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It is useful to combine paths to obtain so-called chains.

For two paths 𝛾 and 𝛼,∫
𝛾+𝛼

f (z) dz def
=

∫
𝛾

f (z) dz +
∫
𝛼

f (z) dz.

Definition
A chain in U ⊂ ℂ is an expression Γ = a1𝛾1 + · · · + an𝛾n, where a1 , . . . , an ∈ ℤ and 𝛾1 , . . . , 𝛾n
are piecewise-C1 paths in U. We integrate over Γ as∫

Γ

f (z) dz =

∫
a1𝛾1+···+an𝛾n

f (z) dz def
= a1

∫
𝛾1

f (z) dz + · · · + an

∫
𝛾n

f (z) dz.

Two chains Γ1 and Γ2 in U are equivalent (we will write Γ1 = Γ2) if∫
Γ1

f (z) dz =

∫
Γ2

f (z) dz for all continuous f : U → ℂ.

Define the zero chain 0 by defining
∫

0 f (z) dz = 0 for all continuous f : U → ℂ.
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Chain arithmetic is done in the obvious way:

If Γ1 = 2𝛾1 + 𝛾2 and Γ2 = 3𝛾2 + 𝛾3,
then Γ1 + Γ2 = 2𝛾1 + 4𝛾2 + 𝛾3.

Similarly, 3Γ1 = 6𝛾1 + 3𝛾2.

We write −Γ for (−1)Γ. (Same as running all the 𝛾j backwards.)

Γ is equivalent to the zero chain if ∫
Γ

f (z) dz = 0

for all continuous f , and the chains Γ1 and Γ2 are equivalent if Γ1 − Γ2 = 0.

Remark: The domain of the continuous f is not a big deal. Whether on U, Γ1 ∪ Γ2, or ℂ. By
Tietze’s extension theorem every continuous function on a closed subset of ℂ (e.g., Γ1 ∪ Γ2)
extends to a continuous function on ℂ.

Remark: Equivalence is for all continuous functions. We will show later that for many U
and many Γ,

∫
Γ

f (z) dz = 0 for all holomorphic f .
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For any piecewise-C1 path, we could construct an equivalent chain from C1 paths.

Vice versa, for any chain where the paths connect together end to end, we could replace
them with a single path.

Given two points z,w ∈ ℂ, the segment [z,w] is the path 𝛾 : [0, 1] → ℂ given by
𝛾(t) = (1 − t)z + tw. (In chain arithmetic, −[z,w] = [w, z].)

A path is polygonal if it is equivalent to a chain [z1 , z2] + [z2 , z3] + · · · + [zk−1 , zk].

Note that for any continuous f and a path, we can find a nearby polygonal path where the
integral of f is arbitrarily close to the original (exercise).

So really, knowing how to integrate polygonal paths is “good enough.”

Most often used paths are composed of segments and arcs of circles.
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