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Proof is to “maximize” |[f’(p)| among all maps into the disc and f(p) = 0.
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Compose with an automorphism of D to makep goto0 = F is nonempty.
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Construct a sequence {f,} in ¥ such that

lim | (p)| = suplf’(p)|

n—oo fET
Montel says (¥ is uniformly bounded), there exists a convergent subsequence,
WLOG {f,} converges to f.

By the corollary to Hurwitz, f is injective or constant.

By taking limits: |[f’(p)| > O (f not constant), f(p) =0, |f(z)| <1lforallze U.
Open mapping theorem = |f(z)| < 1forallz e U.

f must be onto, otherwise there would be an i € ¥ with |[f'(p)| < [/ (p)|.

Uniqueness left as an exercise.
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Remark: An explicit map is useful, e.g., in differential equations.

The theorem doesn’t answer how a map is constructed.

There is lots of literature on constructing the map.

E.g., if U is a polygon, there is an explicit formula: the Schwarz—Christoffel mapping.

Remark: The theorem doesn’'t answer how regular the map is up to the boundary.
The nicer the boundary, the nicer the map will be.
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Exercise: Suppose U C C is a simply connected domain. Show that for every two points
z,w € U, there exists an automorphism ¢y € Aut(U) such that ¢(z) = w.

Exercise:

a) Suppose U c C is a simply connected domain, U # C, p,g € U are distinct points, and
f: U — U is holomorphic such that f(p) = p and f(g) = q. Prove that f is the identity.

b) Find a counterexample if U = C.

Exercise: Show that D \ {0} and the annulus ann(0; 1, 2) are not biholomorphic.

Exercise: Suppose f: C — C is entire holomorphic and injective, prove that f is onto.



