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Proposition (Cauchy-Hadamard theorem)
Y. cu(z — p)" converges absolutely if |z — p| < R and diverges if |z — p| > R.
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the power series converges absolutely in the disc Ar(p).

It diverges in the complement of the closure m

Convergence (or divergence) on the boundary circle JAgr(p) is tricky.

R = 0 means the power series diverges, R = co means it converges in C.

R is called the radius of convergence.
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Proposition

The series Y, cuy(z — p)" converges in Ar(p) for some R > 0 if and only if for every r with 0 < r < R,
there exists an M > 0 such that
M
len| < = for all n.

So the sequence {|cn|r”} is bounded whenever 0 < r < R.

But {|cn|R”} not necessarily bounded:

>, 2" and ) nz" have radius of convergence R = 1. The sequence of coefficients is bounded
in the first case and not in the second.

However, {n1"} is bounded for every r < 1.
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Proof: Suppose the series converges in Ag(p) and 0 < r < R.
Then }}|c,|r" converges, and the terms are thus bounded.
Conversely, fix r, suppose |c,|1"* < M for all n.

Suppose 0 < s < 7.

e = 34l < 30 "
A

The limsup of the RHS is strictly less than 1 as s/r < 1.

The series converges absolutely in As(p) by the root test.

As s and r with 0 < s < r < R were arbitrary, the series converges (absolutely) in Ar(p). O



