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Proposition
Let U c Cbeopenandf: U — R a function.

(i) The function f is harmonic if and only if for every p € U there exists an open neighborhood V
of p and a holomorphic ¢: V — C such that f = Reqp on V.

(if) The function f is harmonic if and only if for every p € U, there exists a power series expansion
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converging uniformly absolutely on every closed disc A,(p) C U.




A quick corollary:

Proposition
IfUc Cisopenand f: U — R is harmonic, then f is infinitely (real) differentiable.

Proof: Holomorphic functions are infinitely differentiable.
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Let U ¢ Cbe openand f: U — R harmonic. If g: U — R is harmonic and f + ig is
holomorphic, then g is called the harmonic conjugate of f.

Every harmonic f on a simply connected domain has a harmonic conjugate.
On C\ {0}, z - log|z| is harmonic, but fails to have a harmonic conjugate.

If it did have a harmonic conjugate then log would have a branch in C \ {0}.
Which follows from:

Proposition
IfU c Cisadomain f: U — R is harmonic and g1 and g are two harmonic conjugates of f, then
g1 =g + C for some C € R.

(f+ig1) - (f+ig2)
i

Proof: = g1 — &2 is holomorphic, real-valued = constant.
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The real and imaginary parts of a holomorphic function are harmonic.
The modulus |f(z)] is not.

But log|f(z)| is harmonic (where f is nonzero).

Proposition

Suppose U c C is open, f: U — C is holomorphic and never zero. Then
z — log|f(z)|

is harmonic.

Proof: Exercise.
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Exercise: Suppose U C C is a simply connected domain and f: U — R harmonic. Prove
there exists a holomorphic ¢: U — C such that f(z) = log|¢(z)].

Exercise: Let U, V C C be open sets and f: U — V be holomorphic. Prove:
a) If g: V — R is harmonic, then g o f is harmonic.
b) If f is a biholomorphism, then g: V — R is harmonic if and only if g o f is harmonic.

Exercise: Prove the Liouville theorem for harmonic functions: If f: C — R is harmonic
and nonnegative, then f is constant.

“bounded” for holomorphic functions < “nonnegative” for harmonic functions:
If f is bounded and holomorphic,

then log|f(z) + M| or Ref(z) + M is nonnegative for large enough M.

Conversely, if log|f(z)| > 0, then —— is bounded,

f( z)
f@-1

and if Ref(z) > 0, then m is bounded.
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It is like the D’Alembert solution of the one-dimensional wave equation.

so that we can integrate twice may sound familiar.

The wave operator is (using (x, t) for tradition’s sake):

> P

o o2 [E_E] [EJrﬁ}'
Write u = x + t and 1 = x — t (characteristic coordinates), then

> 9? J?

o2 ox2  ondu’

A solution f to the wave equation is
flx, t) =A(u) + B(n) = A(x +t) + B(x — t).

Two waves travelling in opposite directions.



