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Suppose f: D — D is holomorphic and f(0) = O, then
(i) |f(z)| < |z| forall z € D, and

(i) [F/(0)] < 1.

Furthermore, if |f(z0)| = |zo| for some zg € D \ {0} or |f'(0)| = 1, then there is a 6 € R such that
f(z) = €%z forall z € D.

This may sound very specialized, but

a) A disc is a basic neighborhood and any disc can be translated and rescaled into D.
The lemma is telling us about local behavior of a holomorphic function.

b) We'll see later that every domain “without holes” (except C) is biholomorphic to D,
so it tells us about global behavior as well.



Proof: Asf(0) =0,

f(z) = i cnz"

n=1



Proof: Asf(0) =0,

(o]

f(z) = Z izt =z i cpz" !

n=1 n=1



Proof: Asf(0) =0,

(o] (o]

f(z) = Z cnz' =2z Z 2" 1 =2¢(z)  (g(z) a holomorphic function on D.)

n=1 n=1



Proof: Asf(0) =0,

(o] (o]

f(z) = Z cnz' =2z Z 2" 1 =2¢(z)  (g(z) a holomorphic function on D.)

n=1 n=1

Take 0 < r < 1. For z € dA,(0),
If )l

||

lg(2)l =



Proof: Asf(0) =0,

f(z) = Z cnz' =2z Z 2" 1 =2¢(z)  (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),
If )l

||

lg(2) = <

S| =



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),
If )l
||
1
r

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If (@)
||
1
7
Fix any z € D and take the limitas r T 1 to find |g(z)| < 1.

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If )l
||
1
r
Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).

If(z)] <|z| forallzeD,



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If )l
||
1
r
Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).

f@] <]zl forallzeD, and  [f(0)] =

J@' - 15(0)] < 1.

lim
z—0



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If )l
||
1
r
Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).

f@] <]zl forallzeD, and  [f(0)] =

lim@' =
z—0 Z

Ig(O)] < 1.

If |f(zo)| = |zo| for some zp € D \ {0}



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If )l
||
1
r
Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).

f@] <]zl forallzeD, and  [f(0)] =

lim@' =
z—0 Z

Ig(O)] < 1.

If |[f(zo)| = |zo| for some zp € D \ {0} = g attains a maximum in D



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),

If )l
||
1
r
Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

<

S| =

lg(2) =

By the maximum modulus principle, [g(z)| < — for all z € A,(0).

f@] <]zl forallzeD, and  [f(0)] =

lim@' =
z—0 Z

Ig(O)] < 1.

If |f(zo)| = |zo0| for some zp € D \ {0} = g attains a maximum in D = g is constant



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),
If )l

||

By the maximum modulus principle, [g(z)| < % for all z € A,(0).

\*.I»—\

I8(z)| = <

Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

If(z)] <|z| forallzeD, and [f(0)| =

im ! )' 50 < 1.

If |f(z0)| = |z0| for some zg € D \ {0} = g attains a maximum in D = g is constant
= f(z) = ¢'%z.



Proof: Asf(0) =0,

flz) = Z iz =z Z 2" = zg(2) (g(z) a holomorphic function on D.)
n=1 n=1

Take 0 < r < 1. For z € dA,(0),
If )l

||

By the maximum modulus principle, [g(z)| < % for all z € A,(0).

<

\*.I»—\

lg(2) =

Fix any z € D and take the limit as r T 1 to find [g(z)| < 1. So

If(z)] <|z| forallzeD, and [f(0)| =

im ! )' 50 < 1.

If |f(z0)| = |z0| for some zg € D \ {0} = g attains a maximum in D = g is constant
= f(z) = ¢'%z.

As g(0) = f7(0), the same conclusion holds if |f(0)| = 1.
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Consider the statement for f(z) = z" forn > 1.
f takes D to D and f(0) = 0.

Forz € D\ {0},
|| = 12" < |z|.

Asf'(z) = nz"L, |f(0) =0 < 1.

A bound on the derivative does not hold at other points:
Picking the right z and n, can make |f’(z)| arbitrarily large.

We can make |z"| arbitrarily small for a fixed z € D by picking a large enough n,
but we cannot make it bigger than |z|.

Schwarz’s lemma says all holomorphic functions behave this way, not just z".
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Suppose U ¢ Cisbounded, f: U — U is holomorphic, p € U, and f(p) = p. Then
0 )] < 1.

(i) Iff'(p) =1, thenf(z) =z forallz € U.

Hint: WLOG p = 0, then consider the power series expansions of f, the

f with itself, f(f(f(-- - f(z)--+))).

For (i) consider the linear term of f £,
For (ii) use Cauchy estimates on the first nonzero nonlinear term of f*.
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