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Another criterion that can be put on the list is the following
(although we’ll only prove one direction right now).

Proposition

Let U c C be a domain. If Co \ U is connected, then U is simply connected.

Proof: Take S = C \ U and let I be a cycle in U.

¢(z) =n(l;z)is continuouson C\I' = ¢ is continuous on S \ {oo}.

On the unbounded component of C \ T, we have ¢ =0, so ¢ = 0 in a neighborhood of co.
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Remark: It is important to use Co, and not C: If U = C \ {0} (not simply connected), then
C \ U = {0} is connected, but C, \ U = {0, oo} is not connected.
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2) If Uy N Uy is nonempty and connected, then U; U Uj is simply connected.



