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Let us restate the inverse function theorem.

Theorem (Inverse function theorem for holomorphic functions)

Suppose U c Cis open, f: U — C is holomorphic, p € U, and f'(p) # 0. Then there exist open sets
V,W c Csuchthatp e V c U, f(V) = W, the restriction f|y is injective (one-to-one), and hence a
g: W — V exists such that g(w) = (f|v) " (w) for all w € W. Furthermore, g is holomorphic and

g w) = forallw e W.
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Let us restate the inverse function theorem.

Theorem (Inverse function theorem for holomorphic functions)

Suppose U c Cis open, f: U — C is holomorphic, p € U, and f'(p) # 0. Then there exist open sets
V,W c Csuchthatp e V c U, f(V) = W, the restriction f|y is injective (one-to-one), and hence a
g: W — V exists such that g(w) = (f|v) " (w) for all w € W. Furthermore, g is holomorphic and

g w) = forallw e W.
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In other words, if f” is nonzero somewhere, f is injective near that point.



Let us restate the inverse function theorem.

Theorem (Inverse function theorem for holomorphic functions)

Suppose U c Cis open, f: U — C is holomorphic, p € U, and f'(p) # 0. Then there exist open sets
V,W c Csuchthatp e V c U, f(V) = W, the restriction f|y is injective (one-to-one), and hence a
g: W — V exists such that g(w) = (f|v) " (w) for all w € W. Furthermore, g is holomorphic and

g w) = forallw e W.

1
f(8(w))

In other words, if f” is nonzero somewhere, f is injective near that point.

Only local: f(z) = z2 maps C \ {0} to itself, f* does not vanish, but f is 2-to-1 globally.



Real functions can be injective and the derivative can vanish:
f: R >R, f(x) =23 is injective but f/(0) = 0.
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Real functions can be injective and the derivative can vanish:
f:R >R, f(x) =, isinjective but f'(0) = 0.

Holomorphic functions locally all behave like z + z¥, and that is injective only if k = 1.

Lemma

IfUc Cisopenandf: U — C is holomorphic and injective, then f’ is never zero.

Proof: Suppose f nonconstant and f’(p) = 0.
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= f(z) — whas at least two distinct zeros = f is not injective.
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Proof: Fix w € f(A,(p)) and C € Ax(p) such that f(C) = w.
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Proof: Fix w € f(A,(p)) and C € Ax(p) such that f(C) = w.

f’ is never zero, so z — f(z) — w has a simple zero atz = C.



We can actually compute the inverse:

Lemma
Iff: U — C is holomorphic and injective, and A,(p) C U. Then for all w € f(Ax(p)),
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Proof: Fix w € f(A,(p)) and C € Ax(p) such that f(C) = w.
f’ is never zero, so z — f(z) — w has a simple zero at z = C.
By the residue theorem
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We can actually compute the inverse:
Lemma
Iff: U — C is holomorphic and injective, and A,(p) C U. Then for all w € f(Ax(p)),
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Proof: Fix w € f(A(p)) and C € A/(p) such that f(C) =
f’ is never zero, so z — f(z) — w has a simple zero at z = C.
By the residue theorem
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We can actually compute the inverse:
Lemma
Iff: U — C is holomorphic and injective, and A,(p) C U. Then for all w € f(Ax(p)),
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Proof: Fix w € f(A(p)) and C € A/(p) such that f(C) =
f’ is never zero, so z — f(z) — w has a simple zero at z = C.
By the residue theorem
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Consequently, f~! is holomorphic without even using the inverse function theorem.
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Theorem

IfU c Cisopenandf: U — C is holomorphic and injective, then f(U) is open, f’ is never zero on
U, and f~: f(U) — U is holomorphic.

Proof: f(U) is open by the open mapping theorem.
By one of the lemmas, f” is never zero on U.

By the other (or IFT), f~! is holomorphic. m]



