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Let U ⊂ ℂ be open. Think of ℂ as ℝ2 for a moment.

Recall that f : U → ℂ is (real) differentiable at z0 ∈ U if there exists a real-linear
(2 × 2 matrix) Df |z0 such that

lim
h→0

|f (z0 + h) − f (z0) − (Df |z0)h|
|h| = 0 (again h ∈ ℝ2 = ℂ).

Df |z0 =

[
𝜕u
𝜕x

��
z0

𝜕u
𝜕y

��
z0

𝜕v
𝜕x

��
z0

𝜕v
𝜕y

��
z0

]
, where f = u + iv and z = x + iy.

Question: When does (Df |z0)h correspond to 𝜉h for some 𝜉 ∈ ℂ?

Answer: When Df |z0 is of the form
[

a −b
b a

]
.

I.e., when
𝜕u
𝜕x

���
z0
=

𝜕v
𝜕y

���
z0
,

𝜕v
𝜕x

���
z0
= −𝜕u

𝜕y

���
z0
.

Then Df |z0 corresponds to multiplication by 𝜉 = 𝜕u
𝜕x

��
z0
+ i 𝜕v

𝜕x

��
z0
= 𝜕v

𝜕y

��
z0
− i 𝜕u

𝜕y

��
z0

.
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Consequently,

0 = lim
h→0

|f (z0 + h) − f (z0) − 𝜉h|
|h| = lim

h→0

���� f (z0 + h) − f (z0)
h

− 𝜉

���� ,

or
lim
h→0

f (z0 + h) − f (z0)
h

= 𝜉.

So f is complex differentiable at z0 and f ′(z0) = 𝜉.

We proved that: If f is (real) differentiable at z0, with 𝜕u
𝜕x

��
z0
= 𝜕v

𝜕y

��
z0

and 𝜕v
𝜕x

��
z0
= − 𝜕u

𝜕y

��
z0

,
then f is complex differentiable at z0.
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Conversely, if f is complex differentiable at z0, then it is real differentiable at z0
(the complex derivative f ′(z0) gives the Df |z0 ).

Further, 𝜕u
𝜕x

��
z0
= 𝜕v

𝜕y

��
z0

and 𝜕v
𝜕x

��
z0
= − 𝜕u

𝜕y

��
z0

must also hold.
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If the partial derivatives exist and are continuous, then f is real differentiable, so:

Corollary
Let U ⊂ ℂ be open and let f = u + iv : U → ℂ be a function such that 𝜕u

𝜕x , 𝜕u
𝜕y , 𝜕v

𝜕x , and 𝜕v
𝜕y exist and

are continuous (that is, f is continuously differentiable). Then

𝜕u
𝜕x

=
𝜕v
𝜕y

,
𝜕v
𝜕x

= −𝜕u
𝜕y

(1)

if and only if f is holomorphic (complex differentiable at all z ∈ U), or in other words,

f ′(z) = lim
h→0

f (z + h) − f (z)
h

exists for all z ∈ U.

The equations (1) are called the Cauchy–Riemann equations.

Complex analysis is the study of their solutions.

Remark: If only the partial derivatives exist but aren’t continuous, the function may fail to
be differentiable (or even continuous) and may not be holomorphic even if it satisfies (1).
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if and only if f is holomorphic (complex differentiable at all z ∈ U), or in other words,

f ′(z) = lim
h→0

f (z + h) − f (z)
h

exists for all z ∈ U.

The equations (1) are called the Cauchy–Riemann equations.

Complex analysis is the study of their solutions.

Remark: If only the partial derivatives exist but aren’t continuous, the function may fail to
be differentiable (or even continuous) and may not be holomorphic even if it satisfies (1).



Exercise: Show that ez is holomorphic and its complex derivative is ez,
and hence sin z and cos z are also holomorphic.

Hint: Note that ex+iy = ex cos y + iex sin y and use the Corollary from previous slide.
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