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Fubini applies as the integrand is continuous if we think of each leg of JT separately.

h(z) is holomorphic by Morera. o
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By an exercise we mentioned previously (using Cauchy’s integral formula for derivatives):
If z = Y (z, t) is holomorphic for all ¢ (and ¢ continuous), then g—i and ‘;—}b are continuous.

OK, now we are done. m]
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Corollary
For a continuous f: dA,(p) — C, the Cauchy transform Cf : A,(p) — C is holomorphic.

For a random continuous f, Cf may not tend to f as we approach JA,(p).
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then f|,(y) is holomorphic.



