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A set X is convex if [a,b] C X foralla, b € X.
Leta, b, c € C be noncollinear.

A triangle T is with vertices a, b, c is the convex hull of {4, b, ¢}, that is, the smallest convex
set containing the points.

In other words, T is the set of points
ta+ trb + tsc,

where t1,tp,t3 € [0,1] and t] + £, + 3 = 1.

The triangle is oriented positively if the vertices
are ordered so that a, b, c goes counterclockwise.

The boundary JT of T is defined as the cycle
dT = [a,b] + [b,c] + [c,a].

Note that our triangle T is the solid triangle
(includes the interior).
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Theorem (Cauchy-Goursat)
Suppose U c Cis open, f: U — C is holomorphic, and T C U is a triangle. Then

/ f(z)dz =0.
aT

It is important is that T C U means the whole solid triangle is in U, not just the boundary.

Remark: It is a “Goursat” theorem not just “Cauchy” because of the proof: We do not
assume that f” is continuous as we have not proved that yet.

Proof: We prove the contrapositive.

Suppose f is continuous and suppose 3 T C U such that

‘/an(z) *

We will find a point where f is not complex differentiable.

=c#0.
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Orient each T; positively:

—
The inner sides cancel. Z Ty \\ T4% Ty \

So
c= "/an(z)dz

So for some triangle T}, the integral is at least 7.

JBCLE

Cut T! into subtriangles T, T%, 7L 11 Integral over some 8Tj1 is at least 1, 50 label it T2.

— ——
=

f(z)dz + f(z)dz + f(z)dz + f(z)dz
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Label that subtriangle T* = T; and >

A

3ty
Rinse and repeat.

After k iterations for the k™ triangle T, ‘ / f(z)dz
JTk

S
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The diameter goes to zero = the intersection is a single point:
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Write f(z) = f(zo) + a(z — z0) + g(z) for some o € C.
8= )

Were f complex differentiable at zo, then for some @, s~ would go to zero as z — z.

g( ) never goes to zero (no matter what « is).

We will prove £
Fix av. If g(zo) # O, we are done.

So assume g(zg) = 0. Cauchy’s theorem for polynomials says

/aka(z) dz = [ﬁk (f(z0) + alz — z0) + g(z)) dz = /aTk <(z)dz.
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Let d = diam(T). Then |zx — zo| < Zd—k and

9(zk) 2k|g(zk)| /
Since z; — zg, we have that g( ) does not go to zero as z — zo.

So f is not complex differentlable at zo.
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Exercise: Suppose T C C is a triangle and f: T — C a continuous function whose
restriction to the interior of T is holomorphic. Prove that /aT f(z)dz=0.

Hint: Passing some sort of limit under the integral is required.



