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Recall, an automorphism of U is a biholomorphism f: U — U
(bijective such that f and f~! are both holomorphic).

Let us compute the automorphism group of the disc, Aut(D).
We start with certain specific automorphisms.
For a € D, define

def Z—a
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For everya € D,

() @a@) =0, 9a0)=-a, 9(0)=1~al%, @}@) = iy,
(ii) @q(dD) =D, and p,(D) =D,

(iii) @, restricted to D is an automorphism of the disc and ;' = ¢p_,.

Proof is an exercise.
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Proposition
Iff € Aut(D), then there exists an a € D and 6 € R such that
z—a

f(z) = ¢'? T = eie(pu(z).

az
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g = @g of is an automorphism with g(0) = 0 as p,(a) =0
Find a holomorphic h(z) such that g(z) = zh(z) (as in the proof of Schwarz).

18(z)|
el T

cannot be zero for z # 0 as g is injective,

Schwarz says that forz € D \ {0}, |h(z)| = <1

h can have no zeros: h(z) = g( 2

and it cannot have a zero at z = 0 as h(0) = 11_%1 TZ) =g’(0) # 0.

g is biholomorphic = g¢~!is continuous = ¢~ !(K) compact for compact K ¢ D

= |g(z)] = las|z| = 1 (exercise) = |h(z)] = las|z| =1

= |h(z)| attains a minimum inD = |ﬁ| attains a maximumin D = h is constant
= ¢(z) = az for some constant . As g € Aut(D), |a| =1 (a = ¢%).

Apply ¢, to both sides of €z = @, o f to find f(z) = p_a(z6') = eOp_,.-i0(2).
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Some good exercises to try:

Exercise: Given distinct a, b € D, show that there exists a unique f € Aut(D) such that
f(@)=band f(b) =a.
aztb

Exercise: The automorphisms of H = {z € C : Imz > 0} are of the form %2 for real
numbers a, b, ¢, d such that ad — bc # 0.

Another fun exercise, a version of which seems to appear on many exams is the following:

Exercise: Suppose U C C is a domain, D ¢ U, and f: U — C is holomorphic such that
f(dD) c JD. Find a formula for f.

Hint: The idea is to show that you can divide by finitely many ¢,(z) for various a until you
get something that has no zeros in D and will have to be a constant.
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The Schwarz—-Pick lemma gives a bound on the derivative at all points:
If f: D — D is holomorphic, nonconstant, and f(a) = b, then

1-16?
1-lal*’

If'(a)| <

Equality = f(z) = ¢_p (¢’ pa(z)) for some 0 € R.



