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Key point: The limits are “as a complex h goes to 0.”
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Definition
Let U c Cbe open. A function f: U — C is complex differentiable at zy € U if the limit
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f: U — Cis holomorphic if it is complex differentiable at every point.
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An exercise:
Proposition

IfU c Cisopenand f: U — C is holomorphic, then f is continuous.




	
	
	
	
	
	
	
	

