Cultivating Complex Analysis:
Cauchy’s formula in a disc (3.2.4)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.

Theorem (Cauchy integral formula in a disc)

Suppose U c C is open, f: U — C is holomorphic, A,(p) C U. Then for all z € A.(p),

= / O 4

onp €2




We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.

Theorem (Cauchy integral formula in a disc)

Suppose U c C is open, f: U — C is holomorphic, A,(p) C U. Then for all z € A.(p),

= / O 4

arp) €2

It should be surprising:



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.

Theorem (Cauchy integral formula in a disc)

Suppose U c C is open, f: U — C is holomorphic, A,(p) C U. Then for all z € A.(p),

arp) €2

It should be surprising:

Values inside (large set)



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.

Theorem (Cauchy integral formula in a disc)

Suppose U c C is open, f: U — C is holomorphic, A,(p) C U. Then for all z € A.(p),

arp) €2

It should be surprising:

Values inside (large set)
are given in terms of values on the boundary (small set).



We get to perhaps the most fundamental theorem in complex analysis:
The Cauchy integral formula.

We prove a version in a disc.

Theorem (Cauchy integral formula in a disc)

Suppose U c C is open, f: U — C is holomorphic, A,(p) C U. Then for all z € A.(p),

anp) =2

It should be surprising:

Values inside (large set)
are given in terms of values on the boundary (small set).

cos(z2)
z(z-1)

A quick (but hardly only) application is to compute integrals of expressions such as
that blow up somewhere inside the cycle.
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Exercise: Suppose f is holomorphic in an open neighborhood of A,(p). Show that f at p is
the average of the values on JA,(p). That is, show
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