧3

2𝑧2+1 𝑑𝑧 with the argument principle. Hint: 𝑧3

2𝑧2+1 = 𝑧2

4
4𝑧

2𝑧2+1 .

Exercise 5.4.4: Let 𝑓 be meromorphic on an open neighborhood of 𝔻 with no pole or zero
on 𝜕𝔻. Suppose Re 𝑓 (𝑧) > 0 for all 𝑧 ∈ 𝜕𝔻, and 𝑓 (0) = 0. Prove that 𝑓 has a pole in 𝔻.

Exercise 5.4.5: Suppose 𝑓 (𝑧) is a degree 3 polynomial, 𝑓 (0) = 1, and

1
2𝜋𝑖

∫
𝜕Δ2(2𝑖)

𝑧
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 2𝑖 + 1, 1

2𝜋𝑖

∫
𝜕Δ2(−2𝑖)

𝑧
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = −𝑖 ,

1
2𝜋𝑖

∫
𝜕Δ1(5)

𝑧
𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 5.

Find 𝑓 . You may assume 𝑓 has no zeros on those 3 circles (the integrals exist after all).

Exercise 5.4.6: Let 𝑃𝑡(𝑧) = 𝑧𝑛 + 𝑐𝑛−1(𝑡)𝑧𝑛−1 + · · · + 𝑐1(𝑡)𝑧 + 𝑐0(𝑡) be a polynomial where
all the coefficients 𝑐𝑘 are continuous functions of [𝑎, 𝑏].

a) Prove that the power sums of the zeros of 𝑃𝑡 (sums 𝑧𝑘1 + · · · + 𝑧𝑘𝑛 where 𝑧1, . . . , 𝑧𝑛
are the zeros) are continuous functions of 𝑡 ∈ [𝑎, 𝑏].

b) Prove that if 𝜉0 is a simple zero of 𝑃𝑡0 for some 𝑡0 ∈ (𝑎, 𝑏), and is the unique zero in
Δ2𝑟(𝜉0), then there exists an 𝜖 > 0 and a continuous function 𝜉 : (𝑡0 − 𝜖, 𝑡0 + 𝜖) →
Δ𝑟(𝜉0) such that 𝜉(𝑡) is the unique (simple) zero of 𝑃𝑡 in Δ𝑟(𝜉0).
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Exercise 5.4.7: Prove that if 𝑈 ⊂ ℂ is a domain, 𝑝 ∉ 𝑈 , and there exists a holomorphic
𝑔 : 𝑈 → ℂ such that 𝑔2 = 𝑧 − 𝑝, then there does not exist a closed path 𝛾 such that
𝑛(𝛾; 𝑝) = 1. Hint: Use the motivation for the theorem, not the theorem itself. Note: Some
more work (see  Exercise 6.3.16 ) can show that this means that existence of square roots
implies that𝑈 is simply connected.

5.4.2𝑖 · Rouché’s theorem
The next theorem allows us to count zeros (or poles) of a function that is close to
another function. In rough terms, the number of zeros minus the number of poles (counting
multiplicity) inside a curve does not change if the function does not change much on the curve.
For instance, the functions 𝑧2 and (𝑧 − 𝜖)(𝑧 + 𝜖) are close on 𝜕𝔻, and they have the
same number of zeros in the disc. A nonzero point might “split” into a zero and a
pole, that is, 𝑧−𝜖𝑧+𝜖 is very close to the function 1 on 𝜕𝔻. So poles are allowed to “cancel”
zeros, but this balance is always maintained. If we do not allow any poles whatsoever,
then the theorem says that the number of zeros does not change.

Theorem 5.4.2 (Rouché  

*
 ). Suppose 𝑈 ⊂ ℂ is open, Γ is a cycle in 𝑈 homologous to zero

in 𝑈 , and 𝑛(Γ; 𝑧) is either 0 or 1 for all 𝑧 ∉ Γ. Suppose 𝑓 : 𝑈 → ℂ∞ and 𝑔 : 𝑈 → ℂ∞ are
meromorphic functions with no zeros or poles on Γ such that

| 𝑓 (𝑧) − 𝑔(𝑧)| < | 𝑓 (𝑧)| + |𝑔(𝑧)|
for all 𝑧 ∈ Γ. Let 𝑉 =

{
𝑧 ∈ 𝑈 \ Γ : 𝑛(Γ; 𝑧) = 1

}
. Let 𝑁 𝑓 , 𝑁𝑔 be the number of zeros in

𝑉 and 𝑃 𝑓 , 𝑃𝑔 the number of poles in 𝑉 (both counting multiplicity) of 𝑓 and 𝑔 respectively.
Then

𝑁 𝑓 − 𝑃 𝑓 = 𝑁𝑔 − 𝑃𝑔 .
The condition on Γ means that the cycle is simple in the sense that it only goes

around any particular point either once or not at all. We then count the number of
zeros and poles inside Γ. The strictness of the inequality is the key point, the nonstrict
inequality is always true for any 𝑓 and 𝑔 by the triangle inequality. Often the theorem
is only applied for holomorphic functions, that is, functions without poles.

Corollary 5.4.3 (Rouché). Let𝑈 , Γ and𝑉 be as in  Theorem 5.4.2 . Suppose 𝑓 : 𝑈 → ℂ and
𝑔 : 𝑈 → ℂ are holomorphic such that | 𝑓 (𝑧) − 𝑔(𝑧)| < | 𝑓 (𝑧)| + |𝑔(𝑧)| for all 𝑧 ∈ Γ. Then 𝑓

and 𝑔 have the same number of zeros (counting multiplicity) in 𝑉 .

Observe that for holomorphic functions, the inequality precludes any zeros of 𝑓
or 𝑔 on Γ, so the statement of the hypotheses is simpler. This observation is actually
quite convenient in the applications as it avoids having to show some technicalities.

The classical statement of the theorem uses the inequality

| 𝑓 (𝑧) − 𝑔(𝑧)| < | 𝑓 (𝑧)|
*The stronger version we state was actually proved by Estermann in 1962.
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as hypothesis. This weaker statement of the theorem is enough for vast majority of
applications, and has a simpler geometric meaning. By the argument principle, the
number of zeros (minus the number of poles) of 𝑓 inside Γ corresponds to the number
times 𝑓 (𝑧) winds around zero as 𝑧 traverses Γ, that is, 𝑛( 𝑓 ◦ Γ; 0). The classical visual
“proof” using this weaker inequality is a dog on a leash with the master going around
a tree. The master is at 𝑓 (𝑧), the tree is at the origin, and the dog is at 𝑔(𝑧), so the
length of the leash is | 𝑓 (𝑧) − 𝑔(𝑧)| and the distance of the master from the tree is
| 𝑓 (𝑧)|. So the “proof” of the theorem is to observe that if the master walks around a
tree 𝑘 times, and the dog is never further from the master than the distance of the
master to the tree, then the dog also walked around the tree 𝑘 times. See  Figure 5.3 .

| 𝑓 (𝑧)|

| 𝑓 (𝑧) − 𝑔(𝑧)|

𝑓 (𝑧)𝑔(𝑧)

Figure 5.3: Dog and tree proof of Rouché’s theorem.

Let us get to the rigorous proof of the symmetric version of the theorem.

Proof of Rouché. Write the inequality as���� 𝑓 (𝑧)𝑔(𝑧) − 1
���� < ���� 𝑓 (𝑧)𝑔(𝑧)

���� + 1.

Let 𝜑(𝑧) = 𝑓 (𝑧)
𝑔(𝑧) . The inequality precludes 𝜑(𝑧) ever being negative real on Γ (it is also

never zero there), and hence it is so in a neighborhood of Γ. The function 𝜑′
𝜑 has a

well-defined antiderivative Log ◦𝜑 on a neighborhood of Γ, where Log is the principal
branch of the logarithm defined in ℂ \ (−∞, 0]. Cauchy’s theorem for derivatives
( Corollary 3.2.6 ) together with the argument principle finishes the proof:

0 =
1

2𝜋𝑖

∫
Γ

𝜑′(𝑧)
𝜑(𝑧) 𝑑𝑧 =

1
2𝜋𝑖

∫
Γ

(
𝑓 ′(𝑧)
𝑓 (𝑧) − 𝑔′(𝑧)

𝑔(𝑧)
)
𝑑𝑧

=
1

2𝜋𝑖

∫
Γ

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 −

1
2𝜋𝑖

∫
Γ

𝑔′(𝑧)
𝑔(𝑧) 𝑑𝑧 = (𝑁 𝑓 − 𝑃 𝑓 ) − (𝑁𝑔 − 𝑃𝑔). □
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Example 5.4.4: A typical application of Rouché is to approximately locate zeros of
polynomials. Consider 𝑃(𝑧) = 𝑧𝑛 + 1. We can explicitly find the roots, but let us
forget we can do so, and show using Rouché that they are all on the unit circle.

First consider Γ to be the circle of radius 1 − 𝜖 (𝜖 > 0) around the origin. On Γ,

|𝑃(𝑧) − 1| = |𝑧 |𝑛 < 1 = |1|.
By Rouché (𝑃(𝑧) is the dog and 1 is the master), 𝑃(𝑧) has the same number of zeros as
the constant 1 (that is, no zeros) in Δ1−𝜖(0).

Second, take 𝑧𝑛 instead of 1, and make Γ be the circle of radius 1 + 𝜖 around the
origin. On Γ,

|𝑃(𝑧) − 𝑧𝑛 | = 1 < |𝑧𝑛 | .
By Rouché, 𝑃(𝑧) and 𝑧𝑛 have the same number of zeros in Δ1+𝜖(0), that is, 𝑛 zeros.
As 𝜖 was arbitrary, all the zeros of 𝑃(𝑧) must be on the unit circle.

Example 5.4.5: Consider a more complicated polynomial𝑃(𝑧) = 𝑧4+12𝑧3+24𝑧2+4𝑧+6.
When |𝑧 | = 1,��𝑃(𝑧) − (𝑧4 + 24𝑧2)�� = ��12𝑧3 + 4𝑧 + 6

�� ≤ ��12𝑧3�� + |4𝑧 | + |6|
= 22 < 23 =

�� |24𝑧2 | − |𝑧4 | �� ≤ ��𝑧4 + 24𝑧2�� .
It is easy to see that 𝑧4 + 24𝑧2 has zeros at ±√24𝑖 (outside the unit circle), and two
zeros at the origin (inside the unit circle). Thus, 𝑃(𝑧) also has two zeros in 𝔻.

On the other hand, if |𝑧 | > 46, then��𝑃(𝑧) − 𝑧4�� = ��12𝑧3 + 24𝑧2 + 4𝑧 + 6
�� ≤ 46|𝑧 |3 < |𝑧 |4 =

��𝑧4�� .
So 𝑃 has all four zeros in a disc Δ46+𝜖(0) for any 𝜖 > 0, in other words, all zeros of 𝑃
satisfy |𝑧 | ≤ 46. These are not the ideal estimates (largest zero of 𝑃 has modulus less
than 10), but they are explicit and they were easy to come by.

Exercise 5.4.8: Using Rouché’s theorem, count the number of zeros of 𝑧7 − 4𝑧3 − 11 in
ann(0; 1, 2).
Exercise 5.4.9: Suppose the monic polynomial 𝑃(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧

𝑛−1 + · · · + 𝑎0 has no
zeros on the unit circle and 𝑘 zeros (counting multiplicity) in the unit disc (𝑘 ≤ 𝑛).
Show that there exists an 𝜖 > 0 such that if |𝑏 𝑗 − 𝑎 𝑗 | < 𝜖 for 𝑗 = 0, . . . , 𝑛 − 1, then
𝑄(𝑧) = 𝑧𝑛 + 𝑏𝑛−1𝑧

𝑛−1 + · · · + 𝑏0 has exactly 𝑘 zeros (counting multiplicity) in 𝔻.

Exercise 5.4.10: Suppose 𝑃(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + · · · + 𝑎0. If 𝑀 > max

{
1,

∑𝑛−1
𝑗=0 |𝑎 𝑗 |

}
,

prove that 𝑃 has 𝑛 zeros (counting multiplicity) in the disc Δ𝑀(0) and no zeros outside.
Do this exercise without applying the fundamental theorem of algebra.

Exercise 5.4.11: Suppose 𝑈 ⊂ ℂ is open, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 → ℂ is a holomorphic
function with no zeros on 𝔻. Prove that there exists a 𝑧 ∈ 𝜕𝔻 such that | 𝑓 (𝑧) − 𝑧 | ≥ 1.
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Exercise 5.4.12: Suppose 𝑈 ⊂ ℂ is open, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 → ℂ is a holomorphic
function such that | 𝑓 (𝑧)| ≥ 1 whenever 𝑧 ∈ 𝜕𝔻, and such that for at least one 𝑝 ∈ 𝔻, we
have 𝑓 (𝑝) ∈ 𝔻. Prove that 𝔻 ⊂ 𝑓 (𝔻).
Exercise 5.4.13: Suppose 𝑈 ⊂ ℂ is open, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 → ℂ is a holomorphic
function such that 𝑓

(
𝔻
) ⊂ 𝔻, then there exists exactly one 𝑧0 ∈ 𝔻 such that 𝑓 (𝑧0) = 𝑧0.

5.4.3𝑖 · Hurwitz’s theorem
Let us see what happens to zeros under limits of functions. That is, if we know the
number of zeros of functions in a sequence, what can we tell about the number of
zeros of the limit. Alternatively, if we have a limit function with 𝑘 zeros, then what
can we say about the number of zeros of the functions in the sequence. Recall that if
a sequence of holomorphic functions converges uniformly on compact subsets, the
limit is holomorphic (see  Theorem 3.4.5 ).

Theorem 5.4.6 (Hurwitz). Let𝑈 ⊂ ℂ be open and 𝑓𝑛 : 𝑈 → ℂ a sequence of holomorphic
functions converging uniformly on compact subsets to a holomorphic 𝑓 : 𝑈 → ℂ. Suppose
Γ is a cycle in 𝑈 homologous to zero in 𝑈 , such that 𝑛(Γ; 𝑧) is 0 or 1 for all 𝑧 ∉ Γ. Suppose
𝑓 has no zeros on Γ and 𝑘 zeros (counting multiplicity) in 𝑉 =

{
𝑧 ∈ 𝑈 \ Γ : 𝑛(Γ; 𝑧) = 1

}
.

Then there is an 𝑁 such that for all 𝑛 ≥ 𝑁 , 𝑓𝑛 has 𝑘 zeros (counting multiplicity) in 𝑉 .

Proof. As a set, Γ is compact, and so there is a 𝛿 > 0 such that 𝛿 < | 𝑓 (𝑧)| for all 𝑧 ∈ Γ.
The functions 𝑓𝑛 converge uniformly to 𝑓 on Γ. So for all 𝑛 large enough,

| 𝑓 (𝑧) − 𝑓𝑛(𝑧)| < 𝛿 < | 𝑓 (𝑧)|

for all 𝑧 ∈ Γ. By  Rouché’s theorem  , 𝑓 and 𝑓𝑛 have the same number of zeros in 𝑉 . □

Note that it is necessary for 𝑓 to not be zero on Γ. If 𝑓 (𝑧) = 𝑧 − 1, then it is zero on
the unit circle but not in the unit disc. The sequences of functions 𝑧 − (1 − 1/𝑛) and
𝑧 − (1 + 1/𝑛) both converge uniformly to 𝑧 − 1, but 𝑧 − (1 − 1/𝑛) has one zero in the unit
disc and 𝑧 − (1 + 1/𝑛) does not.

Example 5.4.7: For every integer 𝑘 > 0, there is an 𝑁 such that for all 𝑑 ≥ 𝑁 , the
polynomial

𝑃𝑑(𝑧) =
𝑑∑
𝑛=0

(−1)𝑛
(2𝑛)! 𝑧

2𝑛

has exactly 2𝑘 zeros in Δ𝜋𝑘(0). This claim follows as cos(𝑧) has exactly 2𝑘 zeros in
that disc and the polynomials 𝑃𝑑 are the partial sums of the power series of cosine,
which converges uniformly on compact subsets.



5.4. COUNTING ZEROS AND POLES 143

The Γ in the theorem is there for defining the region 𝑉 , a compact set with
interior and nice boundary. Often the theorem is applied or stated with Γ being
the boundary of a small disc: That is, suppose { 𝑓𝑛} is a sequence of holomorphic
functions converging uniformly on compact subsets to 𝑓 on some open𝑈 . Suppose 𝑧0

is a zero of 𝑓 of order 𝑘. Then for a small enough disc Δ𝑟(𝑧0), making sure Δ𝑟(𝑧0) ⊂ 𝑈
and 𝑓 is only zero at 𝑧0 on Δ𝑟(𝑧0), there exists an 𝑁 such that for all 𝑛 ≥ 𝑁 , 𝑓𝑛 has 𝑘
zeros counting multiplicity in Δ𝑟(𝑧0).
Example 5.4.8: Hurwitz’s theorem does not work for real functions. Let 𝑓 (𝑥) = 𝑥2 a
function on ℝ. Then 𝑓 has a zero (actually a zero of order 2) at 𝑥 = 0. The functions
𝑓𝑛(𝑥) = 𝑥2 + 1/𝑛 converge uniformly to 𝑓 , but 𝑓𝑛 has no zero for any 𝑥 ∈ ℝ.

On the other hand, consider 𝑓 (𝑧) = 𝑧2 as a function of ℂ, and let 𝑓𝑛(𝑧) = 𝑧2 + 1/𝑛.
Again 𝑓𝑛 goes to 𝑓 uniformly. Now for any 𝜖 > 0, 𝑧2 + 1/𝑛 has two zeros in Δ𝜖(0) for
large enough 𝑛. In this case we can even compute them: ±𝑖/√𝑛.

An interesting application of Hurwitz’s theorem is that the limit of injective
functions is either injective or constant. Injective holomorphic functions are sometimes
called univalent.

Corollary 5.4.9. Suppose 𝑈 ⊂ ℂ is a domain and 𝑓𝑛 : 𝑈 → ℂ are injective holomorphic
functions that converge uniformly on compact subsets to 𝑓 : 𝑈 → ℂ. Then 𝑓 is either
injective or constant.

Proof. Assume 𝑓 is nonconstant. Suppose there exist distinct 𝑧1 and 𝑧2 in𝑈 such that
𝑓 (𝑧1) = 𝑓 (𝑧2) = 𝑤. The function 𝑓 − 𝑤 has isolated zeros at 𝑧1 and 𝑧2. Consider two
disjoint small discs Δ𝑟(𝑧1) and Δ𝑟(𝑧2), whose closures are contained in𝑈 , and such
that 𝑓 −𝑤 is not zero on Δ𝑟(𝑧1) \ {𝑧1} or Δ𝑟(𝑧2) \ {𝑧2}. For a large enough 𝑛, Hurwitz
says that 𝑓𝑛 − 𝑤 has the same number of zeros in Δ𝑟(𝑧1) as 𝑓 − 𝑤 and the same for
Δ𝑟(𝑧2). So there are 𝑧′1 ∈ Δ𝑟(𝑧1) and 𝑧′2 ∈ Δ𝑟(𝑧2) such that 𝑓𝑛(𝑧′1) = 𝑓𝑛(𝑧′2) = 𝑤. In
particular, 𝑓𝑛 is not injective. □

Exercise 5.4.14: Suppose𝑈 ⊂ ℂ is a domain, and suppose 𝑓𝑛 : 𝑈 → ℂ are holomorphic,
nowhere zero, and converge uniformly on compact subsets to 𝑓 : 𝑈 → ℂ. Show that either
𝑓 is nowhere zero, or 𝑓 is identically zero. Give examples of both possible conclusions.

Exercise 5.4.15:
a) Suppose 𝑓𝑛 : 𝔻 → ℂ is a sequence of holomorphic functions converging to 𝑓 : 𝔻 → ℂ

uniformly on compact subsets such that for each 0 < 𝑟 < 1 the number of zeros
(counting multiplicity) of 𝑓𝑛 in Δ𝑟(0) goes to infinity as 𝑛 → ∞. Prove that 𝑓 ≡ 0.

b) Find an example sequence of such maps such that 𝑓𝑛(𝔻) = 𝔻 for all 𝑛.

Exercise 5.4.16: Suppose 𝑓𝑛 : ℂ → ℂ is a sequence of holomorphic functions converging
uniformly on compact subsets to 𝑓 : ℂ → ℂ, which is not identically zero. Suppose that all
the zeros of 𝑓𝑛 are real for all 𝑛. Prove that all the zeros of 𝑓 are real.
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Exercise 5.4.17: Suppose 𝑈 ⊂ ℂ is a domain, 𝑓𝑛 : 𝑈 → ℂ are holomorphic converging
uniformly on compact subsets to a nonconstant 𝑓 : 𝑈 → ℂ, and 𝑓 (𝑧0) = 𝑤0 for some
𝑧0, 𝑤0. Prove that there exists a sequence {𝑧𝑛} in𝑈 such that lim 𝑧𝑛 = 𝑧0 and 𝑓𝑛(𝑧𝑛) = 𝑤0
for all large enough 𝑛.

Exercise 5.4.18: Suppose 𝑃𝑡(𝑧) = 𝑧𝑛 + ∑𝑛−1
𝑘=0 𝑎𝑘(𝑡)𝑧𝑘 is a polynomial with continuous

coefficients 𝑎𝑘 : [0, 1] → ℂ. Suppose 𝑃𝑡 has no zeros on 𝜕𝔻 for all 𝑡 ∈ [0, 1]. Then the
number of zeros of 𝑃𝑡 (counting multiplicity) in 𝔻 is constant as a function of 𝑡.

Exercise 5.4.19:
a) Find an example sequence of automorphisms of 𝔻 converging uniformly on compact

subsets of 𝔻 to a constant.
b) Automorphisms of 𝔻 extend to be continuous on 𝔻. Prove that if a sequence of

automorphisms converges uniformly on 𝔻, then the limit is an automorphism. Hint:
Prove it is injective and its derivative is never zero.

Exercise 5.4.20: Let 𝑓𝑛(𝑥) = 𝑥(𝑥−1/𝑛)(𝑥+1/𝑛)
(1/𝑛)2+𝑥2 and 𝑓 (𝑥) = 𝑥.

a) Show that { 𝑓𝑛} converges uniformly on compact subsets of the real line to 𝑓 .
b) Show that on every interval (−𝜖, 𝜖), 𝑓𝑛 has three distinct zeros for large enough 𝑛,

while 𝑓 (𝑥) has a simple zero.
c) Plug in complex values, 𝑓𝑛(𝑧), and show that { 𝑓𝑛} does not converge uniformly to

anything on any disc Δ𝜖(0).

5.5𝑖 \ The open mapping theorem

A continuous function from a domain𝑈 ⊂ ℝ2 to ℝ2 can do all sorts of things to the
topology. The surprisingly famous 

*
 map (𝑥, 𝑦) ↦→ (𝑥, 𝑥𝑦) takes all of ℝ2, which is

both an open and a closed set, to the set
{(𝑥, 𝑦) : 𝑥 ≠ 0 or 𝑦 = 0

}
, which is neither

open nor closed. Holomorphic functions are always nice to your topology. Recall that
for a continuous map, 𝑓 −1(𝑉) is open whenever𝑉 is open. Nonconstant holomorphic
functions have this property also in reverse. So while not every holomorphic function
is invertible, at least it behaves as if it were as far as the topology is concerned.

Theorem 5.5.1 (Open mapping). Let𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ be holomorphic
and nonconstant. Then 𝑓 (𝑉) is an open set for every open set 𝑉 ⊂ 𝑈 .

Proof. Suppose 𝑓 is nonconstant. As𝑈 is connected, 𝑓 is nonconstant near every point.
Let 𝑉 ⊂ 𝑈 be open and 𝑝 ∈ 𝑉 . As 𝑓 is holomorphic and nonconstant near 𝑝, there is
a closed disc Δ𝑟(𝑝) ⊂ 𝑉 small enough such that 𝑓 (𝑧) ≠ 𝑓 (𝑝) for 𝑧 ∈ 𝜕Δ𝑟(𝑝). There is a

*It is called a “blow-up” and it is used in obtaining a Fields Medal. Alas, the medal has already
been obtained by Hironaka, and you have to find your own map if you want your own medal.
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𝛿 > 0 such that | 𝑓 (𝑧) − 𝑓 (𝑝)| > 𝛿 for all 𝑧 ∈ 𝜕Δ𝑟(𝑝). The function 𝑧 ↦→ 𝑓 (𝑧) − 𝑓 (𝑝) has
at least one zero in Δ𝑟(𝑝) (at 𝑝). Take any 𝑤 ∈ Δ𝛿

(
𝑓 (𝑝)) . Then for all 𝑧 ∈ 𝜕Δ𝑟(𝑝),�� ( 𝑓 (𝑧) − 𝑤) − (

𝑓 (𝑧) − 𝑓 (𝑝)) �� = | 𝑓 (𝑝) − 𝑤 | < 𝛿 < | 𝑓 (𝑧) − 𝑓 (𝑝)| .

By  Rouché , 𝑧 ↦→ 𝑓 (𝑧) − 𝑤 has at least one zero in Δ𝑟(𝑝). In other words,

Δ𝛿
(
𝑓 (𝑝)) ⊂ 𝑓

(
Δ𝑟(𝑝)

) ⊂ 𝑓 (𝑉). □

The open mapping theorem is really a stronger version of the maximum modulus
principle: If for any 𝑝 ∈ 𝑈 , 𝑓 (𝑝) is always in the interior of 𝑓 (𝑉) for any neighborhood
𝑉 of 𝑝, then | 𝑓 (𝑧)| cannot achieve a maximum at 𝑝. Notice also that the proof says
something stronger than the theorem statement. It gives an explicit bound. It says
that if | 𝑓 (𝑧) − 𝑓 (𝑝)| > 𝛿 for 𝑧 ∈ 𝜕Δ𝑟(𝑝), then Δ𝛿

(
𝑓 (𝑝)) ⊂ 𝑓

(
Δ𝑟(𝑝)

)
.

Exercise 5.5.1 (Easy): Suppose𝑈,𝑉 ⊂ ℂ are open and 𝑓 : 𝑈 → ℂ is holomorphic and
bĳective. Prove that 𝑓 −1 : 𝑉 → 𝑈 is continuous.

Exercise 5.5.2 (Easy): Let𝑈 ⊂ ℂ be a domain and let 𝑓 : 𝑈 → ℂ be holomorphic and let
𝑓 (𝑈) ⊂ 𝑉 for some closed set 𝑉 . Suppose 𝑓 (𝑧) ∈ 𝜕𝑉 for some 𝑧 ∈ 𝑈 . Prove 𝑓 is constant.

Exercise 5.5.3: Let𝑈 ⊂ ℂ be a domain and let 𝑓 : 𝑈 → ℂ be holomorphic. Prove that if
|Im 𝑓 (𝑧)| = |Re 𝑓 (𝑧)| for all 𝑧 ∈ 𝑈 , then 𝑓 is constant.

Exercise 5.5.4: Let 𝑈 ⊂ ℂ be a domain and let 𝑓 : 𝑈 → ℂ be holomorphic. Suppose
| 𝑓 ′′(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝑈 for some 𝑀 > 0. Suppose 𝑝 ∈ 𝑈 where 𝑓 ′(𝑝) ≠ 0 and 𝑟 > 0 is
such that 𝑀

2 𝑟 < | 𝑓 ′(𝑝)| and Δ𝑟(𝑝) ⊂ 𝑈 . Let 𝛿 = | 𝑓 ′(𝑝)|𝑟 − 𝑀
2 𝑟

2 = 𝑟
(| 𝑓 ′(𝑝)| − 𝑀

2 𝑟
)
> 0.

Prove that Δ𝛿
(
𝑓 (𝑝)) ⊂ 𝑓

(
Δ𝑟(𝑝)

)
.

Exercise 5.5.5: Let 𝑈 ⊂ ℂ be a nonempty bounded domain and let 𝑓 : 𝑈 → ℂ be
holomorphic. Suppose that 𝑓 is nonconstant and for every 𝑝 ∈ 𝜕𝑈 ,

lim
𝑧→𝑝

| 𝑓 (𝑧)| = 1.

Prove that 𝑓 (𝑈) = 𝔻.

Exercise 5.5.6: Let 𝑓 : ℂ → ℂ be an entire holomorphic function that is real-valued on the
unit circle 𝜕𝔻. Show that 𝑓 is constant. What if 𝜕𝔻 is replaced by the real line?

5.6𝑖 \ Inverses of holomorphic functions
The standard local relationship between derivative and injectivity of a function is the
inverse function theorem ( Theorem 2.2.8 ). It says that if 𝑓 ′(𝑧) is nonzero somewhere,
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then 𝑓 is locally injective and has an inverse 𝑔 such that

𝑔′(𝑤) = 1
𝑓 ′

(
𝑔(𝑤)) .

You now have enough machinery to give a simple proof of the inverse function
theorem for holomorphic functions without needing the real inverse function.

Exercise 5.6.1: Prove the inverse function theorem ( Theorem 2.2.8 ) using the following
outline, without appealing to the real inverse function theorem ( Theorem B.3.16 ).

a) Show that for some neighborhood 𝑉 of 𝑝, 𝑓 |𝑉 is injective. Hint: 𝑓 (𝑧) − 𝑓 (𝑝) has a
simple zero at 𝑝.

b) Show that𝑊 = 𝑓 (𝑉) is open and the inverse 𝑔 : 𝑊 → 𝑉 is continuous.
c) By looking directly at the difference quotient 𝑔(𝑤)−𝑔(𝑤0)

𝑤−𝑤0
, show that 𝑔 is complex

differentiable at all 𝑤0 ∈𝑊 .

So far, nothing really new with holomorphic functions. It is the next result
that is surprising: Being injective implies that the derivative is nonzero. A priory,
this statement should make no sense at all and it is not true for real functions. A
function 𝑓 : ℝ → ℝ such as 𝑓 (𝑥) = 𝑥3 is injective, but its derivative is zero at 𝑥 = 0,
and 𝑓 −1(𝑥) = 3√𝑥 is not differentiable at 𝑥 = 0. On the other hand, intuitively, a
holomorphic function is locally like 𝑧𝑘 for some 𝑘, and the only way that 𝑧𝑘 is injective
for complex 𝑧 is if 𝑘 = 1, in which case the derivative is nonzero. You can make that
argument into a proof, but it is a bit more complicated than what we will do.

Lemma 5.6.1. If 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic and injective, then 𝑓 ′ is
never zero.

Proof. We prove the contrapositive. Suppose 𝑓 ′(𝑝) = 0 for some 𝑝 and suppose 𝑓 is
nonconstant (near 𝑝). So 𝑓 ′ has an isolated zero at 𝑝. Let Δ𝑟(𝑝) ⊂ 𝑈 be small enough
so that 𝑓 ′(𝑧) ≠ 0 for all 𝑧 ∈ Δ𝑟(𝑝) \ {𝑝}, and such that | 𝑓 (𝑧) − 𝑓 (𝑝)| > 𝛿 > 0 for all
𝑧 ∈ 𝜕Δ𝑟(𝑝). The function 𝑧 ↦→ 𝑓 (𝑧) − 𝑓 (𝑝) has a zero at 𝑝 of multiplicity at least two.
For 𝑤 ∈ Δ𝛿

(
𝑓 (𝑝)) \ {

𝑓 (𝑝)}, we have that 𝑧 ↦→ 𝑓 (𝑧) − 𝑤 has at least two zeros in Δ𝑟(𝑝)
counting multiplicity via  Rouché  as before. As the derivative of 𝑓 (𝑧), hence also of
𝑓 (𝑧)−𝑤, is nonzero in the punctured disc, all these zeros are of multiplicity one. Ergo,
𝑓 (𝑧) − 𝑤 has more than one distinct zero, and consequently, 𝑓 is not injective. □

Lemma 5.6.2. Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic and injective, and
Δ𝑟(𝑝) ⊂ 𝑈 . Then for all 𝑤 ∈ 𝑓

(
Δ𝑟(𝑝)

)
,

𝑓 −1(𝑤) = 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 ′(𝑧)𝑧
𝑓 (𝑧) − 𝑤 𝑑𝑧.

Note that 𝑓
(
Δ𝑟(𝑝)

)
is a neighborhood of 𝑓 (𝑝) by the open mapping theorem.
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Proof. Fix 𝑤 ∈ 𝑓
(
Δ𝑟(𝑝)

)
and suppose 𝜁 ∈ Δ𝑟(𝑝) is such that 𝑓 (𝜁) = 𝑤. The derivative

of 𝑓 is never zero by  Lemma 5.6.1 , and so 𝑧 ↦→ 𝑓 (𝑧) −𝑤 has a simple zero at 𝑧 = 𝜁. By
the  residue theorem and  Proposition 5.3.5 ,

1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 ′(𝑧)𝑧
𝑓 (𝑧) − 𝑤 𝑑𝑧 = Res

(
𝑓 ′(𝑧)𝑧
𝑓 (𝑧) − 𝑤 ; 𝜁

)
=
𝑓 ′(𝜁)𝜁
𝑓 ′(𝜁) = 𝜁 = 𝑓 −1(𝑤). □

Alternatively, you could note that the formula is just applying the  argument
principle with ℎ(𝑧) = 𝑧. In fact, that is a way that you can guess the formula.

Putting the two lemmas together obtains the main result of this section.
Theorem 5.6.3. If 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic and injective, then 𝑓 (𝑈)
is open, 𝑓 ′ is never zero on𝑈 , and 𝑓 −1 : 𝑓 (𝑈) → 𝑈 is holomorphic.

Proof. If 𝑓 is injective, then it is not constant anywhere, and so 𝑓 (𝑈) is open by the
 open mapping theorem . By  Lemma 5.6.1  , 𝑓 ′ is never zero on𝑈 , by  Lemma 5.6.2 the
inverse is locally defined by an integral, and by  Lemma 3.4.1  , 𝑓 −1 is holomorphic. □

The inverse function theorem could be used to prove that 𝑓 −1 is holomorphic
instead of  Lemma 3.4.1 , although the fact that there is an integral formula for 𝑓 −1 is
quite interesting on its own.

Exercise 5.6.2: Suppose 𝑓 is holomorphic in an open neighborhood of the closed unit disc
𝔻 such that for every 𝑧0 ∈ 𝔻, ∫

𝜕𝔻

𝑓 ′(𝑧)
𝑓 (𝑧) − 𝑓 (𝑧0) 𝑑𝑧 = 2𝜋𝑖.

Prove that 𝑓 |𝔻 is a biholomorphism of 𝔻 and 𝑓 (𝔻).
Exercise 5.6.3: Suppose 𝑈,𝑉 ⊂ ℂ are domains. Suppose 𝑓𝑛 : 𝑈 → 𝑉 are bĳective
holomorphic mappings that converge uniformly on compact subsets to a nonconstant
holomorphic 𝑓 (which is injective by  Corollary 5.4.9 ). Show that 𝑓 (𝑈) = 𝑉 and that

{
𝑓 −1
𝑛

}
converges uniformly on compact subsets to 𝑓 −1.

Exercise 5.6.4: Suppose 𝑈,𝑉 ⊂ ℂ are open, 𝑘 ∈ ℕ, and 𝑓 : 𝑈 → 𝑉 is an onto 𝑘-to-1
holomorphic map, that is, for each 𝑤 ∈ 𝑉 , 𝑓 −1(𝑤) is 𝑘 distinct points. Prove that 𝑓 ′ is
never zero on𝑈 .

Exercise 5.6.5: Suppose𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic, 𝑉 = 𝑓 (𝑈), such that
𝑧 ↦→ 𝑓 (𝑧) − 𝑤 has two zeros counting multiplicity for every 𝑤 ∈ 𝑉 . Call the zeros 𝑧1(𝑤)
and 𝑧2(𝑤) (given in some unspecified order).

a) Prove that 𝑤 ↦→ 𝑧1(𝑤) + 𝑧2(𝑤) and 𝑤 ↦→ 𝑧1(𝑤)𝑧2(𝑤) are holomorphic functions
on 𝑉 . Hint: Argument principle.

b) Show that 𝑧1(𝑤) and 𝑧2(𝑤) are solutions of 𝑧2+𝑏(𝑤)𝑧+ 𝑐(𝑤) = 0 for some functions
𝑏 and 𝑐 holomorphic on 𝑉 .

c) For 𝑓 (𝑧) = 𝑧2,𝑈 = 𝑉 = ℂ, show that neither 𝑧1 nor 𝑧2 is a continuous function of
𝑤, no matter how one orders the zeros.



6𝑖 \\ Montel and Riemann

A round man cannot be expected to fit in a square hole right away. He must have
time to modify his shape.

—Mark Twain

6.1𝑖 \ Equicontinuity and the Arzelà–Ascoli theorem

6.1.1𝑖 · Convergence of subsequences
The point of Montel’s theorem is to find a simple criterion for relatively compact
subsets of the set of holomorphic functions. That is, we will try to figure out when
does a sequence of holomorphic functions contain a convergent subsequence. We
would really like something like the Bolzano–Weierstrass for sequences of numbers:
If {𝑧𝑛} is a bounded sequence in ℂ, then it has a convergent subsequence. Interestingly,
Montel provides just that kind of theorem for holomorphic functions. However,
before we get to Montel, we must seek a weaker result of this kind for continuous
functions, the Arzelà–Ascoli theorem. For continuous functions, we need something
more than just boundedness to get the convergent subsequence, we need some sort
of uniformity in the continuity. But let us start with boundedness.

Definition 6.1.1. Let 𝑋 be any set. Consider a sequence of functions 𝑓𝑛 : 𝑋 → ℂ. We
say that { 𝑓𝑛} is pointwise bounded if for every 𝑥 ∈ 𝑋, there is an 𝑀𝑥 ∈ ℝ such that

| 𝑓𝑛(𝑥)| ≤ 𝑀𝑥 for all 𝑛 ∈ ℕ.

We say that { 𝑓𝑛} is uniformly bounded if there is an 𝑀 ∈ ℝ such that

| 𝑓𝑛(𝑥)| ≤ 𝑀 for all 𝑛 ∈ ℕ and all 𝑥 ∈ 𝑋.

A sequence of functions that converges pointwise is pointwise bounded. The
sequence of bounded functions

{
𝑛2𝑥

1+𝑛2𝑥2

}
for 𝑥 ∈ ℝ is not uniformly bounded, but

it is pointwise bounded as it converges pointwise (exercise). On the other hand, a
uniformly bounded sequence of functions may not contain any subsequence that
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converges even pointwise. For instance, sin(𝑛𝑥) on the real line is one such example. 

*
 

Below we show that for such a sequence there must always exist a subsequence
converging at countably many points, but ℂ (or any open subset) is uncountable.
Moreover, the functions 𝑥𝑛 are uniformly bounded and converge pointwise to a
function on the unit interval [0, 1], but the limit is discontinuous. We desire continuous
functions, ergo we must require better convergence than pointwise. For now, we
ignore continuity and show that we get pointwise converging subsequence on a
countable set if we start with pointwise bounded functions. The proof is a nice
example of a diagonalization argument.

Proposition 6.1.2. Let 𝑋 be a countable set and { 𝑓𝑛} a pointwise bounded sequence of
functions 𝑓𝑛 : 𝑋 → ℂ. Then { 𝑓𝑛} has a subsequence that converges pointwise.

Proof. Let 𝑥1, 𝑥2, 𝑥3, . . . be an enumeration of the elements of 𝑋. The sequence
{ 𝑓𝑛(𝑥1)}∞𝑛=1 is bounded and hence there exists a subsequence of { 𝑓𝑛}∞𝑛=1, which we
denote by { 𝑓1,𝑘}∞𝑘=1, such that { 𝑓1,𝑘(𝑥1)}∞𝑘=1 converges. Suppose we already defined
{ 𝑓𝑚,𝑘}∞𝑘=1, a subsequence of { 𝑓𝑚−1,𝑘}∞𝑘=1, such that { 𝑓𝑚,𝑘(𝑥 𝑗)}∞𝑘=1 converges for 𝑗 =
1, 2, . . . , 𝑚. Let { 𝑓𝑚+1,𝑘}∞𝑘=1 be a subsequence of { 𝑓𝑚,𝑘}∞𝑘=1 such that { 𝑓𝑚+1,𝑘(𝑥𝑚+1)}∞𝑘=1
converges (and hence it converges for all 𝑥 𝑗 for 𝑗 = 1, 2, . . . , 𝑚 + 1). Rinse and repeat.

If 𝑋 is finite, we are done as the process stops at some point. If 𝑋 is countably
infinite, we pick the sequence { 𝑓𝑘,𝑘}∞𝑘=1, which is a subsequence of the original
sequence { 𝑓𝑛}∞𝑛=1. For any 𝑚, the tail { 𝑓𝑘,𝑘}∞𝑘=𝑚 is a subsequence of { 𝑓𝑚,𝑘}∞𝑘=1 and
hence for any 𝑚 the sequence { 𝑓𝑘,𝑘(𝑥𝑚)}∞𝑘=1 converges. □

Exercise 6.1.1: Show that the sequence of functions
{

𝑛2𝑥
1+𝑛2𝑥2

}
for 𝑥 ∈ ℝ is not uniformly

bounded, but it is pointwise bounded (in fact it converges pointwise).

Exercise 6.1.2: Prove that a uniformly convergent sequence of functions converging to a
bounded function is uniformly bounded.

Exercise 6.1.3: Define a sequence of continuous functions 𝑓𝑛 : ℝ → [0, 1] such that
{ 𝑓𝑛(𝑥)} converges to 1 on a dense set of 𝑥 and it converges to 0 on another dense set. Hint:
Do it piecewise.

Exercise 6.1.4 (Requires measure theory): Prove that on no interval [𝑎, 𝑏] ⊂ ℝ does
sin(𝑛𝑥) have a pointwise convergent subsequence. First, if 𝑓 is the pointwise limit of a
subsequence on [𝑎, 𝑏], use Riemann–Lebesgue lemma to show that 𝑓 = 0 almost everywhere.
Second, consider

∫
[𝑎,𝑏] 𝑓

2 𝑑𝑥 and the dominated convergence theorem to find a contradiction.

*A proof of this fact requires some measure theory, see the exercises.
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6.1.2𝑖 · Equicontinuity
For larger than countable sets, in order to find convergent subsequences of continuous
functions we need some uniformity of continuity across the sequence.

Definition 6.1.3. Let (𝑋, 𝑑) be a metric space. A set 𝑆 of functions 𝑓 : 𝑋 → ℂ is
equicontinuous at 𝑥 ∈ 𝑋 when for every 𝜖 > 0, there is a 𝛿 > 0 such that if 𝑦 ∈ 𝑋 with
𝑑(𝑥, 𝑦) < 𝛿, then

| 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖 for all 𝑓 ∈ 𝑆.
We say 𝑆 is equicontinuous if it is equicontinuous at every 𝑥 ∈ 𝑋.

The set 𝑆 is uniformly equicontinuous when for every 𝜖 > 0, there is a 𝛿 > 0 such
that if 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) < 𝛿, then

| 𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖 for all 𝑓 ∈ 𝑆.

For finite sets 𝑆, equicontinuity and uniform equicontinuity is the same as
continuity and uniform continuity. The notion is interesting for infinite sets.

Exercise 6.1.5: Prove that a finite set of functions continuous at 𝑥 is equicontinuous at 𝑥,
and a finite set of uniformly continuous functions is uniformly equicontinuous.

Proposition 6.1.4. Let (𝑋, 𝑑) be a compact metric space. Consider an equicontinuous
sequence of functions 𝑓𝑛 : 𝑋 → ℂ. Then the sequence { 𝑓𝑛} is uniformly equicontinuous.

Proof. Argue by contrapositive. Suppose that { 𝑓𝑛} is not uniformly equicontinuous.
Then there exists an 𝜖 > 0 such that for every 𝑘 ∈ ℕ, there are 𝑥𝑘 , 𝑦𝑘 ∈ 𝑋 with
𝑑(𝑥𝑘 , 𝑦𝑘) < 1/𝑘 such that | 𝑓𝑛𝑘 (𝑥𝑘) − 𝑓𝑛𝑘 (𝑦𝑘)| ≥ 𝜖 for some 𝑛𝑘 . By compactness, {𝑥𝑘}
and {𝑦𝑘} have convergent subsequences, so without loss of generality, suppose that
they converge, in which case they converge to the same 𝑥 ∈ 𝑋. For any 𝛿 > 0, take 𝑘
such that 𝑑(𝑥, 𝑥𝑘) < 𝛿 and 𝑑(𝑥, 𝑦𝑘) < 𝛿. Then

𝜖 ≤ �� 𝑓𝑛𝑘 (𝑥𝑘) − 𝑓𝑛𝑘 (𝑦𝑘)
�� ≤ �� 𝑓𝑛𝑘 (𝑥𝑘) − 𝑓𝑛𝑘 (𝑥)

�� + �� 𝑓𝑛𝑘 (𝑥) − 𝑓𝑛𝑘 (𝑦𝑘)
�� .

So either
�� 𝑓𝑛𝑘 (𝑥𝑘) − 𝑓𝑛𝑘 (𝑥)

�� or
�� 𝑓𝑛𝑘 (𝑥) − 𝑓𝑛𝑘 (𝑦𝑘)

�� is bigger than or equal to a fixed 𝜖/2. As
we can do that for any 𝛿, { 𝑓𝑛} is not equicontinuous at 𝑥. □

Exercise 6.1.6: Suppose (𝑋, 𝑑) is a compact metric space, and a sequence of continuous
functions 𝑓𝑛 : 𝑋 → ℂ converges uniformly. Prove that { 𝑓𝑛} is uniformly equicontinuous.

Exercise 6.1.7: Suppose 𝑆 is a set of differentiable functions 𝑓 : [0, 1] → ℝ such that
| 𝑓 ′(𝑥)| ≤ 1 for all 𝑥 ∈ [0, 1]. Prove that 𝑆 is uniformly equicontinuous.
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6.1.3𝑖 · Arzelà–Ascoli
For continuous functions, our analogue of Bolzano–Weierstrass is the Arzelà–Ascoli
theorem. Unlike Bolzano–Weierstrass, Arzelà–Ascoli requires equicontinuity in
addition to boundedness. We will start with the theorem on compact metric spaces,
and then move to open sets. We start with a lemma showing that a countable dense
set exists in any compact metric space. We will then be able to apply our result about
countable sets.

Proposition 6.1.5. A compact metric space (𝑋, 𝑑) contains a countable dense subset, that
is, there exists a countable 𝐷 ⊂ 𝑋 such that 𝐷 = 𝑋.

Denote by 𝐵(𝑥, 𝛿) = {
𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝛿

}
the ball of radius 𝛿.

Proof. As 𝑋 is compact, for every 𝑛 ∈ ℕ there exist 𝑥𝑛,1, 𝑥𝑛,2, . . . , 𝑥𝑛,𝑘𝑛 ∈ 𝑋 such that

𝑋 = 𝐵(𝑥𝑛,1, 1/𝑛) ∪ · · · ∪ 𝐵(𝑥𝑛,𝑘𝑛 , 1/𝑛).
Let 𝐷 =

⋃∞
𝑛=1{𝑥𝑛,1, 𝑥𝑛,2, . . . , 𝑥𝑛,𝑘𝑛 }. The set 𝐷 is countable as it is a countable union

of finite sets. For every 𝑥 ∈ 𝑋 and every 𝜖 > 0, there exists an 𝑛 such that 1/𝑛 < 𝜖 and
an 𝑥𝑛,ℓ ∈ 𝐷 such that

𝑥 ∈ 𝐵(𝑥𝑛,ℓ , 1/𝑛) ⊂ 𝐵 (𝑥𝑛,ℓ , 𝜖) .
Hence 𝑥 ∈ 𝐷, so 𝐷 = 𝑋, and 𝐷 is dense. □

Theorem 6.1.6 (Arzelà–Ascoli). Let (𝑋, 𝑑) be a compact metric space, and let { 𝑓𝑛} be a
pointwise bounded and equicontinuous sequence of functions 𝑓𝑛 : 𝑋 → ℂ. Then { 𝑓𝑛} is
uniformly bounded and has a uniformly convergent subsequence.

Proof. First, we show that the sequence is uniformly bounded. As 𝑋 is compact, the
sequence { 𝑓𝑛} is uniformly equicontinuous. Hence, there is a 𝛿 > 0 such that for all
𝑥 ∈ 𝑋 and all 𝑛 ∈ ℕ,

𝐵(𝑥, 𝛿) ⊂ 𝑓 −1
𝑛

(
𝐵( 𝑓𝑛(𝑥), 1)

)
.

By compactness, there exist 𝑥1, . . . , 𝑥𝑘 such that

𝑋 = 𝐵(𝑥1, 𝛿) ∪ · · · ∪ 𝐵(𝑥𝑘 , 𝛿).
As { 𝑓𝑛} is pointwise bounded, there exists an 𝑀 such that for ℓ = 1, . . . , 𝑘,

| 𝑓𝑛(𝑥ℓ )| ≤ 𝑀 for all 𝑛.

Given any 𝑥 ∈ 𝑋, 𝑥 ∈ 𝐵(𝑥ℓ , 𝛿) for some ℓ , and hence 𝑥 ∈ 𝑓 −1
𝑛

(
𝐵( 𝑓𝑛(𝑥ℓ ), 1)

)
for all 𝑛. In

other words, | 𝑓𝑛(𝑥) − 𝑓𝑛(𝑥ℓ )| < 1. So { 𝑓𝑛} is uniformly bounded as for all 𝑛,

| 𝑓𝑛(𝑥)| < 1 + | 𝑓𝑛(𝑥ℓ )| ≤ 1 +𝑀.

Next, pick a countable dense subset 𝐷 ⊂ 𝑋. By  Proposition 6.1.2 , find a sub-
sequence { 𝑓𝑛 𝑗 } that converges pointwise on 𝐷. Write 𝑔𝑗 = 𝑓𝑛 𝑗 for simplicity. The
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sequence {𝑔𝑛} is uniformly equicontinuous. Let 𝜖 > 0 be given. There exists a 𝛿 > 0
such that for all 𝑥 ∈ 𝑋 and all 𝑛 ∈ ℕ,

𝐵(𝑥, 𝛿) ⊂ 𝑔−1
𝑛

(
𝐵(𝑔𝑛(𝑥), 𝜖/3)) .

By density of 𝐷, every 𝑥 ∈ 𝑋 is in 𝐵(𝑦, 𝛿) for some 𝑦 ∈ 𝐷. By compactness of 𝑋, there
is a finite subset {𝑥1, . . . , 𝑥𝑘} ⊂ 𝐷 such that

𝑋 = 𝐵(𝑥1, 𝛿) ∪ · · · ∪ 𝐵(𝑥𝑘 , 𝛿).
As there are finitely many points and {𝑔𝑛} converges pointwise on 𝐷, there exists a
single 𝑁 such that for all 𝑛, 𝑚 ≥ 𝑁 ,

|𝑔𝑛(𝑥ℓ ) − 𝑔𝑚(𝑥ℓ )| < 𝜖/3 for ℓ = 1, . . . , 𝑘.

Let 𝑥 ∈ 𝑋 be arbitrary. There is some ℓ such that 𝑥 ∈ 𝐵(𝑥ℓ , 𝛿) and so for all 𝑗 ∈ ℕ,

|𝑔𝑗(𝑥) − 𝑔𝑗(𝑥ℓ )| < 𝜖/3.

So for 𝑛, 𝑚 ≥ 𝑁 ,

|𝑔𝑛(𝑥) − 𝑔𝑚(𝑥)| ≤ |𝑔𝑛(𝑥) − 𝑔𝑛(𝑥ℓ )| + |𝑔𝑛(𝑥ℓ ) − 𝑔𝑚(𝑥ℓ )| + |𝑔𝑚(𝑥ℓ ) − 𝑔𝑚(𝑥)| < 𝜖.

Hence, the sequence is uniformly Cauchy. By completeness of ℂ, it is uniformly
convergent. □

Before we prove Arzelà–Ascoli for open sets in ℂ, we need a useful lemma, which
deserves to be stated separately. It is sometimes called an exhaustion by compact sets.

Lemma 6.1.7. Let𝑈 ⊂ ℂ be open. Then there exists a sequence 𝐾𝑛 of compact subsets of𝑈
such that 𝐾𝑛 ⊂ 𝐾◦

𝑛+1 (each set is contained in the interior of the next),
⋃∞
𝑛=1 𝐾𝑛 = 𝑈 , and

for every compact 𝐾 ⊂ 𝑈 , there is an 𝑛 such that 𝐾 ⊂ 𝐾𝑛 .

Proof. Let 𝑑(𝑧, 𝜕𝑈) denote the distance to the boundary of𝑈 . Define

𝐾𝑛 =
{
𝑧 ∈ 𝑈 : 𝑑(𝑧, 𝜕𝑈) ≥ 1/𝑛 and |𝑧 | ≤ 𝑛

}
.

The set 𝐾𝑛 is compact: It is closed (in ℂ) by  Proposition A.5.5 and obviously bounded.
It is also easy to see that𝑈 =

⋃
𝐾𝑛 . The interior of 𝐾𝑛 is given (exercise) by

𝐾◦
𝑛 =

{
𝑧 ∈ 𝑈 : 𝑑(𝑧, 𝜕𝑈) > 1/𝑛 and |𝑧 | < 𝑛

}
.

It is then clear that 𝐾𝑛 ⊂ 𝐾◦
𝑛+1, and 𝑈 =

⋃
𝐾◦
𝑛 (it is an open cover). Therefore, any

compact 𝐾 ⊂ 𝑈 is contained in some 𝐾◦
𝑛 , and hence in 𝐾𝑛 . □

Exercise 6.1.8: Prove the formula of 𝐾◦
𝑛 . That is, prove that the interior of 𝐾𝑛 is

𝐾◦
𝑛 =

{
𝑧 ∈ 𝑈 : 𝑑(𝑧, 𝜕𝑈) > 1/𝑛 and |𝑧 | < 𝑛

}
. Then prove that 𝐾𝑛 ⊂ 𝐾◦

𝑛+1 for all 𝑛.
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We now prove a version of Arzelà–Ascoli for open subsets of ℂ. That is, a version
that doesn’t just work on one compact set but gets us uniform convergence on compact
subsets of an open set.
Corollary 6.1.8 (Arzelà–Ascoli). Let𝑈 ⊂ ℂ be open and let { 𝑓𝑛} be a pointwise bounded
and equicontinuous sequence of functions 𝑓𝑛 : 𝑈 → ℂ. Then { 𝑓𝑛} contains a subsequence
that converges uniformly on compact subsets.

Proof. Find the exhaustion by compact sets {𝐾ℓ } from the lemma. Using the Arzelà–
Ascoli theorem on compact sets, find a subsequence { 𝑓1,𝑛} of { 𝑓𝑛} that converges
uniformly on 𝐾1. Then find a subsequence { 𝑓2,𝑛} of { 𝑓1,𝑛} that converges uniformly
on 𝐾2, and so on. Finally take the diagonal sequence { 𝑓𝑛,𝑛}. Any compact 𝐾 ⊂ 𝑈 is
contained in some 𝐾ℓ . The ℓ -tail of the sequence { 𝑓𝑛,𝑛} is a subsequence of { 𝑓ℓ ,𝑛} and
hence uniformly convergent on 𝐾ℓ and thus on 𝐾. □

Exercise 6.1.9: Suppose that 𝑓𝑛 : [0, 1] → ℂ are functions that are pointwise bounded,
(real) differentiable, and for some 𝑀 > 0, we have | 𝑓 ′𝑛(𝑡)| ≤ 𝑀 for all 𝑡 ∈ [0, 1] and all 𝑛.
Prove that there exists a subsequence that converges uniformly on [0, 1].
Exercise 6.1.10: Let 𝑓𝑛 : [−1, 1] → ℝ be given by 𝑓𝑛(𝑥) = 𝑛𝑥

1+(𝑛𝑥)2 . Prove that the sequence
is uniformly bounded, converges pointwise to 0, but does not converge uniformly to 0.
Which hypothesis of Arzelà–Ascoli is not satisfied? Prove your assertion.

Exercise 6.1.11: Suppose 𝑓𝑛 : 𝜕𝔻 → ℂ are uniformly bounded continuous functions. Let
𝑔(𝑧, 𝑤) be a continuous function on 𝔻 × 𝜕𝔻. Define 𝐹𝑛 : 𝔻 → ℂ by

𝐹𝑛(𝑧) =
∫
𝜕𝔻
𝑓𝑛(𝑤) 𝑔(𝑧, 𝑤) 𝑑𝑤.

Show that {𝐹𝑛} has a uniformly convergent subsequence.

Exercise 6.1.12: Suppose (𝑋, 𝑑) is a compact metric space and { 𝑓𝑛} an equicontinuous
sequence of functions on 𝑋. If { 𝑓𝑛} converges pointwise, show that it converges uniformly.

Exercise 6.1.13: Define 𝑓𝑛 : [0, 1] → ℂ by 𝑓𝑛(𝑡) = 𝑒 𝑖(2𝜋𝑡+𝑛).
a) Prove that { 𝑓𝑛} is a uniformly equicontinuous uniformly bounded sequence.
b) Let 𝛿 ∈ ℝ be given, and define 𝑔(𝑡) = 𝑒 𝑖(2𝜋𝑡+𝛿). Prove that there exists a subsequence

of { 𝑓𝑛} converging uniformly to 𝑔.
Feel free to use the Kronecker density theorem: {𝑒 𝑖𝑛}∞

𝑛=1 is dense in the unit circle.

6.2𝑖 \ Montel’s theorem
For holomorphic functions, a bound on the function means a bound on the derivative
using the Cauchy integral formula. A uniform bound on the derivative gives
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equicontinuity, and so it comes as no surprise that a uniformly bounded set of
holomorphic functions is equicontinuous. Let us use some of the traditional language. 

*
 

Definition 6.2.1. Let𝑈 ⊂ ℂ be open. A set Fof holomorphic functions 𝑓 : 𝑈 → ℂ is
a normal family if every sequence in Fhas a subsequence that converges uniformly on
compact subsets (the limit need not be in F).

A set F of functions on 𝑈 is locally bounded if for every 𝑝 ∈ 𝑈 , there is a disc
Δ𝑟(𝑝) ⊂ 𝑈 and 𝑀 > 0, such that ∥ 𝑓 ∥Δ𝑟(𝑝) ≤ 𝑀 for all 𝑓 ∈ F.

In more modern language, a set F is a normal family if it is precompact, or
relatively compact, in the space of holomorphic functions on 𝑈 . But we didn’t
define an actual topology or metric on this space in this book, so we will just use the
traditional verbiage.
Theorem 6.2.2 (Montel). Let 𝑈 ⊂ ℂ be open and let F be a locally bounded set of
holomorphic functions on 𝑈 . Then F is a normal family (every sequence has a subsequence
that converges uniformly on compact subsets).

The theorem allows quite incredible applications. The thing is, using just the
definitions, it is often easy to show that a sequence is bounded, but it is hard to show
that it converges (or has a subsequence that does). One can generate “approximate”
solutions to a problem without worrying about them being close to something. The
reader has seen applications of this idea (using Bolzano–Weierstrass) when working
with sequences in ℂ or ℝ before (several times in this book already in fact).

Proof. The point of the proof is to apply Arzelà–Ascoli, so let us go through the
hypotheses. Clearly F is pointwise bounded as it is bounded on discs around every
point. We need to show that it is equicontinuous at every point.

Consider 𝑝 ∈ 𝑈 and suppose Δ𝑟(𝑝) ⊂ 𝑈 . The family F is bounded on this disc,
say ∥ 𝑓 ∥

Δ𝑟(𝑝) ≤ 𝑀 for all 𝑓 ∈ F. For 𝑧 ∈ Δ𝑟/2(𝑝),

| 𝑓 ′(𝑧)| =
����� 1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑝)

𝑓 (𝜁)
(𝜁 − 𝑧)2

𝑑𝜁

����� ≤ 1
2𝜋

∫
𝜕Δ𝑟(𝑝)

| 𝑓 (𝜁)|
|𝜁 − 𝑧 |2 |𝑑𝜁 |

≤ 1
2𝜋

∫
𝜕Δ𝑟(𝑝)

𝑀

(𝑟/2)2
|𝑑𝜁 | = 4𝑀

𝑟
.

And so

| 𝑓 (𝑧) − 𝑓 (𝑝)| =
�����∫[𝑝,𝑧]

𝑓 ′(𝜁) 𝑑𝜁
����� ≤ ∫

[𝑝,𝑧]
| 𝑓 ′(𝜁)| |𝑑𝜁 | ≤ 4𝑀

𝑟
|𝑧 − 𝑝 |.

As 𝑀 does not depend on the particular 𝑓 , we get that F is equicontinuous at 𝑝 (it is
in fact Lipschitz at 𝑝 with the same Lipschitz constant for every 𝑓 ∈ F). Therefore, we
may apply Arzelà–Ascoli,  Corollary 6.1.8  , to any sequence in F to find a convergent
subsequence and hence F is a normal family. □

*We wouldn’t want the reader to miss out on all the jokes about how Montel had a “normal family.”
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Montel’s theorem is very useful for solving extremal problems: finding a holo-
morphic function that satisfies a certain extremal condition such as maximizing the
derivative. There are several examples of this usage in the exercises below, and in
fact our main application will be to prove the Riemann mapping theorem, which is
proved by solving an extremal problem using Montel’s theorem.

Another common application of Montel is to use it via Vitali’s theorem, which
is an exercise below. Given a locally bounded sequence of holomorphic functions,
one only needs to prove pointwise convergence at “enough” points to get that the
sequence actually converges uniformly on compact subsets.

Exercise 6.2.1: Prove the converse to Montel: If F is a normal family of holomorphic
functions on an open set𝑈 ⊂ ℂ, then F is locally bounded.

Exercise 6.2.2: For open𝑈 ⊂ ℂ, prove that “locally bounded” means “bounded on compact
subsets,” that is, F is locally bounded if and only if for every compact 𝐾 ⊂ 𝑈 there is an
𝑀 > 0 such that ∥ 𝑓 ∥𝐾 ≤ 𝑀 for all 𝑓 ∈ F.

Exercise 6.2.3 (Vitali’s theorem): Suppose𝑈 ⊂ ℂ is a domain, { 𝑓𝑛} is a locally bounded
sequence of holomorphic functions 𝑓𝑛 : 𝑈 → ℂ converging pointwise on a set 𝐸 ⊂ 𝑈 , and
𝐸 has a limit point in𝑈 . Prove that { 𝑓𝑛} converges uniformly on compact subsets in𝑈 .

Exercise 6.2.4: Let𝑈 ⊂ ℂ be open and Fa normal family of holomorphic functions on𝑈 .
Show that { 𝑓 ′ : 𝑓 ∈ F} is a normal family.

Exercise 6.2.5: Let 𝑈 ⊂ ℂ be open and F a set of holomorphic functions such that
{ 𝑓 ′ : 𝑓 ∈ F} is a normal family.

a) Show that Fneed not be normal family.
b) Add a simple hypothesis (one that is weaker than “F is locally bounded”) that would

make it a normal family.

Exercise 6.2.6: Given 𝑐 ∈ [0, 1) let F𝑐 be the set of holomorphic 𝑓 : 𝔻 → 𝔻 such that
𝑓 (0) = 0 and 𝑓 (1/2) = 𝑐.

a) Prove that F𝑐 = ∅ if 𝑐 ∈ (1/2, 1) and F𝑐 ≠ ∅ if 𝑐 ∈ [0, 1/2].
b) Prove that for each 𝑐 ∈ [0, 1/2], there exists an 𝑓 ∈ F𝑐 such that | 𝑓 ′(0)| is minimal

(among the functions in F𝑐), and let 𝑚𝑐 = inf
{| 𝑓 ′(0)| : 𝑓 ∈ F𝑐

}
.

c) Prove that 𝑚𝑐 > 0 if 𝑐 > 1/4 and 𝑚𝑐 = 0 if 𝑐 ≤ 1/4.

Exercise 6.2.7: Let 𝑈 ⊂ ℂ be a domain, 𝑝 ∈ 𝑈 , and suppose there exists a nonconstant
bounded holomorphic function on𝑈 .

a) Prove that there exists a holomorphic 𝐹 : 𝑈 → 𝔻 such that 𝐹′(𝑝) ≠ 0, and if
𝑓 : 𝑈 → 𝔻 is holomorphic, then | 𝑓 ′(𝑝)| ≤ |𝐹′(𝑝)|.

b) Prove that necessarily 𝐹(𝑝) = 0.

Exercise 6.2.8: Show that there exists a holomorphic 𝑓 : 𝔻 → 𝔻 such that∫
𝔻

| 𝑓 ′(𝑥 + 𝑖𝑦)|2 𝑑𝑥 𝑑𝑦 is maximal.
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Exercise 6.2.9: Find the largest domain𝑈 ⊂ ℂ such that the family of functions defined
by 𝑧 ↦→ 𝑒 𝑐𝑧 , 𝑐 ≥ 0, is a normal family and, of course, prove your assertion.

Exercise 6.2.10: Show that if the partial sums of a power series centered at 𝑝 are uniformly
bounded on Δ𝑟(𝑝) for some 𝑟 > 0, then the power series converges in Δ𝑟(𝑝).

6.3𝑖 \ Riemann mapping theorem

6.3.1𝑖 · The theorem
The Riemann mapping theorem says that every simply connected domain inℂ (except
ℂ itself) is really equivalent (biholomorphically, conformally) to 𝔻. It is a theorem
that gets cited a lot in all sorts of branches of mathematics. 

*
 

Theorem 6.3.1 (Riemann mapping). Let𝑈 ⊂ ℂ be a simply connected domain such that
𝑈 ≠ ℂ. Let 𝑝 ∈ 𝑈 be given. Then there exists a unique biholomorphic (conformal) map
𝑓 : 𝑈 → 𝔻 such that 𝑓 (𝑝) = 0 and 𝑓 ′(𝑝) > 0 (real and positive).

See  Figure 6.1 for the mapping that takes the upper half-disc to the unit disc. You
will explicitly construct this map in  Exercise 6.3.2 .

Figure 6.1: The Riemann map for the upper half-disc with 𝑝 = (√2 − 1)𝑖.

The proof of the theorem is a wonderful example of solving a problem by
formulating a related extremal problem. The 𝑓 in the theorem maximizes | 𝑓 ′(𝑝)|
among injective holomorphic maps taking 𝑝 to 0. We will prove that maximizing
| 𝑓 ′(𝑝)| is equivalent to 𝑓 being onto: For any map that is not onto, we find one with a
bigger | 𝑓 ′(𝑝)| that still goes into the disc. Such maps are bounded, so Montel gives
us a convergent sequence with | 𝑓 ′(𝑝)| going to the supremum, and the limit then
has to be onto. Why would one think of this extremal problem? Well, maximizing
the derivative seems like a good way to spread out the values. We wish to make the
image as large as possible, and we get furthest if the velocity is largest, no?

*For example, a beginning course on topology might cite the theorem to say that any simply
connected domain in ℝ2 is homeomorphic to the disc, and that’s despite the topologists only needing
the mapping to be continuous.
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Proof. Consider F to be the family of injective (univalent) holomorphic 𝑓 : 𝑈 → 𝔻

such that 𝑓 (𝑝) = 0. We’re trying to find an 𝑓 ∈ F that is onto. Before we rush off to
Montel, however, we must show that some injective 𝑓 : 𝑈 → 𝔻 actually exists, that is,
that Fis not empty. Here is where we use that𝑈 is not equal to the complex plane (by
Liouville, Fwould be empty if𝑈 = ℂ). If the complement of𝑈 contained an open set,
things would be easy, but we can only use that the complement of𝑈 contains at least
one point, and that𝑈 is simply connected. We will use the simply-connectedness to
construct a square root, as a square root squishes things together.

Suppose 𝑞 ∈ ℂ \ 𝑈 . The function 𝑧 ↦→ 𝑧 − 𝑞 is never zero and 𝑈 is simply
connected, so 𝑧− 𝑞 has a holomorphic square root—there exists a 𝑔 : 𝑈 → ℂ such that(
𝑔(𝑧))2

= 𝑧 − 𝑞. The set 𝑔(𝑈) is open by the  open mapping theorem  . If 𝑔(𝑧) = 𝑔(𝜁),
then

(
𝑔(𝑧))2

=
(
𝑔(𝜁))2 and so 𝑧 = 𝜁. Thus 𝑔 is injective. What’s more, 𝑔(𝑧) = −𝑔(𝜁)

also implies 𝑧 = 𝜁. Thus, 𝑔(𝑧) = −𝑔(𝜁) never happens since 𝑔 is never zero. In other
words, 𝑔(𝑈) ∩ (−𝑔(𝑈)) = ∅. The set −𝑔(𝑈) (the set of negatives of all points in 𝑔(𝑈))
is also open, and so the complement of 𝑔(𝑈) contains an open disc Δ𝑟(𝜉). Hence,

𝑧 ↦→ 𝑟

𝑔(𝑧) − 𝜉

takes 𝑈 to 𝔻 and is injective. By composing with the correct automorphism of the
disc, we find a map that takes 𝑝 to 0. Hence, F is nonempty.

OK. Now suppose that 𝑓 : 𝑈 → 𝔻 is an injective holomorphic map such that
𝑓 (𝑝) = 0, but that 𝑓 is not onto: There is a 𝑞 ∈ 𝔻 \ 𝑓 (𝑈). Recall that 𝜑𝑞(𝑧) = 𝑧−𝑞

1−𝑞̄𝑧 is an
automorphism of 𝔻 that takes 𝑞 to 0, and consider 𝜑𝑞 ◦ 𝑓 . This function is not zero on
𝑈 and thus there exists a holomorphic square root 𝑔 on𝑈 , that is,

(
𝑔(𝑧))2

= 𝜑𝑞
(
𝑓 (𝑧)) .

The square root of a number in 𝔻 is still in 𝔻, so 𝑔 takes𝑈 to 𝔻. If 𝑔(𝑧) = 𝑔(𝜁), then
𝜑𝑞

(
𝑓 (𝑧)) = 𝜑𝑞

(
𝑓 (𝜁)) and as 𝜑𝑞 ◦ 𝑓 is injective, 𝑧 = 𝜁. So 𝑔 is injective. The function 𝑔

takes 𝑝 to one of the roots of −𝑞. Define

ℎ = 𝜑𝑔(𝑝) ◦ 𝑔.
In particular, ℎ(𝑝) = 0, and ℎ ∈ F. The inverse of 𝜑𝑎 is 𝜑−𝑎 , so 𝑔 = 𝜑−𝑔(𝑝) ◦ ℎ. Next,
differentiate 𝜑𝑞 ◦ 𝑓 = 𝑔2 at 𝑝, noting that 𝜑′

𝑎(0) = 1 − |𝑎 |2:(
1 − |𝑞 |2) 𝑓 ′(𝑝) = 𝜑′

𝑞

(
𝑓 (𝑝)) 𝑓 ′(𝑝) = 2𝑔(𝑝)𝑔′(𝑝)

= 2𝑔(𝑝)𝜑′
−𝑔(𝑝)

(
ℎ(𝑝))ℎ′(𝑝) = 2𝑔(𝑝)(1 − |𝑔(𝑝)|2)ℎ′(𝑝).

As
(
𝑔(𝑝))2

= −𝑞, then

| 𝑓 ′(𝑝)| = 2|𝑔(𝑝)| (1 − |𝑔(𝑝)|2)
1 − |𝑞 |2 |ℎ′(𝑝)| = 2

√|𝑞 |
1 + |𝑞 | |ℎ

′(𝑝)|.

If |𝑞 | < 1, then 2
√

|𝑞 |
1+|𝑞 | < 1 (calculus exercise). In other words,

| 𝑓 ′(𝑝)| < |ℎ′(𝑝)|.



158 CHAPTER 6. MONTEL AND RIEMANN

Take a sequence { 𝑓𝑛} in Fsuch that

lim
𝑛→∞| 𝑓

′
𝑛(𝑝)| = sup

𝑓 ∈F
| 𝑓 ′(𝑝)|.

As all functions in Fare bounded by 1, Montel says that there exists a subsequence
that converges uniformly on compact subsets to some holomorphic 𝑓 . Assume { 𝑓𝑛}
is that subsequence. By the corollary to Hurwitz,  Corollary 5.4.9 , the function 𝑓 is
injective or constant. It cannot be constant, as 𝑓 ′𝑛(𝑝) converges to 𝑓 ′(𝑝), which cannot
be zero as 0 < | 𝑓 ′𝑛(𝑝)| ≤ | 𝑓 ′(𝑝)| for any 𝑛. We must have 𝑓 (𝑝) = 0 by taking the limit.
Similarly | 𝑓 (𝑧)| ≤ 1 for all 𝑧 ∈ 𝑈 by taking limits, so 𝑓 (𝑈) ⊂ 𝔻. By the  open mapping
theorem , 𝑓 (𝑈) ⊂ 𝔻, so 𝑓 ∈ F. If 𝑓 was not onto, then it would not be the one that
achieves the supremum of | 𝑓 ′(𝑝)|, see the construction of ℎ above. Thus 𝑓 (𝑈) = 𝔻,
and 𝑓 is the desired map. Multiplying by 𝑒 𝑖𝜃 we can make 𝑓 ′(𝑝) > 0.

The uniqueness is left as an exercise. □

Exercise 6.3.1: Finish the proof of the theorem: Given an open𝑈 ⊂ ℂ and 𝑝 ∈ 𝑈 , prove
that a biholomorphic 𝑓 : 𝑈 → 𝔻 such that 𝑓 (𝑝) = 0 and 𝑓 ′(𝑝) > 0 is unique if it exists.

Remark 6.3.2. The map from the theorem can be useful, but the theorem itself
doesn’t tell you how to construct it. There are entire books written on the subject,
collecting the techniques for constructing these maps for various types of domains.
For instance, there is an explicit formula for the map given any polygon called the
Schwarz–Christoffel mapping. Let us not worry about these constructions here.
Remark 6.3.3. Another interesting question we will not address is the boundary
regularity of the map. That is, does the map extend to the closure𝑈 , and how “nice”
it is. If𝑈 is bounded by a Jordan curve, it is known that 𝑓 extends to be continuous on
𝑈 . If𝑈 has smooth boundary (locally a graph of a smooth function), then 𝑓 extends
smoothly to 𝑈 . If 𝑈 has real-analytic boundary (locally a graph of a real-analytic
function), then 𝑓 extends holomorphically a bit past the boundary. Again, we refer
the reader to more advanced literature.
Remark 6.3.4. In the proof we only used that𝑈 was simply connected to obtain square
roots of nowhere zero functions. So the result we actually proved is that existence
of square roots on𝑈 ≠ ℂ implies that𝑈 is biholomorphic to 𝔻. In other words, we
proved that𝑈 being simply connected is equivalent to the existence of square roots.

Exercise 6.3.2: Find the unique biholomorphic map (the Riemann map) 𝑓 : 𝑈 → 𝔻

explicitly for the following𝑈 and 𝑝, that is, such that 𝑓 (𝑝) = 0 and 𝑓 ′(𝑝) > 0:
a) The strip𝑈 = {𝑧 : −1 < Im 𝑧 < 1}, 𝑝 = 0.
b) The quadrant𝑈 = {𝑧 : Re 𝑧 > 0 and Im 𝑧 > 0}, 𝑝 = 1+𝑖√

2
.

c) The upper half-disc 𝑈 = {𝑧 : |𝑧 | < 1 and Im 𝑧 > 1}, 𝑝 = (√2 − 1)𝑖. Hint: Start
with the inverse of the Cayley map, and don’t worry about 𝑝 at first. See  Figure 6.1 .
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Exercise 6.3.3: Suppose 𝑉 ⊂ ℂ is a simply connected domain, and 𝑉 ≠ ℂ. Show that
every holomorphic 𝑓 : ℂ → 𝑉 is constant.

Exercise 6.3.4: Suppose𝑈 ⊂ ℂ is a simply connected domain. Show that for every two
points 𝑧, 𝑤 ∈ 𝑈 , there exists an automorphism 𝜓 ∈ Aut(𝑈) such that 𝜓(𝑧) = 𝑤.

Exercise 6.3.5:
a) Suppose𝑈 ⊂ ℂ is a simply connected domain,𝑈 ≠ ℂ, 𝑝, 𝑞 ∈ 𝑈 are distinct points,

and 𝑓 : 𝑈 → 𝑈 is holomorphic such that 𝑓 (𝑝) = 𝑝 and 𝑓 (𝑞) = 𝑞. Prove that 𝑓 is
the identity, that is, 𝑓 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑈 .

b) Find a counterexample if𝑈 = ℂ.

Exercise 6.3.6: A Riemann-mapping-like theorem for multiply connected domains (domains
with holes) is not true (at least not in the most obvious way): Show that the punctured disc
ann(0; 0, 1) = 𝔻 \ {0} and the annulus ann(0; 1, 2) are not biholomorphic.

Exercise 6.3.7: Suppose𝑈 ⊂ ℂ is a domain. Suppose one connected component of ℂ∞ \𝑈
is more than one point.

a) Prove that𝑈 is biholomorphic to a subset of 𝔻.
b) If ℂ∞ \𝑈 has finitely many connected components, then𝑈 is biholomorphic to 𝔻 \𝐾

for some (possibly empty) compact set 𝐾 ⊂ 𝔻, where 𝐾 has finitely many components.
Hint: What if the component contained ∞?

Exercise 6.3.8: Let 𝑆 ⊂ ℂ be a countable closed subset. Prove that 𝑈 = ℂ \ 𝑆 is not
biholomorphic to any subset of 𝔻. Hint: A countable closed contains isolated points since
every nonempty perfect set is uncountable (feel free to assume this fact).

Exercise 6.3.9: Prove that if 𝑓 : ℂ → ℂ is entire holomorphic and injective, then 𝑓 is onto.

6.3.2𝑖 · Simply connected is simply connected ★

Let us finally prove that simply connected (in the sense of homology,  Definition 4.3.1 

that we have been using all this time), is equivalent to simply connected in the sense
of homotopy. The proof of this corollary is a wonderful example of something that
would be quite difficult without the  Riemann mapping theorem  , and it is almost
trivial with the mapping theorem. The key idea is that any path is trivially homotopic
to the zero path in the disc just by scaling. See also  Example 4.5.2 .

Corollary 6.3.5. A domain𝑈 ⊂ ℂ is simply connected in the sense of homotopy if and only
if it is simply connected in the sense of  Definition 4.3.1 .

Proof.  Proposition 4.5.10  says that if𝑈 is simply connected in the sense of homotopy,
then𝑈 is simply connected in the sense of homology. So let us prove the converse.

Suppose 𝑈 is simply connected in the sense of homology. Let 𝛾 : [𝑎, 𝑏] → 𝑈 be
a continuous function with 𝛾(𝑎) = 𝛾(𝑏). We wish to show that 𝛾 is homotopic to a
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constant in 𝑈 . The Riemann mapping theorem says that either 𝑈 = ℂ or there is a
biholomorphism 𝑓 : 𝑈 → 𝔻.

If𝑈 = ℂ, then define the homotopy 𝐻 : [𝑎, 𝑏] × [0, 1] → ℂ as

𝐻(𝑡 , 𝑠) = (1 − 𝑠)𝛾(𝑡).
If𝑈 ≠ ℂ, define 𝐻 : [𝑎, 𝑏] × [0, 1] → 𝑈 as

𝐻(𝑡 , 𝑠) = 𝑓 −1
(
(1 − 𝑠) 𝑓 (𝛾(𝑡)) ) .

In other words, we map 𝑈 to 𝔻 and consider 𝑓 ◦ 𝛾. Then we define 𝐻 in the same
way as we did for ℂ, and then we take the whole thing back to𝑈 . □

Remark 6.3.6. Let us again emphasize that the definition “simply connected in terms
of homology” is not standard. It is just a shortcut we took in case one wants to skip
homotopy on first reading. In the wild (outside of this book), “simply connected” is
always in terms of homotopy. Furthermore, while for domains in ℂ the two concepts
happen to be the same, they are not the same for more general topological spaces.

Exercise 6.3.10: Without using the Riemann mapping theorem,  Corollary 6.3.5 , or mapping
to the disc in any way, prove by constructing an explicit homotopy that the slit plane
ℂ \ (−∞, 0] is simply connected in the sense of homotopy, see the proof of the corollary.

6.3.3𝑖 · Cycles around compacts and simply-connectedness
As a second and perhaps much less obvious application of the Riemann mapping
theorem, we will prove a lemma that around any compact set in some domain 𝑈
we can find a cycle that goes around this compact set and is homologous to zero in
𝑈 . What’s interesting is that there is no simply connected domain in sight in this
problem, but we can still use the  Riemann mapping theorem to greatly simplify
the topology of the situation. There are more direct and constructive (but no less
technical) ways of proving the lemma below, 

*
 but I have an irrational affinity to using

the mapping theorem, and this is my book after all.
This lemma will allow us to finish the proof that simply connected domains in ℂ

are precisely those where the complement in ℂ∞ is connected. That is, we will prove
the converse of  Proposition 4.3.7 . First the lemma.

Lemma 6.3.7. Let𝑈 ⊂ ℂ be open and suppose that 𝐾 ⊂ 𝑈 is compact and nonempty. Then
there exists a cycle Γ in 𝑈 \ 𝐾 such that 𝑛(Γ; 𝑧) = 1 for all 𝑧 ∈ 𝐾 and 𝑛(Γ; 𝑧) = 0 for all
𝑧 ∈ ℂ \𝑈 (Γ is homologous to zero in𝑈) and such that 𝑛(Γ; 𝑧) is 0 or 1 for all 𝑧 ∉ Γ.

*The typical proof will put a fine enough square grid on ℂ and then show that if we add up all
these small cycles whose squares happen to intersect the compact set and remove the doubled sides,
we get the cycle we want.
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The intuitive idea of the proof is rather simple. Suppose 𝐾 is connected. Take
one point of it to infinity by an LFT (an inversion). Then use the Riemann mapping
theorem to make the complement of 𝐾 go to the disc (or several discs). Then the path
is a backwards (clockwise) circle very close to the boundary of the disc to “go around”
(after reversing the inversion) what’s “outside the disc,” that is, it will go around 𝐾.
The complement of 𝑈 corresponds to a compact set inside the disc so this way we
will not “go around” the complement of 𝑈 . Then we repeat the procedure for all
components of 𝐾. See  Figure 6.2 . As expected, we hit a bunch of technicalities such as
𝐾 possibly having infinitely many connected components, that the complement of a
connected 𝐾 can have multiple components, and of course that vague intuitive ideas
are nice, but we need to actually do some grubby computation to prove anything.

𝐾

0
𝑈 0

“𝐾”

𝜓
(
𝜑(𝑈 \ 𝐾))

𝜓 ◦ 𝜑

∞

Figure 6.2: The idea of the proof: The complement of 𝐾 with infinity goes to the inside of
the disc by Riemann mapping theorem. The inversion is the 𝜑 and 𝜓 is the mapping
from Riemann’s theorem. The outside of the disc on the right is not really the image of 𝐾,
but morally one could think of it that way (hence the quotes).

Proof. We first enlarge 𝐾 so that it has only finitely many components. For a small
enough 𝑟 > 0, we cover 𝐾 by finitely many discs Δ𝑟(𝑧) such that Δ𝑟(𝑧) ⊂ 𝑈 . In
particular, for some 𝑧1, . . . , 𝑧𝑚 ,

𝐾′ = Δ𝑟(𝑧1) ∪ · · · ∪ Δ𝑟(𝑧𝑚)

is a compact subset of𝑈 and 𝐾 ⊂ 𝐾′. As 𝐾′ is a union of finitely many closed discs, it
has finitely many topological components. If we find a Γ in𝑈 around 𝐾′, then we are
done as 𝐾 ⊂ 𝐾′.

Let 𝐾1, . . . , 𝐾𝑛 be the components of 𝐾′. The components are closed, and as there
are finitely many, 𝐾2 ∪ · · · ∪𝐾𝑛 is also closed. If we prove the lemma for the connected
compact set 𝐾1 and the open set𝑈 \ (𝐾2 ∪ · · · ∪𝐾𝑛) to find a cycle Γ1, then we claim we
are done: We could repeat the procedure for each 𝐾 𝑗 to find Γ𝑗 and let Γ = Γ1+· · ·+Γ𝑛 .
As Γ𝑗 winds exactly once around every point of 𝐾 𝑗 and does not wind around any
point of 𝐾ℓ for ℓ ≠ 𝑗, then Γ will wind exactly once around any point of 𝐾′, and it still
homologous to zero in𝑈 .
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So, without loss of generality, assume that 𝐾 is connected. Also assume that 0 ∈ 𝐾.
If 𝐾 = {0}, we are done trivially, so assume 𝐾 is larger than one point. Consider
𝜑 : ℂ∞ → ℂ∞ be the inversion LFT: 𝜑(𝑧) = 1/𝑧 for 𝑧 ∈ ℂ\{0}, 𝜑(0) = ∞, and 𝜑(∞) = 0.
Being an LFT, 𝜑 is a biholomorphic mapping of ℂ∞ to itself, where 𝜑−1 = 𝜑. Let

𝑉 = 𝜑(ℂ∞ \ 𝐾).
Note that ∞ ∉ 𝑉 , 0 ∈ 𝑉 , 𝑉 ≠ ℂ (𝐾 is more than one point), and ℂ∞ \ 𝑉 = 𝜑(𝐾) is
connected. So each connected component of 𝑉 is a simply connected domain by

 Proposition 4.3.7 (exercise). As we can assume that 𝐾 is a finite union of closed discs,
ℂ∞ \ 𝐾 and therefore 𝑉 has finitely many connected components. Let 𝑉1, . . . , 𝑉𝑚 be
the connected components of 𝑉 . By the Riemann mapping theorem, there exists a
biholomorphic map from 𝑉𝑗 to Δ1(𝑞 𝑗), where 𝑞1, . . . , 𝑞𝑚 are some points far enough
apart so that the discs are disjoint. Write 𝐷 = Δ1(𝑞1) ∪ · · · ∪ Δ1(𝑞𝑚). In other words,
there is a biholomorphic 𝜓 : 𝑉 → 𝐷. We can arrange that 𝑞1 = 0 and 𝜓(0) = 0.

The set ℂ∞ \ 𝑈 is compact: It is a closed subset of a compact set ℂ∞. As 𝜑 is
continuous, 𝜑(ℂ∞ \𝑈) is compact, and a subset of 𝑉 . And as 𝜓 is continuous,

𝑆 = 𝜓
(
𝜑(ℂ∞ \𝑈))

is a compact subset of 𝐷. There is an 𝑟 < 1 such that

𝑆 ⊂ Δ𝑟(𝑞1) ∪ · · · ∪ Δ𝑟(𝑞𝑚).
Consider the paths 𝛾𝑗(𝑡) = 𝑞 𝑗 + 𝑟𝑒−𝑖𝑡 for 𝑡 ∈ [0, 2𝜋], that is, 𝛾𝑗 = −𝜕Δ𝑟(𝑞 𝑗). Let
Γ𝑗 = 𝜑−1 ◦ 𝜓−1 ◦ 𝛾𝑗 , and Γ = Γ1 + · · · + Γ𝑚 .

Let us compute the winding numbers. For any 𝑝 not on Γ, compute the winding
number (see  Proposition 3.1.7 ):

𝑛(Γ; 𝑝) =
𝑚∑
𝑗=1

1
2𝜋𝑖

∫
𝜑−1◦𝜓−1◦𝛾𝑗

1
𝑧 − 𝑝 𝑑𝑧 =

𝑚∑
𝑗=1

1
2𝜋𝑖

∫
𝜓−1◦𝛾𝑗

−1
(1 − 𝜁𝑝)𝜁 𝑑𝜁

=

𝑚∑
𝑗=1

1
2𝜋𝑖

∫
𝛾𝑗

−1(
1 − 𝜓−1(𝜉)𝑝) 𝜓−1(𝜉)𝜓′ (𝜓−1(𝜉)) 𝑑𝜉.

First suppose that 𝑝 ∈ ℂ \𝑈 . The function

ℎ(𝜉) = −1(
1 − 𝜓−1(𝜉)𝑝) 𝜓−1(𝜉)𝜓′ (𝜓−1(𝜉))

defined on 𝐷 has two poles: one at 𝜓(1/𝑝) and one at 𝑞1 = 0 (the third factor in the
denominator is never zero). They are both simple poles as is easy to check and the
residues are (using  Proposition 5.3.5 )

Res(ℎ; 0) = −1(
1 − 𝜓−1(0)𝑝) 𝜓′ (𝜓−1(0)) 1

1
𝜓′(𝜓−1(0))

= −1



6.3. RIEMANN MAPPING THEOREM 163

and
Res

(
ℎ;𝜓(1/𝑝)) = −1

𝜓−1 (𝜓(1/𝑝)) 𝜓′ (𝜓−1(𝜓(1/𝑝))) 1
−1

𝜓′(𝜓−1(𝜓(1/𝑝))) 𝑝
= 1.

The path 𝛾1 goes around 𝑞1 = 0. Some 𝛾𝑗 goes around 𝜓(1/𝑝), as 𝑟 was picked
sufficiently large precisely so that the circles 𝛾𝑗 go around 𝑆, that is, points that are
the image of ℂ \𝑈 , in particular, 𝜓(1/𝑝) = 𝜓

(
𝜑(𝑝)) . The sum of the residues is zero,

so by the  residue theorem ,
𝑛(Γ; 𝑝) = 0.

Next suppose 𝑝 ∈ 𝐾. As before 𝑛(Γ; 𝑝) = ∑
𝑗

1
2𝜋𝑖

∫
𝛾𝑗
ℎ(𝜉) 𝑑𝜉. As 𝑝 ∈ 𝐾, 𝜓−1(𝜉) ≠ 1/𝑝

for all 𝜉 ∈ 𝐷, and so ℎ has just the pole at 0. Since 𝛾1 traverses the circle backwards,

𝑛(Γ; 𝑝) =
𝑚∑
𝑗=1

1
2𝜋𝑖

∫
𝛾𝑗

ℎ(𝜉) 𝑑𝜉 =
1

2𝜋𝑖

∫
𝛾1

ℎ(𝜉) 𝑑𝜉 = −Res(ℎ; 0) = 1.

If 𝑝 is any other point not on Γ, then 𝑛(Γ; 𝑝) is either 0 or 1, depending on if there
is a pole at 𝜓(1/𝑝) and if Γ goes around it or not. □

Exercise 6.3.11: Prove that if 𝐾 ⊂ ℂ∞ is compact and connected, then every component of
ℂ∞ \ 𝐾 is a simply connected domain. Hint: Prove that the complement of each one of these
components is connected.

We can now prove the simplest topological characterization of simply connected
domains in ℂ.

Theorem 6.3.8. Let 𝑈 ⊂ ℂ be a domain. Then ℂ∞ \ 𝑈 is connected if and only if 𝑈 is
simply connected.

Proof. The forward direction is  Proposition 4.3.7 . Let’s the do the backwards direction
by contrapositive. Suppose ℂ∞ \𝑈 is disconnected. Then there are two nonempty
disjoint closed sets 𝑆 and 𝐾 such that 𝑆 ∪ 𝐾 = ℂ∞ \ 𝑈 . Assume ∞ ∈ 𝑆. The set
𝑈′ = 𝑈 ∪ 𝐾 is open as 𝑆 is closed,𝑈′ ⊂ ℂ, and 𝐾 ⊂ 𝑈′ is compact. Apply the lemma
to find a cycle Γ in𝑈 = 𝑈′ \ 𝐾 such that 𝑛(Γ; 𝑧) = 1 for all 𝑧 ∈ 𝐾. In other words, Γ is
not homologous to zero in𝑈 . □

Exercise 6.3.12: Suppose 𝐾 ⊂ ℂ is compact and connected, ℂ \ 𝐾 is connected, and 𝐾 is
more than one point. Prove that there exists a biholomorphic map 𝜓 : ℂ \ 𝐾 → ℂ \𝔻.

Exercise 6.3.13: Construct an example compact set 𝐾 ⊂ ℂ with a connected component
𝐾1 with the following property. For every cycle Γ in ℂ \ 𝐾 such that 𝑛(Γ; 𝑧) = 1 for all
𝑧 ∈ 𝐾1, there exists a 𝜁 ∈ 𝐾 \ 𝐾1 where 𝑛(Γ; 𝜁) = 1. Why does this example not contradict
the construction in the proof of the lemma?
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Exercise 6.3.14: Suppose { 𝑓𝑛} is a sequence of holomorphic functions on an open set
𝑈 ⊂ ℂ that converges uniformly on compact subsets to a nonconstant 𝑓 : 𝑈 → ℂ. Let
𝐾 ⊂ 𝑈 be a compact set. Prove that for every open neighborhood 𝑉 of 𝐾 in 𝑈 (so
𝐾 ⊂ 𝑉 ⊂ 𝑈) there exists a smaller open neighborhood𝑊 (so 𝐾 ⊂ 𝑊 ⊂ 𝑉) and an 𝑁 ∈ ℕ

such that 𝑓 and 𝑓𝑛 have the same number of zeros in𝑊 for all 𝑛 ≥ 𝑁 .

Exercise 6.3.15: Given an open𝑈 ⊂ ℂ, a compact nonempty 𝐾 ⊂ 𝑈 , and a 𝛿 > 0, prove
there exists a cycle Γ in𝑈 \ 𝐾 homologous to zero in𝑈 , such that 𝑛(Γ; 𝑧) is either 0 or 1 for
all 𝑧 ∉ Γ, such that 𝑛(Γ; 𝑧) = 1 for all 𝑧 ∈ 𝐾, and such that for every 𝑝 ∈ Γ there is a 𝑞 ∈ 𝐾
such that |𝑝 − 𝑞 | < 𝛿 (Γ is within 𝛿 of 𝐾).

Exercise 6.3.16: Let𝑈 ⊂ ℂ be a domain.
a) Prove that if𝑈 is not simply connected, then there exists a 𝑝 ∈ ℂ \𝑈 and a cycle Γ

in𝑈 such that 𝑛(Γ; 𝑝) = 1.
b) Fix an integer 𝑘 ≥ 2. Suppose that for every nowhere zero holomorphic 𝑓 : 𝑈 → ℂ,

there exists a holomorphic 𝑔 : 𝑈 → ℂ such that 𝑔𝑘 = 𝑓 . Prove that 𝑈 is simply
connected. Hint: See  Exercise 5.4.7 for a hint.



7𝑖 \\ Harmonic Functions

If you cannot get rid of the family skeleton, you may as well make it dance.

—George Bernard Shaw

7.1𝑖 \ Harmonic functions

Hitherto, we examined holomorphic functions as complex-valued functions. How-
ever, to do analysis one needs inequalities, and complex numbers are not ordered.
Let us consider the real and imaginary parts of holomorphic functions, the so-called
harmonic functions. Interestingly, harmonic functions come up often in applied
mathematics, for example as steady state heat or the distribution of electrostatic
potential in a region without charge. Harmonic functions are used to study holomor-
phic functions and vice versa, holomorphic functions are used to study harmonic
functions.

Most of the results we will prove for harmonic functions are analogues of the
results for holomorphic functions. The reader is encouraged to look for these
connections. Just as it is best to study animals in their natural habitat, many results
we proved for holomorphic functions are better understood as results for harmonic
functions. Nevertheless, the results for harmonic functions are not always a simple
application of what has already been proved for holomorphic functions, and even
the statements or proofs of the analogous results may be quite different. Harmonic
functions are somewhat more general than real and imaginary parts of holomorphic
functions. They are real and imaginary parts of holomorphic functions only locally,
but perhaps not globally.

7.1.1𝑖 · Real and imaginary parts of holomorphic functions

Definition 7.1.1. Let𝑈 ⊂ ℂ be open. A twice continuously (real) differentiable (𝐶2

for short) function 𝑓 : 𝑈 → ℝ is harmonic if

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2 + 𝜕2 𝑓

𝜕𝑦2 = 0 on𝑈 .
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The operator ∇2, sometimes written Δ, is the Laplacian. 

*
 It is the trace of the

Hessian matrix. It is convenient to note that

4 𝜕2

𝜕𝑧̄𝜕𝑧
𝑓 = 4

[
1
2

(
𝜕

𝜕𝑥
+ 𝑖 𝜕

𝜕𝑦

)] [
1
2

(
𝜕

𝜕𝑥
− 𝑖 𝜕

𝜕𝑦

)]
𝑓 =

[
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

]
𝑓 = ∇2 𝑓 .

Namely, 𝑓 is harmonic if and only if 𝜕 𝑓
𝜕𝑧 is holomorphic. So suppose 𝑓 is harmonic.

Locally (in some neighborhood), we find a primitive 𝑔 of 𝜕 𝑓
𝜕𝑧 , and we write

𝑓 (𝑧) = 𝑔(𝑧) + 𝑐(𝑧),
where 𝑔 is holomorphic, 𝑐 is at least 𝐶2, and 𝜕𝑐

𝜕𝑧 ≡ 0. Let ℎ = 𝑐 be the complex
conjugate of 𝑐. Then

𝜕ℎ

𝜕𝑧̄
=

𝜕𝑐

𝜕𝑧̄
=

𝜕𝑐

𝜕𝑧
= 0,

so ℎ is holomorphic. Thus, locally, we found holomorphic 𝑔 and ℎ so that

𝑓 (𝑧) = 𝑔(𝑧) + ℎ(𝑧).
Consider the holomorphic 𝜑(𝑧) = 𝑔(𝑧) + ℎ(𝑧). As 𝑓 is real-valued,

𝑓 (𝑧) = Re 𝑓 (𝑧) = 𝑔(𝑧) + ℎ(𝑧) + 𝑔(𝑧) + ℎ(𝑧)
2 =

𝑔(𝑧) + ℎ(𝑧) + 𝑔(𝑧) + ℎ(𝑧)
2 = Re 𝜑(𝑧).

So any harmonic function 𝑓 is locally the real part of a holomorphic function. Similarly
𝑓 is locally the imaginary part of a holomorphic function. This all works only in
some neighborhood. We cannot necessarily find a single 𝜑 (the 𝑔 and ℎ above) in
the entire domain𝑈 , unless𝑈 is simply connected. If it is not, we can always pick a
simply connected neighborhood, such as a disc. If 𝑈 is simply connected, then 𝜕 𝑓

𝜕𝑧
has a primitive in𝑈 , and the computation above leads to the following proposition.
Proposition 7.1.2. Let 𝑈 ⊂ ℂ be a simply connected domain and 𝑓 : 𝑈 → ℝ a harmonic
function. Then there exists a holomorphic 𝜑 : 𝑈 → ℂ such that 𝑓 = Re 𝜑.

Conversely, suppose that 𝑓 is the real-part of a holomorphic function 𝜑:

𝑓 (𝑧) = Re 𝜑(𝑧) = 1
2
(
𝜑(𝑧) + 𝜑(𝑧)) .

Notice that
∇2 = 4 𝜕2

𝜕𝑧̄𝜕𝑧
= 4 𝜕2

𝜕𝑧𝜕𝑧̄
.

Then

∇2 𝑓 = 4 𝜕2

𝜕𝑧̄𝜕𝑧

(
1
2
(
𝜑(𝑧) + 𝜑(𝑧)) ) = 2

(
𝜕

𝜕𝑧

(
𝜕

𝜕𝑧̄
𝜑(𝑧)

)
+ 𝜕

𝜕𝑧̄

(
𝜕

𝜕𝑧
𝜑(𝑧)

))
= 0.

We have thus proved the following characterization of harmonic functions.

*The Laplacian is defined in ℝ𝑛 for any 𝑛 by ∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2
1
+ · · · + 𝜕2 𝑓

𝜕𝑥2
𝑛
, and so there are harmonic

functions in any dimension. We are interested in the complex plane, 𝑛 = 2, which is surprisingly
different from the 𝑛 ≥ 3 case. When 𝑛 ≥ 3, the theory has far less to do with complex analysis.
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Proposition 7.1.3. Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℝ a function.

(i) The function 𝑓 is harmonic if and only if for every point 𝑝 ∈ 𝑈 there exists an open
neighborhood 𝑉 of 𝑝 and a holomorphic 𝜑 : 𝑉 → ℂ such that 𝑓 = Re 𝜑 on 𝑉 .

(ii) The function 𝑓 is harmonic if and only if for every 𝑝 ∈ 𝑈 , there exists a power series
expansion

𝑓 (𝑧) = 𝑐0 +
∞∑
𝑛=1

𝑐𝑛(𝑧 − 𝑝)𝑛 + 𝑐𝑛(𝑧 − 𝑝)𝑛

converging uniformly absolutely on every closed disc Δ𝑟(𝑝) ⊂ 𝑈 .

As holomorphic functions are infinitely differentiable, harmonic functions are
as well. Actually, we see above that harmonic functions have a real power series (a
power series in 𝑥 and 𝑦, or equivalently in 𝑧 and 𝑧̄) and so they are what is called
real-analytic.

Proposition 7.1.4. If𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℝ is harmonic, then 𝑓 is infinitely (real)
differentiable.

Starting with a harmonic function 𝑓 , finding the holomorphic function whose real
part is 𝑓 means finding another harmonic function such that 𝑓 + 𝑖 𝑔 is holomorphic.

Definition 7.1.5. Let 𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℝ harmonic. If 𝑔 : 𝑈 → ℝ is
harmonic and 𝑓 + 𝑖 𝑔 is holomorphic, then 𝑔 is called the harmonic conjugate of 𝑓 .

 Proposition 7.1.2 says that every harmonic function on a simply connected domain
has a harmonic conjugate. On the other hand, on the punctured plane ℂ \ {0}, the
harmonic function log|𝑧 | fails to have a harmonic conjugate. If it did have a harmonic
conjugate, then log would have a branch in ℂ \ {0}, which it does not. See  Figure 4.1 ,
the graph of the real part on the left is continuous, but the corresponding imaginary
part is not a function. That we cannot find a different conjugate for log|𝑧 | follows
from the following proposition.

Proposition 7.1.6. If 𝑈 ⊂ ℂ is a domain 𝑓 : 𝑈 → ℝ is harmonic and 𝑔1 and 𝑔2 are two
harmonic conjugates of 𝑓 , then 𝑔1 = 𝑔2 + 𝐶 for some 𝐶 ∈ ℝ.

The proof is trivial: The hypothesis implies that

( 𝑓 + 𝑖 𝑔1) − ( 𝑓 + 𝑖 𝑔2)
𝑖

= 𝑔1 − 𝑔2

is holomorphic and it is real-valued on𝑈 , and thus constant.
The real and imaginary parts of a holomorphic function are harmonic; however,

the modulus | 𝑓 (𝑧)| is not. Not to fear, log| 𝑓 (𝑧)| is harmonic, at least where 𝑓 is
nonzero. The fact that log| 𝑓 (𝑧)| is harmonic is just as useful as that the real and
imaginary parts of 𝑓 are. The proof is left as an exercise.
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Proposition 7.1.7. Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic and never zero.
Then

𝑧 ↦→ log| 𝑓 (𝑧)|
is harmonic.

Exercise 7.1.1: Prove  Proposition 7.1.7 .

Exercise 7.1.2: Show that the following functions of 𝑥 and 𝑦 (where 𝑧 = 𝑥 + 𝑖𝑦) are
harmonic (either on ℂ or on the set given) and find their harmonic conjugate.

a) 𝑦 b) 𝑥𝑦 c) arctan(𝑦/𝑥) on 𝑥 ≠ 0 d) 𝑥
𝑥2+𝑦2 on 𝑧 ≠ 0

Exercise 7.1.3: Suppose that 𝑈 ⊂ ℂ is a simply connected domain and 𝑓 : 𝑈 → ℝ a
harmonic function. Prove that there exists a holomorphic function 𝜑 : 𝑈 → ℂ such that
𝑓 (𝑧) = log|𝜑(𝑧)|.
Exercise 7.1.4: Let𝑈,𝑉 ⊂ ℂ be open sets and 𝑓 : 𝑈 → 𝑉 be holomorphic. Prove:

a) If 𝑔 : 𝑉 → ℝ is harmonic, then 𝑔 ◦ 𝑓 is harmonic.
b) Let 𝑓 be a biholomorphism of𝑈 and 𝑉 . Then 𝑔 : 𝑉 → ℝ is harmonic if and only if

𝑔 ◦ 𝑓 is harmonic.

Exercise 7.1.5: Prove that if 𝑓 : 𝔻 → ℝ is harmonic, then 𝑓 (𝑧/|𝑧 |2) is harmonic in ℂ \𝔻.

Exercise 7.1.6: Suppose𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is holomorphic. Prove that if
𝑧 ↦→ | 𝑓 (𝑧)|2 is harmonic, then 𝑓 is constant.

Exercise 7.1.7: Suppose 𝑓 : ℂ → ℝ is harmonic.
a) Show that there exists a holomorphic 𝐹 : ℂ \ {0} → ℂ such that 𝐹 = 𝑓 on 𝜕𝔻.
b) Show that if 𝐹 from part a) has a pole at the origin, then 𝑓 is the real part of a

holomorphic polynomial.

Exercise 7.1.8: Suppose𝑈 ⊂ ℂ is open, 𝔻 ⊂ 𝑈 , and 𝑓 : 𝑈 → ℝ is harmonic. Expand 𝑓
as a real power series at the origin as in  Proposition 7.1.3 , and find a formula for the 𝑐𝑛 in
terms of an integral around 𝜕𝔻.

Exercise 7.1.9: Prove the Liouville 

*
 theorem for harmonic functions: If 𝑓 : ℂ → ℝ is

harmonic and nonnegative, then 𝑓 is constant.

Remark 7.1.8. As in  Exercise 7.1.9  , the analogue of “bounded” for holomorphic
functions is “nonnegative” for harmonic functions. After all, if 𝑓 is a bounded
holomorphic function, then log| 𝑓 (𝑧) +𝑀 | or Re 𝑓 (𝑧) + 𝑀 is nonnegative for large

*See Nelson, Edward A proof of Liouville’s theorem. Proc. Amer. Math. Soc. 12 (1961), 995 (one of the
shortest published papers) for an elegant proof for bounded functions. But you can’t use it, you don’t
have the tools for it yet.
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enough 𝑀. Conversely, if log| 𝑓 (𝑧)| ≥ 0, then 1
𝑓 (𝑧) is bounded, and if Re 𝑓 (𝑧) ≥ 0, then

𝑓 (𝑧)−1
𝑓 (𝑧)+1 is bounded (composing 𝑓 with an LFT taking the right half-plane to the disc).

Remark 7.1.9. The procedure above, writing

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 = 4 𝜕2

𝜕𝑧̄𝜕𝑧
,

that is, a sum of derivatives as a composition of different derivatives, so that we could
integrate in these two new variables, may sound familiar. In this case, we found that
a harmonic 𝑓 is a sum of a function of 𝑧 (a holomorphic function) and a function of 𝑧̄
(an antiholomorphic function).

The procedure is analogous to the D’Alembert solution of the one-dimensional
wave equation, which you may have seen in undergraduate differential equations.
The wave operator is 𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2 with a minus sign, where we use 𝑥 and 𝑡 as variables
to be traditional. The wave operator decomposes as

𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2 =

[
𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

] [
𝜕

𝜕𝑡
+ 𝜕

𝜕𝑥

]
.

If we write 𝜇 = 𝑥 + 𝑡 and 𝜂 = 𝑥 − 𝑡 (the so-called characteristic coordinates), then

𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑥2 = −4 𝜕2

𝜕𝜂𝜕𝜇
.

As before, a solution 𝑓 to the wave equation is a function of 𝜇 plus a function of 𝜂.
That is, 𝑓 (𝑥, 𝑡) = 𝐴(𝜇) + 𝐵(𝜂) = 𝐴(𝑥 + 𝑡) + 𝐵(𝑥 − 𝑡), two waves travelling in opposite
directions. The functions 𝐴 and 𝐵 need not be nice at all, any twice real differentiable
functions. It is interesting that one puny minus sign makes such a huge difference.

7.1.2𝑖 · Identity and the maximum principle
A consequence of the propositions above is the identity theorem for harmonic
functions. The zero set of a harmonic function is allowed to have limit points. For
instance, Re 𝑧 is zero on the entire imaginary axis. However, we are still not allowed
open sets for nonconstant harmonic functions. It is really a property of real-analytic
functions, that is, functions that have a power series representation in terms of 𝑥 and
𝑦 or 𝑧 and 𝑧̄, but we do not wish to get far into power series in two variables.

Theorem 7.1.10 (Identity). Let 𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℝ a harmonic function.
Suppose 𝑉 ⊂ 𝑈 is a nonempty open subset and 𝑓 = 0 on 𝑉 . Then 𝑓 ≡ 0.

Proof. Let 𝑍 𝑓 be the zero set of 𝑓 and let 𝑍 be the closure of the interior of 𝑍 𝑓 in the
subspace topology of 𝑈 . The set 𝑍 is nonempty by hypothesis, so consider some
𝑝 ∈ 𝑍. Consider Δ𝑟(𝑝) ⊂ 𝑈 . There exists a holomorphic ℎ : Δ𝑟(𝑝) → ℂ such that
𝑓 = Re ℎ on Δ𝑟(𝑝). On some open subset of the disc, 𝑓 is zero. So the holomorphic
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function ℎ is purely imaginary on an open subset of Δ𝑟(𝑝), and hence it is constant on
that open subset. By the  identity theorem for holomorphic functions  , ℎ, and hence 𝑓 ,
is constant on Δ𝑟(𝑝). Since 𝑓 is zero somewhere on the disc and constant, it is zero on
the entire disc. Thus 𝑍 is open. As 𝑍 is also closed and𝑈 is connected, 𝑍 = 𝑈 . □

The maximum principle is really a theorem about harmonic functions rather than
holomorphic functions. We will prove it using holomorphic functions and the open
mapping theorem ( Theorem 5.5.1 ) 

*
 although there is a more natural proof using the

mean value property, which we will see later.

Theorem 7.1.11 (Maximum principle). Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℝ is
harmonic. If 𝑓 attains a local maximum (or a local minimum) in𝑈 , then 𝑓 is constant.

Proof. Suppose that 𝑓 attains a local maximum at 𝑝 ∈ 𝑈 . The statement for a minimum
follows by considering − 𝑓 . Let Δ𝑟(𝑝) ⊂ 𝑈 be a disc such that 𝑝 is the maximum of 𝑓
on Δ𝑟(𝑝). There exists a holomorphic ℎ : Δ𝑟(𝑝) → ℂ such that 𝑓 = Re ℎ. Then ℎ takes
Δ𝑟(𝑝) to a subset of 𝑋 =

{
𝑤 ∈ ℂ : Re𝑤 ≤ 𝑓 (𝑝)}. The point ℎ(𝑝) is on the boundary

of 𝑋 as Re ℎ(𝑝) = 𝑓 (𝑝). Hence, ℎ
(
Δ𝑟(𝑝)

)
is not open, which can only happen if ℎ is

constant by the open mapping theorem. As 𝑓 is constant on Δ𝑟(𝑝), it is constant on𝑈
by the identity theorem. □

Exercise 7.1.10: Prove that the maximum principle for harmonic functions implies the
maximum modulus principle for holomorphic functions. Hint: Consider log| 𝑓 (𝑧)|.
Exercise 7.1.11: Prove the second version of the maximum principle: If 𝑈 ⊂ ℂ is a
bounded domain and 𝑓 : 𝑈 → ℝ is continuous and harmonic on𝑈 , then 𝑓 achieves both
its maximum and its minimum on the boundary 𝜕𝑈 .

Exercise 7.1.12: Suppose𝑈 ⊂ ℂ is open such that ℝ ∩𝑈 ≠ ∅ and ℝ ∩𝑈 is connected.
Suppose 𝑓 : 𝑈 → ℝ is harmonic and the zero set of the restriction 𝑓 |ℝ∩𝑈 has a limit point
in ℝ ∩𝑈 . Prove that 𝑓 |ℝ∩𝑈 ≡ 0.

Exercise 7.1.13: Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℝ is harmonic. Prove that
𝑓 (𝑈) is an open interval or a single point.

7.2𝑖 \ The Dirichlet problem in a disc and applications

7.2.1𝑖 · The Dirichlet problem in a disc and the Poisson kernel
It is useful to find a harmonic function given boundary values: Given an open𝑈 ⊂ ℂ

and a continuous 𝑓 : 𝜕𝑈 → ℝ, find a continuous 𝑔 : 𝑈 → ℝ, harmonic on 𝑈 , such
that 𝑔 |𝜕𝑈 = 𝑓 . This problem is called the Dirichlet problem, and it is solvable for many

*The open mapping theorem is, after all, a stronger version of the maximum modulus principle.
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(though not all) open sets. If the solution exists on a bounded domain, then it is
unique. On unbounded domains, the solution need not be unique, see  Exercise 7.2.5 .

Proposition 7.2.1. Suppose 𝑈 ⊂ ℂ is a bounded domain, 𝑓 , 𝑔 : 𝑈 → ℝ are continuous
functions, harmonic on𝑈 , such that 𝑓 = 𝑔 on 𝜕𝑈 . Then 𝑓 = 𝑔 on𝑈 .

Proof. Apply the maximum principle (second version,  Exercise 7.1.11 ) to 𝑓 − 𝑔. □

The solution of the problem in a disc is rather useful and rather explicit. It is
achieved by integration against the so-called Poisson kernel. The Poisson kernel for
the unit disc 𝔻 ⊂ ℂ, is

𝑃𝑟(𝜃) = 1
2𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos𝜃
=

1
2𝜋 Re

(
1 + 𝑟𝑒 𝑖𝜃
1 − 𝑟𝑒 𝑖𝜃

)
, for 0 ≤ 𝑟 < 1.

As a function of 𝑧 = 𝑟𝑒 𝑖𝜃 ∈ 𝔻, the Poisson kernel is (see  Figure 7.1 )

𝑧 ↦→ 1
2𝜋 Re

(
1 + 𝑧
1 − 𝑧

)
.

Figure 7.1: Graph of the Poisson kernel on 𝔻, the pole at 𝑧 = 1 is cut off at 2.

Proposition 7.2.2.

(i) 𝑃𝑟(𝜃) > 0 for all 0 ≤ 𝑟 < 1 and all 𝜃.

(ii)
∫ 𝜋

−𝜋 𝑃𝑟(𝜃) 𝑑𝜃 = 1 for all 0 ≤ 𝑟 < 1.

(iii) For any given 𝛿 > 0, sup
{
𝑃𝑟(𝜃) : 𝛿 ≤ |𝜃 | ≤ 𝜋

} → 0 as 𝑟 ↑ 1.

In the proof, it is useful to visualize the graph of 𝑃𝑟 as a function of 𝜃 for a fixed 𝑟.
See  Figure 7.2 .
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Figure 7.2: The graph of 𝑃𝑟 as a function of 𝜃 on [−𝜋,𝜋] for 𝑟 = 0.5, 𝑟 = 0.7, and 𝑟 = 0.85.

Proof. The first item follows because for 0 ≤ 𝑟 < 1, we find 1 − 𝑟2 > 0 and

1 + 𝑟2 − 2𝑟 cos𝜃 ≥ 1 + 𝑟2 − 2𝑟 = (1 − 𝑟)2 > 0.

For the second item,∫ 𝜋

−𝜋
𝑃𝑟(𝜃) 𝑑𝜃 =

1
2𝜋

∫ 𝜋

−𝜋
Re

(
1 + 𝑟𝑒 𝑖𝜃
1 − 𝑟𝑒 𝑖𝜃

)
𝑑𝜃

= Re 1
2𝜋𝑖

∫ 𝜋

−𝜋
1 + 𝑟𝑒 𝑖𝜃
1 − 𝑟𝑒 𝑖𝜃

1
𝑟𝑒 𝑖𝜃

𝑖𝑟𝑒 𝑖𝜃 𝑑𝜃

= Re 1
2𝜋𝑖

∫
𝜕Δ𝑟(0)

(1 + 𝑧)/(1 − 𝑧)
𝑧

𝑑𝑧 = Re 1 + 0
1 − 0 = 1.

The equality on the third line follows by the Cauchy integral formula using the
function 1+𝑧

1−𝑧 evaluated at 0.
For the third item, we only need to prove the result for 𝛿 ≤ 𝜃 ≤ 𝜋 by symmetry (𝑃𝑟

is even). On (0,𝜋), 𝑃𝑟 is strictly decreasing as cos𝜃 is strictly increasing. So we only
need to show that 𝑃𝑟(𝛿) goes to 0 as 𝑟 → 1 if 𝛿 > 0. This fact follows as 𝑟 ↦→ 1+𝑟𝑒 𝑖𝛿

1−𝑟𝑒 𝑖𝛿 is
continuous at 𝑟 = 1 and

1 + 𝑒 𝑖𝛿
1 − 𝑒 𝑖𝛿 =

(1 + 𝑒 𝑖𝛿)(1 − 𝑒−𝑖𝛿)
(1 − 𝑒 𝑖𝛿)(1 − 𝑒−𝑖𝛿) =

𝑒 𝑖𝛿 − 𝑒−𝑖𝛿
|1 − 𝑒 𝑖𝛿 |2 = 𝑖

2 Im 𝑒 𝑖𝛿

|1 − 𝑒 𝑖𝛿 |2
is purely imaginary. □

Theorem 7.2.3. Let 𝑓 : 𝜕𝔻 → ℝ be continuous. Then 𝑃 𝑓 : 𝔻 → ℝ, defined by

𝑃 𝑓 (𝑟𝑒 𝑖𝜃) =
{∫ 𝜋

−𝜋 𝑓 (𝑒 𝑖𝑡)𝑃𝑟(𝜃 − 𝑡) 𝑑𝑡 if 𝑟 < 1,
𝑓 (𝑒 𝑖𝜃) if 𝑟 = 1,

is harmonic in 𝔻 and continuous on 𝔻.
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Proof. First, we prove 𝑃 𝑓 is harmonic in 𝔻. Let 𝑧 = 𝑟𝑒 𝑖𝜃. Then for any fixed 𝑡,

𝑃𝑟(𝜃 − 𝑡) = 1
2𝜋 Re

(
1 + 𝑟𝑒 𝑖(𝜃−𝑡)
1 − 𝑟𝑒 𝑖(𝜃−𝑡)

)
=

1
2𝜋 Re

(
1 + 𝑧𝑒−𝑖𝑡
1 − 𝑧𝑒−𝑖𝑡

)
is harmonic as a function of 𝑧 = 𝑟𝑒 𝑖𝜃. By differentiating under the integral,

𝑃 𝑓 (𝑧) = 𝑃 𝑓 (𝑟𝑒 𝑖𝜃) =
∫ 𝜋

−𝜋
𝑓 (𝑒 𝑖𝑡)𝑃𝑟(𝜃 − 𝑡) 𝑑𝑡 = 1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑒 𝑖𝑡)Re

(
1 + 𝑧𝑒−𝑖𝑡
1 − 𝑧𝑒−𝑖𝑡

)
𝑑𝑡

is harmonic at 𝑧 = 𝑟𝑒 𝑖𝜃 ∈ 𝔻.
Next we prove continuity at points in 𝜕𝔻. As both 𝑃𝑟 and 𝑓 (𝑒 𝑖𝑡) are 2𝜋-periodic,

we change variables:

𝑃 𝑓 (𝑟𝑒 𝑖𝜃) =
∫ 𝜋

−𝜋
𝑓 (𝑒 𝑖𝑡)𝑃𝑟(𝜃 − 𝑡) 𝑑𝑡 =

∫ 𝜋

−𝜋
𝑓
(
𝑒 𝑖(𝜃−𝑡)

)
𝑃𝑟(𝑡) 𝑑𝑡.

Let 𝑀 be the supremum of | 𝑓 | on 𝜕𝔻. Suppose 𝜖 > 0 is given. As 𝑓 is uniformly
continuous on 𝜕𝔻, consider 𝛿 > 0 small enough so that

�� 𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃)�� < 𝜖/2

whenever |𝑡 | < 𝛿.  Proposition 7.2.2  says there exists a 𝛿′ > 0 such that if 1− 𝛿′ < 𝑟 < 1,
then 0 < 𝑃𝑟(𝑡) < 𝜖

8𝑀𝜋 whenever 𝛿 ≤ |𝑡 | ≤ 𝜋.
Since

∫ 𝜋

−𝜋 𝑃𝑟(𝑡) 𝑑𝑡 = 1, 

*
 

𝑓 (𝑒 𝑖𝜃) =
∫ 𝜋

−𝜋
𝑓 (𝑒 𝑖𝜃)𝑃𝑟(𝑡) 𝑑𝑡.

So

|𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑓 (𝑒 𝑖𝜃)| =
����∫ 𝜋

−𝜋

(
𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃))𝑃𝑟(𝑡) 𝑑𝑡����

≤
����∫ −𝛿

−𝜋
· · · 𝑑𝑡

���� + ����∫ 𝛿

−𝛿
· · · 𝑑𝑡

���� + ����∫ 𝜋

𝛿
· · · 𝑑𝑡

���� .
Let us estimate the three integrals. First,����∫ −𝛿

−𝜋

(
𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃))𝑃𝑟(𝑡) 𝑑𝑡���� ≤ ∫ −𝛿

−𝜋

��� 𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃)
���𝑃𝑟(𝑡) 𝑑𝑡

≤ (𝜋 − 𝛿)2𝑀 𝜖
8𝑀𝜋

<
𝜖
4 .

The integral from 𝛿 to 𝜋 is exactly the same. Next the middle integral,����∫ 𝛿

−𝛿

(
𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃))𝑃𝑟(𝑡) 𝑑𝑡���� ≤ ∫ 𝛿

−𝛿

��� 𝑓 (𝑒 𝑖(𝜃−𝑡)) − 𝑓 (𝑒 𝑖𝜃)
���𝑃𝑟(𝑡) 𝑑𝑡

≤
∫ 𝛿

−𝛿
𝜖
2𝑃𝑟(𝑡) 𝑑𝑡 ≤

∫ 𝜋

−𝜋
𝜖
2𝑃𝑟(𝑡) 𝑑𝑡 =

𝜖
2 .

*This is a trick you see all the time in analysis, it is good to remember it.
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Putting it all together, as long as 1 − 𝛿′ < 𝑟 < 1,

|𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑓 (𝑒 𝑖𝜃)| < 𝜖
4 + 𝜖

2 + 𝜖
4 = 𝜖.

So 𝑃 𝑓 (𝑟𝑒 𝑖𝜃) → 𝑓 (𝑒 𝑖𝜃) uniformly in 𝜃 as 𝑟 ↑ 1. The uniformity is important below.
Finally, for any 𝑧0 = 𝑒 𝑖𝜃0 ∈ 𝜕𝔻, we must show that 𝑃 𝑓 (𝑧) tends to 𝑃 𝑓 (𝑧0) = 𝑓 (𝑧0) as

𝑧 ∈ 𝔻 tends to 𝑧0. Let 𝜖 > 0 be given. As 𝑓 = 𝑃 𝑓 |𝜕𝔻 is continuous, pick a 𝛿 > 0 such
that

��𝑃 𝑓 (𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃0)�� < 𝜖/2 whenever |𝜃 − 𝜃0 | < 𝛿. Also make 𝛿 small enough so
that

��𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃)�� < 𝜖/2 when 1 − 𝛿 < 𝑟 ≤ 1 for all 𝜃. Putting the two estimates
together, we get��𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃0)�� ≤ ��𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃)�� + ��𝑃 𝑓 (𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃0)�� < 𝜖

whenever 𝑧 = 𝑟𝑒 𝑖𝜃 satisfies 1 − 𝛿 < 𝑟 ≤ 1 and |𝜃 − 𝜃0 | < 𝛿. See  Figure 7.3 . Therefore,
𝑃 𝑓 is continuous at 𝑧0. □

angle < 𝛿𝑧0 = 𝑒 𝑖𝜃0

𝔻
𝑧 = 𝑟𝑒 𝑖𝜃

𝑒 𝑖𝜃< 𝛿

Figure 7.3: Continuity of 𝑃 𝑓 at 𝑧0.

We remark that in the proof we used the topology on 𝔻 given by the polar
coordinates, and we estimated the coordinates separately. Polar coordinates give a
nice local homeomorphism (a continuous bĳective map with a continuous inverse)
outside of the origin, which is sufficient for us as we only worried about points on or
near the boundary of 𝔻. The reader that is still unconvinced should write out the
details as an exercise.

Exercise 7.2.1: We proved that given 𝜖 > 0, there exists a 𝛿 > 0 such that��𝑃 𝑓 (𝑟𝑒 𝑖𝜃) − 𝑃 𝑓 (𝑒 𝑖𝜃0)�� < 𝜖 when |𝜃 − 𝜃0 | < 𝛿 and 1 − 𝛿 < 𝑟 ≤ 1. Prove that this
statement really does mean that lim𝑧→𝑧0 𝑃 𝑓 (𝑧) = 𝑓 (𝑧0) = 𝑃 𝑓 (𝑧0).

Translation and scaling gives the more general version for any disc.

Corollary 7.2.4. Let 𝑓 : 𝜕Δ𝑅(𝑝) → ℝ be continuous. Then 𝑃 𝑓 : Δ𝑅(𝑝) → ℝ, defined by

𝑃 𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) =
{∫ 𝜋

−𝜋 𝑓 (𝑝 + 𝑅𝑒 𝑖𝑡)𝑃𝑟/𝑅(𝜃 − 𝑡) 𝑑𝑡 if 𝑟 < 𝑅,
𝑓 (𝑝 + 𝑅𝑒 𝑖𝜃) if 𝑟 = 𝑅,

is harmonic in Δ𝑅(𝑝) and continuous on Δ𝑅(𝑝).
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Exercise 7.2.2: Prove the corollary.

As the Poisson integral gives a solution of the Dirichlet problem on a disc, and
as the solution to the Dirichlet problem is unique, the Poisson integral gives a
representation of harmonic functions in terms of boundary values, just like the
Cauchy integral formula does for holomorphic functions. That is, if Δ𝑅(𝑝) ⊂ 𝑈 and 𝑓

is harmonic in𝑈 , then 𝑃[ 𝑓 |𝜕Δ𝑅(𝑝)] = 𝑓 |
Δ𝑅(𝑝). In particular, for 𝑧 = 𝑝 + 𝑟𝑒 𝑖𝜃 ∈ Δ𝑅(𝑝),

𝑓 (𝑧) =
∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑅𝑒 𝑖𝑡)𝑃𝑟/𝑅(𝜃 − 𝑡) 𝑑𝑡.

A difference with the Cauchy integral formula is that the Poisson kernel changes
based on the domain. The Poisson kernel exists for other domains than the disc (as
long as the boundary is nice enough), although in general we do not have an explicit
formula. In the Cauchy integral formula the kernel is 1

𝜁−𝑧 no matter the path that we
were integrating around, that is, no matter what domain we were solving in.

The Poisson kernel is also a reproducing kernel for holomorphic functions, as
holomorphic functions are harmonic (their real and imaginary parts are). If 𝑓 gives
the boundary values for a holomorphic function, then 𝑃 𝑓 is holomorphic and it equals
the Cauchy transform 𝐶 𝑓 inside the disc. Unlike the Cauchy transform, however, 𝑃 𝑓
is always continuous up to the boundary given continuous data on the disc. Thus, if
𝑓 is not the boundary value of a holomorphic function, 𝐶 𝑓 and 𝑃 𝑓 are different in
the disc. For example, if 𝑓 = 𝑧 + 𝑧̄ on the circle, then 𝑃 𝑓 = 𝑧 + 𝑧̄ in 𝔻 but 𝐶 𝑓 = 𝑧 in 𝔻.

It is particularly useful to notice that in the corollary if we plug in 𝑟 = 0, we get

𝑃 𝑓 (𝑝) = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑅𝑒 𝑖𝑡) 𝑑𝑡. (7.1)

The value at the center of the disc, 𝑃 𝑓 (𝑝), is the average value of 𝑓 on 𝜕Δ𝑅(𝑝). In the
next section, we will see that this property actually characterizes harmonic functions.

Exercise 7.2.3 (Easy): Prove that given any continuous 𝑓 : 𝜕𝔻 → ℂ, there exists
a holomorphic 𝐹 : 𝔻 → ℂ such that Re 𝐹 extends continuously to 𝔻 (agrees with a
continuous function on 𝔻) and such that Re 𝐹 = Re 𝑓 on 𝜕𝔻. That is, given arbitrary
boundary data, we cannot in general find a holomorphic function with those boundary
values, but we can do it at least for the real part.

Exercise 7.2.4: State and prove a version of  Theorem 7.2.3  for a function that is bounded on
𝜕𝔻, and continuous at all but finitely many points on 𝜕𝔻. The conclusion should of course
be then that 𝑃 𝑓 (𝑧) (𝑧 ∈ 𝔻) tends to 𝑓 (𝑧0) (𝑧0 ∈ 𝔻) only if 𝑓 is continuous at 𝑧0. Note:
More advanced students should note that one does not need boundedness, just 𝑓 ∈ 𝐿1(𝜕𝔻).
Exercise 7.2.5: Dirichlet problem on the upper half-plane ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0} does
not have a unique solution. Hint: Find two distinct harmonic functions that are zero on ℝ.
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Exercise 7.2.6: Given a bounded continuous 𝑓 : ℝ → ℝ, prove that 𝑃 𝑓 : ℍ → ℝ,

𝑃 𝑓 (𝑥 + 𝑖𝑦) =
{

1
𝜋

∫ ∞
−∞ 𝑓 (𝑡) 𝑦

(𝑥−𝑡)2+𝑦2 𝑑𝑡 if 𝑦 > 0,

𝑓 (𝑥) if 𝑦 = 0,

is harmonic in ℍ and continuous on ℍ.

Exercise 7.2.7: Given an open 𝑈 ⊂ ℂ, a continuous function 𝑓 : 𝑈 → ℝ, positive and
harmonic on𝑈 , and zero on 𝜕𝑈 is called a Martin function.

a) Find a Martin function on the upper half-plane ℍ.
b) Find a Martin function on {𝑧 ∈ ℂ : Re 𝑧 > 0, 0 < Im 𝑧 < 1}. Hint: Hyperbolic

sine.
c) Prove that if𝑈 is bounded, then there are no Martin functions on𝑈 .

Exercise 7.2.8: Explicitly solve the following Dirichlet problem: Let 0 < 𝑟 < 𝑅 and
𝑎, 𝑏 ∈ ℝ be given. Find a continuous 𝑓 : ann(0; 𝑟, 𝑅) → ℝ, harmonic on ann(0; 𝑟, 𝑅),
such that 𝑓 = 𝑎 on |𝑧 | = 𝑟 and 𝑓 = 𝑏 on |𝑧 | = 𝑅.

Exercise 7.2.9: Derive the Schwarz integral formula, which recovers a holomorphic
function out of the real parts of the boundary values and the value of the imaginary part at
one point. If 𝑓 : 𝔻 → ℂ is continuous and holomorphic on 𝔻, then for all 𝑧 ∈ 𝔻,

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝔻

𝜁 + 𝑧
𝜁 − 𝑧

Re 𝑓 (𝜁)
𝜁

𝑑𝜁 + 𝑖 Im 𝑓 (0).

Exercise 7.2.10: Let 𝑞1, 𝑞2, . . . be an enumeration of rational numbers in [0, 1].
a) Define 𝜑 : [0, 1] → ℝ by 𝜑(𝑡) = ∑∞

𝑗=1 2−𝑗𝜒[𝑞 𝑗 ,1](𝑡), where 𝜒[𝑞 𝑗 ,1](𝑡) = 1 if 𝑡 ∈ [𝑞 𝑗 , 1]
and zero otherwise (the indicator function). Show that 𝜑 is discontinuous at every
rational number in (0, 1], nondecreasing, and bounded (hence Riemann integrable).

b) Define Φ(𝑡) =
∫ 𝑡

0 𝜑(𝑠) 𝑑𝑠, show that Φ is increasing, continuous, but not differ-
entiable on a dense set in [0, 1]. Use it to construct a 𝜓(𝑡) that is 2𝜋-periodic,
continuous, and not differentiable on a dense subset of ℝ.

c) Find a continuous 𝑢 : 𝔻 → ℝ such that 𝑢 |𝔻 is harmonic and 𝑢(𝑒 𝑖𝑡) = 𝜓(𝑡), then
find a holomorphic ℎ : 𝔻 → ℂ such that Re ℎ = 𝑢.

d) Show that ℎ does not extend through any point of the boundary, that is, for every
𝑧0 ∈ 𝜕𝔻 and every open neighborhood𝑈 of 𝑧0, there exists no holomorphic 𝑓 : 𝑈 → ℂ

such that 𝑓 = ℎ on 𝔻 ∩𝑈 .

7.2.2𝑖 · Mean-value property

We can define harmonic functions in one real variable by saying 𝑓 is harmonic if
∇2 𝑓 = 𝜕2

𝜕𝑥2 𝑓 = 𝑓 ′′ = 0, that is, 𝑓 (𝑥) = 𝐴𝑥 + 𝐵, an affine linear function. It is quite
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useful to think of harmonic functions on ℂ as one particular analogue of affine linear
functions to ℂ, although we ought not to take this analogy too far, of course. One
property of affine linear functions is a mean-value property, that is, given 𝑎 < 𝑏

then 𝑓
(
𝑎+𝑏

2
)
=

𝑓 (𝑎)+ 𝑓 (𝑏)
2 . The value at the center of an interval is equal to the average

of values at the ends. In fact, if a continuous function satisfies this equality for all
intervals [𝑎, 𝑏], then it is affine linear (exercise). This mean-value property completely
characterizes affine linear (that is, harmonic) functions in ℝ. It is rather interesting
that the same kind of property characterizes harmonic functions inℂ as well, although
we have to replace an interval with a disc.

Theorem 7.2.5 (Mean-value property). Suppose𝑈 ⊂ ℂ is open. A continuous 𝑓 : 𝑈 → ℝ

is harmonic if and only if for every 𝑝 ∈ 𝑈 , there exists an 𝑅𝑝 > 0 such that Δ𝑅𝑝 (𝑝) ⊂ 𝑈 and

𝑓 (𝑝) = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 for all 𝑟 < 𝑅𝑝 .

Moreover, if 𝑓 is harmonic, then we may choose any 𝑅𝑝 > 0 such that Δ𝑅𝑝 (𝑝) ⊂ 𝑈 .

Proof. One direction (and the “Moreover”) follows quickly. Suppose 𝑓 is harmonic.
Take 𝑝 ∈ 𝑈 and any 𝑅𝑝 > 0 such that Δ𝑅𝑝 (𝑝) ⊂ 𝑈 . For any 𝑟 < 𝑅𝑝 , solve the Dirichlet
problem in Δ𝑟(𝑝) using the Poisson kernel given the boundary values 𝑓 |𝜕Δ𝑟(𝑝). Using
( 7.1 ) and the uniqueness of the solution of the Dirichlet problem, we find

𝑓 (𝑝) = 𝑃 [
𝑓 |𝜕Δ𝑟(𝑝)

](𝑝) = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝑡) 𝑑𝑡.

Conversely, suppose 𝑓 is continuous and satisfies the mean-value property for
all 𝑝 and all 𝑟 < 𝑅𝑝 . Let Δ𝑠(𝑞) ⊂ 𝑈 be an arbitrary closed disc. Let ℎ = 𝑃

[
𝑓 |𝜕Δ𝑠(𝑞)

]
be the solution of the Dirichlet problem in Δ𝑠(𝑞) with boundary values given by 𝑓 .
Consider 𝜑 = 𝑓 − ℎ, which is continuous, identically zero on 𝜕Δ𝑠(𝑞) and satisfies the
mean-value property on the same circles as 𝑓 (as long as they lie in Δ𝑠(𝑞)). Suppose
for contradiction that 𝜑 is positive somewhere on Δ𝑠(𝑞), let 𝜑 achieve a maximum at
𝑝 ∈ Δ𝑠(𝑝). The set 𝑋 ⊂ Δ𝑠(𝑞) where 𝜑(𝑧) = 𝜑(𝑝) is compact. Assume 𝑝 is the point
on 𝑋 closest to 𝜕Δ𝑠(𝑞). For some small 𝑟 < 𝑅𝑝 , the circle 𝜕Δ𝑟(𝑝) ⊂ Δ𝑠(𝑞) and there
is a constant 𝐶 so that 𝜑(𝑧) ≤ 𝐶 < 𝜑(𝑝) for 𝑧 on a nonempty open subset of 𝜕Δ𝑟(𝑝).
See  Figure 7.4 . In particular, as 𝜑 is supposed to satisfy the mean-value property on
Δ𝑟(𝑝), we get a contradiction

1
2𝜋

∫ 𝜋

−𝜋
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 < 𝜑(𝑝).

We have proved that 𝜑 ≤ 0 on Δ𝑠(𝑞). Applying the same logic to −𝜑, we find that
𝜑 = 0 on Δ𝑠(𝑞). Namely, 𝑓 = ℎ and ℎ is harmonic, so 𝑓 is harmonic on Δ𝑠(𝑞) (and
thus on𝑈). □
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𝑞

Δ𝑠(𝑞)

𝑋 𝑝
Δ𝑟(𝑝)

Figure 7.4: The discs Δ𝑠(𝑞) and Δ𝑟(𝑝) and the set 𝑋.

One immediate consequence of the mean value property is that a uniform limit
on compact subsets of harmonic functions is harmonic. Just like for holomorphic
functions, this result would be hard to prove using the definition of harmonic
functions. Given a sequence { 𝑓𝑛} of any old 𝐶2 functions with uniform limit 𝑓 , the
limit of ∇2 𝑓𝑛 is not necessarily ∇2 𝑓 . But uniform limits do go under the integral. The
following result is one part of what is called Harnack’s first theorem (several results
about harmonic functions are named for Harnack).

Theorem 7.2.6 (Harnack’s first). Let 𝑈 ⊂ ℂ be open, and let 𝑓𝑛 : 𝑈 → ℝ be a sequence
of harmonic functions converging uniformly on compact subsets to 𝑓 : 𝑈 → ℝ. Then 𝑓 is
harmonic.

Proof. First, 𝑓 is continuous. Given any disc Δ𝑟(𝑝) ⊂ 𝑈 , the sequence { 𝑓𝑛} converges
uniformly on the boundary of the disc and at 𝑝 and hence

𝑓 (𝑝) = lim
𝑛→∞ 𝑓𝑛(𝑝) = lim

𝑛→∞
1

2𝜋

∫ 𝜋

−𝜋
𝑓𝑛(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 =

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃.

The result follows by the mean-value property. □

Exercise 7.2.11: Suppose 𝑓 : ℝ → ℝ is a continuous function such that 𝑓
(
𝑎+𝑏

2
)
=

𝑓 (𝑎)+ 𝑓 (𝑏)
2

whenever 𝑎 < 𝑏. Prove that 𝑓 (𝑥) = 𝐴𝑥 + 𝐵 for some constants 𝐴, 𝐵.

Exercise 7.2.12: Prove the maximum principle for harmonic functions directly from the
mean-value property.

Exercise 7.2.13: Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℝ is continuous, 𝑝 ∈ 𝑈 and 𝑓 is
harmonic on𝑈 \ {𝑝}. Prove that 𝑓 is, in fact, harmonic on all of𝑈 .

Exercise 7.2.14: Suppose 𝑓 is harmonic in a neighborhood of Δ𝑟(0) and 𝑓 (0) = 0. Prove
that

1
2

∫ 𝜋

−𝜋

�� 𝑓 (𝑟𝑒 𝑖𝑡)�� 𝑑𝑡 = ∫ 𝜋

−𝜋
max{ 𝑓 (𝑟𝑒 𝑖𝑡), 0} 𝑑𝑡.
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Exercise 7.2.15: Suppose 𝑓 is harmonic in a neighborhood of 𝔻, 𝑓 (0) = 0, and∫ 𝜋

−𝜋
�� 𝑓 (𝑒 𝑖𝑡)�� 𝑑𝑡 = 4𝜋. Prove that there exists a 𝑡 such that 𝑓 (𝑒 𝑖𝑡) = 1 and an 𝑠 such

that 𝑓 (𝑒 𝑖𝑠) = −1.

Exercise 7.2.16: Suppose𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 × [0, 1] → ℝ is continuous such that
for every fixed 𝑡 ∈ [0, 1], 𝑧 ↦→ 𝑓 (𝑧, 𝑡) is harmonic. Prove that 𝑔 : 𝑈 → ℝ defined by

𝑔(𝑧) =
∫ 1

0
𝑓 (𝑧, 𝑡) 𝑑𝑡

is harmonic. Hint: Fubini not Leibniz.

Exercise 7.2.17: Let𝑈 ⊂ ℂ be open. Prove that a continuous 𝑓 : 𝑈 → ℝ is harmonic if
and only if it satisfies the disc mean-value property for every Δ𝑟(𝑝) ⊂ 𝑈 :

𝑓 (𝑝) = 1
𝜋𝑟2

∫
Δ𝑟(𝑝)

𝑓 (𝑧) 𝑑𝐴.

Exercise 7.2.18: With a little care, it is not necessary to assume the mean-value property
for all small enough discs. Suppose 𝑓 : 𝔻 → ℝ is continuous and such that for every
𝑝 ∈ 𝔻, there exists an 𝑟 such that Δ𝑟(𝑝) ⊂ 𝔻 and

𝑓 (𝑝) = 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃.

Prove that 𝑓 is harmonic in 𝔻.

7.2.3𝑖 · Harnack’s inequality
Like holomorphic functions, harmonic functions defined in a disc cannot just do
whatever they want inside the disc. Their behavior is somewhat controlled by the
size of the disc: The further “inside” their domain of definition the disc is, the more
control we have. The basic statement of this control is the Harnack’s inequality in the
disc. For holomorphic functions, an analogous result is  Schwarz’s lemma  , where
we require that the functions are bounded (they are valued in a disc). For harmonic
functions, the analogue of boundedness is nonnegativity.

Theorem 7.2.7 (Harnack’s inequality). Suppose 𝑓 : Δ𝑅(𝑝) → ℝ is harmonic and nonneg-
ative, and suppose 0 < 𝑟 < 𝑅. Then for all 𝑧 ∈ Δ𝑟(𝑝),

𝑅 − 𝑟
𝑅 + 𝑟 𝑓 (𝑝) ≤ 𝑓 (𝑧) ≤ 𝑅 + 𝑟

𝑅 − 𝑟 𝑓 (𝑝).

Proof. If we prove the inequality for 𝑧 on 𝜕Δ𝑟(𝑝), i.e., |𝑧 − 𝑝 | = 𝑟, we are done as 𝑅+𝑟
𝑅−𝑟

is increasing in 𝑟 and 𝑅−𝑟
𝑅+𝑟 is decreasing in 𝑟. So assume 𝑧 = 𝑝 + 𝑟𝑒 𝑖𝜃.
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Let 𝑆 be such that 0 < 𝑟 < 𝑆 < 𝑅. Using  Corollary 7.2.4 and the uniqueness of the
solution of the Dirichlet problem,

𝑓 (𝑧) = 𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) =
∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑆𝑒 𝑖𝑡)𝑃𝑟/𝑆(𝜃 − 𝑡) 𝑑𝑡

=
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑆𝑒 𝑖𝑡) 𝑆2 − 𝑟2

𝑆2 + 𝑟2 − 2𝑆𝑟 cos(𝜃 − 𝑡) 𝑑𝑡.

We estimate

𝑆 − 𝑟
𝑆 + 𝑟 =

𝑆2 − 𝑟2

𝑆2 + 𝑟2 + 2𝑆𝑟
≤ 𝑆2 − 𝑟2

𝑆2 + 𝑟2 − 2𝑆𝑟 cos(𝜃 − 𝑡) ≤ 𝑆2 − 𝑟2

𝑆2 + 𝑟2 − 2𝑆𝑟
=
𝑆 + 𝑟
𝑆 − 𝑟 .

For 𝑧 = 𝑝 + 𝑟𝑒 𝑖𝜃, using that 𝑓 is nonnegative,

𝑓 (𝑧) =
∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑆𝑒 𝑖𝑡)𝑃𝑟/𝑆(𝜃 − 𝑡) 𝑑𝑡 ≤ 𝑆 + 𝑟

𝑆 − 𝑟
(

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑆𝑒 𝑖𝑡) 𝑑𝑡

)
=
𝑆 + 𝑟
𝑆 − 𝑟 𝑓 (𝑝).

The lower inequality follows in the same way. As 𝑆 < 𝑅 was arbitrary, the inequality
in the theorem follows by taking a limit. □

The inequalities are optimal. In the unit disc 𝔻, the theorem says

1 − 𝑟
1 + 𝑟 𝑓 (0) ≤ 𝑓 (𝑧) ≤ 1 + 𝑟

1 − 𝑟 𝑓 (0).

Consider the function 𝑓 (𝑧) = Re 1+𝑧
1−𝑧 . Except for the 1

2𝜋 it is the Poisson kernel and so
𝑓 (𝑧) > 0 on 𝔻. Note that 𝑓 (0) = 1. Plugging in 𝑧 = 𝑟, we get equality in the right-hand
inequality above, and plugging in 𝑧 = −𝑟 we get equality in the left-hand inequality
above. In other words, the two constants 𝑅−𝑟

𝑅+𝑟 and 𝑅+𝑟
𝑅−𝑟 are optimal.

There is also a general version of Harnack’s inequality on any domain.

Corollary 7.2.8 (Harnack’s inequality). Suppose 𝑈 ⊂ ℂ is a domain and 𝐾 ⊂ 𝑈 is
compact. Then there exists a 𝐶 > 0 such that

sup
𝑧∈𝐾

𝑓 (𝑧) ≤ 𝐶 inf
𝑧∈𝐾

𝑓 (𝑧)

for every harmonic and nonnegative function 𝑓 defined on𝑈 .

Proof. If we prove the theorem for a larger 𝐾 we are done, so we replace 𝐾 by a larger
connected compact subset of𝑈 . First, make 𝐾 have only finitely many components
by replacing it by finitely many closed discs (see the proof of  Lemma 6.3.7 ). Then,𝑈
is path connected and so adding finitely many paths to 𝐾, we can connect the discs.

Suppose 𝑟 > 0 is less than half the distance from 𝐾 to 𝜕𝑈 . There exist 𝑁 discs
Δ𝑟(𝑧1), . . . ,Δ𝑟(𝑧𝑁 ) that cover 𝐾, where 𝑧 𝑗 ∈ 𝐾, and so Δ2𝑟(𝑧 𝑗) ⊂ 𝑈 for every 𝑗. Fix
𝜁, 𝜉 ∈ 𝐾. After relabeling the discs, 𝜁 ∈ Δ𝑟

(
𝑧1

)
and 𝜉 ∈ Δ𝑟

(
𝑧𝑛

)
for some 𝑛 ≤ 𝑁 . As 𝐾



7.2. THE DIRICHLET PROBLEM IN A DISC AND APPLICATIONS 181

𝑧1 𝑧4𝑧2
𝑧3𝜁

𝜉

𝑈

Figure 7.5: A chain of discs with centers 𝑧1 , 𝑧2 , 𝑧3 , 𝑧4 connecting 𝜁 to 𝜉 in 𝐾 (marked in
darker shade). Midpoints of the segments between 𝑧 𝑗 and 𝑧 𝑗+1 are marked as well. The
solid circles are discs of radius 𝑟 and dashed circles are discs of radius 2𝑟.

is connected, we also arrange that Δ𝑟
(
𝑧 𝑗

)∩Δ𝑟
(
𝑧 𝑗+1

)
is nonempty for all 𝑗 = 1, . . . , 𝑛−1.

Not all the discs need to be used. The proof is illustrated in  Figure 7.5 .
Let 𝑓 be an arbitrary nonnegative harmonic function on𝑈 . For any 𝑗, as Δ2𝑟(𝑧 𝑗) ⊂

𝑈 , if we take any 𝑤 ∈ Δ𝑟(𝑧 𝑗), we find that

1
3 𝑓 (𝑧 𝑗) =

2𝑟 − 𝑟
2𝑟 + 𝑟 𝑓 (𝑧 𝑗) ≤ 𝑓 (𝑤) ≤ 2𝑟 + 𝑟

2𝑟 − 𝑟 𝑓 (𝑧 𝑗) = 3 𝑓 (𝑧 𝑗).

In other words, 𝑓 (𝑤) ≤ 3 𝑓 (𝑧 𝑗) and 𝑓 (𝑧 𝑗) ≤ 3 𝑓 (𝑤).
We now follow the chain of discs. First, as 𝜁 ∈ Δ𝑟(𝑧1), we get

𝑓 (𝜁) ≤ 3 𝑓 (𝑧1).

Second, let 𝑞 be the midpoint between 𝑧 𝑗 and 𝑧 𝑗+1. Simple geometry dictates that
𝑞 ∈ Δ𝑟

(
𝑧 𝑗

) ∩ Δ𝑟
(
𝑧 𝑗+1

)
. Thus,

𝑓 (𝑧 𝑗) ≤ 3 𝑓 (𝑞) ≤ 3
(
3 𝑓 (𝑧 𝑗+1)

)
= 32 𝑓 (𝑧 𝑗+1).

Third, as 𝜉 ∈ Δ𝑟(𝑧𝑛), we get
𝑓 (𝑧𝑛) ≤ 3 𝑓 (𝜉).

All in all,
𝑓 (𝜁) ≤ 32𝑛 𝑓 (𝜉) ≤ 32𝑁 𝑓 (𝜉).

The number 𝑁 only depends on 𝐾, not on 𝜁, 𝜉, or 𝑓 . As 𝜁 and 𝜉 were arbitrary, the
theorem follows. □

The constant we get in the proof is not optimal, but it is explicit. Assuming 𝐾 is
connected, we can compute a specific 𝐶 by knowing the distance of 𝐾 to the boundary
and the number of the 𝑟-discs needed to cover 𝐾.

Exercise 7.2.19 (Easy): Show by example that Harnack’s general inequality need not hold
if𝑈 is not assumed to be connected.
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Exercise 7.2.20 (Easy): Find the following counterexample of Harnack’s inequality if 𝑓 is
not assumed to be nonnegative. For every 𝑀 > 0 find a harmonic function 𝑓 : 𝔻 → ℝ

such that 𝑓 (0) = 1 and 𝑓 (1/2) ≥ 𝑀.

Exercise 7.2.21: Fix some 𝑠 > 𝑡 > 0. Let𝑈 = {𝑧 ∈ ℂ : −𝑠 < Re 𝑧 < 𝑠,−1 < Im 𝑧 < 1}.
Compute an explicit constant 𝐶 (doesn’t need to be optimal) for the following 𝐾 for the
general Harnack’s inequality:

a) 𝐾 = [−𝑡 , 𝑡]. b) 𝐾 = {−𝑡 , 𝑡}.
Exercise 7.2.22: Affine linear functions 𝐴𝑥 + 𝐵 are the one-real-variable versions of
harmonic functions. State and prove Harnack’s inequality (analogue of  Theorem 7.2.7 ) in
the affine linear setting for an interval [𝑎, 𝑏] instead of a disc. Find the optimal constants in
the two inequalities just like we got for a disc, and prove that the constants are optimal.

Exercise 7.2.23: Let 𝑈 = 𝔻 and 𝐾 = Δ𝑟(0), 𝑟 < 1, in the general Harnack’s inequality.
Prove that the 𝐶 that from the theorem must necessarily go to infinity as 𝑟 ↑ 1.

Exercise 7.2.24: Use Harnack’s inequality to prove Liouville’s theorem for harmonic
functions: If 𝑓 : ℂ → ℝ is harmonic and nonnegative, then 𝑓 is constant.

7.2.4𝑖 · Harnack’s principle
Harnack’s inequality yields that increasing sequences of harmonic functions converge
to harmonic functions. This theorem is variously called Harnack’s principle or
Harnack’s second theorem.
Theorem 7.2.9 (Harnack’s principle). Let 𝑈 ⊂ ℂ be a domain and { 𝑓𝑛} a sequence of
harmonic functions on 𝑈 such that 𝑓1 ≤ 𝑓2 ≤ 𝑓3 ≤ · · · . Then either 𝑓𝑛 → +∞ uniformly
on compact subsets, or 𝑓𝑛 → 𝑓 for a harmonic 𝑓 : 𝑈 → ℝ uniformly on compact subsets.

Proof. Without loss of generality assume that 𝑓𝑛 ≥ 0 for all 𝑛. If not, apply the theorem
to the functions 𝑓𝑛 − 𝑓1, which are all nonnegative.

By monotonicity, { 𝑓𝑛} converges pointwise (possibly to +∞). If lim 𝑓𝑛(𝑝) = +∞
for some 𝑝 ∈ 𝑈 , let 𝐾 ⊂ 𝑈 be compact, and let 𝐾′ = 𝐾 ∪ {𝑝}. Harnack’s inequality
(for 𝐾′) says there is a 𝐶 such that

𝑓𝑛(𝑝) ≤ sup
𝑧∈𝐾′

𝑓𝑛(𝑧) ≤ 𝐶 inf
𝑧∈𝐾′ 𝑓𝑛(𝑧) ≤ 𝐶 inf

𝑧∈𝐾
𝑓𝑛(𝑧).

Thus, 𝑓𝑛(𝑧) → +∞ uniformly on 𝐾.
Therefore, suppose the limit of { 𝑓𝑛(𝑧)} is finite for every 𝑧 ∈ 𝑈 . Let 𝑓 : 𝑈 → ℝ be

the limit. Let 𝐾 ⊂ 𝑈 be any compact subset, 𝐶 the constant from Harnack’s inequality,
and 𝑝 ∈ 𝐾 any point. Given 𝜖 > 0, there is an 𝑁 such that whenever 𝑚 > 𝑛 ≥ 𝑁 , we
get 𝑓𝑚(𝑝) − 𝑓𝑛(𝑝) < 𝜖/𝐶. Then

sup
𝑧∈𝐾

(
𝑓𝑚(𝑧) − 𝑓𝑛(𝑧)

) ≤ 𝐶 inf
𝑧∈𝐾

(
𝑓𝑚(𝑧) − 𝑓𝑛(𝑧)

) ≤ 𝐶
(
𝑓𝑚(𝑝) − 𝑓𝑛(𝑝)

)
< 𝜖.
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In other words, { 𝑓𝑛} is uniformly Cauchy on 𝐾 and hence converges uniformly on 𝐾
to 𝑓 . The function 𝑓 is harmonic by Harnack’s first theorem,  Theorem 7.2.6 . □

Another way of stating Harnack’s principle is to make it about a sequence of
nonnegative functions less than some fixed harmonic function 𝑓 . If the sequence
converges to 𝑓 at one point, it converges uniformly on compact subsets. Moreover, as
nonnegative harmonic functions are the harmonic analogues of bounded holomorphic
functions, we expect a version of Montel’s theorem for nonnegative harmonic
functions, and Harnack delivers that as well. We leave both proofs as exercises.

Exercise 7.2.25: Prove yet another version of Harnack’s principle. Suppose 𝑈 ⊂ ℂ is a
domain, { 𝑓𝑛} is a sequence of nonnegative harmonic functions on𝑈 , and 𝑝 ∈ 𝑈 is fixed.

a) If 𝑓𝑛(𝑝) → +∞, then { 𝑓𝑛} converges to +∞ uniformly on compact subsets.
b) If 𝑓 : 𝑈 → ℝ is harmonic, 𝑓𝑛(𝑧) ≤ 𝑓 (𝑧) for all 𝑧 ∈ 𝑈 , and 𝑓𝑛(𝑝) → 𝑓 (𝑝), then { 𝑓𝑛}

converges to 𝑓 uniformly on compact subsets.

Exercise 7.2.26: Prove a Montel-like theorem for harmonic functions. Suppose𝑈 ⊂ ℂ is a
domain and { 𝑓𝑛} is a sequence of nonnegative harmonic functions. Show that at least one
(or both) of the following are true:

(i) There exists a subsequence converging to +∞ uniformly on compact subsets.

(ii) There exists a subsequence converging to a harmonic function uniformly on compact
subsets.

7.3𝑖 \ Extending harmonic functions

7.3.1𝑖 · Isolated singularities
For harmonic functions, we get the following classification of removable singularities,
which is sharp, that is, best possible. The harmonic function log|𝑧 | has a nonremovable
singularity at the origin. Any function that blows up any slower than that, doesn’t
actually blow up and, in fact, extends to be harmonic at the origin.

Theorem 7.3.1. Suppose 𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \ {𝑝} → ℝ is harmonic such
that

lim
𝑧→𝑝

𝑓 (𝑧)
log|𝑧 − 𝑝 | = 0.

Then there exists a harmonic 𝐹 : 𝑈 → ℝ such that 𝑓 = 𝐹 |𝑈\{𝑝}.

Proof. By considering 𝑓 (𝑎𝑧 + 𝑏), we may assume, without loss of generality, that 𝑝 = 0
and 𝔻 ⊂ 𝑈 . Solve the Dirichlet problem to find a continuous 𝑢 : 𝔻 → ℝ, harmonic in
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𝔻, such that 𝑢 |𝜕𝔻 = 𝑓 |𝜕𝔻. We wish to show that 𝑢 equals 𝑓 in 𝔻 \ {0}. The function
𝑔 = 𝑓 − 𝑢 is harmonic in 𝔻 \ {0} and it is zero on 𝜕𝔻. Furthermore,

lim
𝑧→0

𝑔(𝑧)
− log|𝑧 | = 0.

Equivalently, given any 𝜖 > 0, there is a 𝛿 > 0 (we can assume 𝛿 < 1) such that for all
𝑧 ∈ Δ𝛿(0) \ {0},

−𝜖(− log|𝑧 |) ≤ 𝑔(𝑧) ≤ 𝜖(− log|𝑧 |). (7.2)

The estimate ( 7.2 ) holds also when |𝑧 | = 1 as 𝑔 = 0 there. The functions − log|𝑧 |
and 𝑔 are harmonic outside of the origin, so the maximum principle (the version in

 Exercise 7.1.11 ) implies that ( 7.2 ) holds also for 𝛿 < |𝑧 | < 1, and thus for all 𝑧 ∈ 𝔻 \ {0}.
As the estimate holds for all 𝜖 > 0, we have 𝑔(𝑧) = 0 for all 𝑧 ∈ 𝔻 \ {0}. So 𝑢 is the
extension near 0 that we are looking for. □

An isolated singularity of a harmonic function 𝑔 could be very wild, for example
Re 𝑒1/𝑧 or similar. But if 𝑔 is log| 𝑓 (𝑧)| for a holomorphic 𝑓 that has either a pole or a
zero at the origin, then near the origin 𝑓 behaves like 𝑧𝑛 for 𝑛 ∈ ℤ and

log |𝑧𝑛 | = 𝑛 log|𝑧 |.

In other words, the function 𝑔 behaves like log|𝑧 |. The expression is positive near
the origin if 𝑛 < 0 and negative if 𝑛 > 0. Bôcher’s theorem is the converse of this
reasoning: A nonnegative harmonic function at an isolated singularity at the origin
can be written as 𝑔(𝑧) − 𝐶 log|𝑧 |, where 𝑔 is harmonic at the origin.

Theorem 7.3.2 (Bôcher). Suppose𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \{𝑝} → ℝ is harmonic
and nonnegative. Then there exists a harmonic function 𝑔 : 𝑈 → ℝ and a 𝐶 ≥ 0 such that
for all 𝑧 ∈ 𝑈 \ {𝑝},

𝑓 (𝑧) = 𝑔(𝑧) − 𝐶 log|𝑧 − 𝑝 |.

Proof. Without loss of generality suppose 𝑝 = 0 and𝑈 = 𝔻. We would like to use the
theory of holomorphic functions, but 𝔻 \ {0} is not simply connected. We cannot
simply find a harmonic conjugate in the entire punctured disc. However, we can find
a harmonic conjugate locally, and any two harmonic conjugates differ by a constant
( Proposition 7.1.6 ). Thus if Φ is locally a holomorphic function such that ReΦ = 𝑓 ,
then Φ′ is well-defined in the entire punctured disc 𝔻 \ {0}. Fix some 𝑞 ∈ 𝔻 \ {0}
and some Φ defined near 𝑞 such that ReΦ = 𝑓 . Then there exists a holomorphic
𝜑 : 𝔻 \ {0} → ℂ such that Φ′ = 𝜑 near 𝑞.

Expand 𝜑 in 𝔻 \ {0} using Laurent series,

𝜑(𝑧) =
∞∑

𝑛=−∞
𝑐𝑛𝑧

𝑛 .
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Using  Proposition 4.4.3 , antidifferentiating 1/𝑧 separately, we find that locally near 𝑞,

Φ(𝑧) = 𝐴 + 𝑐−1 log 𝑧 +
∞∑

𝑛=−∞,𝑛≠−1

𝑐𝑛

𝑛 + 1𝑧
𝑛+1 = 𝑐−1 log 𝑧 + 𝜓(𝑧),

for some branch of the log, where 𝜓 is a holomorphic function on 𝔻 \ {0}. Taking the
real part we get 𝑓 , a well-defined function on 𝔻 \ {0}. Therefore, 𝑐−1 log 𝑧 has real
part that is well-defined in 𝔻 \ {0}, meaning 𝑐−1 ∈ ℝ. So

𝑓 (𝑧) = ReΦ(𝑧) = 𝑐−1 log|𝑧 | + Re𝜓(𝑧).
Nonnegativity of 𝑓 (𝑧) says that for some integer 𝑘 ≤ 𝑐−1,

−𝑘 log|𝑧 | ≤ −𝑐−1 log|𝑧 | ≤ Re𝜓(𝑧).
Then

|𝑧−𝑘 | ≤ 𝑒Re𝜓(𝑧) =
��𝑒𝜓(𝑧)��,

or |𝑧−𝑘𝑒−𝜓(𝑧) | ≤ 1, that is, 𝑧−𝑘𝑒−𝜓(𝑧) has a removable singularity at the origin. So 𝑒−𝜓(𝑧)
has a pole or a removable singularity, but 𝑒−𝜓(𝑧) cannot have a pole (see  Exercise 5.2.21 ),
so 𝑒−𝜓(𝑧) and thus 𝜓(𝑧) has a removable singularity. As |𝑧 |−𝑐−1 ≤ |𝑒−𝜓(𝑧) |, we also find
that −𝑐−1 ≥ 0. We are done, 𝜓 extends through the origin and

𝑓 (𝑧) = Re𝜓(𝑧) − (−𝑐−1) log|𝑧 |. □

Exercise 7.3.1: Prove that a holomorphic 𝑓 : Δ𝑟(𝑝) \ {𝑝} → ℂ such that the real part of 𝑓
is bounded has a removable singularity at 𝑝. Prove it using harmonic functions.

Exercise 7.3.2: Prove that the Dirichlet problem is not necessarily solvable in the punctured
disc 𝔻 \ {0}.
Exercise 7.3.3: Prove that given 𝑓 , the function 𝑔 and the constant 𝐶 in Bôcher’s theorem
are unique.

Exercise 7.3.4: Suppose 𝑓 : 𝔻 \ {0} → ℝ is nonnegative and harmonic. Let 𝑧 = 𝑥 + 𝑖𝑦.
Prove that the 𝐶 from Bôcher’s theorem can be computed by

𝐶 =
−𝑟
2𝜋

∫ 2𝜋

0

((cos 𝑡) 𝑓𝑥(𝑟 cos 𝑡 , 𝑟 sin 𝑡) + (sin 𝑡) 𝑓𝑦(𝑟 cos 𝑡 , 𝑟 sin 𝑡)) 𝑑𝑡.
7.3.2𝑖 · Schwarz reflection principle
Classically, the Schwarz reflection principle is a theorem for holomorphic functions,
but it is also a theorem for harmonic functions. We will prove the corresponding
holomorphic version ( Theorem 10.1.1 ) later separately.

Basically the reflection principle says that if a harmonic function vanishes on a
nice enough curve—such as the real line—then it extends (reflects) across.
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Theorem 7.3.3 (Schwarz reflection principle for harmonic functions). Suppose𝑈 ⊂ ℂ

is a domain symmetric across the real axis, that is, 𝑧 ∈ 𝑈 if and only if 𝑧̄ ∈ 𝑈 . Let
𝑈+ = {𝑧 ∈ 𝑈 : Im 𝑧 > 0} and 𝐿 = 𝑈 ∩ ℝ. Suppose 𝑓 : 𝑈+ ∪ 𝐿 → ℝ is a continuous
function that is harmonic on𝑈+ and 𝑓 (𝑧) = 0 for all 𝑧 ∈ 𝐿.

Then there exists a harmonic 𝐹 : 𝑈 → ℝ such that 𝐹 |𝑈+∪𝐿 = 𝑓 .

See  Figure 7.6 for a diagram.

𝐿 ℝ

𝑈+
𝑧

𝑧̄

Figure 7.6: Schwarz reflection principle.

Proof. The trick is to define what we want 𝐹 to be and then check that it is harmonic.
For 𝑧 ∈ 𝑈 , define

𝐹(𝑧) =
{
𝑓 (𝑧) if Im 𝑧 ≥ 0,
− 𝑓 (𝑧̄) else.

If 𝑧 ∈ 𝑈 and Im 𝑧 > 0, then 𝐹 is harmonic at 𝑧 by hypothesis. Suppose 𝑧 ∈ 𝑈 and
Im 𝑧 < 0. Write 𝐹(𝑧) = 𝐹(𝑥, 𝑦) = − 𝑓 (𝑥,−𝑦), then

∇2 |(𝑥,𝑦)𝐹 = ∇2 |(𝑥,𝑦)
(− 𝑓 (𝑥,−𝑦)) = −𝜕2 𝑓

𝜕𝑥2

���(𝑥,−𝑦) − 𝜕2 𝑓

𝜕𝑦2

���(𝑥,−𝑦) = −∇2 |(𝑥,−𝑦) 𝑓 = 0.

Suppose that 𝑧 ∈ 𝐿, that is, 𝑧 ∈ ℝ. Compute the mean value at 𝑧 around any 𝜕Δ𝑟(𝑧)
where Δ𝑟(𝑧) ⊂ 𝑈 :

1
2𝜋

∫ 𝜋

−𝜋
𝐹(𝑧 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 =

1
2𝜋

∫ 0

−𝜋
− 𝑓 (𝑧 + 𝑟𝑒−𝑖𝜃) 𝑑𝜃 + 1

2𝜋

∫ 𝜋

0
𝑓 (𝑧 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 = 0.

That is, the mean value equals 𝐹(𝑧) = 0, and the mean-value property is satisfied for
all small enough 𝑟 at every 𝑧 ∈ 𝐿. We proved above that 𝐹 is harmonic on𝑈 \ 𝐿 and
so the mean-value property is also satisfied for all small enough circles around any
𝑧 ∈ 𝑈 \ 𝐿. By the mean-value property ( Theorem 7.2.5 ), 𝐹 is harmonic in𝑈 . □

Exercise 7.3.5: Suppose 𝑓 : ℂ → ℂ is an entire holomorphic function. Suppose 𝑓 (𝑥) is
real for all 𝑥 ∈ ℝ. Prove:

a) If 𝑓 (𝑖𝑦) is purely imaginary for all 𝑦 ∈ ℝ, then 𝑓 (𝑧) = − 𝑓 (−𝑧) for all 𝑧 ∈ ℂ.
b) If 𝑓 (𝑖𝑦) is real for all 𝑦 ∈ ℝ, then 𝑓 (𝑧) = 𝑓 (−𝑧) for all 𝑧 ∈ ℂ.
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Exercise 7.3.6: Prove that the Dirichlet problem has a unique bounded solution in ℍ. That
is, suppose 𝑓 , 𝑔 : ℍ → ℝ are continuous and harmonic in ℍ such that 𝑓 − 𝑔 is bounded
and 𝑓 = 𝑔 on 𝜕ℍ = ℝ. Prove that 𝑓 = 𝑔 everywhere. Compare to  Exercise 7.2.5 .

Exercise 7.3.7: Prove a version of reflection across the circle: Let 𝑈 ⊂ ℂ be a domain
symmetric with respect to the inversion 𝑧 ↦→ 𝑧/|𝑧 |2. Suppose 𝑓 is a harmonic function
defined on𝑈 ∩𝔻 and zero on𝑈 ∩ 𝜕𝔻. Prove that 𝑓 extends to a harmonic function on𝑈 .

Exercise 7.3.8: Suppose 𝑓 : 𝔻 \ {0} → ℝ is harmonic and 𝑓 = 0 on ℝ ∩ (
𝔻 \ {0}) .

a) Show that 𝑓 has a harmonic conjugate in 𝔻 \ {0}.
b) Find an example 𝑓 that does not extend to be harmonic through the origin.

Exercise 7.3.9: Suppose 𝑓 : ℍ → ℝ is continuous, harmonic on ℍ, zero on ℝ = 𝜕ℍ, and
positive on ℍ (a Martin function). Prove that 𝑓 (𝑧) = 𝑐 Im 𝑧 for some 𝑐 > 0. Hint: Find an
entire function whose imaginary part is 𝑓 and show that it has a pole at infinity.

Exercise 7.3.10:
a) Allow singularities in  Exercise 7.3.6 . Suppose 𝑆 ⊂ ℝ is finite, and 𝑓 , 𝑔 : ℍ \ 𝑆 → ℝ

are continuous and harmonic in ℍ such that 𝑓 − 𝑔 is bounded and 𝑓 = 𝑔 on ℝ \ 𝑆.
Prove that 𝑓 = 𝑔 everywhere.

b) Show uniqueness of the bounded Dirichlet problem in𝔻with discontinuities: Suppose
𝑆 ⊂ 𝜕𝔻 is finite and 𝑓 : 𝜕𝔻 \ 𝑆 → ℝ is continuous and bounded. By  Exercise 7.2.4  ,
a continuous 𝑔 : 𝔻 \ 𝑆 → ℝ harmonic in 𝔻 exists such that 𝑔 = 𝑓 on 𝜕𝔻 \ 𝑆. Prove
that there is a unique such bounded 𝑔. Hint: Part a) and Cayley.

Exercise 7.3.11: Suppose 𝑓 is an entire holomorphic function and Re 𝑓 (𝑖𝑦) = Re 𝑓 (1 +
𝑖𝑦) = 0 for all 𝑦 ∈ ℝ. Prove that 𝑓 is 2-periodic: 𝑓 (𝑧 + 2) = 𝑓 (𝑧) for all 𝑧 ∈ ℂ.

7.4𝑖 \ Subharmonic functions ★
Harmonic (and holomorphic) functions are very rigid. There is a less restrictive (and
much larger) set of functions that allows us to study harmonic functions. In essence,
we replace equalities, which are hard, by inequalities, which are easier to work with.

7.4.1𝑖 · Basic properties
Recall that 𝑓 : 𝑈 → ℝ ∪ {−∞} is upper-semicontinuous 

*
 if

lim sup
𝜁→𝑧

𝑓 (𝜁) ≤ 𝑓 (𝑧) for all 𝑧 ∈ 𝑈.

Definition 7.4.1. Let𝑈 ⊂ ℂ be open. A function 𝑓 : 𝑈 → ℝ∪{−∞} is subharmonic if it
is upper-semicontinuous and for every closed disc Δ𝑟(𝑝) ⊂ 𝑈 , and every continuous

*We do not require𝑈 to be open for semicontinuity.
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𝑔 : Δ𝑟(𝑝) → ℝ, harmonic on Δ𝑟(𝑝), such that 𝑓 (𝑧) ≤ 𝑔(𝑧) for 𝑧 ∈ 𝜕Δ𝑟(𝑝), we have

𝑓 (𝑧) ≤ 𝑔(𝑧) for all 𝑧 ∈ Δ𝑟(𝑝).
In other words, a subharmonic function is a function that is less than every

harmonic function on every disc. The best way to think about subharmonic functions
is an analogy to convex functions in ℝ. We saw that harmonic functions in ℝ are
the affine linear functions: A function 𝑔(𝑥) on ℝ is harmonic if 𝑔′′ ≡ 0, that is,
𝑔(𝑥) = 𝐴𝑥 + 𝐵. A function of one real variable is convex if for every interval it is
less than the affine linear function with the same end points. That is, the function
𝑓 is convex if for every 𝛼 < 𝛽, and every affine linear 𝑔 such that 𝑓 (𝛼) ≤ 𝑔(𝛼) and
𝑓 (𝛽) ≤ 𝑔(𝛽), we have 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝛼, 𝛽]. See  Figure 7.7  . In ℝ, an interval
[𝛼, 𝛽] plays the role of a closed disc. So in ℝ, convex is the same as subharmonic.
Graphs of real-valued functions of one real variable are also much easier to draw
than functions on ℂ.

𝑦 = 𝑓 (𝑥)

𝑦 = 𝑔(𝑥)

𝑥 = 𝛽𝑥 = 𝛼

Figure 7.7: A convex function.

Exercise 7.4.1: Consider 𝑓 : 𝑈 → ℝ ∪ {−∞}.
a) Prove that 𝑓 is upper-semicontinuous if and only if for every 𝑎 ∈ ℝ the set
𝑉 = 𝑓 −1 ([−∞, 𝑎)) = {

𝑧 ∈ 𝑈 : 𝑓 (𝑧) < 𝑎
}

is open (in the subspace topology of𝑈).
b) Prove that 𝑓 is upper-semicontinuous if and only if for every 𝑎 ∈ ℝ the set
𝑋 = 𝑓 −1 ([𝑎,+∞)) = {

𝑧 ∈ 𝑈 : 𝑓 (𝑧) ≥ 𝑎
}

is closed (in the subspace topology of𝑈).

Exercise 7.4.2: Prove that an upper-semicontinuous function defined on a compact set
achieves a maximum.

Exercise 7.4.3: Prove that if 𝑓 : 𝑈 → ℝ is upper-semicontinuous and − 𝑓 is also upper-
semicontinuous (that is, 𝑓 is also lower-semicontinuous), then 𝑓 is continuous.

Adding or subtracting harmonic functions does not kill subharmonicity. The
proof is rather simple as a sum or difference of harmonic functions is harmonic and
we leave it as an exercise.
Proposition 7.4.2. If 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic and ℎ : 𝑈 → ℝ is harmonic,
then 𝑓 + ℎ is subharmonic.
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Exercise 7.4.4: Prove the proposition.

Subharmonic functions are also classified by a mean-value-like property, although
it is an inequality rather than an equality. There is a subtle issue of integrability.
For an upper-semicontinuous function the integral in the theorem need not exist
as a Riemann integral. We will only give a proof for the upper Darboux integral.
The proof is similar for the Lebesgue integral if the reader knows that, although the
statement with the Darboux integral is sufficient for us.
Theorem 7.4.3 (Sub-mean-value property). Suppose 𝑈 ⊂ ℂ is open. An upper-
semicontinuous 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic if and only if for every 𝑝 ∈ 𝑈 there
exists an 𝑅𝑝 > 0 such that Δ𝑅𝑝 (𝑝) ⊂ 𝑈 and

𝑓 (𝑝) ≤ 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 for all 𝑟 < 𝑅𝑝 .

The integral is either the Lebesgue integral or the upper Darboux integral. Moreover, if 𝑓 is
subharmonic, then we may choose any 𝑅𝑝 > 0 such that Δ𝑅𝑝 (𝑝) ⊂ 𝑈 .

As 𝜕Δ𝑟(𝑝) is compact and 𝑓 is upper-semicontinuous, then 𝑓 is bounded from
above and hence the upper Darboux integral is defined and finite. The upper Darboux
integral of a function 𝑓 on [𝑎, 𝑏] bounded above is normally defined as∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 def
= inf

{∫ 𝑏

𝑎

𝑠(𝑡) 𝑑𝑡 : 𝑠 is a step function and 𝑓 (𝑡) ≤ 𝑠(𝑡) for 𝑡 ∈ [𝑎, 𝑏]
}
.

A step function is a finite sum of characteristic functions of intervals and hence
Riemann integrable. Since continuous functions are Riemann integrable, we can
approximate from above by continuous functions 𝑔 such that

∫ 𝑏

𝑎
𝑔(𝑡) 𝑑𝑡 approximates∫ 𝑏

𝑎
𝑠(𝑡) 𝑑𝑡. In other words, in the definition we could replace step functions with

continuous functions, and that is what we will do in the proof.

Proof. First suppose that 𝑓 is subharmonic. Take 𝑝 ∈ 𝑈 and any 𝑅𝑝 > 0 such that
Δ𝑅𝑝 (𝑝) ⊂ 𝑈 . Fix 𝑟 < 𝑅𝑝 and 𝜖 > 0. Find a continuous function 𝑔 : 𝜕Δ𝑟(𝑝) → ℝ such
that 𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) ≤ 𝑔(𝑝 + 𝑟𝑒 𝑖𝜃) for all 𝜃 and such that

1
2𝜋

∫ 𝜋

−𝜋
𝑔(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 <

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 + 𝜖.

Solve the Dirichlet problem in the disc Δ𝑟(𝑝) for 𝑔 and with a slight abuse of notation
call the solution on Δ𝑟(𝑝) also 𝑔. As 𝑔 is harmonic and bigger than 𝑓 , we have by
definition of subharmonicity and the mean-value property of harmonic functions

𝑓 (𝑝) ≤ 𝑔(𝑝) = 1
2𝜋

∫ 𝜋

−𝜋
𝑔(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 <

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 + 𝜖.
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For the converse, suppose that 𝑓 is upper-semicontinuous and the estimate holds
for all 𝑝 and all 𝑟 < 𝑅𝑝 . Suppose for contradiction that there exists a closed disc
Δ𝑠(𝑞) ⊂ 𝑈 and a continuous ℎ : Δ𝑠(𝑞) → ℝ, harmonic in Δ𝑠(𝑞), such that 𝑓 (𝑧) ≤ ℎ(𝑧)
on 𝜕Δ𝑠(𝑞) and 𝑓 (𝑝) > ℎ(𝑝) at some point 𝑝 ∈ Δ𝑠(𝑞). Consider 𝜑 = 𝑓 − ℎ, which is
upper-semicontinuous on Δ𝑠(𝑞). Let 𝑝 be the point where 𝜑 attains the maximum
(see  Exercise 7.4.2 ). Then 𝑝 ∈ Δ𝑠(𝑞), 𝜑(𝑝) > 0, and 𝜑(𝑧) ≤ 0 for all 𝑧 ∈ 𝜕Δ𝑠(𝑞). The
set 𝑋 ⊂ Δ𝑠(𝑞) where 𝜑(𝑧) = 𝜑(𝑝) is compact (as a subset of Δ𝑠(𝑞) it is closed via

 Exercise 7.4.1  ). Assume 𝑝 is the point of 𝑋 closest to 𝜕Δ𝑠(𝑞). For some small 𝑟 < 𝑅𝑝 ,
the circle 𝜕Δ𝑟(𝑝) ⊂ Δ𝑠(𝑞) and for a nonempty open subset of 𝜕Δ𝑟(𝑝) the function 𝜑
must be less than some fixed constant less than 𝜑(𝑝). This fact again follows via

 Exercise 7.4.1 . The setup is the same as in  Figure 7.4 .

1
2𝜋

∫ 𝜋

−𝜋
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 < 𝜑(𝑝).

We obtain a contradiction,

𝑓 (𝑝) − ℎ(𝑝) ≤ 1
2𝜋

∫ 𝜋

−𝜋

(
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) − ℎ(𝑝 + 𝑟𝑒 𝑖𝜃)) 𝑑𝜃 + 1

2𝜋

∫ 𝜋

−𝜋
ℎ(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃

≤ 1
2𝜋

∫ 𝜋

−𝜋
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 + 1

2𝜋

∫ 𝜋

−𝜋

(−ℎ(𝑝 + 𝑟𝑒 𝑖𝜃)) 𝑑𝜃 + 1
2𝜋

∫ 𝜋

−𝜋
ℎ(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃

=
1

2𝜋

∫ 𝜋

−𝜋
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 < 𝜑(𝑝) = 𝑓 (𝑝) − ℎ(𝑝).

The first inequality follows by the hypothesis for 𝑓 and the mean-value property
for ℎ. The second inequality follows because the Darboux upper integral is only
subadditive (

∫
(𝑎 + 𝑏) ≤

∫
𝑎 +

∫
𝑏). Then that ℎ is Riemann integrable gives the next

equality, and the final inequality is the inequality we just proved above. □

From now on, we simply write the integral and the reader substitutes the upper
Darboux integral or the Lebesgue integral according to the reader’s taste.

An easy consequence of the sub-mean-value property is that subharmonic func-
tions, while not necessarily continuous, are a bit better then just upper-semicontinuous.
Proposition 7.4.4. Let𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℝ ∪ {−∞} be subharmonic. Then

lim sup
𝜁→𝑧

𝑓 (𝜁) = 𝑓 (𝑧) for all 𝑧 ∈ 𝑈 .

Exercise 7.4.5: Prove the proposition.

When we said that the maximum principle was really something about harmonic
functions, we lied. It is really there because harmonic functions are subharmonic. Be
careful, however, there is no minimum principle for subharmonic functions. To get a
minimum principle, you look at superharmonic functions.
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Theorem 7.4.5 (Maximum principle). Suppose𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℝ∪{−∞}
is subharmonic. If 𝑓 attains a maximum 

*
 in𝑈 , then 𝑓 is constant.

Proof. Suppose 𝑓 attains a maximum at 𝑝 ∈ 𝑈 . If Δ𝑟(𝑝) ⊂ 𝑈 , then

𝑓 (𝑝) ≤ 1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≤ 𝑓 (𝑝).

Hence, on every subinterval of 𝜃, 𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) = 𝑓 (𝑝) somewhere (using either the
Darboux or Lebesgue integral). By upper-semicontinuity for any 𝜃0, 𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃0) =
lim sup𝜃→𝜃0

𝑓 (𝑝 + 𝑟𝑒 𝑖𝜃) = 𝑓 (𝑝). So 𝑓 = 𝑓 (𝑝) everywhere on 𝜕Δ𝑟(𝑝). This equality
holds for all 𝑟 with Δ𝑟(𝑝) ⊂ 𝑈 , so 𝑓 = 𝑓 (𝑝) on Δ𝑟(𝑝), and the set where 𝑓 = 𝑓 (𝑝) is
open. The set where an upper-semicontinuous function attains a maximum is closed.
So 𝑓 = 𝑓 (𝑝) on𝑈 as𝑈 is connected. □

Exercise 7.4.6: Prove that subharmonicity is a local property. That is, given an open set
𝑈 ⊂ ℂ, a function 𝑓 : 𝑈 → ℝ∪ {−∞} is subharmonic if and only if for every 𝑝 ∈ 𝑈 there
exists an open neighborhood𝑊 of 𝑝,𝑊 ⊂ 𝑈 , such that 𝑓 |𝑊 is subharmonic.

Exercise 7.4.7: Suppose 𝑈 ⊂ ℂ is bounded and open, 𝑓 : 𝑈 → ℝ ∪ {−∞} is upper-
semicontinuous such that 𝑓 |𝑈 is subharmonic, and 𝑔 : 𝑈 → ℝ is continuous such that
𝑔 |𝑈 is harmonic and 𝑓 (𝑧) ≤ 𝑔(𝑧) for all 𝑧 ∈ 𝜕𝑈 . Prove that 𝑓 (𝑧) ≤ 𝑔(𝑧) for all 𝑧 ∈ 𝑈 .

Exercise 7.4.8: Let 𝑔 be a function harmonic on a disc Δ ⊂ ℂ and continuous on Δ. Prove
that for every 𝜖 > 0 there exists a function 𝑔𝜖, harmonic in an open neighborhood of Δ,
such that 𝑔(𝑧) ≤ 𝑔𝜖(𝑧) ≤ 𝑔(𝑧) + 𝜖 for all 𝑧 ∈ Δ. In particular, to test subharmonicity, we
only need to consider those 𝑔 that are harmonic a bit past the boundary of the disc.

Exercise 7.4.9: Prove the minimum principle for superharmonic functions ( 𝑓 is superhar-
monic if − 𝑓 is subharmonic). That is, if a superharmonic function defined on a domain𝑈
achieves a minimum inside𝑈 , then it is constant.

To continue the analogy to convex functions, a 𝐶2 function 𝑓 of one real variable
is convex if and only if 𝑓 ′′(𝑥) ≥ 0 for all 𝑥. We obtain the same kind of result for
subharmonic functions by replacing 𝑓 ′′ by the Laplacian as before.

Proposition 7.4.6. Suppose𝑈 ⊂ ℂ is an open set and 𝑓 : 𝑈 → ℝ is a𝐶2 (twice continuously
differentiable) function. The function 𝑓 is subharmonic if and only if ∇2 𝑓 ≥ 0.

Proof. Suppose 𝑓 is a 𝐶2 function on a subset of ℂ with ∇2 𝑓 ≥ 0. We wish to show
that 𝑓 is subharmonic. Take a disc Δ such that Δ ⊂ 𝑈 . Consider a function 𝑔

continuous on Δ, harmonic on Δ, and such that 𝑓 ≤ 𝑔 on the boundary 𝜕Δ. Because
∇2( 𝑓 − 𝑔) = ∇2 𝑓 ≥ 0, we assume 𝑔 = 0 and 𝑓 ≤ 0 on the boundary 𝜕Δ.

*We do mean the global maximum; if the maximum is local, one only obtains constancy nearby.



192 CHAPTER 7. HARMONIC FUNCTIONS

Suppose ∇2 𝑓 > 0 at all points on Δ. The Laplacian ∇2 𝑓 is the trace of the Hessian
matrix, that is, the sum of the eigenvalues. Thus 𝑓 has no maximum in Δ, since at a
maximum both eigenvalues of the Hessian matrix would be nonpositive. Therefore,
𝑓 ≤ 0 on all of Δ.

Next suppose only that ∇2 𝑓 ≥ 0. Let 𝑀 be the maximum of 𝑥2 + 𝑦2 on Δ. Take
𝑓𝑛(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + 1

𝑛 (𝑥2 + 𝑦2) − 1
𝑛𝑀. Clearly ∇2 𝑓𝑛 > 0 everywhere on Δ and 𝑓𝑛 ≤ 0

on the boundary, so 𝑓𝑛 ≤ 0 on all of Δ. As 𝑓𝑛 → 𝑓 , we obtain that 𝑓 ≤ 0 on all of Δ,
that is, 𝑓 ≤ 𝑔 on Δ. So 𝑓 is subharmonic.

The other direction is left as an exercise. □

Exercise 7.4.10: Finish the proof of  Proposition 7.4.6 .

The supremum of convex functions is convex. Similarly, the supremum of subhar-
monic functions is subharmonic, as long as the supremum is upper-semicontinuous.
We can therefore “piece together” many subharmonic functions by taking suprema.
Proposition 7.4.7. Suppose 𝑈 ⊂ ℂ is an open set and 𝑓𝛼 : 𝑈 → ℝ ∪ {−∞} is a family of
subharmonic functions. Let

𝜑(𝑧) = sup
𝛼

𝑓𝛼(𝑧).
If the family is finite, then 𝜑 is subharmonic. If the family is infinite, 𝜑(𝑧) ≠ +∞ for all 𝑧,
and 𝜑 is upper-semicontinuous, then 𝜑 is subharmonic.

Proof. Suppose Δ𝑟(𝑝) ⊂ 𝑈 . For any 𝛼,
1

2𝜋

∫ 𝜋

−𝜋
𝜑(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≥ 1

2𝜋

∫ 𝜋

−𝜋
𝑓𝛼(𝑝 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≥ 𝑓𝛼(𝑝).

Taking the supremum on the right over 𝛼 obtains the result. □

Exercise 7.4.11: Prove that if 𝜑 : ℝ → ℝ is a monotonically increasing convex function,
𝑈 ⊂ ℂ is an open set, and 𝑓 : 𝑈 → ℝ is subharmonic, then 𝜑 ◦ 𝑓 is subharmonic.

Exercise 7.4.12: Let𝑈 ⊂ ℂ be open, { 𝑓𝑛} a sequence of subharmonic functions uniformly
bounded above on compact subsets, and {𝑐𝑛} a sequence of positive real numbers such
that

∑∞
𝑛=1 𝑐𝑛 < +∞. Prove that 𝑓 =

∑∞
𝑛=1 𝑐𝑛 𝑓𝑛 is subharmonic. Make sure to prove the

function is upper-semicontinuous.

Exercise 7.4.13: Suppose𝑈 ⊂ ℂ is a bounded open set, and {𝑝𝑛} a sequence of points in
𝑈 . For 𝑧 ∈ 𝑈 , define 𝑓 (𝑧) = ∑∞

𝑛=1 2−𝑛 log|𝑧 − 𝑝𝑛 |, possibly taking on the value −∞.
a) Show that 𝑓 is a subharmonic function in𝑈 .
b) If𝑈 = 𝔻 and 𝑝𝑛 = 1/𝑛, show that 𝑓 is discontinuous at 0 (the natural topology on

ℝ ∪ {−∞}).
c) If {𝑝𝑛} is dense in𝑈 , show that 𝑓 is nowhere continuous. Hint: Prove 𝑓 −1(−∞) is a

small but dense set. Hint #2: Integrate the partial sums, and use polar coordinates.
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7.4.2𝑖 · Applications, Radó’s theorem
In complex analysis, we are really interested in proving results for harmonic functions,
as we are interested in proving results for holomorphic functions. However, harmonic
functions are rigid, they cannot be “put together” easily. Furthermore, there aren’t
that many of them. There are a lot of subharmonic functions. An example of the use
of subharmonic functions to the theory of holomorphic functions is the theorem of
Radó, which is a complementary result to the  Riemann extension theorem . Here, on
the one hand, the function is continuous and vanishes on the set you wish to extend
across, but on the other hand, you know nothing about the size of this set.
Theorem 7.4.8 (Radó). Let 𝑈 ⊂ ℂ be open and 𝑓 : 𝑈 → ℂ a continuous function that is
holomorphic on the set where it is nonzero, that is, 𝑓 is holomorphic on

{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) ≠ 0

}
.

Then 𝑓 is holomorphic.

Proof. Holomorphicity is local, so it is enough to prove the theorem for a small disc Δ
assuming 𝑓 is continuous on the closure Δ. Let Δ′ ⊂ Δ be the set where 𝑓 is nonzero.
If Δ′ is empty, then we are done, as 𝑓 is just identically zero and hence holomorphic.

Let 𝑢 be the real part of 𝑓 . On Δ′, 𝑢 is a harmonic function. Write 𝑃𝑢 = 𝑃[𝑢 |𝜕Δ]
for the Poisson integral of 𝑢 on Δ. Hence 𝑃𝑢 equals 𝑢 on 𝜕Δ, and 𝑃𝑢 is harmonic in
all of Δ. Consider the function 𝑃𝑢(𝑧) − 𝑢(𝑧) on Δ. The function is zero on 𝜕Δ and
it is harmonic on Δ′. By rescaling 𝑓 , we assume that | 𝑓 (𝑧)| < 1 for all 𝑧 ∈ Δ. The
function 𝑧 ↦→ log| 𝑓 (𝑧)| is harmonic on Δ′, it is −∞ when 𝑓 (𝑧) = 0, and hence it is
upper-semicontinuous on Δ. Applying the sub-mean-value property near points
where 𝑓 vanishes, we find that log| 𝑓 (𝑧)| is subharmonic on Δ. As | 𝑓 (𝑧)| < 1, we
find that log| 𝑓 (𝑧)| is negative on Δ. So for every 𝑡 > 0, the function 𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)|
is subharmonic and negative and the function 𝑧 ↦→ −𝑡 log | 𝑓 (𝑧)| is superharmonic
(minus a subharmonic function) and positive. See  Figure 7.8 . It is immediate that for
all 𝑡 > 0 and 𝑧 ∈ 𝜕Δ, we have

𝑡 log | 𝑓 (𝑧)| ≤ 𝑃𝑢(𝑧) − 𝑢(𝑧) ≤ −𝑡 log | 𝑓 (𝑧)| . (7.3)

The functions 𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)| − (
𝑃𝑢(𝑧) − 𝑢(𝑧)) and 𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)| − (

𝑢(𝑧) − 𝑃𝑢(𝑧))
are harmonic on Δ′ and −∞ whenever 𝑓 (𝑧) = 0. Thus both are upper-semicontinuous
on Δ and subharmonic on Δ. The maximum principle shows that ( 7.3 ) holds for all
𝑧 ∈ Δ and all 𝑡 > 0.

Taking the limit 𝑡 → 0 shows that 𝑃𝑢 = 𝑢 on Δ′. Let 𝑊 = Δ \ Δ′. On 𝑊 , 𝑢 = 0
and so 𝑃𝑢 − 𝑢 is harmonic on𝑊 and continuous on𝑊 . Furthermore, 𝑃𝑢 − 𝑢 = 0 on
Δ′ ∪ 𝜕Δ, and so 𝑃𝑢 − 𝑢 = 0 on 𝜕𝑊 . By the maximum principle, 𝑃𝑢 = 𝑢 on 𝑊 and
therefore on all of Δ. All in all, 𝑢 is harmonic on Δ. Repeating the whole procedure
for 𝑣, the imaginary part of 𝑓 , we find that 𝑣 is harmonic as well. As Δ is simply
connected, let 𝑣̃ be the harmonic conjugate of 𝑢 that equals 𝑣 at some point of Δ′. As
𝑓 is holomorphic on Δ′, the harmonic functions 𝑣̃ and 𝑣 are equal on the nonempty
open subset Δ′ of Δ and so they are equal everywhere. Consequently, 𝑓 = 𝑢 + 𝑖𝑣 is
holomorphic on Δ. □
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𝑓 ≠ 0
Δ′

𝑡 log| 𝑓 | < 0

𝑃𝑢 − 𝑢 = 0

𝑡 log| 𝑓 | = −∞
𝑓 = 0

𝑊 = Δ \ Δ′

Figure 7.8: Proof of Radó’s theorem.

Exercise 7.4.14: Let 𝑈 ⊂ ℂ be a domain and 𝑝 ∈ 𝜕𝑈 is a nonisolated point of 𝜕𝑈 .
Suppose 𝑓 : 𝑈 → ℂ is continuous, holomorphic in𝑈 , and such that for some small disc Δ
centered at 𝑝, 𝑓 is zero on Δ ∩ 𝜕𝑈 . Prove that 𝑓 ≡ 0.

Another example of the use subharmonic functions is another solution to the
Dirichlet problem. A solution can be had by considering all the subharmonic functions
that are less than the function given on the boundary. Then one takes a supremum to
obtain a harmonic function. We will not go through this technique, which is called the
Perron method. Clearly, that technique would work far better than the Poisson kernel
for more complicated domains. For instance, the Poisson kernel can be computed for
simply connected domains with nice boundary provided we know the Riemann map.
However, the kernel is difficult to compute in general, and it requires a very nice
boundary to be able to integrate. The Perron method works much more generally
provided you can construct enough subharmonic functions (which can, after all, be
pieced together unlike harmonic functions).

If a solution exists, it clearly must equal to the Perron solution.

Exercise 7.4.15 (Easy): Suppose𝑈 ⊂ ℂ is a domain and 𝑢 : 𝑈 → ℝ is continuous and
harmonic on𝑈 . Prove that for all 𝑝 ∈ 𝑈 ,

𝑢(𝑝) = sup
𝑣

𝑣(𝑝),

where 𝑣 ranges over all upper-semicontinuous functions on 𝑈 subharmonic on 𝑈 , such
that 𝑣 |𝜕𝑈 ≤ 𝑢 |𝜕𝑈 .
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I became insane, with long intervals of horrible sanity.
—Edgar Allan Poe

8.1𝑖 \ Infinite products
If a function has zeros at 0, 1, and 𝑖, we can write 𝑓 as 𝑓 (𝑧) = 𝑔(𝑧)𝑧(𝑧 − 1)(𝑧 − 𝑖).
If those are the only zeros, then 𝑔 is never zero. If there are infinitely many zeros,
however, things become difficult. Can we factor out the zeros out of sin 𝑧? Can we
write sin 𝑧 as something times ∏

𝑛∈ℤ
(𝑧 − 𝜋𝑛) ?

Not quite, but sort of, if we take care of convergence. 

†
 Of course, we need to first

figure out what we mean by convergence. Once we figure that out, we will show that
convergence happens the way we want to if we use slightly more complicated factors.

Definition 8.1.1. The product
∞∏
𝑛=1

(1 + 𝑎𝑛)

converges if the limit of the sequence of partial products

lim
𝑘→∞

𝑘∏
𝑛=1

(1 + 𝑎𝑛) = (1 + 𝑎1)(1 + 𝑎2) · · · (1 + 𝑎𝑘)

exists. The product converges absolutely if
∏∞

𝑛=1
(
1 + |𝑎𝑛 |

)
converges.

A product could converge in two different ways. It either goes to 0 or it does not.
One way to go to zero is if 1 + 𝑎𝑛 = 0 for some 𝑛, but there are other possibilities. For
instance, if |1 + 𝑎𝑛 | ≤ 𝑟 < 1 for all 𝑛, then the product also goes to zero, although in
this case the convergence will not be absolute (exercise below).

†Beware of formal expressions bearing gifts. Especially ones with infinite sets in them. For example,∏
𝑛∈ℤ(𝑧 − 𝜋𝑛) does not actually make any sense.
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Suppose that the product converges to a nonzero number. In particular, 𝑎𝑛 ≠ −1
for any 𝑛. Then ∏𝑘+1

𝑛=1(1 + 𝑎𝑛)∏𝑘
𝑛=1(1 + 𝑎𝑛)

= 1 + 𝑎𝑘 .

Taking the limit, we see that 1 + 𝑎𝑘 must go to 1, and so 𝑎𝑘 must go to 0.
A key idea about products is to relate infinite products to sums using the logarithm,

which is something we can easily do if dealing with positive numbers. This way,
absolutely convergent products can be understood if we understand absolutely
convergent sums, which we do.

Proposition 8.1.2. The product
∏∞

𝑛=1
(
1+ |𝑎𝑛 |

)
converges if and only if

∑∞
𝑛=1 |𝑎𝑛 | converges.

Proof. Suppose
∑∞
𝑛=1 |𝑎𝑛 | converges. The sequence of partial products is increasing:

𝑘∏
𝑛=1

(
1 + |𝑎𝑛 |

) ≤ 𝑘+1∏
𝑛=1

(
1 + |𝑎𝑛 |

)
.

Thus it is sufficient to show that it is bounded. Consider

log
𝑘∏
𝑛=1

(
1 + |𝑎𝑛 |

)
=

𝑘∑
𝑛=1

log
(
1 + |𝑎𝑛 |

) ≤ 𝑘∑
𝑛=1

|𝑎𝑛 | ≤
∞∑
𝑛=1

|𝑎𝑛 |.

For the other direction, suppose that the sequence of partial products converges.
For all but finitely many 𝑛, |𝑎𝑛 | < 1. Otherwise the partial products would double
infinitely often and go to infinity. So suppose that |𝑎𝑛 | < 1 for all 𝑛 ≥ 𝑁 . If |𝑎𝑛 | < 1,
then |𝑎𝑛 | ≤ 2 log

(
1 + |𝑎𝑛 |

)
, and

𝑚∑
𝑛=𝑁

|𝑎𝑛 | ≤
𝑚∑

𝑛=𝑁

2 log
(
1 + |𝑎𝑛 |

) ≤ 2 log
𝑚∏

𝑛=𝑁

(
1 + |𝑎𝑛 |

)
.

The right-hand side is bounded as 𝑚 goes to infinity, and so the tail of
∑∞
𝑛=1 |𝑎𝑛 |

converges. □

An immediate consequence is that if
∏∞

𝑛=1(1+ 𝑎𝑛) converges absolutely, then {𝑎𝑛}
converges to 0. Not only that, they go to zero fast enough to be absolutely summable.

As for series, we need to know that absolute convergence really is convergence.

Proposition 8.1.3. If
∏∞

𝑛=1(1 + 𝑎𝑛) converges absolutely, then it converges.
Moreover, if Re 𝑎𝑛 > −1 for all 𝑛, then

∞∏
𝑛=1

(1 + 𝑎𝑛) = exp

( ∞∑
𝑛=1

Log(1 + 𝑎𝑛)
)
,

and the series converges absolutely. In particular, the product converges to a nonzero number.
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Proof. If the product converges absolutely, then |𝑎𝑛 | goes to 0, and we may assume
that Re 𝑎𝑛 > −1 for all 𝑛. In particular, Log(1 + 𝑎𝑛) is well-defined for the principal
branch of the logarithm. Let 𝑚 > 𝑘 be two positive integers.����� 𝑚∑

𝑛=1

��Log(1 + 𝑎𝑛)
�� − 𝑘∑

𝑛=1

��Log(1 + 𝑎𝑛)
������� ≤ 𝑚∑

𝑛=𝑘+1

��Log(1 + 𝑎𝑛)
��

≤
𝑚∑

𝑛=𝑘+1

(
log|1 + 𝑎𝑛 | +

��Arg(1 + 𝑎𝑛)
��) . (8.1)

As before,
ℓ∑
𝑛=1

log|1 + 𝑎𝑛 | ≤
ℓ∑
𝑛=1

log
(
1 + |𝑎𝑛 |

) ≤ ℓ∑
𝑛=1

|𝑎𝑛 |,

and the series on the right converges via  Proposition 8.1.2 . Next, Arg(1 + 𝑎𝑛) is
between −𝜋/2 and 𝜋/2, and 𝑎𝑛 goes to zero. A calculus exercise shows that for all 𝑛
large enough,

��Arg(1 + 𝑎𝑛)
�� ≤ 2|𝑎𝑛 |. As

∑|𝑎𝑛 | converges,
∑��Arg(1 + 𝑎𝑛)

�� converges.
In other words, the right-hand side in ( 8.1 ) goes to zero as 𝑘 goes to infinity. Thus,∑��Log(1 + 𝑎𝑛)

�� is Cauchy and hence converges. When taking an exponential, it does
not matter which branch of the logarithm we take, and therefore the following makes
sense, where we use log to denote any branch of logarithm whatsoever.

exp

(
𝑘∑
𝑛=1

Log(1 + 𝑎𝑛)
)
= exp

(
log

𝑘∏
𝑛=1

(1 + 𝑎𝑛)
)
=

𝑘∏
𝑛=1

(1 + 𝑎𝑛).

We thus find that the product converges. □

It is important that the principal branch is used as otherwise the imaginary
parts of the logs will not converge. It is also important to emphasize above that
it is not necessarily true that

∑𝑘
𝑛=1 Log 𝑧𝑛 = Log

∏𝑘
𝑛=1 𝑧𝑛 . However,

∑𝑘
𝑛=1 Log 𝑧𝑛 =

log
∏𝑘

𝑛=1 𝑧𝑛 for some branch of the logarithm because the arguments might add up
to something outside the range (−𝜋,𝜋], but it will be off by some multiple of 2𝜋.

Proposition 8.1.4. If
∏∞

𝑛=1(1+ 𝑎𝑛) converges absolutely to 0, then there exists a 𝑛 such that
𝑎𝑛 = −1.

Proof. As before, because |𝑎𝑛 | goes to zero, Re 𝑎𝑛 > −1 for all large enough 𝑛. The
product of those terms converges to a nonzero number by the “Moreover” part of the
proposition. The only way to get zero as a limit is for one of the initial terms to be
zero, that is, if 𝑎𝑛 = −1 for some 𝑛. □

Just as series, an absolutely convergent power series can be reordered.

Proposition 8.1.5. Suppose
∏∞

𝑛=1(1 + 𝑎𝑛) converges absolutely to 𝐿. If 𝜑 : ℕ → ℕ is a
bĳection, then

∏∞
𝑛=1(1 + 𝑎𝜑(𝑛)) also converges absolutely to 𝐿.
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Proof. That the reordered series converges absolutely follows from  Proposition 8.1.2 

and the corresponding result for series. If 𝐿 = 0, then we just proved that one of the
terms is zero, and the reordered product converges to 0. Suppose 𝐿 ≠ 0. By ignoring
finitely many terms, we assume without loss of generality that Re 𝑎𝑛 > −1. Then∑

Log(1 + 𝑎𝑛) converges absolutely and

𝐿 = exp

( ∞∑
𝑛=1

Log(1 + 𝑎𝑛)
)
.

The sum converges absolutely, so it can be reordered and hence the product can be
reordered and the limit remains the same. □

Definition 8.1.6. Given functions 𝑔𝑛 : 𝑋 → ℂ, the product
∏∞

𝑛=1
(
1 + 𝑔𝑛(𝑥)

)
converges

uniformly absolutely if
∏∞

𝑛=1
(
1 + |𝑔𝑛(𝑥)|

)
converges uniformly in 𝑥 ∈ 𝑋.

Uniformly absolute convergence of the product is the same as uniformly absolute
convergence of the sum.

Proposition 8.1.7. For 𝑔𝑛 : 𝑋 → ℂ, the product
∏∞

𝑛=1
(
1 + |𝑔𝑛(𝑥)|

)
converges uniformly if

and only if
∑∞
𝑛=1 |𝑔𝑛(𝑥)| converges uniformly.

Exercise 8.1.1: Prove the proposition. Hint: Use log to convert the partial products to
partial sums. Then apply the estimates in  Proposition 8.1.2 to show that one sequence of
partial sums is uniformly Cauchy if and only if the other one is.

As for series, uniform absolute convergence means uniform convergence.

Proposition 8.1.8. For 𝑔𝑛 : 𝑋 → ℂ, if
∏∞

𝑛=1
(
1 + 𝑔𝑛(𝑥)

)
converges uniformly absolutely,

then
∏∞

𝑛=1
(
1 + 𝑔𝑛(𝑥)

)
converges uniformly.

Exercise 8.1.2: Prove the proposition.

Corollary 8.1.9. Suppose 𝑈 ⊂ ℂ is open, 𝑓𝑛 : 𝑈 → ℂ are holomorphic, and 𝑓 (𝑧) =∏∞
𝑛=1 𝑓𝑛(𝑧) converges uniformly absolutely on compact subsets of𝑈 . Then 𝑓 is holomorphic.

Furthermore, 𝑓 (𝑧) = 0 for some 𝑧 ∈ 𝑈 if and only if there exists an 𝑛 such that 𝑓𝑛(𝑧) = 0.

Proof. As uniform absolute convergence implies uniform convergence, 𝑓 is holomor-
phic. For absolutely convergent products, the only way to get zero is for one of the
terms to be zero. □

Exercise 8.1.3: Suppose |1 + 𝑎𝑛 | ≤ 𝑟 < 1 for all 𝑛. Prove that
∏∞

𝑛=1(1 + 𝑎𝑛) converges to
0, but that the convergence is not absolute.
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Exercise 8.1.4: Suppose Re 𝑎𝑛 > −1 for all 𝑛. Prove
∏∞

𝑛=1(1+ 𝑎𝑛) converges to a nonzero
number if and only if

∑∞
𝑛=1 Log(1 + 𝑎𝑛) converges. Note: We already proved one direction.

Exercise 8.1.5: Suppose𝑈 ⊂ ℂ is a domain, 𝑓𝑛 : 𝑈 → ℂ are holomorphic, and

𝐹(𝑧) =
∞∏
𝑛=1

𝑓𝑛(𝑧)

converges uniformly absolutely on compact subsets of𝑈 . Prove that

𝐹′(𝑧) =
∞∑
𝑛=1

𝑓 ′𝑛(𝑧)
∞∏

𝑘=1,𝑘≠𝑛
𝑓𝑘(𝑧),

converging uniformly absolutely on compact subsets of𝑈 .

8.2𝑖 \ Weierstrass factorization and product theorems

8.2.1𝑖 · In the plane
To factor an arbitrary holomorphic function such as the sine, we have to be a smidge
trickier than just trying to factor out (𝑧 − 𝑧𝑛) for all the zeros. To get the product to
converge, we multiply the factor by something to make the factor closer to 1. We start
with functions that have a zero at 𝑧 = 1.

Definition 8.2.1. Define the elementary factors

𝐸0(𝑧) = 1 − 𝑧, 𝐸𝑚(𝑧) = (1 − 𝑧) exp
(
𝑧 + 𝑧2

2 + · · · + 𝑧𝑚

𝑚

)
.

The function 𝐸𝑚(𝑧/𝑎) has a zero of order 1 at 𝑎. As we are relating the absolute
convergence of

∏(1 + 𝑎𝑛) to
∑|𝑎𝑛 |, let us consider what happens to

��𝐸𝑚(𝑧) − 1
�� =��1 − 𝐸𝑚(𝑧)

��. Before we do so, we prove a useful estimate for holomorphic functions
on the disc. By the maximum modulus principle, the maximum is attained at the
boundary. If the derivatives at the origin are all positive, then it is attained at a very
specific point.

Lemma 8.2.2. Suppose 𝑓 is a holomorphic function on a neighborhood of the closed disc 𝔻
and suppose 𝑓 (𝑛)(0) ≥ 0 for all 𝑛. Then 𝑓 (1) is real and for 𝑧 ∈ 𝔻,�� 𝑓 (𝑧)�� ≤ 𝑓 (1).
Proof. Expand 𝑓 (𝑧) = ∑

𝑐𝑛𝑧
𝑛 . As 𝑓 (𝑛)(0) ≥ 0, then 𝑐𝑛 ≥ 0. Thus for 𝑧 ∈ 𝔻,�� 𝑓 (𝑧)�� = ����� ∞∑
𝑛=0

𝑐𝑛𝑧
𝑛

����� ≤ ∞∑
𝑛=0

𝑐𝑛 |𝑧 |𝑛 ≤
∞∑
𝑛=0

𝑐𝑛 = 𝑓 (1). □
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Lemma 8.2.3. |1 − 𝐸𝑚(𝑧)| ≤ |𝑧 |𝑚+1 for all 𝑚 = 0, 1, 2, . . . and all 𝑧 ∈ 𝔻.

Proof. The lemma clearly holds for 𝑚 = 0. Differentiating 1 − 𝐸𝑚(𝑧) and using the
finite geometric sum, we find

−𝐸′
𝑚(𝑧) = exp

(
𝑧 + 𝑧2

2 + · · · + 𝑧𝑚

𝑚

)
−(1−𝑧)(1+𝑧+· · ·+𝑧𝑚−1) exp

(
𝑧 + 𝑧2

2 + · · · + 𝑧𝑚

𝑚

)
= 𝑧𝑚 exp

(
𝑧 + 𝑧2

2 + · · · + 𝑧𝑚

𝑚

)
.

Notably, 1 − 𝐸𝑚(𝑧) has a zero of order 𝑚 + 1 at 𝑧 = 0. Thus 𝑓 (𝑧) = 1−𝐸𝑚(𝑧)
𝑧𝑚+1 has a

removable singularity. From the formula for the derivative −𝐸′
𝑚(𝑧), it is clear the

coefficients of the power series for 𝑓 at 0 are be nonnegative. By  Lemma 8.2.2 ,����1 − 𝐸𝑚(𝑧)
𝑧𝑚+1

���� ≤ 1 − 𝐸𝑚(1)
1𝑚+1 = 1 for 𝑧 ∈ 𝔻. □

The Weierstrass product theorem says that we can prescribe the zeros of an entire
function arbitrarily. The only requirement is the obvious one from the identity
theorem: The zeros have no limit point in ℂ.

Theorem 8.2.4 (Weierstrass product theorem inℂ). Suppose {𝑐𝑘} is a sequence of distinct
points in ℂ with no limit points in ℂ and {𝑚𝑘} is a sequence of natural numbers. Then there
exists an entire holomorphic 𝑓 : ℂ → ℂ that has zeros exactly at 𝑐𝑘 , with orders given by 𝑚𝑘 .

More precisely, suppose {𝑎𝑛} is the sequence of nonzero {𝑐𝑘} with points repeated accord-
ing to the multiplicities {𝑚𝑘} and 𝑚 is the order of the zero at the origin. Then there exists a
sequence {ℓ𝑛} such that one such 𝑓 is given by

𝑓 (𝑧) = 𝑧𝑚
∞∏
𝑛=1

𝐸ℓ𝑛

(
𝑧

𝑎𝑛

)
,

converging uniformly absolutely on compact subsets. In fact, any sequence {ℓ𝑛} such that

∞∑
𝑛=1

���� 𝑟𝑎𝑛
����ℓ𝑛+1

(8.2)

converges for all 𝑟 > 0 can be used.

Proof. Ignore the zero at the origin, and just consider the nonzero zeros {𝑎𝑛}. We
claim that at least one sequence {ℓ𝑛} such that ( 8.2 ) converges for all 𝑟 > 0 exists.
Indeed, choosing ℓ𝑛 = 𝑛 − 1 would suffice: As {𝑎𝑛} has no limit points in ℂ it must
“escape to infinity.” For any 𝑟 > 0, we get |𝑎𝑛 | ≥ 2𝑟 or 𝑟/|𝑎𝑛 | < 1/2 for all large enough 𝑛.
If ℓ𝑛 = 𝑛 − 1, a tail of the series is bounded by the geometric series

∑ (1/2)𝑛 .
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Consider a compact set 𝐾 in the plane. It is contained in some closed disc Δ𝑟(0).
We want to get uniformly absolute convergence of the product, and so we need

∞∑
𝑛=1

����𝐸ℓ𝑛 (
𝑧

𝑎𝑛

)
− 1

����
to converge uniformly on 𝐾. If 𝑧 ∈ 𝐾, then |𝑧 | ≤ 𝑟. As 𝑎𝑛 goes to infinity, |𝑎𝑛 | ≥ 𝑟 and
so

�� 𝑧
𝑎𝑛

�� ≤ 1 for all 𝑛 large enough. By  Lemma 8.2.3 ,����𝐸ℓ𝑛 (
𝑧

𝑎𝑛

)
− 1

���� ≤ ���� 𝑧𝑎𝑛
����ℓ𝑛+1

≤
���� 𝑟𝑎𝑛

����ℓ𝑛+1
.

Thus the series converges as its tail converges. The convergence is uniform in 𝐾, as
the far right-hand side above does not depend on 𝑧. □

There are many choices for the sequence {ℓ𝑛}. The proof says that the convergence
of ( 8.2 ) for every 𝑟 > 0 guarantees convergence of the product, but we may try to
make a convenient choice of {ℓ𝑛}, and often there is a more convenient choice than
ℓ𝑛 = 𝑛 − 1.

Now that we can prescribe zeros of an entire function, we use it to divide out all
the zeros of any other entire function, and obtain a factorization.

Corollary 8.2.5 (Weierstrass factorization theorem). Let 𝑓 be an entire holomorphic
function, not identically zero, with zeros (repeated according to multiplicity) at points of the
sequence {𝑎𝑛} except the zero at the origin, whose order is 𝑚 (possibly 𝑚 = 0). Then there
exists an entire holomorphic function 𝑔 and a sequence {ℓ𝑛} such that

𝑓 (𝑧) = 𝑧𝑚𝑒 𝑔(𝑧)
∞∏
𝑛=1

𝐸ℓ𝑛

(
𝑧

𝑎𝑛

)
,

converges uniformly absolutely on compact subsets.

Proof. Let ℎ : ℂ → ℂ be the entire function

ℎ(𝑧) =
∞∏
𝑛=1

𝐸ℓ𝑛

(
𝑧

𝑎𝑛

)
,

where the {ℓ𝑛} comes from the product theorem. The function 𝜑(𝑧) = 𝑓 (𝑧)
ℎ(𝑧)𝑧𝑚 has only

removable singularities, so 𝜑 can be made entire. As 𝜑 has no zeros, 𝜑(𝑧) = 𝑒 𝑔(𝑧) for
an entire function 𝑔 because ℂ is simply connected. □
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Exercise 8.2.1 (Easy): Suppose {𝑎𝑛} is a sequence such that there is some 𝜖 > 0 and
|𝑎𝑛 | ≥ 𝑛1+𝜖 for all 𝑛. Prove that

∞∏
𝑛=1

(
1 − 𝑧

𝑎𝑛

)
converges uniformly absolutely on compact subsets of ℂ.

Exercise 8.2.2 (Easy): Explicitly find an infinite product for an entire holomorphic function
with simple zeros precisely at ℤ ×ℤ (that is points with integer coefficients).

Exercise 8.2.3: Suppose that {𝑎𝑛} is a sequence converging to 0. Show that there exists a
holomorphic function 𝑓 : ℂ \ {0} → ℂ with zeros (counting multiplicity) at 𝑎𝑛 .

Exercise 8.2.4: Suppose {𝑎𝑘}, {𝑏𝑘} are sequences of distinct points in ℂ with no limit
points, and {𝑛𝑘}, {𝑚𝑘} are sequences of natural numbers. Prove that there exists a
meromorphic function 𝑓 : ℂ → ℂ∞ whose zeros are exactly at 𝑎𝑘 , with orders given by 𝑛𝑘 ,
and poles are exactly at 𝑏𝑘 , with orders given by 𝑚𝑘 .

Exercise 8.2.5: Suppose {𝑎𝑛} is a sequence of distinct points in ℂ with no limit points,
and {𝑐𝑛} an arbitrary sequence of complex numbers. Construct an entire function 𝑓 such
that 𝑓 (𝑎𝑛) = 𝑐𝑛 . Hint: For any radius 𝑟 > 0, a point 𝑝 ∈ ℂ, |𝑝 | > 𝑟, and an 𝜖 > 0, try
to find a function with some prescribed zeros such that 𝑓 (𝑝) = 1 and | 𝑓 (𝑧)| < 𝜖 for all
𝑧 ∈ Δ𝑟(0). Another hint: If |𝑤 | < 1, then |𝑤 |𝑛 goes to zero.

8.2.2𝑖 · Factorization of sine
Let us use the Weierstrass factorization theorem to factor the sine function as promised.
The function sin(𝜋𝑧) has zeros at the integers ℤ. We start with the positive integers.
Note that ∞∑

𝑛=1

��� 𝑟
𝑛

���2
converges for every 𝑟 > 0. Similarly for the negative integers. Thus we may choose
ℓ𝑛 = 1 in the product theorem. Write

𝑓 (𝑧) = 𝜋𝑧
∏

𝑛∈ℤ\{0}
𝐸1

( 𝑧
𝑛

)
= 𝜋𝑧

∏
𝑛∈ℤ\{0}

(
1 − 𝑧

𝑛

)
𝑒𝑧/𝑛 .

We write the product in no particular order as the product converges absolutely. The
𝜋 out front can be guessed by thinking what would we get if we differentiate sin(𝜋𝑧)
and evaluate at 0. Differentiating the product (using product rule) would give you
𝜋 · 1 + 0 = 𝜋, as any time the derivative falls on some factor other that 𝑧, when you
evaluate at 0, you get 0. We can do this formal computation on the finite products
as the product converges uniformly on compact subsets and therefore so does the
derivative. See also  Exercise 8.1.5 .
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We group some terms together for convenience

𝑓 (𝑧) = 𝜋𝑧
∞∏
𝑛=1

(
1 − 𝑧

𝑛

)
𝑒𝑧/𝑛

(
1 − 𝑧

−𝑛
)
𝑒−𝑧/𝑛 = 𝜋𝑧

∞∏
𝑛=1

(
1 − 𝑧2

𝑛2

)
.

That’s a rather nice factorization. We still do not know if 𝑓 (𝑧) is sin(𝜋𝑧). All we
know is that the two have the same zeros, and the derivative at 0 is 𝜋 as it should be.
Because 𝑓 captures the zeros of sin(𝜋𝑧), we write (as in the factorization theorem)

sin(𝜋𝑧) = 𝑒 𝑔(𝑧) 𝑓 (𝑧) = 𝜋𝑧𝑒 𝑔(𝑧)
∞∏
𝑛=1

(
1 − 𝑧2

𝑛2

)
,

for some entire function 𝑔. We need to show that 𝑔 ≡ 0. By the computation of the
derivative above, 𝑔(0) = 0.

We wish to convert the product to a series using the logarithm, as series are
simpler to handle 

*
 . Unfortunately, if 𝜑(𝑧) = sin(𝜋𝑧), the function log 𝜑(𝑧) is not well-

defined. But as we saw a couple of times before, while log 𝜑(𝑧) is not well-defined,
the logarithmic derivative

𝑑

𝑑𝑧

[
log 𝜑(𝑧)] = 𝜑′(𝑧)

𝜑(𝑧)
is well-defined. We can find the logarithmic derivative by differentiating the series
for log 𝜑(𝑧) since for the derivative we only need to work locally and we can use any
branch of the logarithm. Locally, using any branch of the logarithm, pick 𝑘 large
enough so that Re

(
1 − 𝑧2

𝑛2

)
> 0 for all 𝑛 ≥ 𝑘, and  Proposition 8.1.3 applies:

𝜋 cot(𝜋𝑧) = 𝜋 cos(𝜋𝑧)
sin(𝜋𝑧) =

𝑑

𝑑𝑧

[
log sin(𝜋𝑧)] = 𝑑

𝑑𝑧

[
log

(
𝜋𝑧𝑒 𝑔(𝑧)

∞∏
𝑛=1

(
1 − 𝑧2

𝑛2

))]
=

𝑑

𝑑𝑧

[
log(𝜋𝑧) + 𝑔(𝑧) +

𝑘∑
𝑛=1

log
(
1 − 𝑧2

𝑛2

)
+

∞∑
𝑛=𝑘+1

Log
(
1 − 𝑧2

𝑛2

)]
=

1
𝑧
+ 𝑔′(𝑧) +

∞∑
𝑛=1

2𝑧
𝑧2 − 𝑛2 .

The penultimate equality would not be true without the derivative as what’s inside
the square brackets may differ by a constant. Since the far left-hand side and the far
right-hand side do not have any logarithms in them they are clearly well-defined. The
equality holds with 𝑔′ = 0, which is a nice exercise in applying the residue theorem,
and we leave it to the reader.

*Any calculus student will tell you so when they try to differentiate a product with many factors.
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Exercise 8.2.6: Let 𝛾𝑛 be the rectangular path with vertices 𝑛 + 1/2 − 𝑖𝑛, 𝑛 + 1/2 + 𝑖𝑛,
−(
𝑛 + 1/2

) + 𝑖𝑛, −(
𝑛 + 1/2

) − 𝑖𝑛.
a) Using the residue theorem, for 𝑧 ∉ ℤ, evaluate∫

𝛾𝑛

𝜋 cot(𝜋𝜉)
𝜉2 − 𝑧2 𝑑𝜉.

b) Show that
lim
𝑛→∞

∫
𝛾𝑛

𝜋 cot(𝜋𝜉)
𝜉2 − 𝑧2 𝑑𝜉 = 0.

c) Prove that

𝜋 cot(𝜋𝑧) = 1
𝑧
+

∞∑
𝑛=1

2𝑧
𝑧2 − 𝑛2 ,

with uniform convergence on compact subsets of ℂ \ℤ.

In particular, the exercise says that 𝑔′(𝑧) = 0, and as 𝑔(0) = 0, we find 𝑔 ≡ 0. We
have thus proved the following proposition.

Proposition 8.2.6. For all 𝑧 ∈ ℂ,

sin(𝜋𝑧) = 𝜋𝑧
∞∏
𝑛=1

(
1 − 𝑧2

𝑛2

)
,

with uniform absolute convergence on compact subsets.

Exercise 8.2.7: Find a factorization for cosine. Hint: There is a hard way and an easy way
(now that we know the factorization of sine).

Exercise 8.2.8: Find a factorization for sinh(𝑧) = 𝑒𝑧−𝑒−𝑧
2 .

Exercise 8.2.9: Suppose𝑈 ⊂ ℂ is a domain and

𝐹(𝑧) =
∞∏
𝑛=1

𝑓𝑛(𝑧)

for holomorphic functions 𝑓𝑛 : 𝑈 → ℂ converging uniformly on compact subsets of 𝑈 .
Prove that

𝐹′(𝑧)
𝐹(𝑧) =

∞∑
𝑛=1

𝑓 ′𝑛(𝑧)
𝑓𝑛(𝑧) ,

converging uniformly on compact subsets of𝑈 .
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8.2.3𝑖 · The product theorem in any open set
The product theorem holds in any open set. The proof is very similar too. What
changes is that the zeros can no longer congregate on any point of the boundary as
well as at infinity. There are a couple of ways to handle this complication. One way
is to move infinity first and make sure all the zeros are bounded. The other way is
to not move anything by splitting up the sequence of zeros in a smart way into a
sequence that goes to infinity and has no finite limit points and a sequence that has
limit points on the boundary. The tricky business is that the part of the series that
has limit points at the boundary could also go to infinity, so we ensure that it at least
gets closer and closer to the boundary as it marches off.

Theorem 8.2.7 (Weierstrass product theorem). Suppose𝑈 ⊂ ℂ is open, {𝑐𝑘} is a sequence
of distinct points in𝑈 with no limit points in𝑈 , and {𝑚𝑘} is a sequence of natural numbers.
Then there exists a holomorphic 𝑓 : 𝑈 → ℂ with zeros exactly at 𝑐𝑘 , with orders given by𝑚𝑘 .

Proof. Suppose {𝑎𝑛} is the sequence of points {𝑐𝑘} repeated according to the mul-
tiplicities {𝑚𝑘}. As the case 𝑈 = ℂ has already been proved, we assume ℂ \𝑈 is
nonempty. Let

𝐷 =

{
𝑧 ∈ 𝑈 : 𝑑(𝑧,ℂ \𝑈) < 1

|𝑧 | + 1

}
,

where 𝑑(𝑧,ℂ \ 𝑈) = inf𝜁∈ℂ\𝑈 |𝑧 − 𝜁 |. For 𝑧 ∈ 𝑈 it is the distance to the boundary.
Divide {𝑎𝑛} into two parts: Let {𝑎1

𝑛} be those 𝑎𝑛 that lie in 𝐷 and {𝑎2
𝑛} be those that

do not. We will generate a function 𝑓1 with zeros at {𝑎1
𝑛} and a function 𝑓2 with zeros

at {𝑎2
𝑛}. Let 𝑓 = 𝑓1 𝑓2 to finish the proof. Without loss of generality assume both

sequences are infinite.
First consider {𝑎1

𝑛}. Let {𝑝𝑛} be a sequence of points in ℂ \𝑈 such that

|𝑎1
𝑛 − 𝑝𝑛 | = 𝑑(𝑎1

𝑛 ,ℂ \𝑈).
See  Figure 8.1 . We claim that |𝑎1

𝑛 − 𝑝𝑛 | goes to zero as 𝑛 goes to infinity. Indeed,
suppose not, then there is an 𝜖 > 0 and a subsequence such that

��𝑎1
𝑛𝑘

− 𝑝𝑛𝑘
�� > 𝜖 for

all 𝑘. As these are the distances to the boundary and 𝑎1
𝑛𝑘

∈ 𝐷, we must have that
|𝑎1
𝑛𝑘
| < 1/𝜖 − 1 for all 𝑘. In particular, these {𝑎1

𝑛𝑘
} must have a limit point and since

they are all at least 𝜖 away from the boundary this limit point would be in𝑈 . That is
a contradiction. Hence |𝑎1

𝑛 − 𝑝𝑛 | goes to 0.
Let 𝐾 ⊂ 𝑈 be compact, then for 𝑧 ∈ 𝐾���� 𝑎1

𝑛 − 𝑝𝑛
𝑧 − 𝑝𝑛

���� ≤ |𝑎1
𝑛 − 𝑝𝑛 |
𝑑(𝑝𝑛 , 𝐾) ≤ |𝑎1

𝑛 − 𝑝𝑛 |
𝑑(ℂ \𝑈, 𝐾) .

So for all 𝑛 large enough
��� 𝑎1
𝑛−𝑝𝑛
𝑧−𝑝𝑛

��� < 1/2. Then by  Lemma 8.2.3 ,����𝐸𝑛 (
𝑎1
𝑛 − 𝑝𝑛
𝑧 − 𝑝𝑛

)
− 1

���� ≤ 1
2𝑛+1 ,
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{𝑎𝑛}

𝑈

𝐷

0

𝜕𝑈 {𝑝𝑛}

Figure 8.1: The sequence of {𝑎𝑛} with respect to 𝐷. The points of {𝑎𝑛} that lie in 𝐷

are the {𝑎1
𝑛} and for those we pick the {𝑝𝑛}, which will lie at the closest place on the

boundary of𝑈 (the thick dotted line).

and hence

𝑓1(𝑧) =
∞∏
𝑛=1

𝐸𝑛

(
𝑎1
𝑛 − 𝑝𝑛
𝑧 − 𝑝𝑛

)
converges uniformly on 𝐾. As 𝐾 is arbitrary, 𝑓1 converges uniformly on compact
subsets of𝑈 . We are thus done with 𝑓1.

For 𝑓2, note that {𝑎2
𝑛} must go to infinity and has no finite limit points. Indeed, if

|𝑎2
𝑛 | ≤ 𝑟, then 𝑑(𝑎2

𝑛 ,ℂ \𝑈) ≥ 1
𝑟+1 , and {𝑎2

𝑛} has no limit points in𝑈 . We can, therefore,
construct an entire function with these zeros. □

If 𝑓 = 𝑔/ℎ for two holomorphic functions 𝑔 and ℎ, then 𝑓 is meromorphic with
poles at the zeros of ℎ. Conversely, if 𝑓 has a pole of order 𝑚 at 𝑝, then 𝑓 (𝑧) = 𝑔(𝑧)

(𝑧−𝑝)𝑚
for some holomorphic 𝑔, so 𝑓 is a quotient of holomorphic functions (near 𝑝). Using
the Weierstrass product theorem, we get this converse globally: A meromorphic
function on a domain is a quotient of holomorphic functions on that same domain.
In more fancy language, the set of meromorphic functions on a domain in ℂ is the
field of fractions of the ring of holomorphic functions. 

*
 

Corollary 8.2.8. Suppose 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ∞ is meromorphic. Then there
exist holomorphic 𝑔, ℎ : 𝑈 → ℂ such that 𝑓 = 𝑔/ℎ.
Proof. By the product theorem, there exists a holomorphic function ℎ that has zeros
exactly where 𝑓 has poles, and of the same order. The function 𝑓 ℎ therefore has
removable singularities at all the poles of 𝑓 . In other words, there is a holomorphic 𝑔
such that 𝑔 = 𝑓 ℎ. □

Remark 8.2.9. When we introduced the corollary, we mentioned “domain,” but then
we proved it for an open set. The issue is a bit of algebra. If𝑈 is not connected, then
the set of holomorphic functions is not an integral domain, it has zero divisors, and a
field of fractions is only defined for integral domains.

*It is important that it is a domain in ℂ. We saw meromorphic functions on ℂ∞, and those are not
quotients of two holomorphic functions, since there are no nonconstant holomorphic functions on ℂ∞.
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Exercise 8.2.10: Given a domain𝑈 ⊂ ℂ and 𝑓 , 𝑔 : 𝑈 → ℂ holomorphic, neither of which
is identically zero. Prove that there exist functions ℎ, 𝐹, and 𝐺 holomorphic on 𝑈 , such
that 𝐹 and 𝐺 have no common zeros and 𝑓 = ℎ𝐹 and 𝑔 = ℎ𝐺.

Exercise 8.2.11: Let 𝑆 =
{
𝑒𝑛 ∈ ℂ : 𝑛 ∈ ℤ

}
. Explicitly construct a holomorphic function

on ℂ \ {0} that has simple zeros at points of 𝑆.

Exercise 8.2.12: Given a domain𝑈 ⊂ ℂ and a sequence {𝑎𝑛} of distinct points in𝑈 with
no limit points in𝑈 , find a holomorphic function on𝑈 \ {𝑎𝑛 : 𝑛 ∈ ℕ} that has essential
singularities at {𝑎𝑛}.
Exercise 8.2.13: Show that there exists a holomorphic function 𝑓 : 𝔻 → ℂ that does not
extend holomorphically to any domain 𝑈 where 𝔻 ⊊ 𝑈 . Hint: Consider a sequence of
points in 𝔻 whose limit set is the circle.

Exercise 8.2.14: Suppose 𝑈 ⊂ ℂ is a simply connected domain and 𝑓 : 𝑈 → ℂ a
nonconstant function. Show that there exists a holomorphic 𝑔 : 𝑈 → ℂ such that 𝑔2 = 𝑓

if and only if every zero of 𝑓 has even order.



9𝑖 \\ Rational Approximation

It has been said that man is a rational animal. All my life I have been searching
for evidence which could support this.
—Bertrand Russell

9.1𝑖 \ Polynomial approximation
In real analysis, you may have seen the very useful Weierstrass approximation theorem
(or the more general Stone–Weierstrass approximation theorem), which says that a
continuous function on a compact interval [𝑎, 𝑏] can be uniformly approximated by
polynomials of a real variable. Utilizing holomorphic polynomials—polynomials
in 𝑧—we have a similar theorem, but for holomorphic functions not continuous
functions. That makes sense. After all, uniform limits of holomorphic functions are
holomorphic, so we can’t expect to approximate all continuous functions.

Example 9.1.1: Let 𝑧 = 𝑥 + 𝑖𝑦. By Stone–Weierstrass, every continuous function
on the closed unit disc 𝔻 is a uniform limit of a sequence of polynomials 𝑄𝑛(𝑥, 𝑦)
(polynomials of both 𝑥 and 𝑦), but only a function that is holomorphic on 𝔻 can be the
uniform limit of polynomials 𝑃𝑛(𝑧) (polynomial of 𝑧). More explicitly, the function
𝑧 ↦→ 𝑧̄ = 𝑥 − 𝑖𝑦 is not only a limit of polynomials in 𝑥 and 𝑦, it is a polynomial in 𝑥
and 𝑦. However, as the function is not holomorphic on 𝔻, it cannot be a uniform limit
of holomorphic polynomials on 𝔻.

From now on, all polynomials will again be polynomials in 𝑧, as they were up
until the example above. So when we say polynomial, it will be a polynomial in 𝑧, in
other words, a holomorphic polynomial.

A function holomorphic on a disc Δ𝑟(𝑝) is limit of the partial sums of the power
series

∑𝑚
𝑛=0 𝑐𝑛(𝑧 − 𝑝)𝑛 . See also  Exercise 3.4.9 . On the other hand, consider a

function holomorphic on an open neighborhood of the square [−1, 1] × [−1, 1], say
𝑓 (𝑧) = 1

(𝑧−1.1)(𝑧+1.1) . If we expand 𝑓 around any point, the series will never converge
on all of [−1, 1] × [−1, 1], as the domain of convergence is a disc which cannot include
±1.1. However, we can (exercise below) still find a sequence of polynomials that
converge to 𝑓 on [−1, 1] × [−1, 1].
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Exercise 9.1.1: Let 𝑓 (𝑧) = 1
(𝑧−1.1)(𝑧+1.1) . Find an explicit (that is, find a formula for it, do

not just prove that it exists) sequence of polynomials 𝑃𝑛(𝑧) that converges uniformly to 𝑓
on the square [−1, 1] × [−1, 1].

We may be thwarted in polynomial approximation by topology. For example, no
sequence of polynomials 𝑃𝑛(𝑧) converges to 1/𝑧 uniformly on 𝜕𝔻. This fact follows by

 Rouché (or  Exercise 3.4.6 and Cauchy’s theorem), see the following exercise.

Exercise 9.1.2: For any polynomial 𝑃(𝑧), there exists a 𝑧0 ∈ 𝜕𝔻 such that
��𝑃(𝑧0) − 1

𝑧0

�� ≥ 1.

The problem with 1/𝑧 and the unit circle is that it goes around a hole. Any
function holomorphic on a neighborhood of 𝜕𝔻 can be approximated on 𝜕𝔻 by
rational functions if we allow a pole at 0. The function 1/𝑧 is itself a rational function
with a pole at 0. A polynomial is really just a rational function that has a pole at
infinity. Once we prove Runge’s theorem, we will have proved that it really is the
hole in 𝜕𝔻 that is the problem for 1/𝑧. We can approximate a holomorphic function
by polynomials on any set whose complement is connected.

Exercise 9.1.3: Suppose a sequence of polynomials {𝑃𝑛} converges uniformly on 𝜕𝔻. Show
that {𝑃𝑛} converges uniformly on 𝔻.

Exercise 9.1.4: Prove that if a sequence of polynomials {𝑃𝑛} converges uniformly on ℂ,
then there is an 𝑁 such that 𝑃𝑛 − 𝑃𝑚 is a constant for all 𝑛, 𝑚 ≥ 𝑁 (so the limit is 𝑃𝑁
plus a constant).

9.2𝑖 \ Runge’s theorem
We first prove rational approximation without any control of the poles. The key is to
find a cycle around a compact set 𝐾 (see  § 6.3.3 ) and then to apply Cauchy’s integral
formula for points of 𝐾. The Riemann sums of the integral are the rational functions.

Lemma 9.2.1. Let𝑈 ⊂ ℂ be open, 𝐾 ⊂ 𝑈 compact, 𝑓 : 𝑈 → ℂ holomorphic, and Γ a cycle
in 𝑈 homologous to zero in 𝑈 such that Γ ∩ 𝐾 = ∅ and 𝑛(Γ; 𝑧) = 1 for all 𝑧 ∈ 𝐾. Then for
every 𝜖 > 0, there exists a rational function 𝑅(𝑧) with poles on Γ such that | 𝑓 (𝑧) − 𝑅(𝑧)| < 𝜖
for all 𝑧 ∈ 𝐾.

Proof. The hypotheses mean that  Cauchy’s integral formula applies for any 𝑧 ∈ 𝐾:

𝑓 (𝑧) = 1
2𝜋𝑖

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.
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The cycle Γ is a finite sum of closed piecewise-𝐶1 paths. If we prove that the Riemann
sums corresponding to each path converge uniformly on 𝐾, then their sum also
converges uniformly and it converges to 𝑓 . Thus consider just one path 𝛾 : [0, 1] → 𝑈 ,
and let 𝜖 > 0 be given. The function

(𝑧, 𝑡) ↦→ 𝑓
(
𝛾(𝑡))

𝛾(𝑡) − 𝑧
is uniformly continuous on the compact set 𝐾 × [0, 1]. As 𝛾′ is bounded, there is a
𝛿 > 0, such that ���� 𝑓 (𝛾(𝑡))𝛾(𝑡) − 𝑧 𝛾

′(𝑡) − 𝑓
(
𝛾(𝜏))

𝛾(𝜏) − 𝑧 𝛾
′(𝑡)

���� < 𝜖

for all 𝑧 ∈ 𝐾 and all 𝑡 , 𝜏 ∈ [0, 1] such that |𝑡 − 𝜏| < 𝛿. Partition [0, 1] into 0 = 𝑡0 < 𝑡1 <
· · · < 𝑡𝑘 = 1, where 𝑡 𝑗 − 𝑡 𝑗−1 < 𝛿. Write∫

𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

𝑘∑
𝑗=1

∫ 𝑡 𝑗

𝑡 𝑗−1

𝑓
(
𝛾(𝑡))

𝛾(𝑡) − 𝑧 𝛾
′(𝑡) 𝑑𝑡.

We estimate each bit of this integral by a rational function of 𝑧 (note the use of the
fundamental theorem of calculus):�����∫ 𝑡 𝑗

𝑡 𝑗−1

𝑓
(
𝛾(𝑡))

𝛾(𝑡) − 𝑧 𝛾
′(𝑡) 𝑑𝑡 − 𝑓

(
𝛾(𝑡 𝑗)

)
𝛾(𝑡 𝑗) − 𝑧

(
𝛾(𝑡 𝑗) − 𝛾(𝑡 𝑗−1)

) �����
=

�����∫ 𝑡 𝑗

𝑡 𝑗−1

(
𝑓
(
𝛾(𝑡))

𝛾(𝑡) − 𝑧 𝛾
′(𝑡) − 𝑓

(
𝛾(𝑡 𝑗)

)
𝛾(𝑡 𝑗) − 𝑧 𝛾

′(𝑡)
)
𝑑𝑡

�����
≤

∫ 𝑡 𝑗

𝑡 𝑗−1

����� 𝑓 (𝛾(𝑡))𝛾(𝑡) − 𝑧 𝛾
′(𝑡) − 𝑓

(
𝛾(𝑡 𝑗)

)
𝛾(𝑡 𝑗) − 𝑧 𝛾

′(𝑡)
����� 𝑑𝑡 ≤ 𝜖(𝑡 𝑗 − 𝑡 𝑗−1).

Summing these bits together and using the triangle inequality, we find������
∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 −

𝑘∑
𝑗=1

𝑓
(
𝛾(𝑡 𝑗)

)
𝛾(𝑡 𝑗) − 𝑧

(
𝛾(𝑡 𝑗) − 𝛾(𝑡 𝑗−1)

) ������ ≤ 𝑘∑
𝑗=1

𝜖(𝑡 𝑗 − 𝑡 𝑗−1) = 𝜖.

Thus the integral over 𝛾 converges uniformly for 𝑧 ∈ 𝐾, and we are done by summing
up over all the paths in Γ. □

In some parts of the proof below, to simplify the verbiage, we will say that
functions of a certain type (uniformly) approximate 𝑓 on 𝐾 if for every 𝜖 > 0 there
exists a function 𝑔 of the given type such that | 𝑓 (𝑧) − 𝑔(𝑧)| < 𝜖 on 𝐾. We leave the
following statement as a simple exercise in chasing those epsilons.
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Exercise 9.2.1: Let 𝐾 be a set and Fa set of functions on 𝐾. Rigorously prove:
a) If functions from Funiformly approximate a function 𝑓 on 𝐾, then functions from

Funiformly approximate 𝑓 𝑛 for any 𝑛 ∈ ℕ.
b) Suppose 𝑓1, . . . , 𝑓𝑛 are functions on 𝐾 that can be individually uniformly ap-

proximated by functions from F. Then for any numbers 𝑐1, . . . , 𝑐𝑛 , the function
𝑐1 𝑓1 + · · · + 𝑐𝑛 𝑓𝑛 can be uniformly approximated on 𝐾 by functions in F.

c) If G is another set of functions on 𝐾, and 𝑓 can be uniformly approximated by
functions in Gand every function in Gcan be uniformly approximated by functions
in F, then 𝑓 can be uniformly approximated by functions in F.

We now approximate simple poles of the form 1
𝑧−𝑝 by rational functions with

poles in a given set. This procedure is called pole pushing as we are going to “push”
the poles along a path to where we need them to be.

Lemma 9.2.2. Suppose 𝐾 ⊂ ℂ is compact, 𝑝 ∈ ℂ \ 𝐾, and 𝑞 ∈ ℂ∞ \ 𝐾 is in the same
component of ℂ∞ \𝐾 as 𝑝. Then for every 𝜖 > 0, there exists a rational function 𝑅 with pole
at 𝑞 such that ���� 1

𝑧 − 𝑝 − 𝑅(𝑧)
���� < 𝜖 for all 𝑧 ∈ 𝐾.

Proof. Suppose first that 𝑞 ≠ ∞. As the component of ℂ∞ \𝐾 is open and connected, it
is path connected, so we connect 𝑝 and 𝑞 by a path. And as a path is compact, we cover
the path by finitely many discs as follows: There exist points 𝑝 = 𝑧1, 𝑧2, . . . , 𝑧𝑛 = 𝑞

and finitely many discs Δ𝑟(𝑧1), . . . ,Δ𝑟(𝑧𝑛) of some radius 𝑟 > 0 such that 𝑧 𝑗+1 ∈ Δ𝑟(𝑧 𝑗)
and Δ2𝑟(𝑧 𝑗) ∩ 𝐾 = ∅ for all 𝑗. See  Figure 9.1 .

𝐾
𝑧2 𝑧3 = 𝑞

𝑧1 = 𝑝

Figure 9.1: Pole pushing from 𝑝 to 𝑞.

As there are finitely many discs, if we show that we can approximate 1
𝑧−𝑝 on 𝐾 by

a rational function with a pole at 𝑧2 ∈ Δ𝑟(𝑝), then we claim we are done. A rational
function 𝑅 with a pole at 𝑧2 may be written as a finite linear combination of terms of
the form 1

(𝑧−𝑧2)𝑘
or (𝑧 − 𝑧2)𝑘 . If we can uniformly approximate 1

𝑧−𝑧2
on 𝐾 by a rational

function with a pole at 𝑧3, we can approximate 𝑅 by a rational function with a pole at
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𝑧3, see  Exercise 9.2.1 . And so we can approximate 1
𝑧−𝑝 by a rational function with a

pole at 𝑧3. Rinse and repeat.
So without loss of generality suppose 𝑧1 = 𝑝 and 𝑧2 = 𝑞. Then

1
𝑧 − 𝑝 =

1
𝑧 − 𝑞

1
1 − 𝑝−𝑞

𝑧−𝑞
=

1
𝑧 − 𝑞

∞∑
𝑘=0

(
𝑝 − 𝑞
𝑧 − 𝑞

) 𝑘
,

which converges uniformly on 𝐾 as for 𝑧 ∈ 𝐾, we have����𝑝 − 𝑞𝑧 − 𝑞
���� ≤ 𝑟

|𝑧 − 𝑞 | ≤
𝑟

2𝑟 =
1
2 .

A partial sum of the series is the rational function we seek.
Now suppose 𝑞 = ∞. Find a rational function that approximates 1

𝑧−𝑝 uniformly
on 𝐾 and has a pole at some 𝑞1, where 𝐾 ⊂ Δ𝑀(0) and |𝑞1 | > 𝑀. As above, without
loss of generality, suppose that this function is 1

𝑧−𝑞1
. Next

1
𝑧 − 𝑞1

=
−1
𝑞1

1
1 − 𝑧/𝑞1

=
−1
𝑞1

∞∑
𝑘=0

(
𝑧

𝑞1

) 𝑘
,

which converges uniformly on Δ𝑀(0) as |𝑞1 | > 𝑀. Taking partial sums, 1
𝑧−𝑞1

can be
approximated uniformly on 𝐾 by polynomials (rational functions with a pole at ∞),
and hence 1

𝑧−𝑝 can also be uniformly approximated on 𝐾 by polynomials. □

We can now prove Runge on compact sets.

Theorem 9.2.3 (Runge on a compact set). Suppose 𝑈 ⊂ ℂ is open, 𝐾 ⊂ 𝑈 is compact,
𝑆 ⊂ ℂ∞ \ 𝐾 intersects every component of ℂ∞ \ 𝐾, and 𝑓 : 𝑈 → ℂ is holomorphic. Then
for every 𝜖 > 0, there exists a rational function 𝑅 with poles in 𝑆 such that

| 𝑓 (𝑧) − 𝑅(𝑧)| < 𝜖 for all 𝑧 ∈ 𝐾.

Proof.  Lemma 6.3.7  gives a cycle Γ around 𝐾 homotopic to zero in𝑈 . Use  Lemma 9.2.1  

to approximate 𝑓 uniformly on 𝐾 by a rational function with poles on Γ. That rational
function is a linear combination of terms such as 1

𝑧−𝑝 𝑗 for 𝑝 𝑗 ∈ Γ. Using  Lemma 9.2.2  ,
approximate each of these terms by a rational function with poles in 𝑆. □

Example 9.2.4: There exists a sequence of polynomials {𝑃𝑛} such that

lim
𝑛→∞𝑃𝑛(𝑧) =

{
1 if 𝑧 ∈ ℝ,

0 else.

Proof: Let 𝐾𝑛 =
{
𝑧 ∈ ℂ : |𝑧 | ≤ 𝑛, Im 𝑧 ∈ (−∞, −1/𝑛] ∪ {0} ∪ [1/𝑛,∞)}. The set ℂ \ 𝐾𝑛

is connected and 𝐾𝑛 is compact and has three components. There is a function 𝑓

that is holomorphic on a neighborhood of 𝐾𝑛 , and it equals 0 on 𝐾𝑛 \ ℝ and 1 on
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𝐾𝑛 ∩ℝ. Indeed, pick three disconnected neighborhoods of the three components of
𝐾𝑛 , and set the function to be identically 0 or 1 on the corresponding component.
Constants are holomorphic. Runge says that there is a polynomial 𝑃𝑛(𝑧) such that
|𝑃𝑛(𝑧) − 𝑓 (𝑧)| ≤ 1/𝑛 for 𝑧 ∈ 𝐾𝑛 . The sequence {𝑃𝑛} then does the job. Since 𝐾𝑛 ⊂ 𝐾𝑛+1
for all 𝑛 and

⋃
𝐾𝑛 = ℂ, eventually any 𝑧 is in some 𝐾𝑛 (and all the later sets). It

follows that lim𝑃𝑛(𝑧) goes to 0 or 1 as required.
But be careful with what we proved. We have a pointwise limit only. The sequence

does not converge uniformly on compact subsets of ℂ. That is easy to see, otherwise
the limit would be continuous.

To prove a version of Runge for open sets, we need a slightly stronger version of
 Lemma 6.1.7 . We need to add an extra property about the complements.

Lemma 9.2.5. Let𝑈 ⊂ ℂ be open. Then there exists a sequence 𝐾𝑛 of compact subsets of𝑈
such that 𝐾𝑛 ⊂ 𝐾◦

𝑛+1,
⋃
𝐾𝑛 = 𝑈 , for any compact 𝐾 ⊂ 𝑈 , there is an 𝑛 such that 𝐾 ⊂ 𝐾𝑛 ,

and each component of ℂ∞ \ 𝐾𝑛 contains a point of ℂ∞ \𝑈 .

Proof. Let {𝐾′
𝑛} be the sequence of sets from  Lemma 6.1.7 . For each 𝑛, let 𝐾𝑛 be the

set 𝐾′
𝑛 together with any component of ℂ∞ \ 𝐾′

𝑛 that is completely contained in𝑈 . In
particular, we added only bounded components. The set 𝐾𝑛 is still closed (in ℂ) and
bounded and hence compact. If 𝑋 is a component of ℂ∞ \ 𝐾′

𝑛 that we added into 𝐾𝑛 ,
then 𝑋 ⊂ 𝐾𝑚 for all 𝑚 > 𝑛, and as 𝑋 is open, 𝑋 is in the interior of 𝐾𝑚 . So all the
conditions are satisfied. □

Corollary 9.2.6 (Runge). Suppose𝑈 ⊂ ℂ is open, 𝑆 ⊂ ℂ∞ \𝑈 intersects every component
of ℂ∞ \𝑈 , and 𝑓 : 𝑈 → ℂ is holomorphic. Then there exists a sequence {𝑅𝑛} of rational
functions with poles in 𝑆 that converges to 𝑓 uniformly on compact subsets of𝑈 .

Proof. Let {𝐾𝑛} be the sequence of sets from the lemma. Each component of ℂ∞ \ 𝐾𝑛
intersects 𝑆. Let 𝑅𝑛 be a rational function such that

| 𝑓 (𝑧) − 𝑅𝑛(𝑧)| < 1/𝑛 for all 𝑧 ∈ 𝐾𝑛 .

For a compact 𝐾 ⊂ 𝑈 , find an𝑁 such that 𝐾 ⊂ 𝐾𝑛 for all 𝑛 ≥ 𝑁 . Then | 𝑓 (𝑧) − 𝑅𝑛(𝑧)| <
1/𝑛 for all 𝑛 ≥ 𝑁 . So {𝑅𝑛} converges to 𝑓 uniformly on compact subsets. □

Exercise 9.2.2: Prove a version of  Corollary 9.2.6 , where we only require that the closure 𝑆̄
intersects every component of ℂ∞ \𝑈 .

Exercise 9.2.3: Prove that if𝑈 ⊂ 𝑉 ⊂ ℂ are open sets such that ℂ∞ \𝑉 intersects every
component of ℂ∞ \𝑈 , then every holomorphic 𝑓 : 𝑈 → ℂ can be written as a limit of a
sequence of functions holomorphic in 𝑉 converging uniformly on compact subsets of𝑈 .
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Exercise 9.2.4: Suppose𝑈 ⊂ ℂ is open, 𝐾 ⊂ 𝑈 is compact, 𝑆 ⊂ ℂ∞ \ 𝐾 intersects every
component of ℂ∞ \ 𝐾, and 𝑓 : 𝑈 → ℂ is holomorphic.

a) If 𝑆 is open, prove that 𝑓 can be uniformly approximated on 𝐾 by a rational function
with only simple poles in 𝑆.

b) Find an example𝑈 , 𝐾, 𝑆, and 𝑓 , where 𝑆 is not open and 𝑓 cannot be approximated
by a rational functions with only simple poles in 𝑆.

Exercise 9.2.5: Prove that there exists a sequence of polynomials {𝑃𝑛} such that pointwise
for all 𝑧 ∈ ℂ,

lim
𝑛→∞𝑃𝑛(𝑧) =

{
1 if 𝑧 = 0,
0 else.

Note that the convergence will not be uniform in any neighborhood of the origin.

Exercise 9.2.6: Prove that there exists a sequence of polynomials {𝑃𝑛} such that pointwise
for all 𝑧 ∈ ℂ,

lim
𝑛→∞𝑃𝑛(𝑧) = ⌊Re 𝑧⌋ ,

where ⌊𝑥⌋ means the largest integer less than or equal to 𝑥.

Exercise 9.2.7: Let𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ be holomorphic.
a) Suppose that for every 𝑝 ∈ 𝜕𝑈 there exists a disc Δ𝜖(𝑝) such that Δ𝜖(𝑝) \ 𝑈 is

nonempty and connected. Prove that there exists an open𝑊 ⊂ ℂ such that𝑈 ⊂ 𝑊
such that for every holomorphic 𝑓 : 𝑈 → ℂ there is a sequence of holomorphic
𝑓𝑛 : 𝑊 → ℂ such that converge uniformly on compact subsets of𝑈 to 𝑓 .

b) Find a counterexample𝑈 and 𝑓 to the conclusion of part a) where there is at least one
𝑝 ∈ 𝜕𝑈 such that Δ𝜖(𝑝) \𝑈 is empty for some 𝜖 > 0.

c) Find a counterexample𝑈 and 𝑓 to the conclusion of part a) where there is at least one
𝑝 ∈ 𝜕𝑈 such that Δ𝜖(𝑝) \𝑈 is nonempty but disconnected for every 𝜖 > 0.

9.3𝑖 \ Polynomial hull and simply-connectedness
Definition 9.3.1. Let 𝐾 ⊂ ℂ be a compact set. The polynomial hull of 𝐾 is the set

𝐾
def
=

{
𝑧 ∈ ℂ :

��𝑃(𝑧)�� ≤ sup
𝜁∈𝐾

��𝑃(𝜁)�� for every polynomial 𝑃
}
.

A set𝑈 ⊂ ℂ is polynomially convex if for every compact 𝐾 ⊂ 𝑈 , we get 𝐾 ⊂ 𝑈 .

Hulls can (and often are) defined for other classes of functions than polynomials,
and they are a generalization of the idea of convexity. Classical convexity is convexity
with respect to affine linear functions (see the exercises).

Proposition 9.3.2. If 𝐾 ⊂ ℂ is compact, then 𝐾 ⊂ 𝐾 and 𝐾 is compact.
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Proof. Clearly 𝐾 ⊂ 𝐾. As 𝐾 is the intersection of closed sets, that is, sets where��𝑃(𝑧)�� ≤ sup𝜁∈𝐾
��𝑃(𝜁)�� for some specific 𝑃, it is closed. It must be bounded since 𝐾 is

bounded: If |𝑧 | ≤ 𝑀 for some 𝑀 on 𝐾, then all points of 𝐾 also satisfy |𝑧 | ≤ 𝑀 (use
𝑃(𝑧) = 𝑧). Thus 𝐾 is compact. □

Example 9.3.3: Let 𝐾 = 𝜕𝔻. By the maximum principle,
��𝑃(𝑧)�� ≤ sup𝜁∈𝐾

��𝑃(𝜁)�� for any
𝑧 ∈ 𝔻 and any polynomial 𝑃. Furthermore, as above, |𝑧 | ≤ 1 for all 𝑧 ∈ 𝐾. So, 𝐾 = 𝔻.

Proposition 9.3.4. Suppose 𝐾 ⊂ ℂ is compact, 𝐾 is its polynomial hull, and {𝑃𝑛} is a
sequence of polynomials converging uniformly on 𝐾. Then {𝑃𝑛} converges uniformly on 𝐾.

Exercise 9.3.1: Prove the proposition. Hint: Show that {𝑃𝑛} is uniformly Cauchy on 𝐾.

In one complex variable, polynomial hulls are easy to describe. 

*
 They are given

simply by a topological property: The polynomial hull just “fills in the holes.”
Theorem 9.3.5. Suppose 𝐾 ⊂ ℂ is compact and 𝑋 is the unbounded component of ℂ \ 𝐾.
Then 𝐾 = ℂ \ 𝑋.

Proof. Suppose 𝑝 ∈ 𝑋. Then 𝑄 = {𝑝} ∪ (ℂ \ 𝑋) is a compact set whose complement
(in either ℂ or ℂ∞) is connected. The function that is 1 at 𝑝 and 0 on ℂ \ 𝑋 is
holomorphic in a neighborhood of 𝑄. Use  Runge to approximate this function on
𝑄 by a polynomial 𝑃(𝑧) to within 1/2. In other words, |𝑃(𝑝) − 1| < 1/2 so |𝑃(𝑝)| > 1/2,
and for all 𝑧 ∈ ℂ \ 𝑋 (and therefore all 𝑧 ∈ 𝐾), we have |𝑃(𝑧)| < 1/2. Thus, 𝑝 ∉ 𝐾.

Conversely, suppose 𝑝 ∉ 𝑋. If 𝑝 ∈ 𝐾, then 𝑝 ∈ 𝐾, so suppose 𝑝 ∉ 𝐾. Then 𝑝 ∈ 𝐵
where 𝐵 is one of the bounded components of ℂ \ 𝐾. The boundary 𝜕𝐵 ⊂ 𝐾, and so
the second version of the maximum principle says that

|𝑃(𝑝)| ≤ sup
𝑧∈𝜕𝐵

|𝑃(𝑧)| ≤ sup
𝑧∈𝐾

|𝑃(𝑧)|.

So 𝑝 ∈ 𝐾. □

Note that the components of ℂ \ 𝐾 are open sets. The polynomial hull of 𝐾 is 𝐾
together with all the bounded components of ℂ \ 𝐾. See  Figure 9.2 . As a corollary we
get the following equivalence.
Corollary 9.3.6. Let𝑈 ⊂ ℂ be a domain. The following are equivalent.

(i) The domain𝑈 is simply connected.

(ii) Every holomorphic 𝑓 : 𝑈 → ℂ is a limit of polynomials converging uniformly on
compact subsets of𝑈 .

(iii) The domain𝑈 is polynomially convex.
*In the analysis of several complex variables, polynomial hulls are far more difficult to handle, and

they are the subject of ongoing research.
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𝐾 𝐾

Figure 9.2: Polynomial hull is “filling holes.”

Proof. Suppose  (i) is true. Then ℂ∞ \ 𝑈 has exactly one component.  Runge says
that we can approximate any function holomorphic on𝑈 by polynomials (rational
functions with a pole at ∞) uniformly on compact subsets. Namely  (ii) holds.

Suppose  (ii) is true. Consider any 𝐾 ⊂ 𝑈 . Suppose 𝑝 ∈ 𝐾 \ 𝑈 exists (for
contradiction). Then 𝑝 is not in 𝐾 and so 𝑝 is in one of the bounded components
of ℂ \ 𝐾. Consider 𝑓 (𝑧) = 1

𝑧−𝑝 , which is holomorphic on 𝑈 , so find a sequence of
polynomials {𝑃𝑛} converging uniformly to 𝑓 on compact subsets. By  Proposition 9.3.4  ,
the sequence converges uniformly on 𝐾. Thus it converges to a holomorphic function
on 𝑔 defined on 𝑈 ∪ 𝐾, which is an open set by  Theorem 9.3.5 , and it is connected
as each component of ℂ \ 𝐾 we added has boundary in𝑈 , which is connected. The
function 𝑓 is defined on ℂ \ {𝑝}, and the boundary of the component of ℂ \ 𝐾 that
includes 𝑝 must have a limit point (exercise below). Thus 𝑔 equals 𝑓 on (𝑈 ∪ 𝐾) \ {𝑝},
which is impossible as 𝑔 is bounded near 𝑝 while 𝑓 has a pole there. So no such 𝑝
exists and  (iii) is true.

Suppose  (iii) is true. Suppose ℂ∞ \𝑈 has a component 𝐾 that does not include
∞. The set 𝐾 is compact. By  Lemma 6.3.7 , there exists a cycle Γ in 𝑈 such that
𝑛(Γ; 𝑧) = 1 on 𝐾. That means that 𝐾 is not in the unbounded component of ℂ \ Γ (by

 Proposition 4.1.3  ). By  Theorem 9.3.5  , 𝐾 ⊂ Γ̂, which contradicts𝑈 being polynomially
convex. Thus the only component of ℂ∞ \𝑈 is the one that contains ∞ and so𝑈 is
simply connected. □

Exercise 9.3.2: Suppose𝑈 ⊂ ℂ is a polynomially convex domain such that for each 𝑝 ∈ ℂ

there exists an 𝑀 such that 𝜕Δ𝑀(𝑝) ⊂ 𝑈 . Prove that𝑈 = ℂ.

Exercise 9.3.3: If𝑊 ⊂ ℂ is a bounded open set. Prove that 𝜕𝑊 has a limit point.

Exercise 9.3.4: Suppose 𝐾1 ⊂ 𝐾2 ⊂ ℂ are compact. Prove that 𝐾1 ⊂ 𝐾2.

Exercise 9.3.5: Let𝑈 ⊂ ℂ be a domain. Prove that𝑈 is simply connected if and only if
there exists a sequence 𝐾𝑛 of compact subsets of𝑈 such that 𝐾𝑛 ⊂ 𝐾◦

𝑛+1,
⋃
𝐾𝑛 = 𝑈 , and

such that 𝐾𝑛 = 𝐾𝑛 .

Exercise 9.3.6: Suppose 𝑈1 ⊂ 𝑈2 ⊂ · · · is a sequence of nested polynomially convex
domains in ℂ. Let𝑈 =

⋃
𝑈𝑛 . Prove that𝑈 is polynomially convex.
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Exercise 9.3.7: Instead of polynomials define

𝐾 =
{
𝑧 ∈ ℂ : 𝑓 (𝑧) ≤ sup

𝜁∈𝐾
𝑓 (𝜁) for every 𝑓 (𝑥 + 𝑖𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐, 𝑎, 𝑏, 𝑐 ∈ ℝ

}
.

Prove that a set𝑈 is convex if and only if for every compact 𝐾 ⊂ 𝑈 , we have 𝐾 ⊂ 𝑈 .

Exercise 9.3.8: Prove that if the hull is defined in terms of continuous functions on ℂ

rather than polynomials, then 𝐾 = 𝐾 for every compact 𝐾.

9.4𝑖 \ Mittag-Leffler
Given a  principal part of a function with a pole at 𝑝,

𝑃(𝑧) =
𝑘∑
𝑛=1

𝑐𝑛

(𝑧 − 𝑝)𝑛 ,

we ask for a meromorphic function with that pole exactly. That is not hard: 𝑃(𝑧). How
about two principal parts, 𝑃1(𝑧) and 𝑃2(𝑧) for two different poles. Well, 𝑃1(𝑧) + 𝑃2(𝑧)
works wonderfully, no? Given a sequence of poles and principal parts 𝑃1(𝑧), 𝑃2(𝑧), . . .,
we wish to take ∞∑

ℓ=1
𝑃ℓ (𝑧).

But can we? The sum may not converge. We must be a tad trickier, and here is
where  Runge’s theorem is useful: Adding a holomorphic function doesn’t change
the principal part, but it may make the terms in the sum smaller and make things
converge. We obtain the Mittag-Leffler theorem. 

*
 

Theorem 9.4.1 (Mittag-Leffler). Suppose𝑈 ⊂ ℂ is open, 𝑆 ⊂ 𝑈 is a countable set with no
limit point in𝑈 , and for every 𝑝 ∈ 𝑆 there is a principal part

𝑃𝑝(𝑧) =
𝑘𝑝∑
𝑛=1

𝑐𝑝,𝑛

(𝑧 − 𝑝)𝑛

of a pole of order 𝑘𝑝 . Then there exists a meromorphic function 𝑓 in 𝑈 with poles precisely
at points of 𝑆, and for each 𝑝 ∈ 𝑆, the principal part of 𝑓 at 𝑝 is 𝑃𝑝 .

Proof. Start with applying  Lemma 9.2.5  to get an exhaustion of 𝑈 by compact sets
{𝐾𝑛}. Let 𝑆1 = 𝐾1 ∩ 𝑆 and 𝑆𝑛 be the set 𝐾𝑛 ∩ 𝑆 \ 𝐾𝑛−1, then 𝑆 is the disjoint union of
𝑆1, 𝑆2, . . .. Each 𝑆𝑛 is finite as 𝑆 has no limit point in𝑈 . Let

𝑓𝑛(𝑧) =
∑
𝑝∈𝑆𝑛

𝑃𝑝(𝑧).

*That’s the downside of a hyphenated name: Mittag always has to share fame with that Leffler guy.
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Let 𝑅1 = 0. Suppose 𝑛 ≥ 2. Every component of ℂ∞ \ 𝐾𝑛−1 contains a point of
ℂ∞ \𝑈 , and 𝑓𝑛 is holomorphic on a neighborhood of 𝐾𝑛−1 (it has finitely many poles
on 𝐾𝑛 \ 𝐾𝑛−1).  Runge’s theorem gives a rational function 𝑅𝑛 with poles in ℂ∞ \𝑈
such that | 𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)| < 2−𝑛 for all 𝑧 ∈ 𝐾𝑛−1. We only care that 𝑅𝑛 is holomorphic
in𝑈 , we do not use its poles or that it is rational.

We wish to define

𝑓 (𝑧) =
∞∑
𝑛=1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

)
.

We claim that this series converges uniformly on compact subsets of𝑈 \ 𝑆, and the
resulting function has poles on 𝑆 with principal parts 𝑃𝑝 at 𝑝 ∈ 𝑆.

First suppose that 𝐾 ⊂ 𝑈 \ 𝑆 is compact. Then 𝐾 ⊂ 𝐾ℓ for some ℓ . Write

∞∑
𝑛=1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

)
=

ℓ∑
𝑛=1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

) + ∞∑
𝑛=ℓ+1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

)
.

The first term has poles on 𝐾ℓ (but not on 𝐾), but the second term does not. Further-
more, for all 𝑧 ∈ 𝐾ℓ , and hence in 𝐾, we have

∞∑
𝑛=ℓ+1

| 𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)| ≤
∞∑

𝑛=ℓ+1
2−𝑛 .

The sum converges uniformly absolutely on 𝐾 (Weierstrass 𝑀-test,  Exercise 2.3.8 ). So
the series for 𝑓 converges uniformly absolutely on compact subsets of𝑈 \ 𝑆 and 𝑓 is
holomorphic on𝑈 \ 𝑆. Let us see that it has the right sort of singularities. Suppose
𝑝 ∈ 𝑆ℓ . A neighborhood of 𝑝 contains no other singularities. Then

𝑓 (𝑧) =
ℓ−1∑
𝑛=1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

) + (
𝑓ℓ (𝑧) − 𝑅ℓ (𝑧)

) + ∞∑
𝑛=ℓ+1

(
𝑓𝑛(𝑧) − 𝑅𝑛(𝑧)

)
.

The first sum and the last sum are holomorphic on a neighborhood of 𝑝: The first
sum has all its poles in 𝐾ℓ−1 and the last sum has no singularities on 𝐾ℓ . The function
𝑅ℓ is holomorphic in all of𝑈 . So 𝑓 has the same singularity at 𝑝 as 𝑓ℓ and the same
principal part, and 𝑓ℓ was set up precisely so that it has a principal part 𝑃𝑝 at 𝑝. □

Example 9.4.2: Sometimes convergence happens simply by grouping the terms
correctly. In other words, given the right {𝐾𝑛} one can choose 𝑅𝑛 = 0. Suppose we
want a function with a poles at all 𝑛 ∈ ℤ with singular parts 1

𝑧−𝑛 . Regrettably,∑
𝑛∈ℤ

1
𝑧 − 𝑛

does not converge, but

1
𝑧
+

∞∑
𝑛=1

(
1

𝑧 + 𝑛 + 1
𝑧 − 𝑛

)
=

1
𝑧
+

∞∑
𝑛=1

2𝑧
𝑧2 − 𝑛2
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does converge uniformly on compact subsets of ℂ \ℤ. This grouping corresponds to
the choice of 𝐾𝑛 = Δ𝑛(0). See the exercises.

The Mittag-Leffler theorem is a sister theorem to the  Weierstrass product theorem .
In Weierstrass’s theorem we prescribe zeros rather than poles. In fact, with just a
little bit of trickery, one could use the Mittag-Leffler theorem to prove the Weierstrass
theorem. Again, see the exercises.

Exercise 9.4.1: Prove the statements in the example:
∑
𝑛∈ℤ 1

𝑧−𝑛 converges for no 𝑧 ∈ ℂ \ℤ,
but

∑∞
𝑛=1

2𝑧
𝑧2−𝑛2 converges uniformly on compact subsets of ℂ \ℤ.

Exercise 9.4.2: Suppose 𝑈 = ℂ, 𝑆 = ℕ, 𝑃𝑛(𝑧) = −𝑛
𝑧−𝑛 , 𝐾𝑛 = Δ𝑛(0). Use the geometric

sum 1+ 𝑥 + · · · + 𝑥𝑛 = 1−𝑥𝑛+1

1−𝑥 to find an explicit 𝑅𝑛 that will make the proof of the theorem
work. Note that one part of the formula may be somewhat ugly, c’est la vie.

Exercise 9.4.3: Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ holomorphic, 𝑝 ∈ 𝑈 , and 𝑃(𝑧) =∑𝑘
𝑛=1

𝑐𝑛
(𝑧−𝑝)𝑛 . Suppose 𝐾 ⊂ 𝑈 \ {𝑝} is compact such that 𝑝 is in the unbounded component

of ℂ \ 𝐾. Show that for every 𝜖 > 0, there exists a function 𝑔 holomorphic in𝑈 \ {𝑝} with
a pole at 𝑝 and principal part 𝑃 at 𝑝 and such that | 𝑓 (𝑧) − 𝑔(𝑧)| < 𝜖 for all 𝑧 ∈ 𝐾.

Exercise 9.4.4: Prove that for every open 𝑈 ⊂ ℂ there exists a meromorphic function
𝑓 : 𝑈 → ℂ∞ such that for every 𝑝 ∈ 𝜕𝑈 and every 𝜖 > 0, there are infinitely many poles
of 𝑓 in Δ𝜖(𝑝) ∩𝑈 . Hint: The trick is constructing 𝑆.

Exercise 9.4.5: Suppose that instead of principal parts of poles, 𝑃𝑝(𝑧) are principal parts
of essential singularities that converge in ℂ \ {𝑝}. Prove the Mittag-Leffler with this setup.

Exercise 9.4.6:
a) Prove that in the Mittag-Leffler theorem, the function 𝑓 can be chosen so that 𝑓 has

no zeros in𝑈 \ 𝑆.
b) Use part a) to prove the Weierstrass product theorem.



10𝑖 \\ Analytic Continuation

May the forces of evil become confused on the way to your house.
—George Carlin

10.1𝑖 \ Schwarz reflection principle
One of the consequences of the identity theorem is that once we know a function in
a neighborhood we know it in the whole domain. If a holomorphic function 𝑓 is
defined in a domain𝑈 and𝑈 ⊂ 𝑊 for some other domain𝑊 , then we may want to
find a holomorphic function in𝑊 that agrees with 𝑓 on𝑈 . By the identity theorem,
the extension is unique, but it may not always exist. If 𝑓 (𝑧) = 1/𝑧 in𝑈 = ℂ \ {0}, there
is no way of extending it to𝑊 = ℂ.

One type of continuation is reflection, namely the Schwarz reflection principle 

†
 ,

which says that we can, under some conditions, reflect values across some boundary.
We have seen the harmonic version (see  Theorem 7.3.3 ) of this theorem. The proof
of the principle works the same for both harmonic and holomorphic functions. We
simply write down the candidate function by using the right reflection and then show
that the reflection is harmonic or holomorphic. Then over the line where they meet,
we use either the mean-value property or Morera’s theorem.

Theorem 10.1.1 (Schwarz reflection principle). Suppose𝑈 ⊂ ℂ is a domain symmetric
across the real axis, that is, 𝑧 ∈ 𝑈 if and only if 𝑧̄ ∈ 𝑈 . Let 𝑈+ = {𝑧 ∈ 𝑈 : Im 𝑧 > 0} and
𝐿 = 𝑈 ∩ℝ. Suppose 𝑓 : 𝑈+ ∪ 𝐿 → ℂ is a continuous function that is holomorphic on 𝑈+
and real-valued on 𝐿, that is, Im 𝑓 (𝑧) = 0 for all 𝑧 ∈ 𝐿.

Then there exists a holomorphic function 𝐹 : 𝑈 → ℝ such that 𝐹 |𝑈+∪𝐿 = 𝑓 .

The setup is the same as for the harmonic version of the theorem. See  Figure 7.6  

for a diagram of the setup.

Proof. For 𝑧 ∈ 𝑈 , define

𝐹(𝑧) = 𝑓 (𝑧) if Im 𝑧 ≥ 0, 𝐹(𝑧) = 𝑓 (𝑧̄) else.
†Sometimes it is called Riemann–Schwarz principle as Riemann saw it first, but he didn’t properly

justify it, so Schwarz has dibs on it.
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If 𝑧 ∈ 𝑈 and Im 𝑧 > 0, then 𝐹 is holomorphic near 𝑧 by hypothesis. Suppose 𝑧 ∈ 𝑈
and Im 𝑧 < 0. The easiest to see that 𝐹 if holomorphic is by using the Wirtinger
derivative and the identities proved in  Exercise 2.2.8  and the Wirtinger chain rule

 Exercise 2.2.10 :
𝜕

𝜕𝑧̄
𝐹(𝑧) = 𝜕

𝜕𝑧̄
𝑓 (𝑧̄) = 𝜕

𝜕𝑧
𝑓 (𝑧̄) = 0.

The chain rule came up because we are taking the 𝑧 derivative of 𝑓 composed with a
conjugation map, and the 𝑧 derivative of the conjugation map is zero. Another way
to see it is to write down the power series representation.

Finally, we need to prove that 𝐹 is holomorphic near 𝐿, which we can do by
applying Morera’s theorem. The function 𝐹 is clearly continuous. The only tricky
part is to check integrals over triangles that intersect the real line. Such a triangle
can be split into several triangles, each of which lies on one side of the line 𝐿 and
intersects 𝐿 either at a vertex or side. See  Figure 10.1 .

ℝ

Figure 10.1: Splitting triangles to use Morera.

Call such a triangle 𝑇, and suppose it is above the axis. We can translate the
triangle by 𝜖, that is consider 𝑇𝜖 = {𝑧 ∈ ℂ : 𝑧 − 𝑖𝜖 ∈ 𝑇}. For small 𝜖 > 0, we have
𝑇𝜖 ⊂ 𝑈+ and so the integral of 𝐹 over 𝜕𝑇𝜖 is zero. We can write the integral over 𝜕𝑇𝜖 as

0 =

∫
𝜕𝑇𝜖

𝐹(𝑧) 𝑑𝑧 =
∫
𝜕𝑇
𝐹(𝑧 + 𝑖𝜖) 𝑑𝑧.

The function 𝐹 is uniformly continuous on some neighborhood of 𝑇, thus 𝐹(𝑧 + 𝑖𝜖)
converges uniformly to 𝐹(𝑧) as 𝜖 → 0. Consequently,

∫
𝜕𝑇
𝐹(𝑧) 𝑑𝑧 = 0. Morera then

implies that 𝐹 is holomorphic. □

The theorem is often applied by first mapping some curve to the real line. This
curve must be nice enough, that is, real-analytic. Similarly the fact that 𝑓 is real-
valued can be replaced by being valued in some real-analytic curve. We will define
a real-analytic as the image of an interval under a real-analytic map 𝛾 : (𝑎, 𝑏) → ℂ.
By 𝛾 being real-analytic we mean that at each point it has a power series expansion.
Equivalently, a real-analytic function is a restriction of a holomorphic function to
the real line by just plugging complex numbers into the power series. Therefore, the
actual definition we will use is the following.

Definition 10.1.2. A set 𝐶 ⊂ ℂ is a real-analytic curve if there exist a domain𝑉 ⊂ ℂ such
that 𝑉 ∩ℝ = (𝑎, 𝑏) and an injective holomorphic 𝜑 : 𝑉 → ℂ such that 𝜑

((𝑎, 𝑏)) = 𝐶.
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The images 𝜑(𝑉+) and 𝜑(𝑉−) of the sets 𝑉+ = {𝑧 ∈ 𝑉 : Im 𝑧 > 0} and 𝑉− = {𝑧 ∈
𝑉 : Im 𝑧 < 0} are the two “sides” of 𝐶.

Corollary 10.1.3 (Schwarz reflection principle for curves). Let𝑈 ⊂ ℂ be open, 𝐶 ⊂ 𝜕𝑈
a real-analytic curve with one side not in 𝑈 and one side in 𝑈 , that is, there is domain 𝑉 ,
𝑉 ∩ ℝ = (𝑎, 𝑏) and an injective holomorphic 𝜑 : 𝑉 → ℂ such that 𝜑

((𝑎, 𝑏)) = 𝐶 ⊂ 𝜕𝑈 ,
and such that 𝜑(𝑉+) ⊂ 𝑈 and 𝜑(𝑉−)∩𝑈 = ∅. Suppose that 𝑓 : 𝑈 ∪𝐶 → ℂ is a continuous
function, holomorphic on𝑈 , such that 𝑓 (𝐶) ⊂ 𝐷 for some other real-analytic curve 𝐷.

Then there exists a neighborhood 𝑊 of 𝐶 and a holomorphic function 𝐹 : 𝑈 ∪𝑊 → ℂ

such that 𝐹 |𝑈∪𝐶 = 𝑓 .

Proof. First start with 𝐷. As it is defined by some invertible holomorphic function,
there must be a neighborhood 𝐻 of 𝐷, and an injective holomorphic 𝜓 : 𝐻 → ℂ

such that 𝜓(𝐷) ⊂ ℝ. We can pick 𝑉 small enough so that it is symmetric across the
real-axis and such that 𝑓

(
𝜑(𝑉+)

) ⊂ 𝐻. Write 𝐿 = (𝑎, 𝑏) = 𝑉 ∩ℝ as before. Consider
the composition 𝜓 ◦ 𝑓 ◦ 𝜑, which is holomorphic in 𝑉+, continuous on 𝑉+ ∪ 𝐿, and
real-valued on 𝐿. So the Schwarz reflection principle holds, and we get a holomorphic
𝐺 : 𝑉 → ℂ extending 𝜓 ◦ 𝑓 ◦ 𝜑.

We possibly make𝑉 smaller yet to ensure that 𝐺(𝑉) ⊂ 𝜓(𝐻) so that we may invert
𝜓 on the image. The set 𝑊 is 𝜑(𝑉) and on 𝑊 we write 𝐹 = 𝜓−1 ◦ 𝐺 ◦ 𝜑−1. This
definition agrees with 𝑓 on𝑊 ∩𝑈 = 𝜑(𝑉+), and so we can define 𝐹 on𝑈 as 𝑓 . □

The corollary says that we can extend holomorphic functions across real-analytic
boundaries as long as the function is continuous and valued in a real-analytic curve
on the boundary. However, the downside of this more general statement is that it
does not say how to figure out exactly the size of the neighborhood𝑊 . One could
note the sizes of the neighborhoods𝑉 and 𝐻 and then follow “reductions of𝑉” in the
proof to work out how far the extension goes, but that does require understanding
how far the functions defining the curves extend as invertible functions.

In practice, the extension is often applied to rather special curves such as a straight
line or a circle and so we can explicitly figure out the form of the extension and where
it is defined. The original version is for a straight line, so let us give the circle version.
The reflection across the unit circle, 1/𝑧̄, is the inversion from euclidean geometry. If
𝑧 = 𝑟𝑒 𝑖𝜃, then the reflection 1/𝑧̄ = (1/𝑟)𝑒 𝑖𝜃 is on the same ray from the origin but the
modulus is the reciprocal.

Corollary 10.1.4 (Schwarz reflection principle for a circle). Suppose𝑈 ⊂ ℂ \ {0} is a
domain, symmetric with respect to reflection across 𝜕𝔻, that is, 𝑧 ∈ 𝑈 implies 1/𝑧̄ ∈ 𝑈 . Let
𝑈in = 𝑈 ∩𝔻 and𝑈out = 𝑈 \𝔻. If 𝑓 : 𝑈 ∩𝔻 → ℂ is continuous, holomorphic on𝑈in, and
𝑓 (𝑈 ∩ 𝜕𝔻) ⊂ 𝜕𝔻, then there exists a holomorphic 𝐹 : 𝑈 → ℂ such that 𝐹 |

𝑈∩𝔻 = 𝑓 .

The proof is left as an exercise: The idea is to define 𝐹(𝑧) = 𝑓 (𝑧) on𝑈 ∩𝔻, and for
𝑧 ∈ 𝑈out, define

𝐹(𝑧) = 1
𝑓 (1/𝑧̄)

.
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Exercise 10.1.1: Prove  Corollary 10.1.4 . Hint: Cayley.

Exercise 10.1.2: Suppose 𝑈 = {𝑧 ∈ ℂ : Im 𝑧 > 0 and Re 𝑧 > 0} and 𝑓 : 𝑈 → ℂ is
continuous, holomorphic on𝑈 , real-valued when Im 𝑧 = 0, and imaginary-valued when
Re 𝑧 = 0. Prove that 𝑓 extends to an entire holomorphic function.

Exercise 10.1.3: Suppose 𝑈 ⊂ ℍ is a domain in the upper half-plane and Δ is a disc
centered at some real number with Δ∩ 𝜕𝑈 = Δ∩ℝ = (𝑎, 𝑏). Suppose 𝑓 : 𝑈 ∪ (𝑎, 𝑏) → ℂ

is continuous, holomorphic on𝑈 , and 𝑓 is zero on (𝑎, 𝑏). Prove that 𝑓 is identically zero.

Exercise 10.1.4: Let 𝑇 = {𝑒 𝑖𝑡 : 𝛼 < 𝑡 < 𝛽} be a small arc of the unit circle. Suppose
𝑓 : 𝔻 ∪ 𝑇 → ℂ and 𝑔 : 𝔻 ∪ 𝑇 → ℂ are continuous, holomorphic in 𝔻, and 𝑔 = 𝑓 on 𝑇.
Prove that 𝑓 = 𝑔 on 𝔻.

Exercise 10.1.5: Suppose 𝑓 : ℂ → ℂ is holomorphic and 𝑓 is real-valued on the line
Re 𝑧 = 0 and the line Re 𝑧 = 1. Prove that 𝑓 is 2-periodic, that is, 𝑓 (𝑧 + 2) = 𝑓 (𝑧) for all 𝑧.

Exercise 10.1.6: Let 𝑈 = {𝑧 ∈ ℂ : Re 𝑧 > 0} and 𝑔 : 𝑈 → ℂ be holomorphic such that(
𝑔(𝑧))2

= 𝑧 for all 𝑧 ∈ 𝑈 and 𝑔(1) = 1 (𝑔 is one of the square roots).
a) Show that |Im 𝑔(𝑧)| ≤ Re 𝑔(𝑧) for all 𝑧 ∈ 𝑈 .
b) Show that 𝑓 (𝑧) = 𝑒−1/𝑔(𝑧) is holomorphic in𝑈 and extends to a continuous function

on the closure𝑈 . (The hard part is continuity at 𝑧 = 0.)
c) Show that 𝑓 does not extend holomorphically through the origin. That is, for no open

neighborhood 𝑉 of 0 does there exist a holomorphic 𝜑 : 𝑉 → ℂ such that 𝜑 = 𝑓 on
𝑈 ∩𝑉 .

d) Show that 𝑓 extends as a 𝐶∞ (infinitely real differentiable) function on𝑈 . Hint: It
is enough to show that all real partial derivatives of 𝑓 of all orders on𝑈 are locally
bounded on𝑈 : In particular, for any 𝑧 ∈ 𝜕𝑈 and any real partial derivative, there is
a neighborhood 𝑉 of 𝑧 such that the derivative is bounded on𝑈 ∩𝑉 , and that is only
tricky at 𝑧 = 0.

This exercise shows that a holomorphic function can be smooth up to the boundary but still
not extend past the boundary holomorphically.

10.2𝑖 \ Analytic continuation along paths

10.2.1𝑖 · Definition
More generally than a reflection, we define a continuation along a path. We have seen
such continuation with the logarithm. We define a function locally and “continue” it
uniquely to another point of the domain along some path. We have also seen some
problems with this approach: When dealing with the log in the punctured plane, we
could go around the origin and not end up where we started.
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Geometry and topology may get in the way, and so it is easiest to work with discs.
We will cover a path with discs and try to extend from one disc to another. The
advantage of discs is that if two discs intersect, then their intersection is connected,
and a union of two intersecting discs is always simply connected, in fact, it is star-like.
Since any path can be reparametrized to [0, 1], we will, for simplicity, consider all
paths to have the parameter in [0, 1] in this section.

Definition 10.2.1. Suppose 𝛾 : [0, 1] → ℂ is continuous with 𝛾(0) = 𝑝, and 𝑈 ⊂ ℂ

an open connected neighborhood of 𝑝. A holomorphic 𝑓 : 𝑈 → ℂ can be analytically
continued along 𝛾 if for every 𝑡 ∈ [0, 1] there exists a disc 𝐷𝑡 centered at 𝛾(𝑡) and a
holomorphic function 𝑓𝑡 : 𝐷𝑡 → ℂ, such that:

(i) 𝐷0 ⊂ 𝑈 and 𝑓0 = 𝑓 |𝐷0 .

(ii) For each 𝑠 ∈ [0, 1], there is an 𝜖 > 0 such that if |𝑡 − 𝑠 | < 𝜖, then 𝑓𝑡 = 𝑓𝑠 in
𝐷𝑡 ∩ 𝐷𝑠 .

We refer to the continuation as 𝑓𝑡 or perhaps ( 𝑓𝑡 , 𝐷𝑡). The function together with the
domain such as ( 𝑓 , 𝑈) or ( 𝑓𝑡 , 𝐷𝑡) is called a function element.

The value 𝑓𝑡
(
𝛾(𝑡)) is really what we mean by the value of the continuation at 𝛾(𝑡),

and what we would really want “ 𝑓
(
𝛾(𝑡))” to be. Though of course, 𝑓

(
𝛾(𝑡)) is not

defined for 𝛾(𝑡) outside of 𝑈 . The identity theorem implies that the definition of
𝑓𝑡
(
𝛾(𝑡)) is unique.

Proposition 10.2.2. Suppose that 𝑓 and 𝛾 are as in  Definition 10.2.1  , and 𝑓 can be continued
along 𝛾. The value 𝑓𝑡

(
𝛾(𝑡)) is uniquely defined for every 𝑡 ∈ [0, 1].

Exercise 10.2.1: Prove the proposition.

Exercise 10.2.2: Prove that in the definition we could take 𝐷𝑡 to not be centered at 𝛾(𝑡).
We simply need to require 𝛾(𝑡) ∈ 𝐷𝑡 , and we would get the same values of 𝑓𝑡

(
𝛾(𝑡)) .

Since 𝛾 (as a set) is compact, we can use only finitely many discs. See  Figure 10.2 .
We were continuing the logarithm in this way back in  chapter 4 .

Proposition 10.2.3. Suppose that 𝑓 , 𝑈 , and 𝛾 are as in  Definition 10.2.1 . Then 𝑓 can be
analytically continued along 𝛾 if and only if there exist numbers 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1,
open discs Δ1, . . . ,Δ𝑛 that cover 𝛾 (as a set), and holomorphic functions 𝜑 𝑗 : Δ𝑗 → ℂ, such
that for all 𝑗, 𝛾

([𝑡 𝑗−1, 𝑡 𝑗]
) ⊂ Δ𝑗 , 𝜑 𝑗−1 = 𝜑 𝑗 on Δ𝑗−1 ∩ Δ𝑗 , and such that 𝜑1 = 𝑓 on Δ1 ∩𝑈 .

Furthermore, if ( 𝑓𝑡 , 𝐷𝑡) is a continuation and 𝑡 ∈ [𝑡 𝑗−1, 𝑡 𝑗], then 𝜑 𝑗

(
𝛾(𝑡)) = 𝑓𝑡

(
𝛾(𝑡)) .

Exercise 10.2.3: Prove the proposition.
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Figure 10.2: Analytic continuation with finitely many discs. The endpoints of the
subintervals are marked.

Exercise 10.2.4: There’s good reason to use discs in analytic continuation. Find two
domains𝑈1, 𝑈2 ⊂ ℂ,𝑈1 ∩𝑈2 ≠ ∅, 𝑝 ∈ 𝑈1, 𝑞 ∈ 𝑈2, holomorphic functions 𝑓1 : 𝑈1 → ℂ

and 𝑓2 : 𝑈2 → ℂ, a path 𝛾 in𝑈1∪𝑈2 from 𝑝 to 𝑞, and two discsΔ1,Δ2 as in the proposition
such that Δ1 ⊂ 𝑈1 and Δ2 ⊂ 𝑈2, such that 𝛾 ⊂ Δ1 ∪ Δ2, and these are the discs giving the
analytic continuation of 𝑓1 from 𝑝 to 𝑞, and 𝑓1 = 𝑓2 on Δ1 ∩ Δ2, but such that 𝑓1 is not
equal to 𝑓2 on𝑈1 ∩𝑈2.

Proposition 10.2.4. Let 𝑓 and 𝛾 be as in  Definition 10.2.1 . Suppose 𝑓 continues analytically
along 𝛾, and let 𝑓𝑡 be the continuation. Then there exists an 𝜖 > 0 such that if a continuous
𝜎 : [0, 1] → ℂ is such that 𝑝 = 𝜎(0) = 𝛾(0), 𝑞 = 𝜎(1) = 𝛾(1), and |𝜎(𝑡) − 𝛾(𝑡)| < 𝜖 for all
𝑡, then 𝑓 can be analytically continued as 𝑔𝑡 along 𝜎 and 𝑔1(𝑞) = 𝑓1(𝑞).
Proof. We use  Proposition 10.2.3 and its notation. The image of each subinterval
𝛾
([𝑡 𝑗−1, 𝑡 𝑗]

)
is compact in Δ𝑗 and so it is a positive distance away from the boundary

𝜕Δ𝑗 . Let 𝜖 > 0 be smaller than this distance for all 𝑗 = 1, . . . , 𝑛. Suppose 𝜎 is as in the
statement. Then 𝜎

([𝑡 𝑗−1, 𝑡 𝑗]
)

is still in Δ𝑗 . We can thus use the same 𝜑 𝑗 and Δ𝑗 to get a
continuation using  Proposition 10.2.3 again. □

We defined continuation for continuous 𝛾, but we could have used piecewise-𝐶1

paths since we can approximate 𝛾 by a piecewise-𝐶1 path, or even a polygonal path.
See the following exercise.

Exercise 10.2.5: Suppose 𝑈 is open, 𝑝 ∈ 𝑈 , and a holomorphic 𝑓 : 𝑈 → ℂ continues
analytically along a continuous 𝛾 : [0, 1] → ℂ with 𝛾(0) = 𝑝, 𝛾(1) = 𝑞, then for every
𝜖 > 0, there exists a polygonal path 𝜎 : [0, 1] → ℂ such that |𝜎(𝑡) − 𝛾(𝑡)| < 𝜖 for all 𝑡,
𝜎(0) = 𝛾(0), 𝜎(1) = 𝛾(1), the function 𝑓 continues analytically along 𝜎, and the value of
the continuation at 𝛾(1) = 𝜎(1) is the same for 𝜎 or 𝛾.

10.2.2𝑖 · Unrestricted continuation
The general problem we are interested in is to start with a domain𝑈 and a holomorphic
𝑓 defined in a small subset of𝑈 . Then we want to extend 𝑓 to all of𝑈 .
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Definition 10.2.5. Let 𝑈 ⊂ ℂ be a domain, 𝑝 ∈ 𝑈 , and 𝑊 ⊂ 𝑈 an open connected
neighborhood of 𝑝. A holomorphic 𝑓 : 𝑊 → ℂ admits unrestricted continuation to𝑈
if for every 𝑞 ∈ 𝑈 and every continuous 𝛾 : [0, 1] → 𝑈 , 𝛾(0) = 𝑝, 𝛾(1) = 𝑞, 𝑓 can be
analytically continued along 𝛾.

It may appear that the definition depends on 𝑝, but any other 𝑝 ∈ 𝑊 could be
used as𝑊 is connected, see  Exercise 10.2.7 .

The logarithm, and in general every primitive (exercise below), admits unrestricted
continuation in the domain where the derivative is defined. We do not necessarily
get a unique value. For instance for the logarithm, if 𝑈 = ℂ \ {0}, 𝑊 = Δ𝑟(𝑝) ⊂ 𝑈 ,
then we can define a branch of the logarithm in Δ𝑟(𝑝), and it admits unrestricted
continuation to all of ℂ \ {0}, but the value of the continuation is not well-defined,
it depends on the path taken. Moreover, not every function allows unrestricted
continuation even if it allows continuation along some path to every point.

Example 10.2.6: Consider a branch of the square root
√
𝑧 such that

√
1 = 1 defined in

some neighborhood of 1. The logarithm allows unrestricted continuation in ℂ \ {0},
and so does the square root. If we continue from 𝑧 = 1 along a closed path that does
not go around the origin and comes back to 𝑧 = 1, the continuation of the root also
has the value 1 there. However, if we go around a path that goes once around the
origin, the continuation will have a value of −1 at 𝑧 = 1. OK, nothing new so far.

Now consider the function 𝑓 (𝑧) = 1
1+√𝑧 , where the square root is as before. As

we can continue the square root, we can try to continue 𝑓 . If we take a path starting
at 𝑧 = 1 that does not go around the origin (such as a small loop near 1), then we
obtain the square root being 1 and so 𝑓 also continues along this loop. However, if
we take the unit circle and go once around the origin, the square root becomes −1
once we get back to 𝑧 = 1, and so 𝑓 cannot be analytically continued along this path.
That is, 𝑓 does not allow unrestricted continuation to ℂ \ {0} even though it allows
continuation to every point of ℂ \ {0} along some path. Just not every path.

Inverses can often be continued for some paths, but as we saw in the example
above, where we tried to continue the inverse of 𝑤 ↦→ (1/𝑤 − 1)2, inverses may not
admit unrestricted continuation. However, if the mapping is a so-called covering
map (for example, a 𝑘-to-1 onto holomorphic map), then its inverse does admit such
continuation.

Definition 10.2.7. Suppose𝑈,𝑉 ⊂ ℂ are open, 𝑓 : 𝑈 → 𝑉 is holomorphic and onto,
and for every 𝑝 ∈ 𝑉 , there exists a neighborhood𝑊 ⊂ 𝑉 such that 𝑓 −1(𝑊) is a disjoint
union of open connected sets Ω1,Ω2, . . . such that 𝑓 |Ω𝑗 is a biholomorphism of Ω𝑗

and𝑊 . Then we call 𝑓 a holomorphic covering map.

Example 10.2.8: The map 𝑧2 is a covering map of ℂ \ {0} onto ℂ \ {0}.
Example 10.2.9: The exponential 𝑒𝑧 is a covering map of ℂ onto ℂ \ {0}.
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Example 10.2.10: Suppose𝑈,𝑉 ⊂ ℂ are open, 𝑓 : 𝑈 → 𝑉 holomorphic, 𝑘-to-1 (𝑘 ∈ ℕ),
and onto. Using  Exercise 5.6.4  , 𝑓 ′ never vanishes and 𝑓 is locally invertible. It is not
hard to prove (exercise below) that 𝑓 is a covering map.

Proposition 10.2.11. Suppose 𝑈 ⊂ ℂ is open, 𝑉 ⊂ ℂ is a domain, 𝑓 : 𝑈 → 𝑉 is a
holomorphic covering map, and 𝑝 ∈ 𝑉 . Then starting with any value of 𝑓 −1(𝑝), a branch
of 𝑓 −1 can be defined in some neighborhood of 𝑝 (a holomorphic 𝑔 defined near 𝑝 such that
𝑓 ◦ 𝑔 is the identity) and admits unrestricted analytic continuation to 𝑉 .

Proof. Consider a continuous 𝛾 : [0, 1] → 𝑉 , where 𝛾(0) = 𝑝. At each point 𝑤 of 𝛾
using the definition of covering map, we can find a disc Δ ⊂ 𝑉 centered at 𝑤 such
that 𝑓 −1(𝐷) has disjoint components and for each component, a branch of 𝑓 −1 can be
defined as a holomorphic map onto that component. As 𝛾 is compact, finitely many
such discs Δ1, . . . ,Δ𝑛 cover 𝛾 such that Δ𝑗−1 ∩ Δ𝑗 ≠ ∅ and 𝑝 ∈ Δ1. Given any choice
of 𝑓 −1 at 𝑝, we can define a branch of 𝑓 −1 in Δ𝑗 that agrees with our choice of on Δ𝑗−1
for all 𝑗. In other words, we can continue our branch of 𝑓 −1 along 𝛾. □

Exercise 10.2.6: Let𝑈 ⊂ ℂ be a domain,𝑊 ⊂ 𝑈 a connected open subset, 𝑝 ∈𝑊 , and
𝑓 : 𝑈 → ℂ holomorphic. Prove that the restriction 𝑓 |𝑊 allows unrestricted continuation
to𝑈 with 𝑝 as a starting point.

Exercise 10.2.7: Let𝑈 ⊂ ℂ be a domain,𝑊 ⊂ 𝑈 a nonempty connected open subset, and
𝑓 : 𝑊 → ℂ holomorphic. Suppose 𝑓 admits unrestricted continuation to𝑈 with 𝑝1 ∈𝑊
as a starting point. Prove that for any other 𝑝2 ∈𝑊 , 𝑓 admits unrestricted continuation to
𝑈 with 𝑝2 as a starting point.

Exercise 10.2.8: Let 𝑈 ⊂ ℂ be a domain and let 𝑓 : 𝑈 → ℂ be holomorphic. Locally
near some 𝑝 ∈ 𝑈 , suppose 𝐹 is an antiderivative of 𝑓 . Prove that 𝐹 admits unrestricted
continuation to𝑈 .

Exercise 10.2.9: Let𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℂ be holomorphic and not identically
zero. Let 𝑍 𝑓 be the set of zeros of 𝑓 . Given any 𝑝 ∈ 𝑈 \ 𝑍 𝑓 , we can locally (in some
neighborhood) define some branch of log 𝑓 (𝑧). Show that this branch allows unrestricted
continuation to𝑈 \ 𝑍 𝑓 .

Exercise 10.2.10: Given two domains 𝑈,𝑉 ⊂ ℂ, prove that a 𝑘-to-1 onto holomorphic
mapping 𝑓 : 𝑈 → 𝑉 is a covering map.

10.2.3𝑖 · Monodromy theorem
We can continue a function along many different paths and the continuation will
be the same if the paths do not change much. We therefore want to introduce a
topological equivalence that tells us how we navigate the domain around the various
holes, an equivalence that doesn’t care exactly what path we take as long as we can
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deform one path to the other. We have seen that for closed paths, homotopy is such
an equivalence, although here we look at paths from one fixed point to another. The
definition is almost the same (compare  Definition 4.5.1 ), except instead of “closed”
we require that the paths are “from 𝑝 to 𝑞.”

Definition 10.2.12. Let 𝑈 ⊂ ℂ be open and 𝑝, 𝑞 ∈ 𝑈 . Two continuous functions
𝛾0 : [0, 1] → 𝑈 and 𝛾1 : [0, 1] → 𝑈 where 𝛾0(0) = 𝛾1(0) = 𝑝 and 𝛾0(1) = 𝛾1(1) = 𝑞 are
fixed-endpoint homotopic in 𝑈 (or relative to 𝑈) if there exists a continuous function
𝐻 : [0, 1] × [0, 1] → 𝑈 such that for all 𝑠 and 𝑡 in [0, 1]

𝐻(𝑡 , 0) = 𝛾0(𝑡), 𝐻(𝑡 , 1) = 𝛾1(𝑡), 𝐻(0, 𝑠) = 𝑝, and 𝐻(1, 𝑠) = 𝑞.

See  Figure 10.3 . We also write 𝛾𝑠 , where 𝛾𝑠(𝑡) = 𝐻(𝑡 , 𝑠), for the paths in the homotopy.

𝛾0

𝑞
𝛾1

𝑝

Figure 10.3: Fixed endpoint homotopy of two paths 𝛾0 and 𝛾1 with intermediate paths
marked in gray.

The key property of fixed-endpoint homotopy in the context of continuation is
that the value of the continuation at 𝑞 is the same for homotopic paths.

Proposition 10.2.13. Suppose 𝑈 ⊂ ℂ is a domain, 𝑝 ∈ 𝑈 , 𝑊 ⊂ 𝑈 is an open connected
neighborhood of 𝑝, and 𝑓 : 𝑊 → ℂ is holomorphic and admits unrestricted continuation to𝑈 .
Suppose further that 𝛾0 : [0, 1] → 𝑈 and 𝛾1 : [0, 1] → 𝑈 are continuous, 𝛾0(0) = 𝛾1(0) = 𝑝

and 𝛾0(1) = 𝛾1(1) = 𝑞, and 𝛾0 and 𝛾1 are fixed-endpoint homotopic in𝑈 . Then the value at
𝑞 of the continuation of 𝑓 along 𝛾0 is equal to the value at 𝑞 of the continuation of 𝑓 along 𝛾1.

Proof. Let 𝐻(𝑡 , 𝑠) be the homotopy. Let 𝜑(𝑠) be the value of the continuation at 𝑞
for the path 𝛾𝑠 . By  Proposition 10.2.4 , 𝜑(𝑠) is locally constant (that is, each 𝑠 has a
neighborhood in which 𝜑 is constant). As [0, 1] is connected, 𝜑 is constant. □

The monodromy theorem says that as long as there are no holes, analytic continu-
ation defines a function uniquely.

Theorem 10.2.14 (Monodromy theorem). Suppose𝑈 ⊂ ℂ is a simply connected domain,
𝑊 ⊂ 𝑈 is a nonempty connected open subset, and 𝑓 : 𝑊 → ℂ is holomorphic and admits
unrestricted continuation to𝑈 . Then there exists a unique holomorphic function 𝐹 : 𝑈 → ℂ

such that 𝐹 |𝑊 = 𝑓 .
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Proof. As 𝑈 is simply connected, then by the  Riemann mapping theorem we can
assume that𝑈 = 𝔻 or𝑈 = ℂ. We have to show that no matter how we continue 𝑓 to
any point 𝑞 ∈ 𝑈 , we always get the same value, no matter what path we continue
along. Suppose 𝛾0 : [0, 1] → 𝑈 and 𝛾1 : [0, 1] → 𝑈 are continuous, 𝛾0(0) = 𝛾1(0) ∈𝑊 ,
and 𝛾0(1) = 𝛾1(1) = 𝑞. Let

𝐻(𝑡 , 𝑠) = (1 − 𝑠)𝛾0(𝑡) + 𝑠𝛾1(𝑡).
As 𝑈 is convex, 𝐻(𝑡 , 𝑠) ∈ 𝑈 for all (𝑡 , 𝑠) ∈ [0, 1] × [0, 1]. Furthermore, 𝐻(0, 𝑠) =

𝛾0(0) = 𝛾1(0) and 𝐻(1, 𝑠) = 𝛾0(1) = 𝛾1(1). So 𝐻 is a fixed-endpoint homotopy in 𝑈 ,
and by the proposition, the value of the extension at 𝑞 is the same whether we extend
along 𝛾0 or 𝛾1. □

Corollary 10.2.15. Suppose that 𝑈,𝑉 ⊂ ℂ are domains, 𝑉 is simply connected, and
𝑓 : 𝑈 → 𝑉 is a holomorphic covering map. Then 𝑓 is a biholomorphism.

Proof. We have seen that any local inverse of a covering map admits unrestricted
continuation. Given a choice of 𝑓 −1(𝑝) for some 𝑝 ∈ 𝑉 , a local inverse extends to a
global one defined on all of 𝑉 by the monodromy theorem. There can only be one
local inverse as𝑈 is connected, so 𝑓 is one-to-one. □

If 𝑈 is a simply connected, then a covering map 𝑓 : 𝑈 → 𝑉 is called a universal
covering map (or universal cover for short) of 𝑉 and 𝑈 is called the universal covering
space of 𝑉 . We will not prove so, but every domain in ℂ has a universal cover. 

*
 What

we proved above is that the only universal covering of a simply connected domain
is essentially just a biholomorphism. The  Riemann mapping theorem implies that
every domain has a universal cover that is either ℂ or 𝔻. In fact, the little Picard
theorem, which we do not prove, says that any entire function misses at most one
value. So the only domains with ℂ as a universal cover are ℂ itself (the identity) and
ℂ \ {𝑝} (the exponential, 𝑒𝑧−𝑝). Every other domain in ℂ has 𝔻 as the universal cover.

Why is it called a universal cover? Because it covers any cover. We leave the proof
as an exercise.
Corollary 10.2.16. Suppose 𝑈,𝑉,𝑊 ⊂ ℂ are domains, ℎ : 𝑈 → 𝑉 is a holomorphic
covering map and 𝑓 : 𝑊 → 𝑉 is a holomorphic universal cover (𝑊 is simply connected).
Then there exists a holomorphic covering map 𝑔 : 𝑊 → 𝑈 such that 𝑓 = ℎ ◦ 𝑔.

In other words, you have the following commutative diagram:

𝑊

𝑈 𝑉

𝑔 𝑓

ℎ

After you prove this corollary, via the monodromy theorem, you can quickly
prove that the universal cover is unique up to biholomorphism.

*Actually every reasonably nice topological space has a topological universal cover, where the
“local biholomorphism” is replaced by “local homeomorphism.”



230 CHAPTER 10. ANALYTIC CONTINUATION

Corollary 10.2.17. Suppose𝑈1, 𝑈2, 𝑉 ⊂ ℂ are domains and 𝑓 : 𝑈1 → 𝑉 and 𝑔 : 𝑈2 → 𝑉

are universal holomorphic covering maps (𝑈1 and 𝑈2 are simply connected). Then there
exists a biholomorphism 𝜑 : 𝑈1 → 𝑈2 such that 𝑓 = 𝑔 ◦ 𝜑.

In other words, you have the following commutative diagram:

𝑈1 𝑈2

𝑉

𝜑

𝑓 𝑔

As an example for the setup of both corollaries, notice that 𝑒𝑧 is a universal
covering map taking ℂ to ℂ \ {0}. The map 𝑧2 is a covering map from ℂ \ {0} to itself.
We might think we can compose the two and obtain a new universal covering map:(

𝑒𝑧
)2

= 𝑒2𝑧 ,

and darnit, 2𝑧 is an automorphism of ℂ. Since we’re already drawing diagrams:

ℂ ℂ

ℂ \ {0} ℂ \ {0}

𝑒𝑧 𝑒2𝑧

2𝑧

𝑒𝑧

𝑧2

Exercise 10.2.11: Explicitly find the universal cover of 𝔻 \ {0}.
Exercise 10.2.12: Prove  Corollary 10.2.16 . Hint: A holomorphic covering map admits
unrestricted analytic continuation.

Exercise 10.2.13: Prove  Corollary 10.2.17 .

Exercise 10.2.14: Explicitly find the universal cover of ℂ \ [−2, 2]. See  Exercise 2.2.17 .

Exercise 10.2.15: Suppose 𝐾 ⊂ ℂ is compact, connected, contains more than one point,
andℂ\𝐾 is connected. Show that there exists a universal holomorphic cover 𝑓 : 𝔻 → ℂ\𝐾.

Exercise 10.2.16: Suppose 𝑈 ⊂ ℂ is a domain and there exists a holomorphic covering
map 𝑓 : 𝑈 → 𝑈 that is not injective. Prove that the universal covering map of 𝑈 is
infinite-to-one.
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Except in mathematics, the shortest distance between point A and point B is
seldom a straight line. I don’t believe in mathematics.
—Albert Einstein

Let us give an introduction to metric spaces for the student that may not have seen
metric spaces in full generality. This appendix is an adapted and shortened version
of chapter 7 from [ L1 ].

A.1𝑖 \ Metric spaces
The main idea in analysis is to take limits and talk about continuity. We wish to
abstract what it means to be able to take limits in various contexts. The most basic
such abstraction is a metric space. While it is not sufficient to describe every type of
limit we find in modern analysis, it gets us very far indeed.

Definition A.1.1. Let 𝑋 be a set, and let 𝑑 : 𝑋 × 𝑋 → ℝ be a function such that for all
𝑥, 𝑦, 𝑧 ∈ 𝑋,

(i) 𝑑(𝑥, 𝑦) ≥ 0 (nonnegativity),

(ii) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 (identity of indiscernibles),

(iii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry),

(iv) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) (triangle inequality).

The pair (𝑋, 𝑑) is called a metric space. The function 𝑑 is called the metric or the distance
function. If the metric is clear from context, we may write simply 𝑋 instead of (𝑋, 𝑑).

The geometric idea is that 𝑑 is the distance between two points. Items  (i) – (iii) have
obvious geometric interpretation: Distance is always nonnegative, the only point that
is distance 0 away from 𝑥 is 𝑥 itself, and that the distance from 𝑥 to 𝑦 is the same as
the distance from 𝑦 to 𝑥. The triangle inequality  (iv) has the interpretation given in

 Figure A.1 .
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𝑥
𝑦

𝑧

𝑑(𝑥, 𝑦)

𝑑(𝑦, 𝑧)𝑑(𝑥, 𝑧)

longer

shorter

Figure A.1: Diagram of the triangle inequality in metric spaces.

For the purposes of drawing, it is convenient to draw figures and diagrams in
the plane with the metric being the euclidean distance. However, that is only one
particular metric space. Just because a certain fact seems to be clear from drawing
a picture does not mean it is true in every metric space. You might be getting
sidetracked by intuition from euclidean geometry, whereas the concept of a metric
space is a lot more general.

Example A.1.2: The set of real numbers ℝ is a metric space with the metric

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦 |.
Items  (i) – (iii) of the definition are easy to verify. The triangle inequality  (iv) follows
immediately from the standard triangle inequality for real numbers:

𝑑(𝑥, 𝑧) = |𝑥 − 𝑧 | = |𝑥 − 𝑦 + 𝑦 − 𝑧 | ≤ |𝑥 − 𝑦 | + |𝑦 − 𝑧 | = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).
This metric is the standard metric on ℝ. If we talk about ℝ as a metric space without
mentioning a specific metric, we mean this particular metric.

The 𝑛-dimensional euclidean space ℝ𝑛 = ℝ ×ℝ × · · · ×ℝ is also a metric space. In
this book we mostly see ℝ2, but let us give the example in more generality. We use the
following notation for points: 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 . Before making ℝ𝑛 a metric
space, let us prove an important inequality, the so-called Cauchy–Schwarz inequality.

Lemma A.1.3 (Cauchy–Schwarz inequality  

*
 ). If 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 , 𝑦 =

(𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 , then ( 𝑛∑
𝑗=1

𝑥 𝑗𝑦 𝑗

)2

≤
( 𝑛∑
𝑗=1

𝑥2
𝑗

) ( 𝑛∑
𝑗=1

𝑦2
𝑗

)
.

*Sometimes it is called the Cauchy–Bunyakovsky–Schwarz inequality. What we stated should really
be called the Cauchy inequality, as Bunyakovsky and Schwarz provided proofs for infinite-dimensional
versions.
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Proof. A square of a real number is nonnegative and so a sum of squares is nonnegative:

0 ≤
𝑛∑
𝑗=1

𝑛∑
𝑘=1

(𝑥 𝑗𝑦𝑘 − 𝑥𝑘𝑦 𝑗)2

=

𝑛∑
𝑗=1

𝑛∑
𝑘=1

(
𝑥2
𝑗 𝑦

2
𝑘
+ 𝑥2

𝑘
𝑦2
𝑗 − 2𝑥 𝑗𝑥𝑘𝑦 𝑗𝑦𝑘

)
=

( 𝑛∑
𝑗=1

𝑥2
𝑗

) ( 𝑛∑
𝑘=1

𝑦2
𝑘

)
+

( 𝑛∑
𝑗=1

𝑦2
𝑗

) ( 𝑛∑
𝑘=1

𝑥2
𝑘

)
− 2

( 𝑛∑
𝑗=1

𝑥 𝑗𝑦 𝑗

) ( 𝑛∑
𝑘=1

𝑥𝑘𝑦𝑘

)
.

We relabel and divide by 2 to obtain the needed inequality:

0 ≤
( 𝑛∑
𝑗=1

𝑥2
𝑗

) ( 𝑛∑
𝑗=1

𝑦2
𝑗

)
−

( 𝑛∑
𝑗=1

𝑥 𝑗𝑦 𝑗

)2

. □

Example A.1.4: Let us construct the standard metric for ℝ𝑛 . Define

𝑑(𝑥, 𝑦) =
√√√ 𝑛∑

𝑗=1
(𝑥 𝑗 − 𝑦 𝑗)2.

For 𝑛 = 1, the real line, this metric agrees with what we did above. Again, the only
tricky part of the definition to check is the triangle inequality. The trick is to work
with the square of the metric and apply the Cauchy–Schwarz inequality.(

𝑑(𝑥, 𝑧))2
=

𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑧 𝑗)2

=

𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗 + 𝑦 𝑗 − 𝑧 𝑗)2

=

𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗)2 +
𝑛∑
𝑗=1

(𝑦 𝑗 − 𝑧 𝑗)2 + 2
𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗)(𝑦 𝑗 − 𝑧 𝑗)

≤
𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗)2 +
𝑛∑
𝑗=1

(𝑦 𝑗 − 𝑧 𝑗)2 + 2

√√√ 𝑛∑
𝑗=1

(𝑥 𝑗 − 𝑦 𝑗)2
𝑛∑
𝑗=1

(𝑦 𝑗 − 𝑧 𝑗)2

=
©­«
√√√ 𝑛∑

𝑗=1
(𝑥 𝑗 − 𝑦 𝑗)2 +

√√√ 𝑛∑
𝑗=1

(𝑦 𝑗 − 𝑧 𝑗)2ª®¬
2

=
(
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧))2

.

Taking the square root of both sides we obtain the correct inequality.

Example A.1.5: The set of complex numbers ℂ is a metric space using the standard
euclidean metric on ℝ2 by identifying 𝑥 + 𝑖𝑦 ∈ ℂ with (𝑥, 𝑦) ∈ ℝ2.
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Example A.1.6: Let 𝐶([𝑎, 𝑏],ℝ) be the set of continuous real-valued functions on the
interval [𝑎, 𝑏]. Define the metric on 𝐶([𝑎, 𝑏],ℝ) as

𝑑( 𝑓 , 𝑔) = sup
𝑥∈[𝑎,𝑏]

| 𝑓 (𝑥) − 𝑔(𝑥)| .

Let us check the properties. First, 𝑑( 𝑓 , 𝑔) is finite as
�� 𝑓 (𝑥) − 𝑔(𝑥)�� is a continuous

function on a closed bounded interval [𝑎, 𝑏], and so is bounded. Clearly 𝑑( 𝑓 , 𝑔) ≥ 0.
If 𝑓 = 𝑔, then | 𝑓 (𝑥) − 𝑔(𝑥)| = 0 for all 𝑥 and hence 𝑑( 𝑓 , 𝑔) = 0. Conversely, if
𝑑( 𝑓 , 𝑔) = 0, then for any 𝑥, we have | 𝑓 (𝑥) − 𝑔(𝑥)| ≤ 𝑑( 𝑓 , 𝑔) = 0, and hence 𝑓 = 𝑔. That
𝑑( 𝑓 , 𝑔) = 𝑑(𝑔, 𝑓 ) is equally trivial. The triangle inequality follows from the triangle
inequality on ℝ.

𝑑( 𝑓 , 𝑔) = sup
𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − 𝑔(𝑥)�� = sup
𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − ℎ(𝑥) + ℎ(𝑥) − 𝑔(𝑥)��
≤ sup

𝑥∈[𝑎,𝑏]

(�� 𝑓 (𝑥) − ℎ(𝑥)�� + ��ℎ(𝑥) − 𝑔(𝑥)��)
≤ sup

𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − ℎ(𝑥)�� + sup
𝑥∈[𝑎,𝑏]

��ℎ(𝑥) − 𝑔(𝑥)�� = 𝑑( 𝑓 , ℎ) + 𝑑(ℎ, 𝑔).

When treating 𝐶([𝑎, 𝑏],ℝ) as a metric space without mentioning a metric, we mean
this particular metric.

Example A.1.7: The sphere with the so-called great circle distance is also a metric space.
Let 𝑆2 be the unit sphere in ℝ3, that is, 𝑆2 =

{
𝑥 ∈ ℝ3 : 𝑥2

1 + 𝑥2
2 + 𝑥2

3 = 1
}
. Take 𝑥 and 𝑦

in 𝑆2, draw a line through the origin and 𝑥, and another line through the origin and 𝑦,
and let 𝜃 be the angle that the two lines make. Then define 𝑑(𝑥, 𝑦) = 𝜃, see  Figure A.2 .
The law of cosines from vector calculus says 𝑑(𝑥, 𝑦) = arccos(𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3). It
is relatively easy to see that this function satisfies the first three properties of a metric.
Triangle inequality is harder to prove, and requires a bit more trigonometry and
linear algebra than we wish to indulge in right now, so let us leave it without proof.

0
𝑦

𝜃
𝑆2 𝑥

Figure A.2: The great circle distance on the unit sphere.

Oftentimes it is useful to consider a subset of a larger metric space as a metric
space itself. We obtain the following proposition, which has a trivial proof.
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Proposition A.1.8. Let (𝑋, 𝑑) be a metric space and 𝑌 ⊂ 𝑋. Then the restriction 𝑑 |𝑌×𝑌 is
a metric on 𝑌.
Definition A.1.9. If (𝑋, 𝑑) is a metric space, 𝑌 ⊂ 𝑋, and 𝑑′ = 𝑑 |𝑌×𝑌 , then (𝑌, 𝑑′) is
said to be a subspace of (𝑋, 𝑑).

It is common to simply write 𝑑 for the metric on 𝑌, as it is the restriction of the
metric on 𝑋. We say 𝑑′ is the subspace metric and 𝑌 has the subspace topology.
Definition A.1.10. Let (𝑋, 𝑑) be a metric space. A subset 𝑆 ⊂ 𝑋 is said to be bounded
if there exists a 𝑝 ∈ 𝑋 and a 𝐵 ∈ ℝ such that

𝑑(𝑝, 𝑥) ≤ 𝐵 for all 𝑥 ∈ 𝑆.
We say (𝑋, 𝑑) is bounded if 𝑋 itself is a bounded subset.

For instance, the set of real numbers with the standard metric is not a bounded
metric space. On the other hand, the real numbers with the discrete metric, 𝑑(𝑥, 𝑦) = 1
if 𝑥 ≠ 𝑦, and 𝑑(𝑥, 𝑥) = 0, is a bounded metric space. Any set with the discrete metric
is bounded.

Suppose 𝑋 is nonempty. Then 𝑆 ⊂ 𝑋 is bounded if and only if
(i) For every 𝑝 ∈ 𝑋, there exists a 𝐵 > 0 such that 𝑑(𝑝, 𝑥) ≤ 𝐵 for all 𝑥 ∈ 𝑆.

(ii) diam(𝑆) = sup{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑆} < ∞.
See the exercises. The quantity diam(𝑆) is called the diameter of a set and is usually
only defined for a nonempty set.

Exercise A.1.1: Show that for any given set 𝑋, the discrete metric (𝑑(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦

and 𝑑(𝑥, 𝑥) = 0) does give a metric space (𝑋, 𝑑).
Exercise A.1.2: Suppose (𝑋, 𝑑) is a metric space and 𝜑 : [0,∞) → ℝ is an increasing
function such that 𝜑(𝑡) ≥ 0 for all 𝑡 and 𝜑(𝑡) = 0 if and only if 𝑡 = 0. Also suppose 𝜑 is
subadditive, that is, 𝜑(𝑠 + 𝑡) ≤ 𝜑(𝑠) + 𝜑(𝑡). Show that with 𝑑′(𝑥, 𝑦) = 𝜑

(
𝑑(𝑥, 𝑦)) , we

obtain a new metric space (𝑋, 𝑑′).
Exercise A.1.3: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces.

a) Show that (𝑋×𝑌, 𝑑) with 𝑑
((𝑥1, 𝑦1), (𝑥2, 𝑦2)

)
= 𝑑𝑋(𝑥1, 𝑥2)+ 𝑑𝑌(𝑦1, 𝑦2) is a metric

space.
b) Show that (𝑋 ×𝑌, 𝑑) with 𝑑

((𝑥1, 𝑦1), (𝑥2, 𝑦2)
)
= max{𝑑𝑋(𝑥1, 𝑥2), 𝑑𝑌(𝑦1, 𝑦2)} is a

metric space.

Exercise A.1.4: Let 𝑋 be the set of continuous functions on [0, 1]. Let 𝜑 : [0, 1] → (0,∞)
be continuous. Define

𝑑( 𝑓 , 𝑔) =
∫ 1

0

�� 𝑓 (𝑥) − 𝑔(𝑥)��𝜑(𝑥) 𝑑𝑥.
Show that (𝑋, 𝑑) is a metric space.
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Exercise A.1.5: Let (𝑋, 𝑑) be a metric space. For nonempty bounded subsets 𝐴 and 𝐵 let

𝑑(𝑥, 𝐵) = inf
{
𝑑(𝑥, 𝑏) : 𝑏 ∈ 𝐵} and 𝑑(𝐴, 𝐵) = sup

{
𝑑(𝑎, 𝐵) : 𝑎 ∈ 𝐴}

.

Now define the Hausdorff metric as

𝑑𝐻(𝐴, 𝐵) = max
{
𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)}.

Note: 𝑑𝐻 can be defined for arbitrary nonempty subsets if we allow the extended reals.
a) Let 𝑌 be the set of bounded nonempty subsets of 𝑋. Prove that (𝑌, 𝑑𝐻) is a so-called

pseudometric space: 𝑑𝐻 satisfies the metric properties  (i) ,  (iii) ,  (iv) , and further
𝑑𝐻(𝐴, 𝐴) = 0 for all 𝐴 ∈ 𝑌.

b) Show by example that 𝑑 itself is not symmetric, that is, 𝑑(𝐴, 𝐵) ≠ 𝑑(𝐵, 𝐴).
c) Find a metric space 𝑋 and two different nonempty bounded subsets 𝐴 and 𝐵 such

that 𝑑𝐻(𝐴, 𝐵) = 0.

Exercise A.1.6: Let (𝑋, 𝑑) be a nonempty metric space and 𝑆 ⊂ 𝑋 a subset. Prove:
a) 𝑆 is bounded if and only if for every 𝑝 ∈ 𝑋, there exists a 𝐵 > 0 such that 𝑑(𝑝, 𝑥) ≤ 𝐵

for all 𝑥 ∈ 𝑆.
b) A nonempty 𝑆 is bounded if and only if diam(𝑆) = sup{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑆} < ∞.

Exercise A.1.7:
a) Find a metric 𝑑 on ℕ, such that ℕ is an unbounded set in (ℕ, 𝑑).
b) Find a metric 𝑑 on ℕ, such that ℕ is a bounded set in (ℕ, 𝑑).
c) Find a metric 𝑑 on ℕ such that for every 𝑛 ∈ ℕ and every 𝜖 > 0, there exists an
𝑚 ∈ ℕ such that 𝑑(𝑛, 𝑚) < 𝜖.

Exercise A.1.8: Let 𝐶1([𝑎, 𝑏],ℝ) be the set of once continuously differentiable functions
on [𝑎, 𝑏]. Define

𝑑( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥[𝑎,𝑏] + ∥ 𝑓 ′ − 𝑔′∥[𝑎,𝑏],
where ∥ 𝑓 ∥𝑋 = sup𝑥∈𝑋 | 𝑓 (𝑥)| is the uniform norm. Prove that 𝑑 is a metric.

Exercise A.1.9: The set of sequences {𝑥𝑛} of real numbers such that
∑∞
𝑛=1 𝑥

2
𝑛 < ∞ is

called ℓ2.
a) Prove the Cauchy–Schwarz inequality for two sequences {𝑥𝑛} and {𝑦𝑛} in ℓ2: Prove

that
∑∞
𝑛=1 𝑥𝑛𝑦𝑛 converges (absolutely) and( ∞∑

𝑛=1
𝑥𝑛𝑦𝑛

)2

≤
( ∞∑
𝑛=1

𝑥2
𝑛

) ( ∞∑
𝑛=1

𝑦2
𝑛

)
.

b) Prove that ℓ 2 is a metric space with the metric 𝑑(𝑥, 𝑦) =
√∑∞

𝑛=1 (𝑥𝑛 − 𝑦𝑛)2. Hint:
Don’t forget to show that the series for 𝑑(𝑥, 𝑦) always converges to some finite number.
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A.2𝑖 \ Open and closed sets

A.2.1𝑖 · Topology
Definition A.2.1. Let (𝑋, 𝑑) be a metric space, 𝑥 ∈ 𝑋, and 𝛿 > 0. The open ball or
simply ball of radius 𝛿 around 𝑥 is

𝐵(𝑥, 𝛿) def
= {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝛿}.

Similarly the closed ball is

𝐶(𝑥, 𝛿) def
= {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝛿}.

When we are dealing with different metric spaces, we may emphasize which
metric space the ball is in by writing 𝐵𝑋(𝑥, 𝛿) = 𝐵(𝑥, 𝛿) or 𝐶𝑋(𝑥, 𝛿) = 𝐶(𝑥, 𝛿).
Example A.2.2: Consider ℝ with the standard metric. For 𝑥 ∈ ℝ and 𝛿 > 0,

𝐵(𝑥, 𝛿) = (𝑥 − 𝛿, 𝑥 + 𝛿) and 𝐶(𝑥, 𝛿) = [𝑥 − 𝛿, 𝑥 + 𝛿].
Example A.2.3: Consider the metric space [0, 1] as a subspace of ℝ. Then

𝐵(0, 1/2) = 𝐵[0,1](0, 1/2) = {
𝑦 ∈ [0, 1] : |0 − 𝑦 | < 1/2

}
= [0, 1/2).

This is different from 𝐵ℝ(0, 1/2) = (−1/2, 1/2). The important thing to keep in mind is
which metric space we are working in.

Definition A.2.4. Let (𝑋, 𝑑) be a metric space. A subset 𝑉 ⊂ 𝑋 is open if for every
𝑥 ∈ 𝑉 , there exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝑉 . See  Figure A.3  . A subset 𝐸 ⊂ 𝑋 is
closed if the complement 𝐸𝑐 = 𝑋 \ 𝐸 is open. If the ambient space 𝑋 is not clear from
context, we say 𝑉 is open in 𝑋 and 𝐸 is closed in 𝑋. The set of open sets is called the
topology on 𝑋.

If 𝑥 ∈ 𝑉 and𝑉 is open, then𝑉 is an open neighborhood of 𝑥 (or simply neighborhood).
More generally a neighborhood of 𝑥 is a set that contains an open neighborhood of 𝑥,
but unless otherwise specified we usually mean open neighborhood.

Intuitively, an open set 𝑉 is a set that does not include its “boundary.” Wherever
we are in 𝑉 , we are allowed to “wiggle” a little bit and stay in 𝑉 . Similarly, a set 𝐸
is closed if everything not in 𝐸 is some distance away from 𝐸. The open and closed
balls are examples of open and closed sets (which must still be proved). Not every set
is either open or closed, most subsets are neither.

Example A.2.5: The set (0,∞) ⊂ ℝ is open: Given any 𝑥 ∈ (0,∞), let 𝛿 = 𝑥.
The set [0,∞) ⊂ ℝ is closed: Given 𝑥 ∈ (−∞, 0) = [0,∞)𝑐 , let 𝛿 = −𝑥.
The set [0, 1) ⊂ ℝ is neither open nor closed. Every 𝐵(0, 𝛿) = (−𝛿, 𝛿), contains

negative numbers and hence is not contained in [0, 1). So [0, 1) is not open. Every
𝐵(1, 𝛿) = (1− 𝛿, 1+ 𝛿), contains numbers in [0, 1). Thus [0, 1)𝑐 = ℝ \ [0, 1) is not open,
and [0, 1) is not closed.
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𝑥

𝑉

𝐵(𝑥, 𝛿)

𝛿

Figure A.3: Open set in a metric space. Note that 𝛿 depends on 𝑥.

Proposition A.2.6. Let (𝑋, 𝑑) be a metric space.

(i) ∅ and 𝑋 are open.

(ii) If 𝑉1, 𝑉2, . . . , 𝑉𝑘 are open subsets of 𝑋, then

𝑉1 ∩𝑉2 ∩ · · · ∩𝑉𝑘
is also open. That is, a finite intersection of open sets is open.

(iii) If {𝑉𝜆}𝜆∈𝐼 is an arbitrary collection of open subsets of 𝑋, then⋃
𝜆∈𝐼

𝑉𝜆

is also open. That is, a union of open sets is open.

Proof. Item  (i) is obvious. Let us prove  (ii) . If 𝑥 ∈ ⋂𝑘
ℓ=1𝑉ℓ , then 𝑥 ∈ 𝑉ℓ for all ℓ .

As 𝑉ℓ are all open, for every ℓ there exists a 𝛿ℓ > 0 such that 𝐵(𝑥, 𝛿ℓ ) ⊂ 𝑉ℓ . Take
𝛿 = min{𝛿1, 𝛿2, . . . , 𝛿𝑘} and notice 𝛿 > 0. Then 𝐵(𝑥, 𝛿) ⊂ 𝐵(𝑥, 𝛿ℓ ) ⊂ 𝑉ℓ for every ℓ
and so 𝐵(𝑥, 𝛿) ⊂ ⋂𝑘

ℓ=1𝑉ℓ . Let us prove  (iii) . If 𝑥 ∈ ⋃
𝜆∈𝐼 𝑉𝜆, then 𝑥 ∈ 𝑉𝜆 for some

𝜆 ∈ 𝐼. As 𝑉𝜆 is open, 𝐵(𝑥, 𝛿) ⊂ 𝑉𝜆 for some 𝛿 > 0. But then 𝐵(𝑥, 𝛿) ⊂ ⋃
𝜆∈𝐼 𝑉𝜆. □

Item  (ii) is not true for an arbitrary intersection:
⋂
𝑛∈ℕ(−1/𝑛, 1/𝑛) = {0} is not open.

Proposition A.2.7. Let (𝑋, 𝑑) be a metric space.

(i) ∅ and 𝑋 are closed.

(ii) If {𝐸𝜆}𝜆∈𝐼 is an arbitrary collection of closed subsets of 𝑋, then⋂
𝜆∈𝐼

𝐸𝜆

is also closed. That is, an intersection of closed sets is closed.

(iii) If 𝐸1, 𝐸2, . . . , 𝐸𝑘 are closed subsets of 𝑋, then

𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑘
is also closed. That is, a finite union of closed sets is closed.
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Exercise A.2.1: Prove  Proposition A.2.7 .

We have not yet shown that the open ball is open and the closed ball is closed. Let
us show this fact now to justify the terminology.

Proposition A.2.8. Let (𝑋, 𝑑) be a metric space, 𝑥 ∈ 𝑋, and 𝛿 > 0. Then 𝐵(𝑥, 𝛿) is open
and 𝐶(𝑥, 𝛿) is closed.

Proof. Let 𝑦 ∈ 𝐵(𝑥, 𝛿). Let 𝛼 = 𝛿 − 𝑑(𝑥, 𝑦). As 𝛼 > 0, consider 𝑧 ∈ 𝐵(𝑦, 𝛼). Then

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) < 𝑑(𝑥, 𝑦) + 𝛼 = 𝑑(𝑥, 𝑦) + 𝛿 − 𝑑(𝑥, 𝑦) = 𝛿.

Thus, 𝑧 ∈ 𝐵(𝑥, 𝛿) for every 𝑧 ∈ 𝐵(𝑦, 𝛼). So 𝐵(𝑦, 𝛼) ⊂ 𝐵(𝑥, 𝛿), and so 𝐵(𝑥, 𝛿) is open.

𝑥
𝛿

𝑧

𝐵(𝑥, 𝛿)

𝛼
𝑦

Figure A.4: Proof that 𝐵(𝑥, 𝛿) is open: 𝐵(𝑦, 𝛼) ⊂ 𝐵(𝑥, 𝛿) with the triangle inequality
illustrated.

The proof that 𝐶(𝑥, 𝛿) is closed is left as an exercise. □

Exercise A.2.2: Finish the proof of  Proposition A.2.8 by proving that 𝐶(𝑥, 𝛿) is closed.

Be careful about what metric space you find yourself in. As [0, 1/2) is an open ball
in [0, 1], the set [0, 1/2) is an open set in [0, 1]. On the other hand, [0, 1/2) is neither
open nor closed in ℝ.

Proposition A.2.9. Let 𝑎, 𝑏 be two real numbers, 𝑎 < 𝑏. Then (𝑎, 𝑏), (𝑎,∞), and (−∞, 𝑏)
are open in ℝ. Also [𝑎, 𝑏], [𝑎,∞), and (−∞, 𝑏] are closed in ℝ.

Exercise A.2.3: Prove  Proposition A.2.9 .

Proposition A.2.10. Suppose (𝑋, 𝑑) is a metric space, and 𝑌 ⊂ 𝑋. Then 𝑈 ⊂ 𝑌 is open
in 𝑌 (in the subspace topology) if and only if there exists an open set 𝑉 ⊂ 𝑋 (so open in 𝑋),
such that 𝑉 ∩ 𝑌 = 𝑈 .
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For example, let 𝑋 = ℝ, 𝑌 = [0, 1],𝑈 = [0, 1/2). We saw that𝑈 is an open set in 𝑌.
We may take 𝑉 = (−1/2, 1/2).
Proof. Suppose 𝑉 ⊂ 𝑋 is open and 𝑉 ∩ 𝑌 = 𝑈 . Let 𝑥 ∈ 𝑈 . As 𝑉 is open and 𝑥 ∈ 𝑉 ,
there exists a 𝛿 > 0 such that 𝐵𝑋(𝑥, 𝛿) ⊂ 𝑉 . Then

𝐵𝑌(𝑥, 𝛿) = 𝐵𝑋(𝑥, 𝛿) ∩ 𝑌 ⊂ 𝑉 ∩ 𝑌 = 𝑈.

The proof of the opposite direction, that is, that if𝑈 ⊂ 𝑌 is open in the subspace
topology there exists a 𝑉 is left as an exercise. □

Exercise A.2.4: Finish the proof of  Proposition A.2.10 . Suppose (𝑋, 𝑑) is a metric space
and 𝑌 ⊂ 𝑋. Show that with the subspace metric on 𝑌, if a set𝑈 ⊂ 𝑌 is open (in 𝑌), then
there exists an open set 𝑉 ⊂ 𝑋 such that𝑈 = 𝑉 ∩ 𝑌.

For an open subset of an open set or a closed subset of a closed set, matters are
simpler.

Proposition A.2.11. Suppose (𝑋, 𝑑) is a metric space, 𝑉 ⊂ 𝑋 is open, and 𝐸 ⊂ 𝑋 is closed.

(i) 𝑈 ⊂ 𝑉 is open in the subspace topology if and only if𝑈 is open in 𝑋.

(ii) 𝐹 ⊂ 𝐸 is closed in the subspace topology if and only if 𝐹 is closed in 𝑋.

Proof. Let us prove  (i) and leave  (ii) to an exercise.
If𝑈 ⊂ 𝑉 is open in the subspace topology, by  Proposition A.2.10 , there exists a set

𝑊 ⊂ 𝑋 open in 𝑋, such that𝑈 =𝑊 ∩𝑉 . Intersection of two open sets is open so𝑈 is
open in 𝑋.

Now suppose 𝑈 is open in 𝑋, then 𝑈 = 𝑈 ∩ 𝑉 . So 𝑈 is open in 𝑉 again by
 Proposition A.2.10 . □

Exercise A.2.5: Finish the proof of  Proposition A.2.11 .

Exercise A.2.6: Show that in any metric space, every open set can be written as a union of
closed sets.

Exercise A.2.7: Let 𝑋 be a set and 𝑑, 𝑑′ be two metrics on 𝑋. Suppose there exists an
𝛼 > 0 and 𝛽 > 0 such that 𝛼𝑑(𝑥, 𝑦) ≤ 𝑑′(𝑥, 𝑦) ≤ 𝛽𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Show that
𝑈 ⊂ 𝑋 is open in (𝑋, 𝑑) if and only if𝑈 is open in (𝑋, 𝑑′). That is, the topologies of (𝑋, 𝑑)
and (𝑋, 𝑑′) are the same.

Exercise A.2.8: Let (𝑋, 𝑑) be a metric space.
a) For every 𝑥 ∈ 𝑋 and 𝛿 > 0, show 𝐵(𝑥, 𝛿) ⊂ 𝐶(𝑥, 𝛿).
b) Is it always true that 𝐵(𝑥, 𝛿) = 𝐶(𝑥, 𝛿)? Prove or find a counterexample.
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Exercise A.2.9: Let (𝑋, 𝑑) be a metric space. Show that there exists a bounded metric 𝑑′
such that (𝑋, 𝑑′) has the same open sets, that is, the topology is the same.

Exercise A.2.10: For every 𝑥 ∈ ℝ𝑛 and every 𝛿 > 0 define the “rectangle” 𝑅(𝑥, 𝛿) =
(𝑥1 − 𝛿, 𝑥1 + 𝛿) × (𝑥2 − 𝛿, 𝑥2 + 𝛿) × · · · × (𝑥𝑛 − 𝛿, 𝑥𝑛 + 𝛿). Show that these sets generate
the same open sets as the balls in standard metric. That is, show that a set𝑈 ⊂ ℝ𝑛 is open
in the sense of the standard metric if and only if for every point 𝑥 ∈ 𝑈 , there exists a 𝛿 > 0
such that 𝑅(𝑥, 𝛿) ⊂ 𝑈 .

A.2.2𝑖 · Connected sets
A set is connected if we can continuously move from one point of it to another point
without jumping. For example, an interval in ℝ. We usually study functions on
connected sets.

Definition A.2.12. A nonempty 

*
 metric space (𝑋, 𝑑) is connected if the only subsets

of 𝑋 that are both open and closed (so-called clopen subsets) are ∅ and 𝑋 itself. If a
nonempty (𝑋, 𝑑) is not connected we say it is disconnected.

When we apply the term connected to a nonempty subset 𝐴 ⊂ 𝑋, we mean that 𝐴
with the subspace topology is connected.

In other words, a nonempty 𝑋 is connected if whenever we write 𝑋 = 𝑋1 ∪ 𝑋2
where 𝑋1 ∩ 𝑋2 = ∅ and 𝑋1 and 𝑋2 are open, then either 𝑋1 = ∅ or 𝑋2 = ∅. So to show
𝑋 is disconnected, we find nonempty disjoint open sets 𝑋1 and 𝑋2 whose union is 𝑋.
We state this idea as a proposition for subsets.

Proposition A.2.13. Let (𝑋, 𝑑) be a metric space. A nonempty set 𝑆 ⊂ 𝑋 is disconnected if
and only if there exist open sets 𝑈1 and 𝑈2 in 𝑋, such that 𝑈1 ∩𝑈2 ∩ 𝑆 = ∅, 𝑈1 ∩ 𝑆 ≠ ∅,
𝑈2 ∩ 𝑆 ≠ ∅, and

𝑆 =
(
𝑈1 ∩ 𝑆

) ∪ (
𝑈2 ∩ 𝑆

)
.

The proposition is illustrated in  Figure A.5 .

Proof. First suppose 𝑆 is disconnected: there are nonempty disjoint 𝑆1 and 𝑆2 that
are open in 𝑆 and 𝑆 = 𝑆1 ∪ 𝑆2.  Proposition A.2.10 says there exist𝑈1 and𝑈2 that are
open in 𝑋 such that𝑈1 ∩ 𝑆 = 𝑆1 and𝑈2 ∩ 𝑆 = 𝑆2.

For the other direction start with the 𝑈1 and 𝑈2. Then 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 are
open in 𝑆 by  Proposition A.2.10 . Via the discussion before the proposition, 𝑆 is
disconnected. □

*Some authors do not exclude the empty set from the definition, and the empty set would then
be connected. We avoid the empty set for essentially the same reason why 1 is neither a prime nor a
composite number: Our connected sets have exactly two clopen subsets and disconnected sets have
more than two. The empty set has exactly one. We will not dwell on this technicality.
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𝑆
𝑆

𝑈2
𝑈1

Figure A.5: Disconnected subset. Note that𝑈1∩𝑈2 need not be empty, but𝑈1∩𝑈2∩𝑆 = ∅.

Example A.2.14: Let 𝑆 ⊂ ℝ be such that 𝑥 < 𝑧 < 𝑦 with 𝑥, 𝑦 ∈ 𝑆 and 𝑧 ∉ 𝑆. Claim: 𝑆
is disconnected. Proof: ((−∞, 𝑧) ∩ 𝑆) ∪ ((𝑧,∞) ∩ 𝑆) = 𝑆.
Proposition A.2.15. A nonempty set 𝑆 ⊂ ℝ is connected if and only if it is an interval or a
single point.

Proof. Suppose 𝑆 is connected. If 𝑆 is a single point, then we are done. So suppose
𝑥 < 𝑦 and 𝑥, 𝑦 ∈ 𝑆. If 𝑧 ∈ ℝ is such that 𝑥 < 𝑧 < 𝑦, then by same logic as in

 Example A.2.14 , 𝑧 ∈ 𝑆. So 𝑆 is an interval.
If 𝑆 is a single point, it is connected. Therefore, suppose 𝑆 is an interval. Consider

open subsets 𝑈1 and 𝑈2 of ℝ, such that 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 are nonempty, and
𝑆 =

(
𝑈1 ∩ 𝑆

) ∪ (
𝑈2 ∩ 𝑆

)
. We will show that 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 contain a common

point, so they are not disjoint, proving that 𝑆 is connected. Suppose 𝑥 ∈ 𝑈1 ∩ 𝑆

and 𝑦 ∈ 𝑈2 ∩ 𝑆. Without loss of generality, assume 𝑥 < 𝑦. As 𝑆 is an interval,
[𝑥, 𝑦] ⊂ 𝑆. Note that 𝑈2 ∩ [𝑥, 𝑦] ≠ ∅, and let 𝑧 = inf(𝑈2 ∩ [𝑥, 𝑦]). If 𝑧 = 𝑥, then
𝑧 ∈ 𝑈1. If 𝑧 > 𝑥, then for every 𝜖 > 0 the ball 𝐵(𝑧, 𝜖) = (𝑧 − 𝜖, 𝑧 + 𝜖) contains points
of [𝑥, 𝑦] not in 𝑈2, as 𝑧 is the infimum of such points. So 𝑧 ∉ 𝑈2 as 𝑈2 is open.
Therefore, 𝑧 ∈ 𝑈1. As𝑈1 is open, 𝐵(𝑧, 𝛿) ⊂ 𝑈1 for a small enough 𝛿 > 0. As 𝑧 is the
infimum of the nonempty set𝑈2 ∩ [𝑥, 𝑦], there must exist some 𝑤 ∈ 𝑈2 ∩ [𝑥, 𝑦] such
that 𝑤 ∈ [𝑧, 𝑧 + 𝛿) ⊂ 𝐵(𝑧, 𝛿) ⊂ 𝑈1. So 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 are not disjoint, and 𝑆 is
connected. □

𝑈2𝑈1

𝑥 𝑦
𝑧 𝑤

(𝑧 − 𝛿, 𝑧 + 𝛿)
Figure A.6: Proof that an interval is connected.

Example A.2.16: The ball 𝐵(𝑥, 𝛿) may or may not be connected, depending on the
metric space. Take the space {𝑎, 𝑏} with the discrete metric. The ball 𝐵(𝑎, 2) = {𝑎, 𝑏}
is not connected as 𝐵(𝑎, 1) = {𝑎} and 𝐵(𝑏, 1) = {𝑏} are open and disjoint.
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Exercise A.2.11: Suppose (𝑋, 𝑑) is a nonempty metric space with the discrete topology.
Show that 𝑋 is connected if and only if it contains exactly one element.

Exercise A.2.12: Take ℚ with the standard metric, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦 |, as our metric space.
Prove that ℚ is totally disconnected, that is, show that for every 𝑥, 𝑦 ∈ ℚ with 𝑥 ≠ 𝑦,
there exists an two open sets𝑈 and𝑉 , such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 ,𝑈∩𝑉 = ∅, and𝑈∪𝑉 = ℚ.

Exercise A.2.13: Suppose {𝑆𝑖}, 𝑖 ∈ ℕ, is a collection of connected subsets of a metric
space (𝑋, 𝑑), and there exists an 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝑆𝑘 for all 𝑘 ∈ ℕ. Show that

⋃∞
𝑘=1 𝑆𝑘

is connected.

A.2.3𝑖 · Closure and boundary
Sometimes we wish to take a set and throw in everything that we can approach from
within the set. This concept is called the closure. More precisely the closure of 𝐴 is
the intersection of all closed sets that contain 𝐴.

Definition A.2.17. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. The closure of 𝐴 is the set

𝐴
def
=

⋂
{𝐸 ⊂ 𝑋 : 𝐸 is closed and 𝐴 ⊂ 𝐸}.

We say 𝐴 is dense in 𝑋 if 𝐴 = 𝑋.

Proposition A.2.18. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then, 𝐴 ⊂ 𝐴 and 𝐴 is closed.
Furthermore, if 𝐴 is closed, then 𝐴 = 𝐴.

Proof. There is at least one closed set containing 𝐴, the set 𝑋 itself, so 𝐴 ⊂ 𝐴. The
closure is an intersection of closed sets, so 𝐴 is closed. If 𝐴 is closed, then 𝐴 is a
closed set that contains 𝐴 and 𝐴 ⊂ 𝐴. So 𝐴 = 𝐴. □

Example A.2.19: The closure of (0, 1) in ℝ is [0, 1]. Proof: If 𝐸 is closed and contains
(0, 1), then 0, 1 ∈ 𝐸. Thus [0, 1] ⊂ 𝐸. But [0, 1] is also closed. Thus, (0, 1) = [0, 1].
Example A.2.20: Always notice what ambient metric space you are working with. If
𝑋 = (0,∞), then the closure of (0, 1) in (0,∞) is (0, 1]. Proof: Similarly as above (0, 1]
is closed in (0,∞) (why?). Any closed set 𝐸 that contains (0, 1) must contain 1 (why?).
Therefore, (0, 1] ⊂ 𝐸, and hence (0, 1) = (0, 1] when working in (0,∞).

Let us justify the statement that the closure is everything that we can “approach”
from the set.

Proposition A.2.21. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑥 ∈ 𝐴 if and only if for
every 𝛿 > 0, 𝐵(𝑥, 𝛿) ∩ 𝐴 ≠ ∅.
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Proof. We will prove the two contrapositives. First suppose 𝑥 ∉ 𝐴. As 𝐴 is closed,
𝐵(𝑥, 𝛿) ⊂ 𝐴

𝑐
for some 𝛿 > 0. Furthermore, 𝐴

𝑐 ⊂ 𝐴𝑐 , and hence 𝐵(𝑥, 𝛿) ∩ 𝐴 = ∅.
On the other hand, suppose 𝐵(𝑥, 𝛿) ∩ 𝐴 = ∅ for some 𝛿 > 0. In other words,

𝐴 ⊂ 𝐵(𝑥, 𝛿)𝑐 . As 𝐵(𝑥, 𝛿)𝑐 is a closed set, as 𝑥 ∉ 𝐵(𝑥, 𝛿)𝑐 , and as 𝐴 is the intersection of
closed sets containing 𝐴, we have 𝑥 ∉ 𝐴. □

We also talk about the interior of a set (points we cannot approach from the
complement) and the boundary of a set (points we can approach both from the set
and its complement).

Definition A.2.22. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. The interior of 𝐴 is the set

𝐴◦ def
= {𝑥 ∈ 𝐴 : there exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝐴}.

The boundary of 𝐴 is the set
𝜕𝐴

def
= 𝐴 \ 𝐴◦.

Example A.2.23: Consider 𝑋 = ℝ and 𝐴 = (0, 1]. Then 𝐴 = [0, 1], 𝐴◦ = (0, 1), and
𝜕𝐴 = {0, 1}.
Example A.2.24: Suppose 𝑋 = {𝑎, 𝑏} with the discrete metric is the metric space and
𝐴 = {𝑎}. Then 𝐴 = 𝐴◦ = 𝐴 and 𝜕𝐴 = ∅.

Proposition A.2.25. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝐴◦ is open and 𝜕𝐴 is
closed.

Proof. Given 𝑥 ∈ 𝐴◦, there is a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝐴. If 𝑧 ∈ 𝐵(𝑥, 𝛿), then as
open balls are open, there is an 𝜖 > 0 such that 𝐵(𝑧, 𝜖) ⊂ 𝐵(𝑥, 𝛿) ⊂ 𝐴. So 𝑧 ∈ 𝐴◦.
Therefore, 𝐵(𝑥, 𝛿) ⊂ 𝐴◦, and 𝐴◦ is open.

As 𝐴◦ is open, then 𝜕𝐴 = 𝐴 \ 𝐴◦ = 𝐴 ∩ (𝐴◦)𝑐 is closed. □

The boundary is the set of points that are close to both the set and its complement.
See  Figure A.7 for a diagram of the next proposition.
Proposition A.2.26. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑥 ∈ 𝜕𝐴 if and only if
for every 𝛿 > 0, 𝐵(𝑥, 𝛿) ∩ 𝐴 and 𝐵(𝑥, 𝛿) ∩ 𝐴𝑐 are both nonempty.

Proof. Suppose 𝑥 ∈ 𝜕𝐴 = 𝐴 \ 𝐴◦ and let 𝛿 > 0 be arbitrary. By  Proposition A.2.21 ,
𝐵(𝑥, 𝛿) contains a point of 𝐴. If 𝐵(𝑥, 𝛿) contained no points of 𝐴𝑐 , then 𝑥 would be in
𝐴◦. Hence 𝐵(𝑥, 𝛿) contains a point of 𝐴𝑐 as well.

Suppose 𝑥 ∉ 𝜕𝐴, so 𝑥 ∉ 𝐴 or 𝑥 ∈ 𝐴◦. If 𝑥 ∉ 𝐴, then 𝐵(𝑥, 𝛿) ⊂ 𝐴
𝑐

for some 𝛿 > 0 as
𝐴 is closed. So 𝐵(𝑥, 𝛿) ∩ 𝐴 is empty, because 𝐴

𝑐 ⊂ 𝐴𝑐 . If 𝑥 ∈ 𝐴◦, then 𝐵(𝑥, 𝛿) ⊂ 𝐴 for
some 𝛿 > 0, so 𝐵(𝑥, 𝛿) ∩ 𝐴𝑐 is empty. □

The proposition above and  Proposition A.2.21 give the following corollary.

Corollary A.2.27. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝜕𝐴 = 𝐴 ∩ 𝐴𝑐 .
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𝑥

𝛿

𝐵(𝑥, 𝛿)

𝐴𝑐

𝐴

𝜕𝐴

Figure A.7: Boundary is the set where every ball contains points in the set and also its
complement.

Exercise A.2.14: In any metric space, prove:
a) 𝐸 is closed if and only if 𝜕𝐸 ⊂ 𝐸.
b) 𝑈 is open if and only if 𝜕𝑈 ∩𝑈 = ∅.

Exercise A.2.15: In any metric space, prove:
a) Show that 𝐴 is open if and only if 𝐴◦ = 𝐴.
b) Suppose that𝑈 is an open set and𝑈 ⊂ 𝐴. Show that𝑈 ⊂ 𝐴◦.

Exercise A.2.16: Let 𝐴 be a connected set in a metric space.
a) Is 𝐴 connected? Prove or find a counterexample.
b) Is 𝐴◦ connected? Prove or find a counterexample.

Hint: Think of sets in ℝ2.

Exercise A.2.17: Prove that 𝐴◦ =
⋃{𝑉 : 𝑉 is open and 𝑉 ⊂ 𝐴}.

A.3𝑖 \ Sequences and convergence

A.3.1𝑖 · Sequences
Definition A.3.1. A sequence in a metric space (𝑋, 𝑑) is a function 𝑥 : ℕ → 𝑋. We
write 𝑥𝑛 for the 𝑛th element in the sequence and

{𝑥𝑛} or {𝑥𝑛}∞𝑛=1

for the entire sequence.
A sequence {𝑥𝑛} is bounded if there exists a 𝑝 ∈ 𝑋 and 𝐵 ∈ ℝ such that

𝑑(𝑝, 𝑥𝑛) ≤ 𝐵 for all 𝑛 ∈ ℕ.

That is, the sequence {𝑥𝑛} is bounded whenever the set {𝑥𝑛 : 𝑛 ∈ ℕ} is bounded.
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If {𝑛𝑘}∞𝑘=1 is a sequence of natural numbers such that 𝑛𝑘+1 > 𝑛𝑘 for all 𝑘, then the
sequence {𝑥𝑛𝑘 }∞𝑘=1 is said to be a subsequence of {𝑥𝑛}.

In what follows, we cheat a little and use the definite article in front of the word
limit before we prove that the limit is unique.

Definition A.3.2. A sequence {𝑥𝑛} in a metric space (𝑋, 𝑑) is said to converge to a
point 𝑝 ∈ 𝑋 if for every 𝜖 > 0, there exists an 𝑀 ∈ ℕ such that 𝑑(𝑥𝑛 , 𝑝) < 𝜖 for all
𝑛 ≥ 𝑀. The point 𝑝 is said to be the limit of {𝑥𝑛}. We write

lim
𝑛→∞ 𝑥𝑛

def
= 𝑝.

A sequence that converges is convergent. Otherwise, the sequence is divergent. See
 Figure A.8 for an idea of the definition.

ǫ

p
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Figure A.8: Sequence converging to 𝑝. The first 10 points are shown and 𝑀 = 7 for this 𝜖.

Proposition A.3.3. A convergent sequence in a metric space has a unique limit.

Proof. Suppose the sequence {𝑥𝑛} has limits 𝑥 and 𝑦. Take an arbitrary 𝜖 > 0. From
the definition find an 𝑛 such that 𝑑(𝑥𝑛 , 𝑥) < 𝜖/2 and 𝑑(𝑥𝑛 , 𝑦) < 𝜖/2. Then

𝑑(𝑦, 𝑥) ≤ 𝑑(𝑦, 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥) < 𝜖
2 + 𝜖

2 = 𝜖.

So 𝑥 = 𝑦, and the limit (if it exists) is unique. □

The proofs of the following propositions are left as exercises.
Proposition A.3.4. A convergent sequence in a metric space is bounded.
Proposition A.3.5. A sequence {𝑥𝑛} in a metric space (𝑋, 𝑑) converges to 𝑝 ∈ 𝑋 if and
only if there exists a sequence {𝑎𝑛} of real numbers such that

𝑑(𝑥𝑛 , 𝑝) ≤ 𝑎𝑛 for all 𝑛 ∈ ℕ, and lim
𝑛→∞ 𝑎𝑛 = 0.

Proposition A.3.6. Let {𝑥𝑛} be a sequence in a metric space (𝑋, 𝑑).
(i) If {𝑥𝑛} converges to 𝑝 ∈ 𝑋, then every subsequence {𝑥𝑛𝑘 } converges to 𝑝.

(ii) If for some 𝐾 ∈ ℕ the 𝐾-tail {𝑥𝑛}∞𝑛=𝐾+1 converges to 𝑝 ∈ 𝑋, then {𝑥𝑛} converges to 𝑝.
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Exercise A.3.1: Prove  Proposition A.3.4 .

Exercise A.3.2: Prove  Proposition A.3.5 .

Exercise A.3.3: Prove  Proposition A.3.6 .

Example A.3.7: The set of continuous functions 𝐶([𝑎, 𝑏],ℝ), see  Example A.1.6 , is a
metric space. Convergence of a sequence of functions in this metric space is the same
as uniform convergence. See also  section B.1 in the next appendix.

Exercise A.3.4:
a) Show that 𝑑(𝑥, 𝑦) = min

{
1, |𝑥 − 𝑦 |} defines a metric on ℝ.

b) Show that a sequence converges in (ℝ, 𝑑) if and only if it converges in the standard
metric.

c) Find a bounded sequence in (ℝ, 𝑑) that contains no convergent subsequence.

Exercise A.3.5: Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑥. Suppose 𝑓 : ℕ → ℕ is a one-to-one
function. Show that {𝑥 𝑓 (𝑛)}∞𝑛=1 converges to 𝑥.

Exercise A.3.6: Let (𝑋, 𝑑) be a metric space where 𝑑 is the discrete metric. Suppose {𝑥𝑛}
is a convergent sequence in 𝑋. Show that there exists a 𝐾 ∈ ℕ such that for all 𝑛 ≥ 𝐾, we
have 𝑥𝑛 = 𝑥𝐾 .

Exercise A.3.7: A set 𝑆 ⊂ 𝑋 is said to be dense in 𝑋 if 𝑋 ⊂ 𝑆 or in other words if for
every 𝑥 ∈ 𝑋, there exists a sequence {𝑥𝑛} in 𝑆 that converges to 𝑥. Prove that ℝ𝑛 contains
a countable dense subset.

Exercise A.3.8: Take ℝ∗ = {−∞} ∪ ℝ ∪ {∞} be the extended reals. Define 𝑑(𝑥, 𝑦) =�� 𝑥
1+|𝑥 | −

𝑦

1+|𝑦 |
�� if 𝑥, 𝑦 ∈ ℝ, define 𝑑(∞, 𝑥) =

��1 − 𝑥
1+|𝑥 |

��, 𝑑(−∞, 𝑥) =
��1 + 𝑥

1+|𝑥 |
�� for all

𝑥 ∈ ℝ, and let 𝑑(∞,−∞) = 2.
a) Show that (ℝ∗, 𝑑) is a metric space.
b) Suppose {𝑥𝑛} is a sequence of real numbers such that for every 𝑀 ∈ ℝ, there exists

an 𝑁 such that 𝑥𝑛 ≥ 𝑀 for all 𝑛 ≥ 𝑁 . Show that lim 𝑥𝑛 = ∞ in (ℝ∗, 𝑑).
c) Show that a sequence of real numbers converges to a real number in (ℝ∗, 𝑑) if and

only if it converges in ℝ with the standard metric.

Exercise A.3.9: Let (𝑋, 𝑑) be a metric space and {𝑥𝑛} a sequence in 𝑋. Prove that {𝑥𝑛}
converges to 𝑝 ∈ 𝑋 if and only if every subsequence of {𝑥𝑛} has a subsequence that converges
to 𝑝.

A.3.2𝑖 · Convergence in euclidean space
In ℝ𝑛 , a sequence converges if and only if every component converges:
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Proposition A.3.8. Let {𝑥 𝑗}∞𝑗=1 be a sequence in ℝ𝑛 , where 𝑥 𝑗 =
(
𝑥 𝑗 ,1, 𝑥 𝑗 ,2, . . . , 𝑥 𝑗 ,𝑛

) ∈ ℝ𝑛 .
Then {𝑥 𝑗}∞𝑗=1 converges if and only if {𝑥 𝑗 ,𝑘}∞𝑗=1 converges for every 𝑘 = 1, 2, . . . , 𝑛, in which
case

lim
𝑗→∞

𝑥 𝑗 =
(
lim
𝑗→∞

𝑥 𝑗 ,1, lim
𝑗→∞

𝑥 𝑗 ,2, . . . , lim
𝑗→∞

𝑥 𝑗 ,𝑛

)
.

Proof. Suppose the sequence {𝑥 𝑗}∞𝑗=1 converges to 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . Given
𝜖 > 0, there exists an 𝑀, such that for all 𝑗 ≥ 𝑀,

𝑑(𝑦, 𝑥 𝑗) < 𝜖.

Fix some 𝑘 = 1, 2, . . . , 𝑛. For 𝑗 ≥ 𝑀,

��𝑦𝑘 − 𝑥 𝑗 ,𝑘 �� = √(
𝑦𝑘 − 𝑥 𝑗 ,𝑘

)2 ≤
√√

𝑛∑
ℓ=1

(
𝑦ℓ − 𝑥 𝑗 ,ℓ

)2
= 𝑑(𝑦, 𝑥 𝑗) < 𝜖.

Hence the sequence {𝑥 𝑗 ,𝑘}∞𝑗=1 converges to 𝑦𝑘 .
For the other direction, suppose {𝑥 𝑗 ,𝑘}∞𝑗=1 converges to 𝑦𝑘 for every 𝑘 = 1, 2, . . . , 𝑛.

Given 𝜖 > 0, pick an 𝑀, such that if 𝑗 ≥ 𝑀, then
��𝑦𝑘 − 𝑥 𝑗 ,𝑘 �� < 𝜖/√𝑛 for all 𝑘 = 1, 2, . . . , 𝑛.

Then

𝑑(𝑦, 𝑥 𝑗) =
√√

𝑛∑
𝑘=1

(
𝑦𝑘 − 𝑥 𝑗 ,𝑘

)2
<

√√
𝑛∑
𝑘=1

(
𝜖√
𝑛

)2
=

√√
𝑛∑
𝑘=1

𝜖2

𝑛
= 𝜖.

That is, the sequence {𝑥 𝑗} converges to 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . □

Example A.3.9: For ℂ, the proposition says that {𝑧 𝑗}∞𝑗=1 = {𝑥 𝑗 + 𝑖𝑦 𝑗}∞𝑗=1 converges to
𝑧 = 𝑥 + 𝑖𝑦 if and only if {𝑥 𝑗} converges to 𝑥 and {𝑦 𝑗} converges to 𝑦.

Exercise A.3.10: Consider ℝ𝑛 , and let 𝑑 be the standard euclidean metric. Let 𝑑′(𝑥, 𝑦) =∑𝑛
ℓ=1 |𝑥ℓ − 𝑦ℓ | and 𝑑′′(𝑥, 𝑦) = max

{|𝑥1 − 𝑦1 |, |𝑥2 − 𝑦2 |, · · · , |𝑥𝑛 − 𝑦𝑛 |
}
.

a) Use  Exercise A.1.3 , to show that (ℝ𝑛 , 𝑑′) and (ℝ𝑛 , 𝑑′′) are metric spaces.
b) Let {𝑥 𝑗}∞𝑗=1 be a sequence in ℝ𝑛 and 𝑝 ∈ ℝ𝑛 . Prove that the following statements are

equivalent:
1) {𝑥 𝑗} converges to 𝑝 in (ℝ𝑛 , 𝑑).
2) {𝑥 𝑗} converges to 𝑝 in (ℝ𝑛 , 𝑑′).
3) {𝑥 𝑗} converges to 𝑝 in (ℝ𝑛 , 𝑑′′).

A.3.3𝑖 · Convergence and topology
The topology—the set of open sets of a space—encodes which sequences converge.
Proposition A.3.10. Let (𝑋, 𝑑) be a metric space and {𝑥𝑛} a sequence in 𝑋. Then {𝑥𝑛}
converges to 𝑥 ∈ 𝑋 if and only if for every open neighborhood𝑈 of 𝑥, there exists an 𝑀 ∈ ℕ

such that for all 𝑛 ≥ 𝑀 we have 𝑥𝑛 ∈ 𝑈 .
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Proof. Suppose {𝑥𝑛} converges to 𝑥. Let𝑈 be an open neighborhood of 𝑥, then there
exists an 𝜖 > 0 such that 𝐵(𝑥, 𝜖) ⊂ 𝑈 . As the sequence converges, find an 𝑀 ∈ ℕ such
that for all 𝑛 ≥ 𝑀, we have 𝑑(𝑥, 𝑥𝑛) < 𝜖, or in other words 𝑥𝑛 ∈ 𝐵(𝑥, 𝜖) ⊂ 𝑈 .

Let us prove the other direction. Given 𝜖 > 0, let𝑈 = 𝐵(𝑥, 𝜖) be the neighborhood
of 𝑥. Then there is an 𝑀 ∈ ℕ such that for 𝑛 ≥ 𝑀, we have 𝑥𝑛 ∈ 𝑈 = 𝐵(𝑥, 𝜖), or in
other words, 𝑑(𝑥, 𝑥𝑛) < 𝜖. □

A closed set contains the limits of its convergent sequences.

Proposition A.3.11. Let (𝑋, 𝑑) be a metric space, 𝐸 ⊂ 𝑋 a closed set, and {𝑥𝑛} a sequence
in 𝐸 that converges to some 𝑥 ∈ 𝑋. Then 𝑥 ∈ 𝐸.

Proof. Let us prove the contrapositive. Suppose {𝑥𝑛} is a sequence in𝑋 that converges
to 𝑥 ∈ 𝐸𝑐 . As 𝐸𝑐 is open,  Proposition A.3.10 says that there is an 𝑀 such that for all
𝑛 ≥ 𝑀, 𝑥𝑛 ∈ 𝐸𝑐 . So {𝑥𝑛} is not a sequence in 𝐸. □

To take a closure of a set 𝐴, we take 𝐴, and we throw in points that are limits of
sequences in 𝐴.

Proposition A.3.12. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑥 ∈ 𝐴 if and only if
there exists a sequence {𝑥𝑛} of elements in 𝐴 such that lim 𝑥𝑛 = 𝑥.

Proof. Let 𝑥 ∈ 𝐴. For every 𝑛 ∈ ℕ, by  Proposition A.2.21 there exists a point
𝑥𝑛 ∈ 𝐵(𝑥, 1/𝑛) ∩ 𝐴. As 𝑑(𝑥, 𝑥𝑛) < 1/𝑛, we have lim 𝑥𝑛 = 𝑥.

For the other direction, see  Exercise A.3.11 . □

Exercise A.3.11: Finish the proof of  Proposition A.3.12 : Let (𝑋, 𝑑) be a metric space and
𝐴 ⊂ 𝑋. Let 𝑥 ∈ 𝑋 be such that there exists a sequence {𝑥𝑛} in 𝐴 that converges to 𝑥. Prove
that 𝑥 ∈ 𝐴.

Exercise A.3.12: Suppose {𝑈𝑛}∞𝑛=1 is a decreasing (𝑈𝑛+1 ⊂ 𝑈𝑛 for all 𝑛) sequence of open
sets in a metric space (𝑋, 𝑑) such that

⋂∞
𝑛=1𝑈𝑛 = {𝑝} for some 𝑝 ∈ 𝑋. Suppose {𝑥𝑛} is a

sequence of points in 𝑋 such that 𝑥𝑛 ∈ 𝑈𝑛 . Does {𝑥𝑛} necessarily converge to 𝑝? Prove or
construct a counterexample.

Exercise A.3.13: Let 𝐸 ⊂ 𝑋 be closed and let {𝑥𝑛} be a sequence in 𝑋 converging to
𝑝 ∈ 𝑋. Suppose 𝑥𝑛 ∈ 𝐸 for infinitely many 𝑛 ∈ ℕ. Show 𝑝 ∈ 𝐸.

Exercise A.3.14: Suppose {𝑉𝑛}∞𝑛=1 is a sequence of open sets in (𝑋, 𝑑) such that𝑉𝑛+1 ⊃ 𝑉𝑛
for all 𝑛. Let {𝑥𝑛} be a sequence such that 𝑥𝑛 ∈ 𝑉𝑛+1 \𝑉𝑛 and suppose {𝑥𝑛} converges to
𝑝 ∈ 𝑋. Show that 𝑝 ∈ 𝜕𝑉 where 𝑉 =

⋃∞
𝑛=1𝑉𝑛 .
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A.4𝑖 \ Completeness and compactness

A.4.1𝑖 · Cauchy sequences and completeness
Definition A.4.1. Let (𝑋, 𝑑) be a metric space. A sequence {𝑥𝑛} in 𝑋 is a Cauchy
sequence if for every 𝜖 > 0, there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀 and all
𝑘 ≥ 𝑀, we have

𝑑(𝑥𝑛 , 𝑥𝑘) < 𝜖.

Proposition A.4.2. A convergent sequence in a metric space is Cauchy.

Proof. Suppose {𝑥𝑛} converges to 𝑥. Given 𝜖 > 0, there is an𝑀 such that 𝑑(𝑥, 𝑥𝑛) < 𝜖/2

for all 𝑛 ≥ 𝑀. Hence, 𝑑(𝑥𝑛 , 𝑥𝑘) ≤ 𝑑(𝑥𝑛 , 𝑥)+𝑑(𝑥, 𝑥𝑘) < 𝜖/2+ 𝜖/2 = 𝜖 for all 𝑛, 𝑘 ≥ 𝑀. □
Definition A.4.3. Let (𝑋, 𝑑) be a metric space. We say 𝑋 is complete or Cauchy-complete
if every Cauchy sequence {𝑥𝑛} in 𝑋 converges to an 𝑥 ∈ 𝑋.
Proposition A.4.4. The space ℝ𝑛 with the standard metric is a complete metric space.

We assume the reader has seen the proof of completeness in ℝ = ℝ1, and we
reduce the completeness in ℝ𝑛 to the one-dimensional case.

Proof. Let {𝑥 𝑗}∞𝑗=1 be a Cauchy sequence in ℝ𝑛 , where 𝑥 𝑗 =
(
𝑥 𝑗 ,1, 𝑥 𝑗 ,2, . . . , 𝑥 𝑗 ,𝑛

) ∈ ℝ𝑛 .
Given 𝜖 > 0, there exists an 𝑀 such that 𝑑(𝑥𝑖 , 𝑥 𝑗) < 𝜖 for all 𝑖 , 𝑗 ≥ 𝑀.

Fix some 𝑘 = 1, 2, . . . , 𝑛. For 𝑖 , 𝑗 ≥ 𝑀,��𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘 �� = √(
𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘

)2 ≤
√√

𝑛∑
ℓ=1

(
𝑥𝑖 ,ℓ − 𝑥 𝑗 ,ℓ

)2
= 𝑑(𝑥𝑖 , 𝑥 𝑗) < 𝜖.

Hence the sequence {𝑥 𝑗 ,𝑘}∞𝑗=1 is Cauchy. As ℝ is complete the sequence converges;
there exists a 𝑦𝑘 ∈ ℝ such that 𝑦𝑘 = lim𝑗→∞ 𝑥 𝑗 ,𝑘 . Write 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . By

 Proposition A.3.8 , {𝑥 𝑗} converges to 𝑦 ∈ ℝ𝑛 , and hence ℝ𝑛 is complete. □

A subset of ℝ𝑛 with the subspace metric need not be complete. For example,
(0, 1] with the subspace metric is not complete as {1/𝑛} is a Cauchy sequence in (0, 1]
with no limit in (0, 1]. However, once we have one complete metric space, any closed
subspace is also a complete metric space. After all, one way to think of a closed set is
that it contains all points that can be reached from the set via a sequence. The proof
is again an exercise.
Proposition A.4.5. Suppose (𝑋, 𝑑) is a complete metric space and 𝐸 ⊂ 𝑋 is closed, then 𝐸
is a complete metric space with the subspace topology.

Exercise A.4.1: Prove  Proposition A.4.5 .

Example A.4.6: Another very useful example of a complete metric space is the space
of continuous functions on a closed interval with the uniform norm, 𝐶([𝑎, 𝑏],ℝ). See

 Corollary B.1.8 in the next appendix.
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A.4.2𝑖 · Compactness
Definition A.4.7. Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋. The set 𝐾 is said to be
compact if for any collection of open sets {𝑈𝜆}𝜆∈𝐼 such that

𝐾 ⊂
⋃
𝜆∈𝐼

𝑈𝜆 ,

there exists a finite subset {𝜆1,𝜆2, . . . ,𝜆𝑘} ⊂ 𝐼 such that

𝐾 ⊂ 𝑈𝜆1 ∪𝑈𝜆2 ∪ · · · ∪𝑈𝜆𝑘 .

A collection of open sets {𝑈𝜆}𝜆∈𝐼 as above is said to be an open cover of 𝐾. A way
to say that 𝐾 is compact is to say that every open cover of 𝐾 has a finite subcover.

Example A.4.8: Let ℝ be the metric space with the standard metric.
The set ℝ is not compact. Proof: Take the sets 𝑈𝑛 = (−𝑛, 𝑛). It is an open cover,

but the union of a finite subset of these sets is just (−𝑛, 𝑛) for some 𝑛.
The set (0, 1) ⊂ ℝ is also not compact. Proof: Take the sets𝑈𝑛 = (1/𝑛, 1 − 1/𝑛) for

𝑛 = 3, 4, 5, . . .. As above (0, 1) = ⋃∞
𝑛=3𝑈𝑛 , but the union of finitely many is just 𝑈𝑛

again and not all of (0, 1).
The set {0} ⊂ ℝ is compact. Proof: Given any open cover {𝑈𝜆}𝜆∈𝐼 , there must

exist a 𝜆0 such that 0 ∈ 𝑈𝜆0 as it is a cover, so𝑈𝜆0 gives a finite subcover.
We will prove below that [0, 1], and in fact any closed and bounded interval [𝑎, 𝑏]

is compact.

Exercise A.4.2: Let (𝑋, 𝑑) be a metric space and 𝐴 a finite subset of 𝑋. Show that 𝐴 is
compact.

Exercise A.4.3: Let 𝐴 = {1/𝑛 : 𝑛 ∈ ℕ} ⊂ ℝ.
a) Show that 𝐴 is not compact directly using the definition.
b) Show that 𝐴 ∪ {0} is compact directly using the definition.

Exercise A.4.4:
a) Show that the union of finitely many compact sets is a compact set.
b) Find an example where the union of infinitely many compact sets is not compact.

Proposition A.4.9. Let (𝑋, 𝑑) be a metric space. A compact set 𝐾 ⊂ 𝑋 is closed and
bounded.

Proof. Let 𝐾 be a compact set. Fix 𝑝 ∈ 𝑋. We have the open cover

𝐾 ⊂
∞⋃
𝑛=1

𝐵(𝑝, 𝑛) = 𝑋.
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If 𝐾 is compact, then there exists some set of indices 𝑛1 < 𝑛2 < . . . < 𝑛𝑘 such that

𝐾 ⊂ 𝐵(𝑝, 𝑛1) ∪ 𝐵(𝑝, 𝑛2) ∪ · · · ∪ 𝐵(𝑝, 𝑛𝑘) = 𝐵(𝑝, 𝑛𝑘).

So 𝐾 is bounded. See left-hand side of  Figure A.9 .
Next, we show a set that is not closed is not compact. Suppose 𝐾 ≠ 𝐾, that is,

there is a point 𝑥 ∈ 𝐾 \ 𝐾. We have the open cover

𝐾 ⊂
∞⋃
𝑛=1

𝐶(𝑥, 1/𝑛)𝑐 .

If we take any finite collection of indices 𝑛1 < 𝑛2 < . . . < 𝑛𝑘 , then

𝐶(𝑥, 1/𝑛1)𝑐 ∪ 𝐶(𝑥, 1/𝑛2)𝑐 ∪ · · · ∪ 𝐶(𝑥, 1/𝑛𝑘)𝑐 = 𝐶(𝑥, 1/𝑛𝑘)𝑐

As 𝑥 is in the closure of 𝐾, then 𝐶(𝑥, 1/𝑛𝑘) ∩ 𝐾 ≠ ∅. So there is no finite subcover and
𝐾 is not compact. See right-hand side of  Figure A.9 . □

𝐾

1
2

𝐵(𝑝, 3)
𝐵(𝑝, 2)

3

𝐵(𝑝, 1)

𝑝

𝐶(𝑥, 1)

𝐶(𝑥, 1/4)

𝐶(𝑥, 1/2)

𝐶(𝑥, 1/3)
𝑥

𝐾

Figure A.9: Proving compact set is bounded (left) and closed (right).

We prove below that in a finite-dimensional euclidean space, every closed bounded
set is compact. So closed bounded sets of ℝ𝑛 are examples of compact sets. It is not
true that in every metric space, closed and bounded is equivalent to compact. A
simple example is an incomplete metric space such as (0, 1) with the subspace metric
from ℝ. There are many complete and very useful metric spaces where closed and
bounded is not enough to give compactness: 𝐶([𝑎, 𝑏],ℝ) is a complete metric space,
but the closed unit ball 𝐶(0, 1) is not compact, see  Exercise A.4.9 . However, see also

 Exercise A.4.11 . As this issue is such a common mistake, let me repeat it in italic:
Closed and bounded is not the same as compact.

A useful property of compact sets in a metric space is that every sequence in the
set has a convergent subsequence converging to a point in the set. Such sets are called
sequentially compact. Let us prove that in the context of metric spaces, a set is compact
if and only if it is sequentially compact. First we prove a lemma.
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Lemma A.4.10 (Lebesgue covering lemma 

*
 ). Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋.

Suppose every sequence in 𝐾 has a subsequence convergent in 𝐾. Given an open cover
{𝑈𝜆}𝜆∈𝐼 of 𝐾, there exists a 𝛿 > 0 such that for every 𝑥 ∈ 𝐾, there exists a 𝜆 ∈ 𝐼 with
𝐵(𝑥, 𝛿) ⊂ 𝑈𝜆.

Proof. We prove the lemma by contrapositive. If the conclusion is not true, then there
is an open cover {𝑈𝜆}𝜆∈𝐼 of 𝐾 with the following property. For every 𝑛 ∈ ℕ there
exists an 𝑥𝑛 ∈ 𝐾 such that 𝐵(𝑥𝑛 , 1/𝑛) is not a subset of any𝑈𝜆. Take any 𝑥 ∈ 𝐾. There
is a 𝜆 ∈ 𝐼 such that 𝑥 ∈ 𝑈𝜆. As 𝑈𝜆 is open, there is an 𝜖 > 0 such that 𝐵(𝑥, 𝜖) ⊂ 𝑈𝜆.
Take 𝑀 such that 1/𝑀 < 𝜖/2. If 𝑦 ∈ 𝐵(𝑥, 𝜖/2) and 𝑛 ≥ 𝑀, then

𝐵(𝑦, 1/𝑛) ⊂ 𝐵(𝑦, 1/𝑀) ⊂ 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) ⊂ 𝑈𝜆 ,

where 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) follows by triangle inequality. See  Figure A.10 . Thus 𝑦 ≠ 𝑥𝑛 .
In other words, for all 𝑛 ≥ 𝑀, 𝑥𝑛 ∉ 𝐵(𝑥, 𝜖/2). The sequence cannot have a subsequence
converging to 𝑥. As 𝑥 ∈ 𝐾 was arbitrary we are done. □

𝜖

𝐵(𝑥, 𝜖)
𝐵(𝑦, 𝜖/2)

𝑦
𝑥

𝐵(𝑥, 𝜖/2)

𝐵(𝑦, 1/𝑛)

𝜖/2
𝑈𝜆

Figure A.10: Proof of Lebesgue covering lemma. Note that 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) by triangle
inequality.

It is important to recognize what the lemma says. It says that if 𝐾 is sequentially
compact, then given any cover there is a single 𝛿 > 0. The 𝛿 depends on the cover,
but, of course, it does not depend on 𝑥.

For example, let 𝐾 = [−10, 10] and for 𝑛 ∈ ℤ let 𝑈𝑛 = (𝑛, 𝑛 + 2) define an open
cover. Take 𝑥 ∈ 𝐾. There is an 𝑛 ∈ ℤ, such that 𝑛 ≤ 𝑥 < 𝑛 + 1. If 𝑛 ≤ 𝑥 < 𝑛 + 1/2, then
𝐵
(
𝑥, 1/2

) ⊂ 𝑈𝑛−1. If 𝑛 + 1/2 ≤ 𝑥 < 𝑛 + 1, then 𝐵
(
𝑥, 1/2

) ⊂ 𝑈𝑛 . So 𝛿 = 1/2. If instead we
take the open cover by𝑈′

𝑛 =
(
𝑛
2 ,

𝑛+2
2

)
, the best 𝛿 is 1/4.

Theorem A.4.11. Let (𝑋, 𝑑) be a metric space. Then 𝐾 ⊂ 𝑋 is compact if and only if every
sequence in 𝐾 has a subsequence converging to a point in 𝐾.

Proof. Claim: Let 𝐾 ⊂ 𝑋 be a subset of 𝑋 and {𝑥𝑛} a sequence in 𝐾. Suppose that for each
𝑥 ∈ 𝐾, there is a ball 𝐵(𝑥, 𝛼𝑥) for some 𝛼𝑥 > 0 such that 𝑥𝑛 ∈ 𝐵(𝑥, 𝛼𝑥) for only finitely many
𝑛 ∈ ℕ. Then 𝐾 is not compact.

*The number 𝛿 is sometimes called the Lebesgue number of the cover.
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Proof of the claim: Notice

𝐾 ⊂
⋃
𝑥∈𝐾

𝐵(𝑥, 𝛼𝑥).

Any finite collection of these balls contains at most finitely many elements of {𝑥𝑛},
and so there must be an 𝑥𝑛 ∈ 𝐾 not in their union. Therefore, 𝐾 is not compact and
the claim is proved.

Suppose 𝐾 is compact and {𝑥𝑛} is a sequence in 𝐾. Then there exists an 𝑥 ∈ 𝐾
such that for any 𝛿 > 0, 𝐵(𝑥, 𝛿) contains 𝑥𝑘 for infinitely many 𝑘 ∈ ℕ. The ball 𝐵(𝑥, 1)
contains some 𝑥𝑘 , so let 𝑛1 = 𝑘. Suppose 𝑛 𝑗−1 is defined. There must exist an ℓ > 𝑛 𝑗−1
such that 𝑥ℓ ∈ 𝐵(𝑥, 1/𝑗). Define 𝑛 𝑗 = ℓ . We now posses a subsequence {𝑥𝑛 𝑗 }∞𝑗=1. Since
𝑑(𝑥, 𝑥𝑛 𝑗 ) < 1/𝑗,  Proposition A.3.5 says lim 𝑥𝑛 𝑗 = 𝑥.

For the other direction, suppose every sequence in 𝐾 has a subsequence converging
in 𝐾. Take an open cover {𝑈𝜆}𝜆∈𝐼 of 𝐾. Using the Lebesgue covering lemma above,
find a 𝛿 > 0 such that for every 𝑥 ∈ 𝐾, there is a 𝜆 ∈ 𝐼 with 𝐵(𝑥, 𝛿) ⊂ 𝑈𝜆.

Pick 𝑥1 ∈ 𝐾 and find 𝜆1 ∈ 𝐼 such that 𝐵(𝑥1, 𝛿) ⊂ 𝑈𝜆1 . If 𝐾 ⊂ 𝑈𝜆1 , we stop as we
have found a finite subcover. Otherwise, there must be a point 𝑥2 ∈ 𝐾 \𝑈𝜆1 . Note
that 𝑑(𝑥2, 𝑥1) ≥ 𝛿. There must exist some 𝜆2 ∈ 𝐼 such that 𝐵(𝑥2, 𝛿) ⊂ 𝑈𝜆2 . We work
inductively. Suppose 𝜆𝑛−1 is defined. Either𝑈𝜆1 ∪𝑈𝜆2 ∪ · · · ∪𝑈𝜆𝑛−1 is a finite cover of
𝐾, in which case we stop, or there must be a point 𝑥𝑛 ∈ 𝐾 \ (

𝑈𝜆1 ∪𝑈𝜆2 ∪ · · · ∪𝑈𝜆𝑛−1

)
.

Note that 𝑑(𝑥𝑛 , 𝑥 𝑗) ≥ 𝛿 for all 𝑗 = 1, 2, . . . , 𝑛 − 1. Next, there must be some 𝜆𝑛 ∈ 𝐼
such that 𝐵(𝑥𝑛 , 𝛿) ⊂ 𝑈𝜆𝑛 . See  Figure A.11 .

𝛿

𝑥1𝑈𝜆1

𝐾
𝑥2

𝑥3
𝑥4

𝑈𝜆2

𝑈𝜆3

Figure A.11: Covering 𝐾 by𝑈𝜆. The points 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4, the three sets𝑈𝜆1 ,𝑈𝜆2 ,𝑈𝜆2 , and
the first three balls of radius 𝛿 are drawn.

Either at some point we obtain a finite subcover of 𝐾, or we obtain an infinite
sequence {𝑥𝑛} as above. For contradiction, suppose that there is no finite subcover
and we have the sequence {𝑥𝑛}. For all 𝑛 and 𝑘, 𝑛 ≠ 𝑘, we have 𝑑(𝑥𝑛 , 𝑥𝑘) ≥ 𝛿,
so no subsequence of {𝑥𝑛} can be Cauchy. Hence, no subsequence of {𝑥𝑛} can be
convergent, which is a contradiction. □

Example A.4.12: The Bolzano–Weierstrass theorem for sequences of real numbers
says that a bounded sequence in ℝ has a convergent subsequence. Therefore, any
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sequence in a closed interval [𝑎, 𝑏] ⊂ ℝ has a convergent subsequence. The limit must
also be in [𝑎, 𝑏] as limits preserve non-strict inequalities. Hence a closed bounded
interval [𝑎, 𝑏] ⊂ ℝ is compact.

Proposition A.4.13. Let (𝑋, 𝑑) be a metric space and let 𝐾 ⊂ 𝑋 be compact. If 𝐸 ⊂ 𝐾 is a
closed set, then 𝐸 is compact.

Proof. Because 𝐾 is closed, 𝐸 is closed in 𝐾 if and only if it is closed in 𝑋. See
 Proposition A.2.11 . Let {𝑥𝑛} be a sequence in 𝐸. It is also a sequence in 𝐾. Therefore,
it has a convergent subsequence {𝑥𝑛 𝑗 } that converges to some 𝑥 ∈ 𝐾. As 𝐸 is closed
the limit of a sequence in 𝐸 is also in 𝐸 and so 𝑥 ∈ 𝐸. Thus 𝐸 must be compact. □

Theorem A.4.14 (Heine–Borel). A closed bounded subset 𝐾 ⊂ ℝ𝑛 is compact.

So subsets of ℝ𝑛 are compact if and only if they are closed and bounded, a
condition that is much easier to check. Let us reiterate that the Heine–Borel theorem
only holds for ℝ𝑛 and not for metric spaces in general. In general, compact implies
closed and bounded, but not vice versa.

Proof. For ℝ = ℝ1 if 𝐾 ⊂ ℝ is closed and bounded, then any sequence {𝑥𝑘} in 𝐾 is
bounded, so it has a convergent subsequence by the Bolzano–Weierstrass theorem.
As 𝐾 is closed, the limit of the subsequence must be an element of 𝐾. So 𝐾 is compact.

Let us carry out the proof for 𝑛 = 2 and leave arbitrary 𝑛 as an exercise. As 𝐾 ⊂ ℝ2

is bounded, there exists a set 𝐵 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2 such that 𝐾 ⊂ 𝐵. We will show
that 𝐵 is compact. Then 𝐾, being a closed subset of a compact 𝐵, is also compact.

Let
{(𝑥𝑘 , 𝑦𝑘)}∞𝑘=1 be a sequence in 𝐵. That is, 𝑎 ≤ 𝑥𝑘 ≤ 𝑏 and 𝑐 ≤ 𝑦𝑘 ≤ 𝑑 for all

𝑘. A bounded sequence of real numbers has a convergent subsequence so there is a
subsequence {𝑥𝑘 𝑗 }∞𝑗=1 that is convergent. The subsequence {𝑦𝑘 𝑗 }∞𝑗=1 is also a bounded
sequence so there exists a subsequence {𝑦𝑘 𝑗ℓ }∞ℓ=1 that is convergent. A subsequence of
a convergent sequence is still convergent, so {𝑥𝑘 𝑗ℓ }∞ℓ=1 is convergent. Let

𝑥 = lim
ℓ→∞

𝑥𝑘 𝑗ℓ and 𝑦 = lim
ℓ→∞

𝑦𝑘 𝑗ℓ .

By  Proposition A.3.8  ,
{(𝑥𝑘 𝑗ℓ , 𝑦𝑘 𝑗ℓ )}∞ℓ=1 converges to (𝑥, 𝑦). As 𝑎 ≤ 𝑥𝑘 ≤ 𝑏 and 𝑐 ≤ 𝑦𝑘 ≤ 𝑑

for all 𝑘, we know that (𝑥, 𝑦) ∈ 𝐵. □

Exercise A.4.5: Prove  Theorem A.4.14 for arbitrary dimension. Hint: The trick is to use
the correct notation.

Proposition A.4.15. Suppose (𝑋, 𝑑) is a metric space and𝐸1, 𝐸2, . . . , are nonempty compact
subsets of 𝑋 such that 𝐸1 ⊃ 𝐸2 ⊃ 𝐸3 ⊃ · · · . Then

∞⋂
𝑘=1

𝐸𝑘 ≠ ∅.
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Proof. Suppose 𝐸1, 𝐸2, . . . are as in the statement except we do not assume they
are nonempty. Compact sets are closed so their complement is open. Consider
𝑈𝑘 = 𝑋 \ 𝐸𝑘 . Suppose that the intersection is empty. Then {𝑈𝑘} is an open cover of
𝐸1, which is compact, and hence there is a finite subcover. As the sets are nested,
𝑈ℓ ⊂ 𝑈ℓ+1 for all ℓ , we have 𝐸1 ⊂ 𝑈𝑘 for some 𝑘. Thus 𝐸𝑘 is empty. □

Example A.4.16: Let (𝑋, 𝑑) be a metric space with the discrete metric, that is,
𝑑(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦. Suppose 𝑋 is an infinite set. Then:

(i) (𝑋, 𝑑) is a complete metric space.

(ii) Any subset 𝐾 ⊂ 𝑋 is closed and bounded.

(iii) A subset 𝐾 ⊂ 𝑋 is compact if and only if it is a finite set.

(iv) The conclusion of the Lebesgue covering lemma is always satisfied with any
𝛿 ∈ (0, 1), even for noncompact 𝐾 ⊂ 𝑋.

The proofs of the statements are either trivial or are relegated to the exercises below.

Remark A.4.17. A subtle point about Cauchy sequences, completeness, compactness,
and convergence is that compactness and convergence only depend on the topology,
that is, on which sets are the open sets. On the other hand, Cauchy sequences and
completeness depend on the actual metric.

Exercise A.4.6: Let (𝑋, 𝑑) be a metric space with the discrete metric.
a) Prove that 𝑋 is complete.
b) Prove that 𝑋 is compact if and only if 𝑋 is a finite set.

Exercise A.4.7: Show that a compact set 𝐾 (in any metric space) is itself a complete metric
space (using the subspace metric).

Exercise A.4.8: Show that there exists a metric on ℝ that makes ℝ into a compact set.

Exercise A.4.9: Let 𝐶([0, 1],ℝ) be the metric space of  Example A.1.6 . Let 0 denote the
zero function. Show that the closed ball 𝐶(0, 1) is not compact (even though it is closed and
bounded). Hint: Construct continuous functions 𝑓𝑛 : [0, 1] → ℝ such that 𝑑( 𝑓𝑛 , 0) = 1
and 𝑑( 𝑓𝑛 , 𝑓𝑘) = 1 for all 𝑛 ≠ 𝑘.

Exercise A.4.10: Let 𝐶([0, 1],ℝ) be the metric space of  Example A.1.6 . Let 𝐾 be the set of
𝑓 ∈ 𝐶([0, 1],ℝ) such that 𝑓 is equal to a quadratic polynomial, i.e., 𝑓 (𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2,
and such that | 𝑓 (𝑥)| ≤ 1 for all 𝑥 ∈ [0, 1], that is 𝑓 ∈ 𝐶(0, 1). Show that 𝐾 is compact.

Exercise A.4.11: Let (𝑋, 𝑑) be a complete metric space. Show that 𝐾 ⊂ 𝑋 is compact
if and only if 𝐾 is closed and such that for every 𝜖 > 0 there exists a finite set of points
𝑥1, 𝑥2, . . . , 𝑥𝑛 with 𝐾 ⊂ ⋃𝑛

𝑗=1 𝐵(𝑥 𝑗 , 𝜖). Note: Such a set 𝐾 is said to be totally bounded,
so in a complete metric space a set is compact if and only if it is closed and totally bounded.
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Exercise A.4.12: Take ℕ ⊂ ℝ using the standard metric. Find an open cover of ℕ such
that the conclusion of the Lebesgue covering lemma does not hold.

Exercise A.4.13: Prove the general Bolzano–Weierstrass theorem: Any bounded sequence
{𝑥𝑘} in ℝ𝑛 has a convergent subsequence.

Exercise A.4.14: Let 𝑋 be a metric space and 𝐶 the set of nonempty compact subsets of 𝑋.
Using the Hausdorff metric from  Exercise A.1.5 , show that (𝐶, 𝑑𝐻) is a metric space. That
is, show that if 𝐿 and 𝐾 are nonempty compact subsets, then 𝑑𝐻(𝐿, 𝐾) = 0 if and only if
𝐿 = 𝐾.

Exercise A.4.15: Let (𝑋, 𝑑) be an incomplete metric space. Show that there exists a closed
and bounded set 𝐸 ⊂ 𝑋 that is not compact.

Exercise A.4.16: Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋. Prove that 𝐾 is compact as a
subset of (𝑋, 𝑑) if and only if 𝐾 is compact as a subset of itself with the subspace metric.

Exercise A.4.17: Let (𝑋, 𝑑) be a complete metric space. We say a set 𝑆 ⊂ 𝑋 is relatively
compact if the closure 𝑆 is compact. Prove that 𝑆 ⊂ 𝑋 is relatively compact if and only if
given any sequence {𝑥𝑛} in 𝑆, there exists a subsequence {𝑥𝑛𝑘 } that converges (in 𝑋).

A.5𝑖 \ Continuous functions

A.5.1𝑖 · Continuity

Definition A.5.1. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑐 ∈ 𝑋. Then 𝑓 : 𝑋 → 𝑌

is continuous at 𝑐 if for every 𝜖 > 0 there is a 𝛿 > 0 such that whenever 𝑥 ∈ 𝑋 and
𝑑𝑋(𝑥, 𝑐) < 𝛿, then 𝑑𝑌

(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖.

If 𝑓 : 𝑋 → 𝑌 is continuous at all 𝑐 ∈ 𝑋, then we say that 𝑓 is a continuous function.

Proposition A.5.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Then 𝑓 : 𝑋 → 𝑌 is continuous
at 𝑐 ∈ 𝑋 if and only if for every sequence {𝑥𝑛} in 𝑋 converging to 𝑐, the sequence { 𝑓 (𝑥𝑛)}
converges to 𝑓 (𝑐).

Proof. Suppose 𝑓 is continuous at 𝑐. Let {𝑥𝑛} be a sequence in 𝑋 converging to 𝑐.
Given 𝜖 > 0, there is a 𝛿 > 0 such that 𝑑𝑋(𝑥, 𝑐) < 𝛿 implies 𝑑𝑌

(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖. So take

𝑀 such that for all 𝑛 ≥ 𝑀, we have 𝑑𝑋(𝑥𝑛 , 𝑐) < 𝛿, then 𝑑𝑌
(
𝑓 (𝑥𝑛), 𝑓 (𝑐)

)
< 𝜖. Hence

{ 𝑓 (𝑥𝑛)} converges to 𝑓 (𝑐).
Now suppose 𝑓 is not continuous at 𝑐. Then there exists an 𝜖 > 0, such that for

every 𝑛 ∈ ℕ there is an 𝑥𝑛 ∈ 𝑋, with 𝑑𝑋(𝑥𝑛 , 𝑐) < 1/𝑛 such that 𝑑𝑌
(
𝑓 (𝑥𝑛), 𝑓 (𝑐)

) ≥ 𝜖. So
{𝑥𝑛} converges to 𝑐, but { 𝑓 (𝑥𝑛)} does not converge to 𝑓 (𝑐). □
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Example A.5.3: Suppose 𝑓 : ℝ2 → ℝ is a polynomial. That is,

𝑓 (𝑥, 𝑦) =
𝑑∑
𝑘=0

𝑑−𝑘∑
ℓ=0

𝑎𝑘ℓ 𝑥
𝑘𝑦ℓ

= 𝑎0 0 + 𝑎1 0 𝑥 + 𝑎0 1 𝑦 + 𝑎2 0 𝑥
2 + 𝑎1 1 𝑥𝑦 + 𝑎0 2 𝑦

2 + · · · + 𝑎0 𝑑 𝑦
𝑑 ,

for some 𝑑 ∈ ℕ (the degree) and 𝑎𝑘ℓ ∈ ℝ. Then we claim 𝑓 is continuous. Let
{(𝑥𝑛 , 𝑦𝑛)}∞𝑛=1 be a sequence in ℝ2 that converges to (𝑥, 𝑦) ∈ ℝ2. Therefore, lim 𝑥𝑛 = 𝑥

and lim 𝑦𝑛 = 𝑦. Then

lim
𝑛→∞ 𝑓 (𝑥𝑛 , 𝑦𝑛) = lim

𝑛→∞

𝑑∑
𝑘=0

𝑑−𝑘∑
ℓ=0

𝑎𝑘ℓ 𝑥
𝑘
𝑛𝑦

ℓ
𝑛 =

𝑑∑
𝑘=0

𝑑−𝑘∑
ℓ=0

𝑎𝑘ℓ 𝑥
𝑘𝑦ℓ = 𝑓 (𝑥, 𝑦).

So 𝑓 is continuous at (𝑥, 𝑦), and as (𝑥, 𝑦) was arbitrary 𝑓 is continuous everywhere.
Similarly, a polynomial in 𝑛 variables is continuous.

Be careful about taking limits separately. It is not enough that for every 𝑦, the
function 𝑔(𝑥) = 𝑓 (𝑥, 𝑦) is continuous, and for every 𝑥, the function ℎ(𝑦) = 𝑓 (𝑥, 𝑦) is
continuous. The function 𝑓 (𝑥, 𝑦) could still be discontinuous.

Exercise A.5.1: Let 𝑓 : ℝ2 → ℝ be defined by 𝑓 (0, 0) = 0, and 𝑓 (𝑥, 𝑦) =
𝑥𝑦

𝑥2+𝑦2 if
(𝑥, 𝑦) ≠ (0, 0). See  Figure A.12 .

a) Show that for each fixed 𝑥, the function that takes 𝑦 to 𝑓 (𝑥, 𝑦) is continuous. Similarly
for each fixed 𝑦, the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is continuous.

b) Show that 𝑓 is not continuous.

x

y

z

Figure A.12: Graph of 𝑥𝑦

𝑥2+𝑦2 .
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Example A.5.4: Consider 𝑓 : 𝑋 → ℂ on a metric space 𝑋. Write 𝑓 (𝑝) = 𝑢(𝑝) + 𝑖𝑣(𝑝),
where 𝑢 : 𝑋 → ℝ and 𝑣 : 𝑋 → ℝ are the real and imaginary parts. Then 𝑓 is
continuous at 𝑐 ∈ 𝑋 if and only if its real and imaginary parts are continuous at 𝑐.
This fact follows because

{
𝑓 (𝑝𝑛) = 𝑢(𝑝𝑛)+ 𝑖𝑣(𝑝𝑛)

}∞
𝑛=1 converges to 𝑓 (𝑝) = 𝑢(𝑝)+ 𝑖𝑣(𝑝)

if and only if
{
𝑢(𝑝𝑛)

}
converges to 𝑢(𝑝) and

{
𝑣(𝑝𝑛)

}
converges to 𝑣(𝑝).

Proposition A.5.5. Let (𝑋, 𝑑) be a metric space.
(i) If 𝑝 ∈ 𝑋, then 𝑓 : 𝑋 → ℝ defined by 𝑓 (𝑥) = 𝑑(𝑥, 𝑝) is continuous.

(ii) Given a nonempty set 𝑆 ⊂ 𝑋, the function

𝑓 (𝑥) = inf
𝑝∈𝑆

𝑑(𝑥, 𝑝)

is continuous.
Proof. The reverse triangle inequality | 𝑓 (𝑥) − 𝑓 (𝑦)| = |𝑑(𝑥, 𝑝) − 𝑑(𝑦, 𝑝)| ≤ 𝑑(𝑥, 𝑦)
gives part  (i) .

For  (ii) , 𝑆 being nonempty implies that 𝑓 is real-valued. For any 𝜖 > 0, there exists
a 𝑞 such that inf𝑝∈𝑆 𝑑(𝑦, 𝑝) ≥ 𝑑(𝑦, 𝑞) + 𝜖. Suppose that 𝑓 (𝑥) > 𝑓 (𝑦). Then again the
reverse triangle inequality gives

𝑓 (𝑥) − 𝑓 (𝑦) = inf
𝑝∈𝑆

𝑑(𝑥, 𝑝) − inf
𝑝∈𝑆

𝑑(𝑦, 𝑝) ≤ inf
𝑝∈𝑆

𝑑(𝑥, 𝑝) − 𝑑(𝑦, 𝑞) + 𝜖 ≤ 𝑑(𝑥, 𝑦) + 𝜖.

Since it holds for every 𝜖, 𝑓 is continuous. □

Exercise A.5.2: Take the metric space of continuous functions 𝐶([0, 1],ℝ). Let 𝑘 : [0, 1]×
[0, 1] → ℝ be a continuous function. Given 𝑓 ∈ 𝐶([0, 1],ℝ) define

𝜑 𝑓 (𝑥) =
∫ 1

0
𝑘(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦.

a) Show that 𝑇( 𝑓 ) = 𝜑 𝑓 defines a function 𝑇 : 𝐶([0, 1],ℝ) → 𝐶([0, 1],ℝ).
b) Show that 𝑇 is continuous.

Exercise A.5.3: Let (𝑋, 𝑑) be a metric space. Define a metric on 𝑋×𝑋 as in  Exercise A.1.3 

part b, and show that 𝑔 : 𝑋 × 𝑋 → ℝ defined by 𝑔(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) is continuous.

Exercise A.5.4: Let 𝐶([𝑎, 𝑏],ℝ) be the set of continuous functions and 𝐶1([𝑎, 𝑏],ℝ) the
set of once continuously differentiable functions on [𝑎, 𝑏]. Define

𝑑𝐶( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥𝑆 and 𝑑𝐶1( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥𝑆 + ∥ 𝑓 ′ − 𝑔′∥𝑆 ,
where ∥·∥𝑆 is the uniform norm. By  Example A.1.6 and  Exercise A.1.8 , 𝐶([𝑎, 𝑏],ℝ) with
𝑑𝐶 is a metric space and so is 𝐶1([𝑎, 𝑏],ℝ) with 𝑑𝐶1 .

a) Prove that the derivative operator 𝐷 : 𝐶1([𝑎, 𝑏],ℝ) → 𝐶([𝑎, 𝑏],ℝ) defined by
𝐷( 𝑓 ) = 𝑓 ′ is continuous.

b) On the other hand, if we consider the metric 𝑑𝐶 on 𝐶1([𝑎, 𝑏],ℝ), then prove the
derivative operator is no longer continuous. Hint: Consider sin(𝑛𝑥).
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Exercise A.5.5: Define

𝑓 (𝑥, 𝑦) =
{ 2𝑥𝑦
𝑥4+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

a) Show that for every fixed 𝑦 the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is continuous and
hence Riemann integrable.

b) For every fixed 𝑥, the function that takes 𝑦 to 𝑓 (𝑥, 𝑦) is continuous.
c) Show that 𝑓 is not continuous at (0, 0).
d) Now show that 𝑔(𝑦) =

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 is not continuous at 𝑦 = 0.

Note: Feel free to use what you know about arctan from calculus, in particular that
𝑑
𝑑𝑠

[
arctan(𝑠)] = 1

1+𝑠2 .

A.5.2𝑖 · Compactness and continuity
Continuous maps do not map closed sets to closed sets. For example, 𝑓 : (0, 1) → ℝ

defined by 𝑓 (𝑥) = 𝑥 takes the set (0, 1), which is closed in (0, 1), to the set (0, 1), which
is not closed in ℝ. On the other hand, continuous maps do preserve compact sets.
Lemma A.5.6. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑓 : 𝑋 → 𝑌 a continuous
function. If 𝐾 ⊂ 𝑋 is a compact set, then 𝑓 (𝐾) is a compact set.

Proof. Write a sequence in 𝑓 (𝐾) as
{
𝑓 (𝑥𝑛)

}∞
𝑛=1, where {𝑥𝑛}∞𝑛=1 is a sequence in 𝐾. The

set 𝐾 is compact, so there is a subsequence {𝑥𝑛ℓ }∞ℓ=1 that converges to some 𝑥 ∈ 𝐾. By
continuity,

lim
ℓ→∞

𝑓 (𝑥𝑛ℓ ) = 𝑓 (𝑥) ∈ 𝑓 (𝐾).
So every sequence in 𝑓 (𝐾) has a subsequence convergent to a point in 𝑓 (𝐾), and 𝑓 (𝐾)
is compact by  Theorem A.4.11 . □

As before, 𝑓 : 𝑋 → ℝ achieves an absolute minimum at 𝑐 ∈ 𝑋 if

𝑓 (𝑥) ≥ 𝑓 (𝑐) for all 𝑥 ∈ 𝑋.
On the other hand, 𝑓 achieves an absolute maximum at 𝑐 ∈ 𝑋 if

𝑓 (𝑥) ≤ 𝑓 (𝑐) for all 𝑥 ∈ 𝑋.
Theorem A.5.7. Let (𝑋, 𝑑) be a nonempty compact metric space and 𝑓 : 𝑋 → ℝ continuous.
Then 𝑓 achieves an absolute minimum and maximum on 𝑋. In particular, 𝑓 is bounded.

Proof. As 𝑋 is compact and 𝑓 is continuous, 𝑓 (𝑋) ⊂ ℝ is compact. Hence 𝑓 (𝑋) is
closed and bounded. In particular, sup 𝑓 (𝑋) ∈ 𝑓 (𝑋) and inf 𝑓 (𝑋) ∈ 𝑓 (𝑋), because
both the sup and the inf can be achieved by sequences in 𝑓 (𝑋) and 𝑓 (𝑋) is closed.
Therefore, there is some 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = sup 𝑓 (𝑋) and some 𝑦 ∈ 𝑋 such that
𝑓 (𝑦) = inf 𝑓 (𝑋). □
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Exercise A.5.6: Let (𝑋, 𝑑) be a metric space. Use  Exercise A.5.3 to prove that if 𝐾1 and
𝐾2 are compact subsets of 𝑋, then there exists a 𝑝 ∈ 𝐾1 and 𝑞 ∈ 𝐾2 such that 𝑑(𝑝, 𝑞) is
minimal, that is, 𝑑(𝑝, 𝑞) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐾1, 𝑦 ∈ 𝐾2}.
Exercise A.5.7: Let (𝑋, 𝑑) be a compact metric space, let 𝐶(𝑋,ℝ) be the set of real-valued
continuous functions. Define

𝑑( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥𝑆 = sup
𝑥∈𝑋

| 𝑓 (𝑥) − 𝑔(𝑥)| .

a) Show that 𝑑 makes 𝐶(𝑋,ℝ) into a metric space.
b) Show that for each 𝑥 ∈ 𝑋, the evaluation function 𝐸𝑥 : 𝐶(𝑋,ℝ) → ℝ defined by
𝐸𝑥( 𝑓 ) = 𝑓 (𝑥) is a continuous function.

A.5.3𝑖 · Continuity and topology
Let us see how to define continuity in terms of the topology, that is, the open sets.
We have already seen that topology determines which sequences converge, and so it
is no wonder that the topology also determines continuity of functions.

Lemma A.5.8. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A function 𝑓 : 𝑋 → 𝑌 is
continuous at 𝑐 ∈ 𝑋 if and only if for every open neighborhood 𝑈 of 𝑓 (𝑐) in 𝑌, the set
𝑓 −1(𝑈) contains an open neighborhood of 𝑐 in 𝑋. See  Figure A.13 .

In other words, 𝑓 −1(𝑈) is a not-necessarily-open neighborhood of 𝑐.

𝑓
𝑈

𝑊

𝑓 (𝑐)

𝑓 −1(𝑈)

𝑐

Figure A.13: For every neighborhood 𝑈 of 𝑓 (𝑐), the set 𝑓 −1(𝑈) contains an open
neighborhood𝑊 of 𝑐.

Proof. First suppose that 𝑓 is continuous at 𝑐. Let𝑈 be an open neighborhood of 𝑓 (𝑐)
in𝑌, then 𝐵𝑌

(
𝑓 (𝑐), 𝜖) ⊂ 𝑈 for some 𝜖 > 0. By continuity of 𝑓 , there exists a 𝛿 > 0 such

that whenever 𝑥 is such that 𝑑𝑋(𝑥, 𝑐) < 𝛿, then 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖. In other words,

𝐵𝑋(𝑐, 𝛿) ⊂ 𝑓 −1 (𝐵𝑌 (
𝑓 (𝑐), 𝜖) ) ⊂ 𝑓 −1(𝑈),

and 𝐵𝑋(𝑐, 𝛿) is an open neighborhood of 𝑐.
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For the other direction, let 𝜖 > 0 be given. If 𝑓 −1 (𝐵𝑌 (
𝑓 (𝑐), 𝜖) ) contains an open

neighborhood𝑊 of 𝑐, it contains a ball. That is, there is some 𝛿 > 0 such that

𝐵𝑋(𝑐, 𝛿) ⊂ 𝑊 ⊂ 𝑓 −1 (𝐵𝑌 (
𝑓 (𝑐), 𝜖) ) .

That means precisely that if 𝑑𝑋(𝑥, 𝑐) < 𝛿 then 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖, and so 𝑓 is

continuous at 𝑐. □

Theorem A.5.9. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A function 𝑓 : 𝑋 → 𝑌 is
continuous if and only if for every open𝑈 ⊂ 𝑌, 𝑓 −1(𝑈) is open in 𝑋.

The proof follows from  Lemma A.5.8 and is left as an exercise.

Exercise A.5.8: Prove  Theorem A.5.9 . Hint: Use  Lemma A.5.8 .

Example A.5.10: Let 𝑓 : 𝑋 → 𝑌 be a continuous function.  Theorem A.5.9 tells us
that if 𝐸 ⊂ 𝑌 is closed, then 𝑓 −1(𝐸) = 𝑋 \ 𝑓 −1(𝐸𝑐) is also closed. Therefore, given a
continuous 𝑓 : 𝑋 → ℝ, the zero set of 𝑓 , that is, 𝑓 −1(0) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 0}, is closed.

The set where 𝑓 is nonnegative, that is, 𝑓 −1 ([0,∞)) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≥ 0}, is closed.
On the other hand, the set where 𝑓 is positive, 𝑓 −1 ((0,∞)) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 0}, is
open.

Exercise A.5.9: Consider ℕ ⊂ ℝ with the standard metric. Let (𝑋, 𝑑) be a metric space
and 𝑓 : 𝑋 → ℕ a continuous function.

a) Prove that if 𝑋 is connected, then 𝑓 is constant (the range of 𝑓 is a single value).
b) Find an example where 𝑋 is disconnected and 𝑓 is not constant.

Exercise A.5.10: Suppose (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌) are metric spaces and 𝑓 : 𝑋 → 𝑌 is continuous.
Let 𝐴 ⊂ 𝑋.

a) Show that 𝑓 (𝐴) ⊂ 𝑓 (𝐴).
b) Show that the subset can be proper.

Exercise A.5.11: Suppose 𝑓 : 𝑋 → 𝑌 is continuous for metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌).
Show that if 𝑋 is connected, then 𝑓 (𝑋) is connected.

Exercise A.5.12: Prove the following version of the intermediate value theorem. Let (𝑋, 𝑑)
be a connected metric space and 𝑓 : 𝑋 → ℝ a continuous function. Suppose that there
exist 𝑥0, 𝑥1 ∈ 𝑋 and 𝑦 ∈ ℝ such that 𝑓 (𝑥0) < 𝑦 < 𝑓 (𝑥1). Then prove that there exists a
𝑧 ∈ 𝑋 such that 𝑓 (𝑧) = 𝑦. Hint: See  Exercise A.5.11 .

Exercise A.5.13: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑓 : 𝑋 → 𝑌 be a one-to-one
and onto continuous function. Suppose 𝑋 is compact. Prove that the inverse 𝑓 −1 : 𝑌 → 𝑋

is continuous.
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A.5.4𝑖 · Uniform continuity
As for continuous functions on the real line, in the definition of continuity it is
sometimes convenient to be able to pick one 𝛿 for all points.

Definition A.5.11. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Then 𝑓 : 𝑋 → 𝑌 is
uniformly continuous if for every 𝜖 > 0 there is a 𝛿 > 0 such that whenever 𝑝, 𝑞 ∈ 𝑋
and 𝑑𝑋(𝑝, 𝑞) < 𝛿, then 𝑑𝑌

(
𝑓 (𝑝), 𝑓 (𝑞)) < 𝜖.

A uniformly continuous function is continuous, but not necessarily vice versa. It
is “vice versa” if 𝑋 is compact.
Theorem A.5.12. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Suppose 𝑓 : 𝑋 → 𝑌 is
continuous and 𝑋 is compact. Then 𝑓 is uniformly continuous.

Proof. Let 𝜖 > 0 be given. For each 𝑐 ∈ 𝑋, pick 𝛿𝑐 > 0 such that 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖/2

whenever 𝑥 ∈ 𝐵(𝑐, 𝛿𝑐). The balls 𝐵(𝑐, 𝛿𝑐) cover 𝑋, and the space 𝑋 is compact. Apply
the  Lebesgue covering lemma  to obtain a 𝛿 > 0 such that for every 𝑥 ∈ 𝑋, there is a
𝑐 ∈ 𝑋 for which 𝐵(𝑥, 𝛿) ⊂ 𝐵(𝑐, 𝛿𝑐).

If 𝑝, 𝑞 ∈ 𝑋 where 𝑑𝑋(𝑝, 𝑞) < 𝛿, find a 𝑐 ∈ 𝑋 such that 𝐵(𝑝, 𝛿) ⊂ 𝐵(𝑐, 𝛿𝑐). Then
𝑞 ∈ 𝐵(𝑐, 𝛿𝑐). By the triangle inequality and the definition of 𝛿𝑐 ,

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝑑𝑌

(
𝑓 (𝑝), 𝑓 (𝑐)) + 𝑑𝑌 (

𝑓 (𝑐), 𝑓 (𝑞)) < 𝜖/2 + 𝜖/2 = 𝜖. □

Example A.5.13: Useful examples of uniformly continuous functions are the so-called
Lipschitz continuous functions. That is, if (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) are metric spaces, then
𝑓 : 𝑋 → 𝑌 is called Lipschitz or 𝐾-Lipschitz if there exists a 𝐾 ∈ ℝ such that

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝐾𝑑𝑋(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ 𝑋.

A Lipschitz function is uniformly continuous: Take 𝛿 = 𝜖/𝐾. A function can be
uniformly continuous but not Lipschitz:

√
𝑥 on [0, 1] is uniformly continuous but not

Lipschitz (exercise).
It is worth mentioning that, if a function is Lipschitz, it tends to be easiest to

simply show it is Lipschitz even if we are only interested in knowing continuity (or
uniform continuity).

Exercise A.5.14: Show that
√
𝑥 is uniformly continuous on [0, 1] but not Lipschitz.

Exercise A.5.15:
a) Show that 𝑓 : (𝑐,∞) → ℝ for some 𝑐 > 0 defined by 𝑓 (𝑥) = 1/𝑥 is Lipschitz

continuous.
b) Show that 𝑓 : (0,∞) → ℝ defined by 𝑓 (𝑥) = 1/𝑥 is not Lipschitz continuous nor

uniformly continuous.

Exercise A.5.16: Suppose 𝑓 : ℝ → ℝ is a differentiable function such that 𝑓 ′ is a bounded
function. Prove 𝑓 is a Lipschitz continuous function.
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Exercise A.5.17: Prove that the map 𝑇 defined in  Exercise A.5.2 is Lipschitz continuous.

Exercise A.5.18: Let 𝑓 : ℝ → ℝ be a polynomial of degree 𝑑 ≥ 2. Show that 𝑓 is not
Lipschitz continuous.

A.5.5𝑖 · Cluster points and continuous limits
Definition A.5.14. Let (𝑋, 𝑑) be a metric space and 𝑆 ⊂ 𝑋. A point 𝑝 ∈ 𝑋 is called a
cluster point of 𝑆 if for every 𝜖 > 0, the set 𝐵(𝑝, 𝜖) ∩ 𝑆 \ {𝑝} is not empty.

Definition A.5.15. Let (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point
of 𝑆, and 𝑓 : 𝑆 → 𝑌 a function. Suppose there exists an 𝐿 ∈ 𝑌 and for every 𝜖 > 0,
there exists a 𝛿 > 0 such that whenever 𝑥 ∈ 𝑆 \ {𝑝} and 𝑑𝑋(𝑥, 𝑝) < 𝛿, then

𝑑𝑌
(
𝑓 (𝑥), 𝐿) < 𝜖.

Then 𝑓 (𝑥) converges to 𝐿 as 𝑥 goes to 𝑝, and 𝐿 is the limit of 𝑓 (𝑥) as 𝑥 goes to 𝑝. We
write

lim
𝑥→𝑝

𝑓 (𝑥) def
= 𝐿.

If 𝑓 (𝑥) does not converge as 𝑥 goes to 𝑝, we say 𝑓 diverges at 𝑝.

We again used the definite article without showing that the limit is unique. We
leave the proof of uniqueness as an exercise.

Proposition A.5.16. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster
point of 𝑆, and let 𝑓 : 𝑆 → 𝑌 be a function such that 𝑓 (𝑥) converges as 𝑥 goes to 𝑝. Then the
limit of 𝑓 (𝑥) as 𝑥 goes to 𝑝 is unique.

Exercise A.5.19: Prove  Proposition A.5.16 .

In a metric space, continuous limits may be replaced by sequential limits. We
leave the proof as an exercise. The upshot is that we really only need to prove things
for sequential limits.

Lemma A.5.17. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point of
𝑆, and let 𝑓 : 𝑆 → 𝑌 be a function.

Then 𝑓 (𝑥) converges to 𝐿 ∈ 𝑌 as 𝑥 goes to 𝑝 if and only if for every sequence {𝑥𝑛} in
𝑆 \ {𝑝} such that lim 𝑥𝑛 = 𝑝, the sequence

{
𝑓 (𝑥𝑛)

}
converges to 𝐿.

Exercise A.5.20: Prove  Lemma A.5.17 .
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By applying  Proposition A.5.2 or the definition directly we find (exercise) that for
cluster points 𝑝 of 𝑆 ⊂ 𝑋, the function 𝑓 : 𝑆 → 𝑌 is continuous at 𝑝 if and only if

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑓 (𝑝).

Exercise A.5.21: Let (𝑋, 𝑑) be a metric space, 𝑆 ⊂ 𝑋, and 𝑝 ∈ 𝑋. Prove that 𝑝 is a cluster
point of 𝑆 if and only if 𝑝 ∈ 𝑆 \ {𝑝}.
Exercise A.5.22: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point
of 𝑆, and let 𝑓 : 𝑆 → 𝑌 be a function. Prove that 𝑓 : 𝑆 → 𝑌 is continuous at 𝑝 if and only
if lim𝑥→𝑝 𝑓 (𝑥) = 𝑓 (𝑝).



B𝑖 \\ Results From Basic Analysis

I refuse to answer that question on the grounds that I don’t know the answer.
—Douglas Adams

For this book, we assume as a prerequisite a basic knowledge of analysis on the
real line. Let us, however, survey some basic results that the reader might not have
seen in such a course, and that are useful in the text. Furthermore, we require some
of these results in metric spaces and although their proofs are essentially the same as
on the real line it is worth it to put them down. The text is partly adapted from [ L1 ]
and [ L2 ]. Those two texts are useful to find more details.

B.1𝑖 \ Sequences of functions

B.1.1𝑖 · Pointwise and uniform convergence and the uniform norm
In the following, 𝑆 is any set.

Definition B.1.1. The sequence { 𝑓𝑛}∞𝑛=1 of functions 𝑓𝑛 : 𝑆 → ℝ converges pointwise to
𝑓 : 𝑆 → ℝ, if for every 𝑥 ∈ 𝑆,

𝑓 (𝑥) = lim
𝑛→∞ 𝑓𝑛(𝑥).

If we say 𝑓𝑛 : 𝑆 → ℝ converges to 𝑓 on 𝑇 ⊂ 𝑆 we mean that the restrictions of 𝑓𝑛 to
𝑇 converge pointwise to 𝑓 . As limits of sequences of numbers are unique, the limit
function 𝑓 is unique.

Pointwise convergence does not preserve much structure about 𝑓 . For example a
pointwise limit of continuous functions is not continuous, see the exercises.

Definition B.1.2. Let 𝑓𝑛 : 𝑆 → ℝ and 𝑓 : 𝑆 → ℝ be functions. The sequence { 𝑓𝑛}
converges uniformly to 𝑓 , if for every 𝜖 > 0 there exists an 𝑁 ∈ ℕ such that for all
𝑛 ≥ 𝑁 ,

| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖 for all 𝑥 ∈ 𝑆.
In uniform convergence, 𝑁 cannot depend on 𝑥. Given 𝜖 > 0, we must find an 𝑁

that works for all 𝑥 ∈ 𝑆. See  Figure B.1 for an illustration. It can easily be seen that
uniform convergence implies pointwise convergence. The converse does not hold.
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f − ǫ
f

f + ǫ
fn

Figure B.1: In uniform convergence, for 𝑛 ≥ 𝑁 , the functions 𝑓𝑛 are within a strip of ±𝜖
from 𝑓 .

Exercise B.1.1: Let 𝑓𝑛(𝑥) = 𝑥𝑛 be functions on [0, 1].
a) Show that { 𝑓𝑛} converges pointwise to a discontinuous function.
b) Prove that { 𝑓𝑛} converges pointwise but not uniformly.

Exercise B.1.2: Suppose 𝑓𝑛 : 𝑆 → ℝ are functions that converge uniformly to 𝑓 : 𝑆 → ℝ.
Suppose 𝐴 ⊂ 𝑆. Show that the sequence of restrictions { 𝑓𝑛 |𝐴} converges uniformly to 𝑓 |𝐴.

Exercise B.1.3:
a) Suppose { 𝑓𝑛} and {𝑔𝑛} defined on some set 𝐴 converge to 𝑓 and 𝑔 respectively

pointwise, and let 𝑎, 𝑏 ∈ ℝ. Show that {𝑎 𝑓𝑛 + 𝑏𝑔𝑛} converges pointwise to 𝑎 𝑓 + 𝑏𝑔.
b) Show the same for uniform convergence.

Exercise B.1.4: Find an example of a sequence of functions { 𝑓𝑛} and {𝑔𝑛} that converge
uniformly to some 𝑓 and 𝑔 on some set 𝐴, but such that { 𝑓𝑛𝑔𝑛} (the multiple) does not
converge uniformly to 𝑓 𝑔 on 𝐴.

Exercise B.1.5: Suppose there exists a sequence of functions {𝑔𝑛} uniformly converging to
0 on 𝐴. Now suppose we have a sequence of functions { 𝑓𝑛} and a function 𝑓 on 𝐴 such that

| 𝑓𝑛(𝑥) − 𝑓 (𝑥)| ≤ 𝑔𝑛(𝑥)
for all 𝑥 ∈ 𝐴. Show that { 𝑓𝑛} converges uniformly to 𝑓 on 𝐴.

Exercise B.1.6: Let { 𝑓𝑛}, {𝑔𝑛} and {ℎ𝑛} be sequences of functions on some set 𝑆.
Suppose { 𝑓𝑛} and {ℎ𝑛} converge uniformly to some function 𝑓 : 𝑆 → ℝ and suppose
𝑓𝑛(𝑥) ≤ 𝑔𝑛(𝑥) ≤ ℎ𝑛(𝑥) for all 𝑥 ∈ 𝑆. Show that {𝑔𝑛} converges uniformly to 𝑓 .

Exercise B.1.7: Prove that if a sequence of functions 𝑓𝑛 : 𝑆 → ℝ converge uniformly to a
bounded function 𝑓 : 𝑆 → ℝ, then there exists an 𝑁 such that for all 𝑛 ≥ 𝑁 , the 𝑓𝑛 are
bounded.
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Definition B.1.3. For 𝑓 : 𝑆 → ℝ, define the uniform norm,

∥ 𝑓 ∥𝑆 def
= sup

{| 𝑓 (𝑥)| : 𝑥 ∈ 𝑆}.
Note that if 𝑓 is not bounded, then ∥ 𝑓 ∥𝑆 = ∞. Therefore, unless dealing with

bounded functions, we treat the norm as an extended real, so it is not what people
would call a “norm” unless we restrict to bounded functions.

Proposition B.1.4. A sequence 𝑓𝑛 : 𝑆 → ℝ converges uniformly to 𝑓 : 𝑆 → ℝ if and only if

lim
𝑛→∞∥ 𝑓𝑛 − 𝑓 ∥𝑆 = 0.

Exercise B.1.8: Prove the proposition.

We may say { 𝑓𝑛} converges to 𝑓 in uniform norm instead of converges uniformly.
The proposition says that the two notions are the same thing. It is generally easiest
to think about uniform convergence of functions using metric spaces. A Cauchy
sequence of functions in the uniform norm is said to be Cauchy in the uniform norm or
uniformly Cauchy.

Proposition B.1.5. The set of bounded real-valued functions on 𝑆 is a complete metric space
with the metric 𝑑( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥𝑆. In particular, if a sequence is uniformly Cauchy, then
it is uniformly convergent.

Exercise B.1.9: Prove the proposition. There are two things to prove. First, prove that the
set is a metric space, that is, 𝑑( 𝑓 , 𝑔) is a metric. Second, prove that it is complete.

Remark B.1.6. It is perhaps surprising that on the set of functions 𝑓 : 𝑆 → ℝ for an
uncountable 𝑆, there is no metric that gives pointwise convergence. You could even
require 𝑓 to be bounded and/or continuous, and there is still no metric. A metric
space (𝑋, 𝑑) is so-called first countable, that is, at each 𝑥 ∈ 𝑋 there exists a sequence of
neighbourhoods𝑈 𝑗 such that any neighbourhood𝑈 of 𝑥 contains one of the𝑈 𝑗s, a
so-called countable neighborhood basis. In a metric space, 𝐵(𝑥, 1/𝑛) does the job. But
functions on an uncountable set 𝑆 with pointwise convergence does not have a first
countable topology. We do not want to wade too deep into general topology to prove
this fact.

B.1.2𝑖 · Continuity of the limit
If we have a sequence { 𝑓𝑛} of continuous functions, is the limit continuous? We have
seen that for pointwise convergence, it need not be the case, see  Exercise B.1.1 . If we,
however, require the convergence to be uniform, the limits can be interchanged.



B.1. SEQUENCES OF FUNCTIONS 269

Theorem B.1.7. Let 𝑆 be a metric space. Let { 𝑓𝑛} be a sequence of continuous functions
𝑓𝑛 : 𝑆 → ℝ converging uniformly to 𝑓 : 𝑆 → ℝ. Then 𝑓 is continuous.

Proof. Let 𝑥 ∈ 𝑆 be fixed. Let {𝑥𝑛} be a sequence in 𝑆 converging to 𝑥. Let 𝜖 > 0 be
given. As { 𝑓𝑘} converges uniformly to 𝑓 , we find a 𝑘 ∈ ℕ such that

| 𝑓𝑘(𝑦) − 𝑓 (𝑦)| < 𝜖/3

for all 𝑦 ∈ 𝑆. As 𝑓𝑘 is continuous at 𝑥, we find an 𝑁 ∈ ℕ such that for 𝑚 ≥ 𝑁 we have

| 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥)| < 𝜖/3.

Thus for 𝑚 ≥ 𝑁 ,

| 𝑓 (𝑥𝑚) − 𝑓 (𝑥)| = | 𝑓 (𝑥𝑚) − 𝑓𝑘(𝑥𝑚) + 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥) + 𝑓𝑘(𝑥) − 𝑓 (𝑥)|
≤ | 𝑓 (𝑥𝑚) − 𝑓𝑘(𝑥𝑚)| + | 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥)| + | 𝑓𝑘(𝑥) − 𝑓 (𝑥)|
< 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.

Therefore, { 𝑓 (𝑥𝑚)} converges to 𝑓 (𝑥) and hence 𝑓 is continuous at 𝑥. As 𝑥 was
arbitrary, 𝑓 is continuous everywhere. □

In the language of metric spaces, as uniform limits of continuous functions are
continuous, the set of bounded continuous functions is a complete metric space. The
proof is left as an exercise. More precisely, let 𝐶𝑏(𝑆,ℝ) denote the set of bounded
real-valued continuous functions on 𝑆. We use the uniform norm as metric and
𝐶𝑏(𝑆,ℝ) is a metric space for any 𝑆. If 𝑆 is compact, then all continuous functions are
bounded and 𝐶(𝑆,ℝ) itself is a metric space.

Corollary B.1.8. Let 𝑆 be a metric space. Then 𝐶𝑏(𝑆,ℝ) is a complete metric space. If 𝑆 is
compact, then 𝐶(𝑆,ℝ) is a complete metric space.

Exercise B.1.10: Prove  Corollary B.1.8 .

Definition B.1.9. A sequence of functions 𝑓𝑛 : 𝑆 → ℝ converges uniformly on compact
subsets if for every compact 𝐾 ⊂ 𝑆 the sequence { 𝑓𝑛} converges uniformly on 𝐾.

Corollary B.1.10. Let𝑈 ⊂ ℝ𝑛 be open. If 𝑓𝑛 : 𝑈 → ℝ is a sequence of continuous functions
converging uniformly on compact subsets, then the limit is continuous.

Exercise B.1.11: Prove the corollary.



270 APPENDIX B. RESULTS FROM BASIC ANALYSIS

B.1.3𝑖 · Integral of the limit
As with continuity, if we simply require pointwise convergence, then the integral of a
limit of a sequence of functions need not be equal to the limit of the integrals.

Example B.1.11: Let 𝜒𝑇 be the characteristic function of a set 𝑇, that is, 𝜒𝑇(𝑥) = 1 if
𝑥 ∈ 𝑇 and 𝜒𝑇(𝑥) = 0 otherwise. The functions 𝑛𝜒(0,1/𝑛) all integrate (on the interval
[0, 1]) to 1. Their pointwise limit is 0 (whose integral is 0).

If we require the convergence to be uniform, the limits can be interchanged.
Theorem B.1.12. Let { 𝑓𝑛} be a sequence of Riemann integrable functions 𝑓𝑛 : [𝑎, 𝑏] → ℝ

converging uniformly to 𝑓 : [𝑎, 𝑏] → ℝ. Then 𝑓 is Riemann integrable and∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑛→∞

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥.

In the following, let
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 and

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 denote the upper and lower Darboux

integral. Briefly,∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 def
= inf

{∫ 𝑏

𝑎

𝑠(𝑡) 𝑑𝑡 : 𝑠 is a step function and 𝑓 (𝑡) ≤ 𝑠(𝑡) for 𝑡 ∈ [𝑎, 𝑏]
}
,∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 def
= inf

{∫ 𝑏

𝑎

𝑠(𝑡) 𝑑𝑡 : 𝑠 is a step function and 𝑠(𝑡) ≤ 𝑓 (𝑡) for 𝑡 ∈ [𝑎, 𝑏]
}
.

The definition of the Riemann integral using Darboux sums and integrals is
beyond the scope of this book, but let us just mention that if the upper and lower
Darboux integrals are equal, then a function is Riemann integrable, and the common
value is the integral. Given this fact, let us prove the theorem.

Proof. Let 𝜖 > 0 be given. As 𝑓𝑛 goes to 𝑓 uniformly, we find an 𝑀 ∈ ℕ such that
for all 𝑛 ≥ 𝑀, we have | 𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖

2(𝑏−𝑎) for all 𝑥 ∈ [𝑎, 𝑏]. In particular, by
reverse triangle inequality | 𝑓 (𝑥)| < 𝜖

2(𝑏−𝑎) + | 𝑓𝑛(𝑥)| for all 𝑥, hence 𝑓 is bounded as 𝑓𝑛
is bounded. Note that 𝑓𝑛 is integrable and compute∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 −
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

=

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥)

)
𝑑𝑥

≤
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 +

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥 −
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥

=

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 +

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥 −
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥
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=

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥

≤ 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) +
𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) = 𝜖.

The first inequality is due to the upper integral being only subadditive (
∫
(𝑎 + 𝑏) ≤∫

𝑎 +
∫
𝑏) and the lower integral being superadditive. The final inequality follows

from the fact that for all 𝑥 ∈ [𝑎, 𝑏], we have −𝜖
2(𝑏−𝑎) < 𝑓 (𝑥) − 𝑓𝑛(𝑥) < 𝜖

2(𝑏−𝑎) . As 𝜖 > 0
was arbitrary, 𝑓 is Riemann integrable.

We compute
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥. For 𝑛 ≥ 𝑀 (𝑀 is the same as above),�����∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 −
∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥
����� =

�����∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥

�����
≤ 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) =
𝜖
2 < 𝜖.

Therefore,
{∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥

}
converges to

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥. □

Remark B.1.13. While we will not require the Lebesgue integral in this book, note
that for Lebesgue integral a much stronger convergence theorem holds. In particular,
the dominated convergence theorem implies that if { 𝑓𝑛} is a sequence of measurable
functions on [𝑎, 𝑏], converging pointwise to 𝑓 : [𝑎, 𝑏] → ℝ, and such that { 𝑓𝑛} is
uniformly bounded (there is a single 𝐵 ∈ ℝ such that ∥ 𝑓𝑛 ∥[𝑎,𝑏] ≤ 𝐵 for all 𝑛), then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑛→∞

∫ 𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥.

Here, of course, the integrals must be the Lebesgue integrals, not the Riemann
integrals. The pointwise limit of Riemann integrable functions need not even be
Riemann integrable.

Exercise B.1.12: Compute lim
𝑛→∞

∫ 2

1
𝑒−𝑛𝑥

2
𝑑𝑥.

Exercise B.1.13: Find a sequence of Riemann integrable functions 𝑓𝑛 : [0, 1] → ℝ such
that { 𝑓𝑛} converges to zero pointwise, and such that

a)
{∫ 1

0 𝑓𝑛(𝑥) 𝑑𝑥
}∞
𝑛=1 increases without bound,

b)
{∫ 1

0 𝑓𝑛(𝑥) 𝑑𝑥
}∞
𝑛=1 is the sequence −1, 1,−1, 1,−1, 1, . . ..
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B.1.4𝑖 · Derivative of the limit
Uniform convergence is enough to swap limits with integrals. It is not, however,
enough to swap limits with derivatives, unless the derivatives themselves converge
uniformly.

Example B.1.14: The functions 𝑓𝑛(𝑥) = sin(𝑛𝑥)
𝑛 converge uniformly to 0. See  Figure B.2 .

The derivative of the limit is 0. But 𝑓 ′𝑛(𝑥) = cos(𝑛𝑥), and that sequence not converge
even pointwise: for example, 𝑓 ′𝑛(𝜋) = (−1)𝑛 . Furthermore, 𝑓 ′𝑛(0) = 1 for all 𝑛, which
does converge, but not to 0.

Figure B.2: Graphs of sin(𝑛𝑥)
𝑛 for 𝑛 = 1, 2, . . . , 10, with higher 𝑛 in lighter gray.

The following theorem is true even if we do not assume continuity of the derivatives,
but the proof is more difficult.

Theorem B.1.15. Let 𝐼 be a bounded interval and let 𝑓𝑛 : 𝐼 → ℝ be continuously differen-
tiable functions. Suppose { 𝑓 ′𝑛} converges uniformly to 𝑔 : 𝐼 → ℝ, and suppose { 𝑓𝑛(𝑐)}∞𝑛=1
is a convergent sequence for some 𝑐 ∈ 𝐼. Then { 𝑓𝑛} converges uniformly to a continuously
differentiable function 𝑓 : 𝐼 → ℝ, and 𝑓 ′ = 𝑔.

Proof. Define 𝑓 (𝑐) = lim𝑛→∞ 𝑓𝑛(𝑐). As 𝑓 ′𝑛 are continuous and hence Riemann inte-
grable, then via the fundamental theorem of calculus, we find that for 𝑥 ∈ 𝐼,

𝑓𝑛(𝑥) = 𝑓𝑛(𝑐) +
∫ 𝑥

𝑐

𝑓 ′𝑛(𝑡) 𝑑𝑡.

As { 𝑓 ′𝑛} converges uniformly on 𝐼, it converges uniformly on [𝑐, 𝑥] (or [𝑥, 𝑐] if 𝑥 < 𝑐).
Thus, the limit on the right-hand side exists. Define 𝑓 at the remaining points by

𝑓 (𝑥) = lim
𝑛→∞ 𝑓𝑛(𝑐) + lim

𝑛→∞

∫ 𝑥

𝑐

𝑓 ′𝑛(𝑡) 𝑑𝑡 = 𝑓 (𝑐) +
∫ 𝑥

𝑐

𝑔(𝑡) 𝑑𝑡.

The function 𝑔 is continuous, being the uniform limit of continuous functions. Hence,
𝑓 is differentiable and 𝑓 ′(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐼 by the fundamental theorem of
calculus.
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It remains to prove uniform convergence. Suppose 𝐼 has a lower bound 𝑎 and upper
bound 𝑏. Let 𝜖 > 0 be given. Take 𝑀 such that for 𝑛 ≥ 𝑀, we have | 𝑓 (𝑐) − 𝑓𝑛(𝑐)| < 𝜖/2

and |𝑔(𝑥) − 𝑓 ′𝑛(𝑥)| < 𝜖
2(𝑏−𝑎) for all 𝑥 ∈ 𝐼. Then,

| 𝑓 (𝑥) − 𝑓𝑛(𝑥)| =
���� 𝑓 (𝑐) + ∫ 𝑥

𝑐

𝑔 − 𝑓𝑛(𝑐) −
∫ 𝑥

𝑐

𝑓 ′𝑛(𝑡) 𝑑𝑡
����

≤ | 𝑓 (𝑐) − 𝑓𝑛(𝑐)| +
����∫ 𝑥

𝑐

𝑔(𝑡) 𝑑𝑡 −
∫ 𝑥

𝑐

𝑓 ′𝑛(𝑡) 𝑑𝑡
����

= | 𝑓 (𝑐) − 𝑓𝑛(𝑐)| +
����∫ 𝑥

𝑐

(
𝑔(𝑡) − 𝑓 ′𝑛(𝑡)

)
𝑑𝑡

����
<

𝜖
2 + 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) = 𝜖. □

The proof goes through without boundedness of 𝐼, except for the uniform
convergence of 𝑓𝑛 to 𝑓 . For an example let 𝐼 = ℝ and 𝑓𝑛(𝑥) = 𝑥/𝑛. Then 𝑓 ′𝑛(𝑥) = 1/𝑛,
which converges uniformly to 0. However, { 𝑓𝑛} converges to 0 only pointwise.

Example B.1.16: In  Exercise A.1.8 , you proved that the set of once continuously
differentiable functions on [𝑎, 𝑏], that is, 𝐶1([𝑎, 𝑏],ℝ), is a metric space with the
so-called 𝐶1 metric (or 𝐶1 norm)

𝑑( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥𝐶1([𝑎,𝑏],ℝ)
def
= ∥ 𝑓 − 𝑔∥[𝑎,𝑏] + ∥ 𝑓 ′ − 𝑔′∥[𝑎,𝑏].

The theorem says that 𝐶1([𝑎, 𝑏],ℝ) is a complete metric space.

Exercise B.1.14: Find an explicit example of a sequence of differentiable functions on
[−1, 1] that converge uniformly to a function 𝑓 such that 𝑓 is not differentiable. Hint:

Perhaps
√
𝑥2 + (1/𝑛)2?

Exercise B.1.15: Let 𝑓𝑛(𝑥) = 𝑥𝑛

𝑛 . Show that { 𝑓𝑛} converges uniformly to a differentiable
function 𝑓 on [0, 1] (find 𝑓 ). However, show that 𝑓 ′(1) ≠ lim

𝑛→∞ 𝑓 ′𝑛(1).

B.2𝑖 \ Continuity, Fubini, derivatives under the integral

B.2.1𝑖 · Continuity
Let 𝑓 (𝑥, 𝑦) be a function of two variables and define

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥.

Question is: Is 𝑔 is continuous? We are really asking when do two limiting operations
commute, which is not always possible, so some extra hypothesis is necessary. A
sufficient (but not necessary) condition is that 𝑓 is continuous on a closed rectangle.
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Proposition B.2.1. If 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ is a continuous function, then 𝑔 : [𝑐, 𝑑] → ℝ

defined by

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 is continuous.

Proof. Fix 𝑦 ∈ [𝑐, 𝑑], and let {𝑦𝑛} be a sequence in [𝑐, 𝑑] converging to 𝑦. Let 𝜖 > 0 be
given. As 𝑓 is continuous on the compact set [𝑎, 𝑏] × [𝑐, 𝑑], 𝑓 is uniformly continuous.
Thus, there exists a 𝛿 > 0 such that whenever 𝑦̃ ∈ [𝑐, 𝑑] and | 𝑦̃ − 𝑦 | < 𝛿, we have
| 𝑓 (𝑥, 𝑦̃) − 𝑓 (𝑥, 𝑦)| < 𝜖

𝑏−𝑎 for all 𝑥 ∈ [𝑎, 𝑏]. Suppose | 𝑦̃ − 𝑦 | < 𝛿. Then

|𝑔(𝑦̃) − 𝑔(𝑦)| =
����∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦̃) 𝑑𝑥 −
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥
����

=

����∫ 𝑏

𝑎

(
𝑓 (𝑥, 𝑦̃) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥���� ≤ (𝑏 − 𝑎) 𝜖

𝑏 − 𝑎 = 𝜖. □

In applications, if we are interested in continuity at 𝑦0, we just need to apply
the proposition in [𝑎, 𝑏] × [𝑦0 − 𝜖, 𝑦0 + 𝜖] for some small 𝜖 > 0. For example, if 𝑓 is
continuous in [𝑎, 𝑏] ×ℝ, then 𝑔 is continuous on ℝ.

Exercise B.2.1: Prove a stronger version of  Proposition B.2.1 : If 𝑓 : (𝑎, 𝑏) × (𝑐, 𝑑) → ℝ is
a bounded continuous function, then 𝑔 : (𝑐, 𝑑) → ℝ defined by

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 is continuous.

Hint: First integrate over [𝑎 + 1/𝑛, 𝑏 − 1/𝑛].

B.2.2𝑖 · Fubini’s theorem
Fubini’s theorem says that under some mild conditions one can generally swap the
order of integrals in an iterated integral. We prove the following simple case of Fubini
that is generally enough for the purposes of this book.
Theorem B.2.2 (Fubini). Suppose 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ is continuous. Then∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.
One of the tricky bits about Fubini for the Riemann integral is that the integrand

of the outer integral, for example
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥 as a function of 𝑦, is not necessarily

Riemann integrable even if 𝑓 (𝑥, 𝑦) is Riemann integrable as a function of two
variables. However, by the previous subsection, if 𝑓 is continuous, then

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

is a continuous function of 𝑦 and hence integrable. So for continuous functions we
sidestep the integrability issues. 

*
 

*For more complicated scenarios, the reader is encouraged to just learn the Lebesgue integral.
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Proof. As [𝑎, 𝑏] × [𝑐, 𝑑] is compact, 𝑓 is uniformly continuous. So for any 𝜖 > 0, there
is a 𝛿 > 0 such that if |𝑥 − 𝑥′| < 𝛿 and |𝑦 − 𝑦′| < 𝛿, then | 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥′, 𝑦′)| < 𝜖. Let

𝑔𝑛(𝑥, 𝑦) =
{
𝑓 (𝑎, 𝑦) if 𝑥 = 𝑎,

𝑓
(
𝑎 + 𝑘(𝑏−𝑎)

𝑛 , 𝑦
)

if 𝑎 + (𝑘−1)(𝑏−𝑎)
𝑛 < 𝑥 ≤ 𝑎 + 𝑘(𝑏−𝑎)

𝑛 , 𝑘 = 1, . . . , 𝑛.

This 𝑔𝑛 is the “right-hand rule” step function with sub interval length 𝑏−𝑎
𝑛 : Inte-

grating 𝑔𝑛 with respect to 𝑥 is the right-hand rule for integrating 𝑓 . Let 𝑛 be large
enough so that 𝑏−𝑎

𝑛 < 𝛿. Then, via the uniform continuity estimate, we find that�� 𝑓 (𝑥, 𝑦) − 𝑔𝑛(𝑥, 𝑦)
�� < 𝜖 for all 𝑥 and 𝑦. So�����∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 −
∫ 𝑏

𝑎

𝑔𝑛(𝑥, 𝑦) 𝑑𝑥
����� ≤ ∫ 𝑏

𝑎

�� 𝑓 (𝑥, 𝑦) − 𝑔𝑛(𝑥, 𝑦)
�� ≤ (𝑏 − 𝑎)𝜖.

So
∫ 𝑏

𝑎
𝑔𝑛(𝑥, 𝑦) 𝑑𝑥 converges uniformly as a function of 𝑦 to

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥. Finally, the

integral of 𝑔𝑛 is just the right-hand rule. Putting it all together,∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫ 𝑑

𝑐

(
lim
𝑛→∞

∫ 𝑏

𝑎

𝑔𝑛(𝑥, 𝑦) 𝑑𝑥
)
𝑑𝑦

= lim
𝑛→∞

∫ 𝑑

𝑐

(∫ 𝑏

𝑎

𝑔𝑛(𝑥, 𝑦) 𝑑𝑥
)
𝑑𝑦

= lim
𝑛→∞

∫ 𝑑

𝑐

(
𝑛∑
𝑘=1

𝑏 − 𝑎
𝑛

𝑓

(
𝑎 + 𝑘(𝑏 − 𝑎)

𝑛
, 𝑦

))
𝑑𝑦

= lim
𝑛→∞

𝑛∑
𝑘=1

𝑏 − 𝑎
𝑛

∫ 𝑑

𝑐

𝑓

(
𝑎 + 𝑘(𝑏 − 𝑎)

𝑛
, 𝑦

)
𝑑𝑦

=

∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥.

The final equation is simply the realization that
∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑦 is a continuous function

of 𝑥, hence integrable, and what we have is just the right-hand rule for the integral of
this function over [𝑎, 𝑏]. □

Exercise B.2.2: Suppose 𝑓 (𝑥, 𝑦) = 1 if 𝑥 ∈ ℚ and 𝑦 = 1/2 and 0 otherwise. Using the
Riemann integral, prove that one of

∫ 1
0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 and

∫ 1
0

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 exists

and the other does not (the integrand is not a well-defined function).

Exercise B.2.3: Compute∫ 1

0

∫ 1

0

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑥 𝑑𝑦 and

∫ 1

0

∫ 1

0

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 𝑑𝑥.

You will need to interpret the integrals as improper, that is, the limit of
∫ 1
𝜖

as 𝜖 ↓ 0.
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B.2.3𝑖 · Differentiation under the integral
Let 𝑓 (𝑥, 𝑦) be a function of two variables and

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥.

If 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑], then  Proposition B.2.1 says that 𝑔 is continuous
on [𝑐, 𝑑]. Suppose 𝑓 is differentiable in 𝑦. Can we “differentiate under the integral?”
Differentiation is a limit and we are again asking when do the two limiting operations,
integration and differentiation, commute. The first question we face is the integrability
of 𝜕 𝑓

𝜕𝑦 , but the formula can fail even if 𝜕 𝑓
𝜕𝑦 is integrable as a function of 𝑥 for every fixed

𝑦. We prove a simple, but perhaps the most useful, version of the theorem.
Theorem B.2.3 (Leibniz integral rule). Suppose 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ is a continuous
function, such that 𝜕 𝑓

𝜕𝑦 exists for all (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] and is continuous. Define

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥.

Then 𝑔 : [𝑐, 𝑑] → ℝ is continuously differentiable and

𝑔′(𝑦) =
∫ 𝑏

𝑎

𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑥.

The hypotheses on 𝑓 and 𝜕 𝑓
𝜕𝑦 can be weakened to a degree. See, e.g.,  Exercise B.2.10 .

The proof below requires that 𝜕 𝑓
𝜕𝑦 exists and is continuous as a function of two variables,

and the 𝑥 interval must be the entire closed interval [𝑎, 𝑏]. The 𝑦 interval [𝑐, 𝑑] can
be replaced by a small (open or closed) interval if needed, and in applications, we
often make [𝑐, 𝑑] be a small interval around the point where we need to differentiate.

Proof. Fix 𝑦 ∈ [𝑐, 𝑑] and let 𝜖 > 0 be given. As 𝜕 𝑓
𝜕𝑦 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑], it is

uniformly continuous. In particular, there exists 𝛿 > 0 such that whenever 𝑦1 ∈ [𝑐, 𝑑]
with |𝑦1 − 𝑦 | < 𝛿 and all 𝑥 ∈ [𝑎, 𝑏], we have����𝜕 𝑓𝜕𝑦 (𝑥, 𝑦1) − 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦)

���� < 𝜖.

Suppose ℎ is such that 𝑦 + ℎ ∈ [𝑐, 𝑑] and |ℎ | < 𝛿. Fix 𝑥 for a moment and apply
the mean value theorem to find a 𝑦1 between 𝑦 and 𝑦 + ℎ such that

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

=
𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦1).

As |𝑦1 − 𝑦 | ≤ |ℎ | < 𝛿,���� 𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

− 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦)

���� = ����𝜕 𝑓𝜕𝑦 (𝑥, 𝑦1) − 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦)

���� < 𝜖.
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This argument worked for every 𝑥 ∈ [𝑎, 𝑏]. Therefore, as a function of 𝑥

𝑥 ↦→ 𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

converges uniformly to 𝑥 ↦→ 𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦) as ℎ → 0.

We defined uniform convergence for sequences although the idea is the same. You
may replace ℎ with a sequence of nonzero numbers {ℎ𝑛} converging to 0 such that
𝑦 + ℎ𝑛 ∈ [𝑐, 𝑑] and let 𝑛 → ∞.

Consider the difference quotient of 𝑔,

𝑔(𝑦 + ℎ) − 𝑔(𝑦)
ℎ

=

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦 + ℎ) 𝑑𝑥 −

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

ℎ
=

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

𝑑𝑥.

Uniform convergence implies the limit can be taken underneath the integral. So

lim
ℎ→0

𝑔(𝑦 + ℎ) − 𝑔(𝑦)
ℎ

=

∫ 𝑏

𝑎

lim
ℎ→0

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

𝑑𝑥 =

∫ 𝑏

𝑎

𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑥.

Then 𝑔′ is continuous on [𝑐, 𝑑] by  Proposition B.2.1 . □

Example B.2.4: Consider ∫ 1

0

𝑥 − 1
ln(𝑥) 𝑑𝑥.

The integral exists as the function under the integral extends continuously to [0, 1], see
 Exercise B.2.4 . Trouble is finding it. Introduce a parameter 𝑦 and define a function:

𝑔(𝑦) =
∫ 1

0

𝑥𝑦 − 1
ln(𝑥) 𝑑𝑥.

The function 𝑥𝑦−1
ln(𝑥) also extends to a continuous function of 𝑥 and 𝑦 for (𝑥, 𝑦) ∈

[0, 1] × [0, 1] (also in the exercise). See  Figure B.3 .
Therefore, 𝑔 is a continuous function of on [0, 1], and 𝑔(0) = 0. For 0 < 𝜖 < 1, the

𝑦 derivative of the integrand, 𝑥𝑦 , is continuous on [0, 1] × [𝜖, 1]. Therefore, for 𝑦 > 0
we may differentiate under the integral sign

𝑔′(𝑦) =
∫ 1

0

ln(𝑥)𝑥𝑦
ln(𝑥) 𝑑𝑥 =

∫ 1

0
𝑥𝑦 𝑑𝑥 =

1
𝑦 + 1 .

We know 𝑔 is continuous on [0, 1], 𝑔(0) = 0, and for 𝑦 ∈ (0, 1), 𝑔 is differentiable and
𝑔′(𝑦) = 1

𝑦+1 . So 𝑔(1) =
∫ 1

0 𝑔′(𝑦) 𝑑𝑦 = ln(2). In other words,∫ 1

0

𝑥 − 1
ln(𝑥) 𝑑𝑥 = ln(2).
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x

y

z

Figure B.3: The graph 𝑧 = 𝑥𝑦−1
ln(𝑥) on [0, 1] × [0, 1].

Exercise B.2.4: Prove the two statements that were asserted in  Example B.2.4 :
a) Prove 𝑥−1

ln(𝑥) extends to a continuous function of [0, 1]. That is, there exists a continuous
function on [0, 1] that equals 𝑥−1

ln(𝑥) on (0, 1).
b) Prove 𝑥𝑦−1

ln(𝑥) extends to a continuous function on [0, 1] × [0, 1].
Exercise B.2.5: Suppose ℎ : ℝ → ℝ is continuous and 𝑔 : ℝ → ℝ is continuously
differentiable and compactly supported (𝑔 is zero outside a compact interval). Define

𝑓 (𝑥) =
∫ ∞

−∞
ℎ(𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦.

Show that 𝑓 is differentiable.

Exercise B.2.6: Suppose 𝑓 : ℝ → ℝ is an infinitely differentiable function (all derivatives
exist) such that 𝑓 (0) = 0.

a) Show that there exists an infinitely differentiable function 𝑔 : ℝ → ℝ such that
𝑓 (𝑥) = 𝑥 𝑔(𝑥).

b) Show that if 𝑓 ′(0) ≠ 0, then 𝑔(0) ≠ 0.
Hint: First write 𝑓 (𝑥) =

∫ 𝑥

0 𝑓 ′(𝑠) 𝑑𝑠 and then rewrite the integral to go from 0 to 1.

Exercise B.2.7: Let 𝑈 ⊂ ℝ𝑛 be open and suppose 𝑓 (𝑥, 𝑦1, 𝑦2, . . . , 𝑦𝑛) is a continuous
function defined on [0, 1]×𝑈 ⊂ ℝ𝑛+1. Suppose 𝜕 𝑓

𝜕𝑦1
,
𝜕 𝑓
𝜕𝑦2
, . . . ,

𝜕 𝑓
𝜕𝑦𝑛

exist and are continuous
on [0, 1] ×𝑈 . Prove that 𝐹 : 𝑈 → ℝ defined by

𝐹(𝑦1, 𝑦2, . . . , 𝑦𝑛) =
∫ 1

0
𝑓 (𝑥, 𝑦1, 𝑦2, . . . , 𝑦𝑛) 𝑑𝑥

is continuously differentiable (the partial derivatives exist and are continuous).



B.2. CONTINUITY, FUBINI, DERIVATIVES UNDER THE INTEGRAL 279

Exercise B.2.8: Work out the following counterexample: Let

𝑓 (𝑥, 𝑦) =
{

𝑥𝑦3

(𝑥2+𝑦2)2 if 𝑥 ≠ 0 or 𝑦 ≠ 0,

0 if 𝑥 = 0 and 𝑦 = 0.

a) Prove that for each fixed 𝑦 the function 𝑥 ↦→ 𝑓 (𝑥, 𝑦) is Riemann integrable on [0, 1]
and

𝑔(𝑦) =
∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥 =

𝑦

2𝑦2 + 2
.

Therefore 𝑔′(𝑦) exists and we get the continuous function

𝑔′(𝑦) = 1 − 𝑦2

2(𝑦2 + 1)2
.

b) Prove 𝜕 𝑓
𝜕𝑦 exists at all 𝑥 and 𝑦 and compute it.

c) Show that for all 𝑦∫ 1

0

𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑥 exists, but 𝑔′(0) ≠

∫ 1

0

𝜕 𝑓

𝜕𝑦
(𝑥, 0) 𝑑𝑥.

Exercise B.2.9: Work out the following counterexample: Let

𝑓 (𝑥, 𝑦) =
{
𝑥 sin

(
𝑦

𝑥2+𝑦2

)
if (𝑥, 𝑦) ≠ (0, 0),

0 if (𝑥, 𝑦) = (0, 0).
a) Prove 𝑓 is continuous on all of ℝ2. Therefore the following function is well-defined

for every 𝑦 ∈ ℝ:

𝑔(𝑦) =
∫ 1

0
𝑓 (𝑥, 𝑦) 𝑑𝑥.

b) Prove 𝜕 𝑓
𝜕𝑦 exists for all (𝑥, 𝑦), but is not continuous at (0, 0).

c) Show that
∫ 1

0
𝜕 𝑓
𝜕𝑦 (𝑥, 0) 𝑑𝑥 does not exist even if we take improper integrals, that is,

that the limit lim
ℎ↓0

∫ 1
ℎ

𝜕 𝑓
𝜕𝑦 (𝑥, 0) 𝑑𝑥 does not exist.

Note: Feel free to use what you know about sine and cosine from calculus.
Exercise B.2.10: Strengthen the Leibniz integral rule in the following way. Suppose
𝑓 : (𝑎, 𝑏) × (𝑐, 𝑑) → ℝ is a bounded continuous function, such that 𝜕 𝑓

𝜕𝑦 exists for all
(𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑) and is continuous and bounded. Define

𝑔(𝑦) =
∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦) 𝑑𝑥.
Then 𝑔 : (𝑐, 𝑑) → ℝ is continuously differentiable and

𝑔′(𝑦) =
∫ 𝑏

𝑎

𝜕 𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑥.

Hint: See also  Exercise B.2.1 and  Theorem B.1.15 .
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B.3𝑖 \ The derivative in several real variables

B.3.1𝑖 · The derivative
In the following, the norm ∥·∥ of a vector in ℝ𝑛 is the euclidean norm ∥𝑥∥ =√
𝑥2

1 + · · · + 𝑥2
𝑛 . When applied to a linear mapping (a matrix) it is the operator norm:

∥𝐴∥ def
= sup

∥𝑥∥=1
∥𝐴𝑥∥.

The following exercise collects some key facts about the operator norm for the reader
who has not seen this norm yet.

Exercise B.3.1:
a) Prove that if 𝐴 is a linear mapping between finite-dimensional vector spaces, then

∥𝐴∥ < ∞.
b) Prove that if 𝐴 is a linear mapping of vector spaces, then ∥𝐴𝑥∥ ≤ ∥𝐴∥∥𝑥∥.
c) Find an explicit 2 × 2 matrix 𝐴 and a vector 𝑥 ∈ ℝ2 such that ∥𝐴𝑥∥ < ∥𝐴∥∥𝑥∥.
d) If 𝐴 is a 1×𝑛 or 𝑛×1 matrix, then the operator norm ∥𝐴∥ is the same as the euclidean

norm of the entries of 𝐴.

The derivative of 𝑓 : ℝ → ℝ at 𝑥 ∈ ℝ exists if there is a number 𝑎 (the derivative
of 𝑓 at 𝑥) such that

lim
ℎ→0

���� 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

− 𝑎
���� = lim

ℎ→0

| 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝑎ℎ |
|ℎ | = 0.

Multiplying by 𝑎 is a linear map in one dimension: ℎ ↦→ 𝑎ℎ. So the derivative is a
linear map. Let us extend this idea to more variables.
Definition B.3.1. Let 𝑈 ⊂ ℝ𝑛 be open. We say 𝑓 : 𝑈 → ℝ𝑚 is (real) differentiable at
𝑥 ∈ 𝑈 if there exists a linear 𝐴 : ℝ𝑛 → ℝ𝑚 such that

lim
ℎ→0
ℎ∈ℝ𝑛

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ = 0.

We write 𝐷 𝑓 |𝑥 = 𝐴 and we say 𝐴 is the (real) derivative of 𝑓 at 𝑥. When 𝑓 is (real)
differentiable at every 𝑥 ∈ 𝑈 , we say that 𝑓 is (real) differentiable. See  Figure B.4 .

Intuitively, 𝑓 is differentiable at 𝑥 if 𝑓 “infinitesimally close” to a linear map near 𝑥.
We cheated a bit and said that 𝐴 is the derivative, let us prove that we were justified.
Proposition B.3.2. Let𝑈 ⊂ ℝ𝑛 be open, 𝑓 : 𝑈 → ℝ𝑚 a function, 𝑥 ∈ 𝑈 , and 𝐴, 𝐵 : ℝ𝑛 →
ℝ𝑚 are linear such that

lim
ℎ→0

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ = 0 and lim

ℎ→0

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥
∥ℎ∥ = 0.

Then 𝐴 = 𝐵.
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x1

x2

y
y � f (x1 , x2)

h

Ah

Figure B.4: Illustration of a derivative for a function 𝑓 : ℝ2 → ℝ. The vector ℎ is shown
in the 𝑥1𝑥2-plane based at (𝑥1 , 𝑥2), and the vector 𝐴ℎ ∈ ℝ1 is shown along the 𝑦 direction.

Proof. Suppose ℎ ∈ ℝ𝑛 , ℎ ≠ 0. Compute

∥(𝐴 − 𝐵)ℎ∥
∥ℎ∥ =

∥−(
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ) + 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥

∥ℎ∥
≤ ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥

∥ℎ∥ + ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐵ℎ∥
∥ℎ∥ .

So ∥(𝐴−𝐵)ℎ∥
∥ℎ∥ =



(𝐴 − 𝐵) ℎ
∥ℎ∥



 → 0 as ℎ → 0. Any point on the unit sphere can be
written as ℎ

∥ℎ∥ for an arbitrarily small ℎ, and a linear mapping vanishing on the unit
sphere is zero everywhere. □

Example B.3.3: If 𝑓 (𝑥) = 𝐴𝑥 for a linear mapping 𝐴, then 𝐷 𝑓 |𝑥 = 𝐴:

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥
∥ℎ∥ =

∥𝐴(𝑥 + ℎ) − 𝐴𝑥 − 𝐴ℎ∥
∥ℎ∥ =

0
∥ℎ∥ = 0.

Example B.3.4: Let 𝑓 : ℝ2 → ℝ2 be defined by

𝑓 (𝑥, 𝑦) = (
𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)

)
= (1 + 𝑥 + 2𝑦 + 𝑥2, 2𝑥 + 3𝑦 + 𝑥𝑦).

Let us show that 𝑓 is differentiable at the origin and compute the derivative, directly
using the definition. If the derivative exists, it can be represented by a 2-by-2 matrix[
𝑎 𝑏
𝑐 𝑑

]
. Suppose ℎ = (ℎ1, ℎ2). We need the following expression to go to zero.

∥ 𝑓 (ℎ1, ℎ2) − 𝑓 (0, 0) − (𝑎ℎ1 + 𝑏ℎ2, 𝑐ℎ1 + 𝑑ℎ2)∥
∥(ℎ1, ℎ2)∥ =√((1 − 𝑎)ℎ1 + (2 − 𝑏)ℎ2 + ℎ2

1
)2 + ((2 − 𝑐)ℎ1 + (3 − 𝑑)ℎ2 + ℎ1ℎ2

)2√
ℎ2

1 + ℎ2
2

.
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If we choose 𝑎 = 1, 𝑏 = 2, 𝑐 = 2, 𝑑 = 3, the expression becomes√
ℎ4

1 + ℎ2
1ℎ

2
2√

ℎ2
1 + ℎ2

2

= |ℎ1 |

√
ℎ2

1 + ℎ2
2√

ℎ2
1 + ℎ2

2

= |ℎ1 |.

And this expression does indeed go to zero as ℎ → 0. The function 𝑓 is differentiable
at the origin and the derivative 𝐷 𝑓 |0 is represented by the matrix

[ 1 2
2 3

]
.

Proposition B.3.5. Let𝑈 ⊂ ℝ𝑛 be open and 𝑓 : 𝑈 → ℝ𝑚 be differentiable at 𝑝 ∈ 𝑈 . Then
𝑓 is continuous at 𝑝.

Proof. Another way to write the differentiability of 𝑓 at 𝑝 is to consider

𝑟(ℎ) = 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐷 𝑓 |𝑝ℎ.
The function 𝑓 is differentiable at 𝑝 if ∥𝑟(ℎ)∥

∥ℎ∥ goes to zero as ℎ → 0, so 𝑟(ℎ) goes to zero.
The derivative 𝐷 𝑓 |𝑝 is a linear map from ℝ𝑛 to ℝ𝑚 and hence 𝐷 𝑓 |𝑝ℎ → 0 as ℎ → 0.
Thus, 𝑓 (𝑝 + ℎ) goes to 𝑓 (𝑝) as ℎ → 0. □

The derivative is itself a linear operator on the space of differentiable functions.
Proposition B.3.6. Suppose 𝑈 ⊂ ℝ𝑛 is open, 𝑓 : 𝑈 → ℝ𝑚 and 𝑔 : 𝑈 → ℝ𝑚 are dif-
ferentiable at 𝑝, and 𝛼 ∈ ℝ. Then the functions 𝑓 + 𝑔 and 𝛼 𝑓 are differentiable at 𝑝,
and

𝐷( 𝑓 + 𝑔)|𝑝 = 𝐷 𝑓 |𝑝 + 𝐷𝑔 |𝑝 and 𝐷(𝛼 𝑓 )|𝑝 = 𝛼𝐷 𝑓 |𝑝 .
Proof. Let ℎ ∈ ℝ𝑛 , ℎ ≠ 0. The proposition follows from the following estimates:

 𝑓 (𝑝 + ℎ) + 𝑔(𝑝 + ℎ) − (

𝑓 (𝑝) + 𝑔(𝑝)) − (
𝐷 𝑓 |𝑝 + 𝐷𝑔 |𝑝

)
ℎ




∥ℎ∥
≤



 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐷 𝑓 |𝑝ℎ




∥ℎ∥ +


𝑔(𝑝 + ℎ) − 𝑔(𝑝) − 𝐷𝑔 |𝑝ℎ




∥ℎ∥ ,

and 

𝛼 𝑓 (𝑝 + ℎ) − 𝛼 𝑓 (𝑝) − 𝛼𝐷 𝑓 |𝑝ℎ




∥ℎ∥ = |𝛼 |


 𝑓 (𝑝 + ℎ)) − 𝑓 (𝑝) − 𝐷 𝑓 |𝑝ℎ




∥ℎ∥ . □

If 𝐴 : ℝ𝑛 → ℝ𝑚 and 𝐵 : ℝ𝑚 → ℝ𝑘 are linear, then they are their own derivative.
The composition 𝐵𝐴, a linear map from ℝ𝑛 to ℝ𝑘 , is also its own derivative, and so the
derivative of the composition is the composition of the derivatives. As differentiable
maps are “infinitesimally close” to linear maps, they have the same property:
Theorem B.3.7 (Chain rule). Let𝑈 ⊂ ℝ𝑛 be open and let 𝑓 : 𝑈 → ℝ𝑚 be differentiable at
𝑝 ∈ 𝑈 . Let 𝑉 ⊂ ℝ𝑚 be open, 𝑓 (𝑈) ⊂ 𝑉 and let 𝑔 : 𝑉 → ℝℓ be differentiable at 𝑓 (𝑝). Then

𝐹(𝑥) = 𝑔
(
𝑓 (𝑥))

is differentiable at 𝑝 and
𝐷𝐹 |𝑝 = 𝐷𝑔 | 𝑓 (𝑝)𝐷 𝑓 |𝑝 .
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Proof. Let 𝐴 = 𝐷 𝑓 |𝑝 and 𝐵 = 𝐷𝑔 | 𝑓 (𝑝). Take a nonzero ℎ ∈ ℝ𝑛 and write 𝑞 = 𝑓 (𝑝),
𝑘 = 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝). Let

𝑟(ℎ) = 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ.
Then 𝑟(ℎ) = 𝑘 − 𝐴ℎ or 𝐴ℎ = 𝑘 − 𝑟(ℎ), and 𝑓 (𝑝 + ℎ) = 𝑞 + 𝑘.
∥𝐹(𝑝 + ℎ) − 𝐹(𝑝) − 𝐵𝐴ℎ∥

∥ℎ∥ =
∥𝑔 ( 𝑓 (𝑝 + ℎ)) − 𝑔

(
𝑓 (𝑝)) − 𝐵𝐴ℎ∥

∥ℎ∥
=

∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵 (
𝑘 − 𝑟(ℎ)) ∥

∥ℎ∥
≤ ∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵𝑘∥

∥ℎ∥ + ∥𝐵∥ ∥𝑟(ℎ)∥∥ℎ∥
=

∥𝑔(𝑞 + 𝑘) − 𝑔(𝑞) − 𝐵𝑘∥
∥𝑘∥

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝)∥
∥ℎ∥ + ∥𝐵∥ ∥𝑟(ℎ)∥∥ℎ∥ .

First, ∥𝐵∥ is constant and 𝑓 is differentiable at 𝑝, so the term ∥𝐵∥ ∥𝑟(ℎ)∥
∥ℎ∥ goes to 0. Next

as 𝑓 is continuous at 𝑝, we have that as ℎ goes to 0, then 𝑘 goes to 0. Therefore,
∥𝑔(𝑞+𝑘)−𝑔(𝑞)−𝐵𝑘∥

∥𝑘∥ goes to 0 because 𝑔 is differentiable at 𝑞. Finally,

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝)∥
∥ℎ∥ ≤ ∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥

∥ℎ∥ + ∥𝐴∥.

As 𝑓 is differentiable at 𝑝, for small enough ℎ, the quantity ∥ 𝑓 (𝑝+ℎ)− 𝑓 (𝑝)−𝐴ℎ∥
∥ℎ∥ is bounded.

Therefore, the term ∥ 𝑓 (𝑝+ℎ)− 𝑓 (𝑝)∥
∥ℎ∥ stays bounded as ℎ goes to 0. Hence, ∥𝐹(𝑝+ℎ)−𝐹(𝑝)−𝐵𝐴ℎ∥

∥ℎ∥
goes to zero, and 𝐷𝐹 |𝑝 = 𝐵𝐴, which is what was claimed. □

Let us prove a “mean value theorem” for vector-valued functions. For a function
𝜑 : [𝑎, 𝑏] → ℝ𝑛 , we think of the derivative 𝐷𝜑 |𝑡0 as a vector, and so it is often just
written as 𝜑′(𝑡0), it is not hard to check that the entries of the matrix 𝐷𝜑 |𝑡0 are just
the derivatives of the components of 𝜑, and 𝐷𝜑 |𝑡0ℎ = 𝜑′(𝑡0) · ℎ, where ℎ is the dot
product. Then ∥𝜑′(𝑡0)∥ is the euclidean norm in ℝ𝑛 . And in fact, in this setting it is
the same as the operator norm.

Lemma B.3.8. If 𝜑 : [𝑎, 𝑏] → ℝ𝑛 is differentiable on (𝑎, 𝑏) and continuous on [𝑎, 𝑏], then
there exists a 𝑡0 ∈ (𝑎, 𝑏) such that

∥𝜑(𝑏) − 𝜑(𝑎)∥ ≤ (𝑏 − 𝑎)∥𝜑′(𝑡0)∥.
Proof. By the mean value theorem on the scalar-valued function 𝑡 ↦→ (

𝜑(𝑏)−𝜑(𝑎)) ·𝜑(𝑡),
where the dot is the dot product, we obtain that there is a 𝑡0 ∈ (𝑎, 𝑏) such that

∥𝜑(𝑏) − 𝜑(𝑎)∥2 =
(
𝜑(𝑏) − 𝜑(𝑎)) · (𝜑(𝑏) − 𝜑(𝑎))

=
(
𝜑(𝑏) − 𝜑(𝑎)) · 𝜑(𝑏) − (

𝜑(𝑏) − 𝜑(𝑎)) · 𝜑(𝑎)
= (𝑏 − 𝑎)(𝜑(𝑏) − 𝜑(𝑎)) · 𝜑′(𝑡0).
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By the Cauchy–Schwarz inequality

∥𝜑(𝑏) − 𝜑(𝑎)∥2 = (𝑏 − 𝑎)(𝜑(𝑏) − 𝜑(𝑎)) · 𝜑′(𝑡0) ≤ (𝑏 − 𝑎)∥𝜑(𝑏) − 𝜑(𝑎)∥ ∥𝜑′(𝑡0)∥. □
Recall that a set 𝑈 is convex if whenever 𝑥, 𝑦 ∈ 𝑈 , the line segment from 𝑥 to 𝑦

lies in𝑈 .
Proposition B.3.9. Let𝑈 ⊂ ℝ𝑛 be a convex open set, 𝑓 : 𝑈 → ℝ𝑚 a differentiable function,
and 𝑀 be such that

∥𝐷 𝑓 |𝑥 ∥ ≤ 𝑀 for all 𝑥 ∈ 𝑈.
Then 𝑓 is Lipschitz with constant 𝑀, that is,

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 𝑀∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ 𝑈.
Proof. Fix 𝑥, 𝑦 ∈ 𝑈 . By convexity, (1 − 𝑡)𝑥 + 𝑡𝑦 ∈ 𝑈 for all 𝑡 ∈ [0, 1]. Next

𝑑

𝑑𝑡

[
𝑓
((1 − 𝑡)𝑥 + 𝑡𝑦) ] = 𝐷 𝑓 |((1−𝑡)𝑥+𝑡𝑦)(𝑦 − 𝑥).

By the mean value theorem above, for some 𝑡0 ∈ (0, 1),

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤




 𝑑𝑑𝑡 ���𝑡=𝑡0 [ 𝑓 ((1 − 𝑡)𝑥 + 𝑡𝑦) ]





≤ 

𝐷 𝑓 |((1−𝑡0)𝑥+𝑡0𝑦)

 ∥𝑦 − 𝑥∥ ≤ 𝑀∥𝑦 − 𝑥∥. □

Let us solve the differential equation 𝐷 𝑓 = 0.
Corollary B.3.10. If 𝑈 ⊂ ℝ𝑛 is open and connected, 𝑓 : 𝑈 → ℝ𝑚 is differentiable, and
𝐷 𝑓 |𝑥 = 0 for all 𝑥 ∈ 𝑈 , then 𝑓 is constant.

Proof. For any 𝑥 ∈ 𝑈 , there is an open ball 𝐵(𝑥, 𝛿) ⊂ 𝑈 . The ball 𝐵(𝑥, 𝛿) is convex.
Since ∥𝐷 𝑓 |𝑦 ∥ ≤ 0 for all 𝑦 ∈ 𝐵(𝑥, 𝛿), then ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 0∥𝑥 − 𝑦∥ = 0. Thus 𝑓 −1(𝑐)
is open for any 𝑐 ∈ ℝ𝑚 . Suppose 𝑓 −1(𝑐) is nonempty. The two sets

𝑈′ = 𝑓 −1(𝑐), 𝑈′′ = 𝑓 −1 (ℝ𝑚 \ {𝑐})
are open and disjoint, and further 𝑈 = 𝑈′ ∪ 𝑈′′. As 𝑈′ is nonempty and 𝑈 is
connected, then𝑈′′ = ∅. So 𝑓 (𝑥) = 𝑐 for all 𝑥 ∈ 𝑈 . □

Exercise B.3.2: Using only the definition of the derivative, show that the following
𝑓 : ℝ2 → ℝ2 are differentiable at the origin and find their derivative.

a) 𝑓 (𝑥, 𝑦) = (1 + 𝑥 + 𝑥𝑦, 𝑥),
b) 𝑓 (𝑥, 𝑦) = (

𝑦 − 𝑦10, 𝑥
)
,

c) 𝑓 (𝑥, 𝑦) = ((𝑥 + 𝑦 + 1)2, (𝑥 − 𝑦 + 2)2) .
Exercise B.3.3: Define 𝑓 : ℝ2 → ℝ2 by 𝑓 (𝑥, 𝑦) = (

𝑥, 𝑦 + 𝜑(𝑥)) for some differentiable
function 𝜑 of one variable. Show 𝑓 is differentiable and find 𝐷 𝑓 .

Exercise B.3.4: Suppose 𝑓 : ℝ𝑛 → ℝ and ℎ : ℝ𝑛 → ℝ are differentiable and𝐷 𝑓 |𝑥 = 𝐷ℎ |𝑥
for all 𝑥 ∈ ℝ𝑛 . Prove that if 𝑓 (0) = ℎ(0), then 𝑓 (𝑥) = ℎ(𝑥) for all 𝑥 ∈ ℝ𝑛 .
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B.3.2𝑖 · The derivative in terms of partial derivatives
Partial derivatives are easier to compute with all the machinery of calculus, and they
provide a way to compute the derivative of a function.

Proposition B.3.11. Let 𝑈 ⊂ ℝ𝑛 be open and let 𝑓 : 𝑈 → ℝ𝑚 be differentiable at 𝑝 ∈ 𝑈 .
Then all the partial derivatives at 𝑝 exist and, in terms of the standard bases of ℝ𝑛 and ℝ𝑚 ,
𝐷 𝑓 |𝑝 is represented by the matrix

𝜕 𝑓1
𝜕𝑥1

��
𝑝

𝜕 𝑓1
𝜕𝑥2

��
𝑝

. . .
𝜕 𝑓1
𝜕𝑥𝑛

��
𝑝

𝜕 𝑓2
𝜕𝑥1

��
𝑝

𝜕 𝑓2
𝜕𝑥2

��
𝑝

. . .
𝜕 𝑓2
𝜕𝑥𝑛

��
𝑝

...
...

. . .
...

𝜕 𝑓𝑚
𝜕𝑥1

��
𝑝

𝜕 𝑓𝑚
𝜕𝑥2

��
𝑝
. . .

𝜕 𝑓𝑚
𝜕𝑥𝑛

��
𝑝


.

In other words,

𝐷 𝑓 |𝑝 𝑒 𝑗 =
𝑚∑
𝑘=1

𝜕 𝑓𝑘
𝜕𝑥 𝑗

���
𝑝
𝑒𝑘 ,

where 𝑒 𝑗 denote the vectors of the standard basis in the appropriate space. Recall that
the standard basis element 𝑒 𝑗 is the vector with all zeros except a 1 at the 𝑗th entry.

Proof. Fix a 𝑗 and note that for nonzero ℎ,



 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝)
ℎ

− 𝐷 𝑓 |𝑝 𝑒 𝑗




 =





 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝) − 𝐷 𝑓 |𝑝 ℎ𝑒 𝑗
ℎ






=

∥ 𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝) − 𝐷 𝑓 |𝑝 ℎ𝑒 𝑗 ∥
∥ℎ𝑒 𝑗 ∥ .

As ℎ goes to 0, the right-hand side goes to zero by differentiability of 𝑓 , and hence

lim
ℎ→0

𝑓 (𝑝 + ℎ𝑒 𝑗) − 𝑓 (𝑝)
ℎ

= 𝐷 𝑓 |𝑝 𝑒 𝑗 .

Let us represent 𝑓 by components 𝑓 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑚), since it is vector-valued. Taking
a limit in ℝ𝑚 is the same as taking the limit in each component separately. For any 𝑘,

𝜕 𝑓𝑘
𝜕𝑥 𝑗

���
𝑝
= lim

ℎ→0

𝑓𝑘(𝑝 + ℎ𝑒 𝑗) − 𝑓𝑘(𝑝)
ℎ

exists and is equal to the 𝑘th component of 𝐷 𝑓 |𝑝 𝑒 𝑗 , and we are done. □

The converse of the proposition is not true. Just because the partial derivatives
exist, does not mean that the function is differentiable. However, when the partial
derivatives are continuous, the converse holds.
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Definition B.3.12. Let𝑈 ⊂ ℝ𝑛 be open. We say 𝑓 : 𝑈 → ℝ𝑚 is continuously differen-
tiable, if all partial derivatives 𝜕 𝑓𝑗

𝜕𝑥𝑘
exist and are continuous. 

*
 

Proposition B.3.13. Let 𝑈 ⊂ ℝ𝑛 be open. If 𝑓 : 𝑈 → ℝ𝑚 is continuously differentiable,
then 𝑓 is differentiable.

Proof. Fix 𝑝 ∈ 𝑈 . We do induction on dimension. The case 𝑛 = 1 is left as an exercise.
Suppose the conclusion is true for ℝ𝑛−1, that is, if we restrict to the first 𝑛−1 variables,
the function is differentiable. The first 𝑛 − 1 partial derivatives of 𝑓 restricted to the
set where the last coordinate is fixed are the same as those for 𝑓 . In the following,
by a slight abuse of notation, we think of ℝ𝑛−1 as a subset of ℝ𝑛 , that is, the set
in ℝ𝑛 where 𝑥𝑛 = 0. In other words, we identify the vectors (𝑥1, 𝑥2, . . . , 𝑥𝑛−1) and
(𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 0). Let

𝐴 =


𝜕 𝑓1
𝜕𝑥1

��
𝑝

. . .
𝜕 𝑓1
𝜕𝑥𝑛

��
𝑝

...
. . .

...
𝜕 𝑓𝑚
𝜕𝑥1

��
𝑝
. . .

𝜕 𝑓𝑚
𝜕𝑥𝑛

��
𝑝

 , 𝐴′ =


𝜕 𝑓1
𝜕𝑥1

��
𝑝

. . .
𝜕 𝑓1

𝜕𝑥𝑛−1

��
𝑝

...
. . .

...
𝜕 𝑓𝑚
𝜕𝑥1

��
𝑝
. . .

𝜕 𝑓𝑚
𝜕𝑥𝑛−1

��
𝑝

 , 𝑣 =


𝜕 𝑓1
𝜕𝑥𝑛

��
𝑝

...
𝜕 𝑓𝑚
𝜕𝑥𝑛

��
𝑝

 .
Let 𝜖 > 0 be given. By the induction hypothesis, there is a 𝛿 > 0 such that for any
ℎ′ ∈ ℝ𝑛−1 with ∥ℎ′∥ < 𝛿,

∥ 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
∥ℎ′∥ < 𝜖.

By continuity of the partial derivatives, suppose 𝛿 is small enough so that���� 𝜕 𝑓𝑘𝜕𝑥𝑛

���
𝑝+ℎ

− 𝜕 𝑓𝑘
𝜕𝑥𝑛

���
𝑝

���� < 𝜖,

for all 𝑘 and all ℎ ∈ ℝ𝑛 with ∥ℎ∥ < 𝛿.
Suppose ℎ = ℎ′ + 𝑡𝑒𝑛 is a vector in ℝ𝑛 , where ℎ′ ∈ ℝ𝑛−1, 𝑡 ∈ ℝ, such that ∥ℎ∥ < 𝛿.

Then ∥ℎ′∥ ≤ ∥ℎ∥ < 𝛿. Note that 𝐴ℎ = 𝐴′ℎ′ + 𝑡𝑣.

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥ = ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣 + 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + ∥ 𝑓 (𝑝 + ℎ′) − 𝑓 (𝑝) − 𝐴′ℎ′∥
≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + 𝜖∥ℎ′∥.

As all the partial derivatives exist, by the mean value theorem, for each 𝑘 there is a
𝜃𝑘 , where |𝜃𝑘 | ≤ |𝑡 |, such that

𝑓𝑘(𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓𝑘(𝑝 + ℎ′) = 𝑡 𝜕 𝑓𝑘
𝜕𝑥𝑛

���(𝑝+ℎ′+𝜃𝑘 𝑒𝑛).
*Alternatively, people define 𝑓 being continuously differentiable if 𝐷 𝑓 |𝑥 is a continuous function

taking 𝑥 ∈ 𝑈 to the space of linear operators. The propositions in this section say the two definitions
are equivalent.
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Note that ∥ℎ′ + 𝜃𝑘𝑒𝑛 ∥ ≤ ∥ℎ∥ < 𝛿. To finish,

∥ 𝑓 (𝑝 + ℎ) − 𝑓 (𝑝) − 𝐴ℎ∥ ≤ ∥ 𝑓 (𝑝 + ℎ′ + 𝑡𝑒𝑛) − 𝑓 (𝑝 + ℎ′) − 𝑡𝑣∥ + 𝜖∥ℎ′∥

≤
√√

𝑚∑
𝑘=1

(
𝑡
𝜕 𝑓𝑘
𝜕𝑥𝑛

���(𝑝+ℎ′+𝜃𝑘 𝑒𝑛) − 𝑡 𝜕 𝑓𝑘𝜕𝑥𝑛

���
𝑝

)2
+ 𝜖∥ℎ′∥

≤ √
𝑚 𝜖 |𝑡 | + 𝜖∥ℎ′∥

≤ (√𝑚 + 1)𝜖∥ℎ∥. □

Exercise B.3.5: Prove the base case in  Proposition B.3.13 : If 𝑛 = 1 and “the partials exist
and are continuous,” then the function is differentiable. Note that 𝑓 is vector-valued.

Exercise B.3.6: Define a function 𝑓 : ℝ2 → ℝ by (see  Figure B.5 )

𝑓 (𝑥, 𝑦) =
{

𝑥𝑦

𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

a) Show that partial derivatives 𝜕 𝑓
𝜕𝑥 and 𝜕 𝑓

𝜕𝑦 exist at all points (including the origin).
b) Show that 𝑓 is not continuous at the origin (and hence not differentiable).
c) Show that the partial derivatives are not continuous.

Exercise B.3.7: Define 𝑓 : ℝ2 → ℝ as

𝑓 (𝑥, 𝑦) =
{
(𝑥2 + 𝑦2) sin

((𝑥2 + 𝑦2)−1) if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

Show that 𝑓 is differentiable at the origin, but that it is not continuously differentiable.

x

y

z

Figure B.5: Graph of 𝑥𝑦

𝑥2+𝑦2 .
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B.3.3𝑖 · Fixed point theorem
Before we prove the inverse function theorem we must take a detour to prove a fixed
point theorem for metric spaces.

Definition B.3.14. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A mapping 𝑓 : 𝑋 → 𝑌 is
said to be a contraction (or a contractive map) if it is a 𝑘-Lipschitz map for some 𝑘 < 1,
i.e., if there exists a 𝑘 < 1 such that

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝑘 𝑑𝑋(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ 𝑋.

If 𝑓 : 𝑋 → 𝑋 is a map, 𝑥 ∈ 𝑋 is called a fixed point if 𝑓 (𝑥) = 𝑥.

Theorem B.3.15 (Contraction mapping principle or Banach fixed point theorem). Let
(𝑋, 𝑑) be a nonempty complete metric space and 𝑓 : 𝑋 → 𝑋 a contraction. Then 𝑓 has a
unique fixed point.

Proof. Pick any 𝑥0 ∈ 𝑋. Define a sequence {𝑥𝑛} by 𝑥𝑛+1 = 𝑓 (𝑥𝑛).

𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑
(
𝑓 (𝑥𝑛), 𝑓 (𝑥𝑛−1)

) ≤ 𝑘𝑑(𝑥𝑛 , 𝑥𝑛−1) ≤ · · · ≤ 𝑘𝑛𝑑(𝑥1, 𝑥0).

Suppose 𝑚 > 𝑛, then

𝑑(𝑥𝑚 , 𝑥𝑛) ≤
𝑚−1∑
ℓ=𝑛

𝑑(𝑥ℓ+1, 𝑥ℓ ) ≤
𝑚−1∑
ℓ=𝑛

𝑘ℓ 𝑑(𝑥1, 𝑥0) = 𝑘𝑛𝑑(𝑥1, 𝑥0)
𝑚−𝑛−1∑
ℓ=0

𝑘ℓ

≤ 𝑘𝑛𝑑(𝑥1, 𝑥0)
∞∑
ℓ=0

𝑘ℓ = 𝑘𝑛𝑑(𝑥1, 𝑥0) 1
1 − 𝑘 .

So the sequence is Cauchy. Since 𝑋 is complete, let 𝑥 = lim 𝑥𝑛 . We claim that 𝑥 is our
unique fixed point.

Fixed point? The function 𝑓 is a contraction, so it is Lipschitz continuous:

𝑓 (𝑥) = 𝑓 (lim 𝑥𝑛) = lim 𝑓 (𝑥𝑛) = lim 𝑥𝑛+1 = 𝑥.

Unique? Let 𝑥 and 𝑦 both be fixed points.

𝑑(𝑥, 𝑦) = 𝑑
(
𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑘 𝑑(𝑥, 𝑦).

As 𝑘 < 1, we have 𝑑(𝑥, 𝑦) = 0 and hence 𝑥 = 𝑦. The theorem is proved. □

The proof is constructive. Not only do we know a unique fixed point exists. We
also know how to find it. Start with any 𝑥0 ∈ 𝑋 and iterate 𝑓 (𝑥0), 𝑓 ( 𝑓 (𝑥0)), 𝑓 ( 𝑓 ( 𝑓 (𝑥0))),
etc.
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Exercise B.3.8:
a) Find an example of a contraction 𝑓 : 𝑋 → 𝑋 of a non-complete metric space 𝑋 with

no fixed point.
b) Find a 1-Lipschitz map 𝑓 : 𝑋 → 𝑋 of a complete metric space 𝑋 with no fixed point.

Exercise B.3.9: Let 𝑓 (𝑥) = 𝑥 − 𝑥2−2
2𝑥 (you may recognize Newton’s method for

√
2).

a) Prove 𝑓
([1,∞)) ⊂ [1,∞).

b) Prove that 𝑓 : [1,∞) → [1,∞) is a contraction.
c) Apply the fixed point theorem to find an 𝑥 ≥ 1 such that 𝑓 (𝑥) = 𝑥, and show that
𝑥 =

√
2.

B.3.4𝑖 · Inverse function theorem
Intuitively, we again consider that if a function is continuously differentiable, then
it locally “behaves like” the derivative (a linear function). The idea of the inverse
function theorem is that if a function is continuously differentiable and the derivative
is invertible, the function is (locally) invertible.

Theorem B.3.16 (Inverse function theorem). Suppose 𝑈 ⊂ ℝ𝑛 is open, 𝑓 : 𝑈 → ℝ𝑛 is
continuously differentiable, 𝑝 ∈ 𝑈 , and 𝐷 𝑓 |𝑝 is invertible (that is, det𝐷 𝑓 |𝑝 ≠ 0). Then
there exist open sets 𝑉,𝑊 ⊂ ℝ𝑛 such that 𝑝 ∈ 𝑉 ⊂ 𝑈 , 𝑓 (𝑉) = 𝑊 , the restriction 𝑓 |𝑉 is
injective (one-to-one), and hence a 𝑔 : 𝑊 → 𝑉 exists such that 𝑔(𝑦) = ( 𝑓 |𝑉)−1(𝑦) for all
𝑦 ∈𝑊 . See  Figure B.6 . Furthermore, 𝑔 is continuously differentiable and

𝐷𝑔 |𝑦 =
(
𝐷 𝑓 |𝑥

)−1
, for all 𝑥 ∈ 𝑉, 𝑦 = 𝑓 (𝑥).

𝑈

𝑓

𝑔𝑝

𝑊 = 𝑓 (𝑉)

𝑦𝑥

𝑓 (𝑝)
𝑉

𝑓

𝑔

Figure B.6: Setup of the inverse function theorem in ℝ𝑛 .

Proof. Write 𝐴 = 𝐷 𝑓 |𝑝 . As 𝐷 𝑓 is continuous, there exists an open ball 𝑉 around 𝑝

such that
∥𝐴 − 𝐷 𝑓 |𝑥 ∥ <

1
2∥𝐴−1∥ for all 𝑥 ∈ 𝑉.
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The inequality implies that 𝐷 𝑓 |𝑥 is invertible for all 𝑥 ∈ 𝑉 (see exercise below).
Given 𝑦 ∈ ℝ𝑛 , define 𝜑𝑦 : 𝐶 → ℝ𝑛 by

𝜑𝑦(𝑥) = 𝑥 + 𝐴−1 (𝑦 − 𝑓 (𝑥)) .
As 𝐴−1 is one-to-one, 𝜑𝑦(𝑥) = 𝑥 (𝑥 is a fixed point) if only if 𝑦 − 𝑓 (𝑥) = 0, or in other
words 𝑓 (𝑥) = 𝑦. Using the chain rule we obtain

𝐷𝜑𝑦 |𝑥 = 𝐼 − 𝐴−1𝐷 𝑓 |𝑥 = 𝐴−1 (𝐴 − 𝐷 𝑓 |𝑥
)
.

So for 𝑥 ∈ 𝑉 ,
∥𝐷𝜑𝑦 |𝑥 ∥ ≤ ∥𝐴−1∥ ∥𝐴 − 𝐷 𝑓 |𝑥 ∥ < 1/2.

As 𝑉 is a ball, it is convex. Hence,

∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥2)∥ ≤ 1
2 ∥𝑥1 − 𝑥2∥ for all 𝑥1, 𝑥2 ∈ 𝑉.

In other words, 𝜑𝑦 is a contraction defined on 𝑉 , though we so far do not know
what is the range of 𝜑𝑦 . We cannot yet apply the fixed point theorem, but we can
say that 𝜑𝑦 has at most one fixed point in 𝑉 : If 𝜑𝑦(𝑥1) = 𝑥1 and 𝜑𝑦(𝑥2) = 𝑥2, then
∥𝑥1 − 𝑥2∥ = ∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥2)∥ ≤ 1

2 ∥𝑥1 − 𝑥2∥, so 𝑥1 = 𝑥2. That is, there exists at most
one 𝑥 ∈ 𝑉 such that 𝑓 (𝑥) = 𝑦, and so 𝑓 |𝑉 is one-to-one.

Let𝑊 = 𝑓 (𝑉) and let 𝑔 : 𝑊 → 𝑉 be the inverse of 𝑓 |𝑉 . We need to show that𝑊
is open. Take a 𝑦0 ∈ 𝑊 . There is a unique 𝑥0 ∈ 𝑉 such that 𝑓 (𝑥0) = 𝑦0. Let 𝑟 > 0 be
small enough such that the closed ball 𝐶(𝑥0, 𝑟) ⊂ 𝑉 (such 𝑟 > 0 exists as 𝑉 is open).
Suppose 𝑦 is such that

∥𝑦 − 𝑦0∥ <
𝑟

2∥𝐴−1∥ .

If we show that 𝑦 ∈𝑊 , then we have shown that𝑊 is open. If 𝑥1 ∈ 𝐶(𝑥0, 𝑟), then

∥𝜑𝑦(𝑥1) − 𝑥0∥ ≤ ∥𝜑𝑦(𝑥1) − 𝜑𝑦(𝑥0)∥ + ∥𝜑𝑦(𝑥0) − 𝑥0∥
≤ 1

2 ∥𝑥1 − 𝑥0∥ + ∥𝐴−1(𝑦 − 𝑦0)∥

≤ 1
2 𝑟 + ∥𝐴−1∥ ∥𝑦 − 𝑦0∥

<
1
2 𝑟 + ∥𝐴−1∥ 𝑟

2∥𝐴−1∥ = 𝑟.

So 𝜑𝑦 takes 𝐶(𝑥0, 𝑟) into 𝐵(𝑥0, 𝑟) ⊂ 𝐶(𝑥0, 𝑟). It is a contraction on 𝐶(𝑥0, 𝑟) and 𝐶(𝑥0, 𝑟)
is complete (closed subset of ℝ𝑛 is complete). Apply the contraction mapping
principle ( Theorem B.3.15 ) to obtain a fixed point 𝑥, i.e., 𝜑𝑦(𝑥) = 𝑥. That is, 𝑓 (𝑥) = 𝑦,
and 𝑦 ∈ 𝑓

(
𝐶(𝑥0, 𝑟)

) ⊂ 𝑓 (𝑉) =𝑊 . Therefore,𝑊 is open.
Next we need to show that 𝑔 is continuously differentiable and compute its

derivative. First, let us show that it is differentiable. Consider 𝑦 ∈ 𝑊 and 𝑘 ∈ ℝ𝑛 ,
𝑘 ≠ 0, such that 𝑦 + 𝑘 ∈𝑊 . Because 𝑓 |𝑉 is a one-to-one and onto mapping of 𝑉 onto
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𝑉 𝑊

𝑥

𝑥 + ℎ 𝑦 + 𝑘

𝑦

𝑔

𝑔

𝑓

𝑓

Figure B.7: Proving that 𝑔 is differentiable.

𝑊 , there are unique 𝑥 ∈ 𝑉 and ℎ ∈ ℝ𝑛 , where ℎ ≠ 0 and 𝑥 + ℎ ∈ 𝑉 , such that 𝑓 (𝑥) = 𝑦

and 𝑓 (𝑥 + ℎ) = 𝑦 + 𝑘. In other words, 𝑔(𝑦) = 𝑥 and 𝑔(𝑦 + 𝑘) = 𝑥 + ℎ. See  Figure B.7 .
We can still squeeze some information from the fact that 𝜑𝑦 is a contraction.

𝜑𝑦(𝑥 + ℎ) − 𝜑𝑦(𝑥) = ℎ + 𝐴−1 ( 𝑓 (𝑥) − 𝑓 (𝑥 + ℎ)) = ℎ − 𝐴−1𝑘.

So
∥ℎ − 𝐴−1𝑘∥ = ∥𝜑𝑦(𝑥 + ℎ) − 𝜑𝑦(𝑥)∥ ≤ 1

2 ∥𝑥 + ℎ − 𝑥∥ =
∥ℎ∥
2 .

By the inverse triangle inequality, ∥ℎ∥ − ∥𝐴−1𝑘∥ ≤ 1
2 ∥ℎ∥. Hence,

∥ℎ∥ ≤ 2∥𝐴−1𝑘∥ ≤ 2∥𝐴−1∥ ∥𝑘∥.
In particular, as 𝑘 goes to 0, so does ℎ.

As 𝑥 ∈ 𝑉 , then 𝐷 𝑓 |𝑥 is invertible. Let 𝐵 =
(
𝐷 𝑓 |𝑥

)−1, which is what we think the
derivative of 𝑔 at 𝑦 is. Then

∥𝑔(𝑦 + 𝑘) − 𝑔(𝑦) − 𝐵𝑘∥
∥𝑘∥ =

∥ℎ − 𝐵𝑘∥
∥𝑘∥

=
∥ℎ − 𝐵 (

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)) ∥
∥𝑘∥

=
∥𝐵 (

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷 𝑓 |𝑥ℎ
) ∥

∥𝑘∥
≤ ∥𝐵∥ ∥ℎ∥∥𝑘∥

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷 𝑓 |𝑥ℎ∥
∥ℎ∥

≤ 2∥𝐵∥ ∥𝐴−1∥ ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷 𝑓 |𝑥ℎ∥
∥ℎ∥ .

As 𝑘 goes to 0, so does ℎ, and, as 𝑓 is differentiable, so does the right-hand side. So 𝑔
is differentiable with , and 𝐵 is precisely what we claimed 𝐷𝑔 |𝑦 to be.

Let us show 𝑔 is continuously differentiable. The function 𝑔 : 𝑊 → 𝑉 is continuous
(it is differentiable), 𝐷 𝑓 is a continuous function from𝑉 to the space of 𝑛 × 𝑛 matrices
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(each entry is continuous), and the inverse of a matrix 𝑀 is 𝑀−1 = 1
det𝑀 adj𝑀, so

𝑀 ↦→ 𝑀−1 is continuous outside the set where det𝑀 = 0. As 𝐷𝑔 |𝑦 =
(
𝐷 𝑓 |𝑔(𝑦)

)−1 is
the composition of these three continuous functions, it is continuous. □

Example B.3.17: Just because 𝐷 𝑓 |𝑥 is invertible everywhere does not mean that
𝑓 is one-to-one globally. Consider the map 𝑓 : ℝ2 \ {0} → ℝ2 \ {0} defined by
𝑓 (𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦), that is, the mapping 𝑧 ↦→ 𝑧2 in the complex plane. It is not
hard to check that the derivative is invertible on ℝ2 \ {0}. On the other hand, the
mapping is 2-to-1 globally (except at the origin). For every (𝑎, 𝑏) ≠ (0, 0), there are
exactly two solutions to 𝑥2 − 𝑦2 = 𝑎 and 2𝑥𝑦 = 𝑏.

The invertibility of the derivative is not a necessary condition, just sufficient,
for having a continuous inverse and being an open mapping. For example, the
function 𝑓 (𝑥) = 𝑥3 is an open mapping from ℝ to ℝ and is globally one-to-one with a
continuous inverse, although the inverse is not differentiable at 𝑥 = 0.
Remark B.3.18. As a side note, there is a related famous, and as yet unsolved problem,
called the Jacobian conjecture. If 𝐹 : ℝ𝑛 → ℝ𝑛 (or more famously 𝐹 : ℂ𝑛 → ℂ𝑛) is
polynomial (each component is a polynomial) and det𝐷𝐹 is a nonzero constant, does
𝐹 have a polynomial inverse? The inverse function theorem gives a local 𝐶1 inverse,
but can one always find a global polynomial inverse is the question.

Exercise B.3.10:
a) Suppose 𝐴 is a linear operator on ℝ𝑛 such that ∥𝐼 − 𝐴∥ < 1 (𝐼 is the identity). Prove

that 𝐴 is invertible.
b) For two linear operators 𝐴 and 𝐵 on ℝ𝑛 where 𝐴 is invertible, prove that ∥𝐴 − 𝐵∥ <

1
∥𝐴−1∥ implies that 𝐵 is invertible.

Exercise B.3.11: Define 𝑓 : ℝ2 → ℝ2 by 𝑓 (𝑥, 𝑦) = (
𝑥, 𝑦 + ℎ(𝑥)) for some continuously

differentiable function ℎ of one variable.
a) Show that 𝑓 is one-to-one and onto.
b) Compute 𝐷 𝑓 .
c) Show that 𝐷 𝑓 is invertible at all points, and compute its inverse.

Exercise B.3.12: Define 𝑓 : ℝ2 → ℝ2

𝑓 (𝑥, 𝑦) =
{(
𝑥2 sin(1/𝑥) + 𝑥/2, 𝑦

)
if 𝑥 ≠ 0,

(0, 𝑦) if 𝑥 = 0.

a) Show that 𝑓 is differentiable everywhere.
b) Show that 𝐷 𝑓 |(0,0) is invertible.
c) Show that 𝑓 is not one-to-one in every neighborhood of the origin (it is not locally

invertible, that is, the inverse function theorem does not work).
d) Show that 𝑓 is not continuously differentiable.
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Exercise B.3.13 (Polar coordinates): Define a mapping 𝐹(𝑟, 𝜃) = (
𝑟 cos(𝜃), 𝑟 sin(𝜃)) .

a) Show that 𝐹 is continuously differentiable (for all (𝑟, 𝜃) ∈ ℝ2).
b) Compute 𝐷𝐹 |(0,𝜃) for all 𝜃.
c) Show that if 𝑟 ≠ 0, then 𝐷𝐹 |(𝑟,𝜃) is invertible, and so an inverse of 𝐹 exists locally as

long as 𝑟 ≠ 0.
d) Show that 𝐹 : ℝ2 → ℝ2 is onto, and for each point (𝑥, 𝑦) ∈ ℝ2, the set 𝐹−1(𝑥, 𝑦) is

infinite.
e) Show that 𝐹 |(0,∞)×[0,2𝜋) is one-to-one and onto ℝ2 \ {(0, 0)}.



C𝑖 \\ Basic Notation and Terminology

Let us quickly review some basic notation used. We use ℂ, ℝ for complex and real
numbers (𝑖 for imaginary unit), ℕ = {1, 2, 3, . . .} for the natural numbers, ℤ for all
integers, and ℚ for rational real numbers.

We denote the set subtraction by 𝑌 \ 𝑋 (all elements of 𝑌 that are not in 𝑋). We
write the complement of a set as𝑋 𝑐 , in which case the ambient set should be clear. The
topological closure of a set 𝑋 is denoted by 𝑋 and its boundary by 𝜕𝑋. By 𝜕𝑋 we may
also mean the path that gives the topological boundary traversed counterclockwise.
We write the interior of 𝑋 as 𝑋◦.

The notation 𝑓 : 𝑋 → 𝑌 is a function with domain 𝑋 and codomain 𝑌. By 𝑓 (𝑆) we
mean the direct image of 𝑆 by 𝑓 . By 𝑓 −1 we mean the inverse image of sets and single
points, and if 𝑓 is bĳective (one-to-one and onto), we use it for the inverse mapping.
To define a function without necessarily giving it a name, we use

𝑥 ↦→ 𝐹(𝑥),
where 𝐹(𝑥) would generally be some formula giving the output. The notation 𝑓 |𝑆
means the restriction of 𝑓 to 𝑆: a function 𝑓 |𝑆 : 𝑆 → 𝑌 such that 𝑓 |𝑆(𝑥) = 𝑓 (𝑥) for all
𝑥 ∈ 𝑆. For derivatives, vertical bar means evaluation, 𝜕 𝑓

𝜕𝑥

��
𝑝

means 𝜕 𝑓
𝜕𝑥 evaluated at 𝑝.

To say that two functions 𝑓 and 𝑔 are identically equal, that is that 𝑓 (𝑥) = 𝑔(𝑥) for all
𝑥 in the domain, we write

𝑓 ≡ 𝑔.

The notation 𝑓 ◦ 𝑔 denotes the composition defined by 𝑥 ↦→ 𝑓
(
𝑔(𝑥)) .

For one-sided limits we use

lim
𝑡↑𝑎

𝑓 (𝑡)
(
= lim
𝑡→𝑎
𝑡<𝑎

𝑓 (𝑡)
)

and lim
𝑡↓𝑎

𝑓 (𝑡)
(
= lim
𝑡→𝑎
𝑡>𝑎

𝑓 (𝑡)
)
,

as these seemed the clearer option in some of the situations in this book. We may
write {𝑥𝑛} for a sequence {𝑥𝑛}∞𝑛=1 and similarly lim 𝑥𝑛 instead of lim𝑛→∞ 𝑥𝑛 when it
is clear that 𝑛 is the index of the sequence.

To define 𝑋 to be 𝑌 rather than just show equality, we write

𝑋
def
= 𝑌.
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open cover,  251 

open mapping theorem,  144 

open neighborhood,  237 

open set,  237 

operator norm,  280 

order of a pole,  126 

order of a zero,  122 

partial products,  195 

path,  52 

path in𝑈 ,  52 

path integral,  53 

Perron method,  194 

piecewise-𝐶1 boundary,  116 

piecewise-𝐶1 path,  52 

Poincaré lemma,  68 

pointwise bounded,  148 

pointwise convergence,  266 

Poisson kernel,  171 

polar coordinates,  15 ,  293 

polar form,  15 

polarization identity,  10 

pole,  124 

pole pushing,  211 

polygonal,  60 

polynomial hull,  214 

polynomially convex,  214 

positively oriented,  119 

power series,  41 

primitive,  60 

principal branch,  91 

principal branch of arg,  17 

principal part,  128 

projective space,  22 

pseudometric space,  236 

Radó’s theorem,  193 

radius of convergence,  42 

real derivative,  280 

real differentiable,  280 

real part,  9 

relatively compact,  257 

removable singularity,  124 

reparametrization of paths,  55 

residue,  131 

residue at ∞,  136 

residue theorem,  131 

Riemann extension theorem,  125 

Riemann sphere,  18 

Riemann–Schwarz principle,  220 

roots of unity,  40 

Rouché’s theorem,  139 

Runge’s theorem,  213 

Runge’s theorem on a compact set,  212 

Schwarz integral formula,  176 

Schwarz reflection principle
harmonic functions,  186 

holomorphic functions,  220 

holomorphic functions, circle
version,  222 

holomorphic functions, general
version,  222 

Schwarz’s lemma,  86 

Schwarz–Pick lemma,  89 

segment,  60 

sequence,  245 

sequentially compact,  252 

simple closed path,  52 

simple pole,  126 

simple zero,  122 

simply connected,  99 

simply connected (in the sense of
homotopy),  113 

slit plane,  91 

sphere,  234 

standard metric on ℝ𝑛 ,  233 

standard metric on ℝ,  232 

star-like,  65 

stereographic projection,  19 

sub-mean-value property,  189 

subadditive,  235 
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subcover,  251 

subharmonic,  187 

subsequence,  246 

subspace,  235 

subspace metric,  235 

subspace topology,  235 

support,  51 

supremum norm,  79 

topology,  237 

totally bounded,  256 

totally disconnected,  243 

translation,  21 

triangle,  62 

triangle inequality,  231 

complex numbers,  10 

line integrals,  57 

uniform absolute convergence,  44 

infinite product,  198 

uniform convergence,  266 

uniform convergence on compact
subsets,  269 

uniform norm,  79 ,  268 

uniform norm convergence,  268 

uniformly bounded,  148 

uniformly Cauchy,  268 

uniformly continuous
in a metric space,  263 

uniformly equicontinuous,  150 

uniformly on compact subsets,  83 

unit disc,  11 

unit sphere,  234 

univalent,  143 

universal cover,  229 

universal covering map,  229 

universal covering space,  229 

unrestricted continuation,  226 

upper half-plane,  11 

upper-semicontinuous,  187 

Vitali’s theorem,  155 

Weierstrass factorization theorem,  201 

Weierstrass product theorem,  205 

Weierstrass product theorem in ℂ,  200 

winding number,  94 ,  111 

Wirtinger operators,  32 

zero,  49 

zero chain,  58 

zero set,  262 

zeros counted with multiplicity,  136 
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