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Proposition

Suppose I is a cycle and p ¢ T. Then n(L; p) is an integer.

Idea: Follow a branch of log, then the argument differs by an integer multiple of 2m.

Proof: I'is a “sum” of closed paths, so WLOG consider a closed piecewise-C! path
y:[0,1] = C.

y can be covered by finitely many discs Dy, ..., D, none of which contain p.

(cover the whole closed curve, of course)
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The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([ti-1,4]) C D; for every j.

Each D; is star-like and p ¢ D;

= Jdabranch L; of log(z — p) on each D;, such that

Li(y(t)) = Lia (y()) (L1 is an arbitrary branch).
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L, and L1 are branches of log,
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The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([ti-1,4]) C D; for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y()) (L1 is an arbitrary branch).
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n

= 517 S L) ~L0) = 5 (L0~ L)
.-

L, and L1 are branches of log,
each is log|zg| + i arg zg for some value of arg,
their difference is 27tki for some k € Z.
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Proposition

Given a cycle T, the function z — n(I’; z) is constant on the topological components of C \ T.
Furthermore, n(I'; z) = 0 for z on the unbounded component of C \ T.

As T is compact, is a unique unbounded component of C \ T.

Example:

unbounded component
nI;z)=0
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Fixpp € C\T, and let d = d(po, I') be the distance from po to I" (d > 0 as I is compact).
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1 ¢
In(@:p)l < 2n _/ 271 dp,T)

On the unbounded component, there are p with arbltrarlly large d(p, T').
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An exercise (direct computation) which we will often use is:
Exercise:

n(dA(p);z) =0ifz ¢ r(w, and

n(dA(p);z) = 1if z € Au(p).

Exercise: Compute the winding numbers in an “annulus”:
Suppose 0 < 11 <1y < o0 and I' = dA,,(p) — A (p).

Then

n(l;z) =0if [z —p| <1,

n([;z)=1ifry <|z—p| <ry,

n(l;z) =0if rp, < |z—p|.



