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series gives estimates on their size: Cauchy’s estimates.

2. Cauchy’s estimates imply Liouville’s theorem: Bounded entire (defined on all of C)
holomorphic functions are constant.

3. Liouville’s theorem gives the fundamental theorem of algebra: Every nonconstant
polynomial has a root.
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A holomorphic f: C — C is called an entire holomorphic function or perhaps just entire.

Examples: Polynomials, €%, sin z, cos z, but not %

Theorem (Liouville)
If f is entire and bounded, then f is constant.

Proof: Suppose f is entire and |f(z)| < M for all z € C. Expand around the origin:
f@) =) e
n=0

f is holomorphic on a disc of arbitrary radius = the Cauchy estimates say

||f”t9Ar(P) i’\f forallr > 0.

lenl <

Letting r — oo shows that ¢, = 0 for n > 1. In other words, f(z) = ¢ for all z.
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Proof: If P(z) does not have a root, then R(z) = is an entire holomorphic function.
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Suppose P(z) is nonconstant. Then (via an exercise)
lim P(z) = o0 = lim R(z) =
Z—00 Z—00

So R(z) is bounded.

Liouville says that R(z) and hence P(z) must be constant, a contradiction.



