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Theorem (Rouché)

Suppose U C C is open, T is a cycle in U homologous to zero in U, and n(T; z) is either 0 or 1 for all
z ¢ T. Suppose that f: U — C and g: U — Cq, are meromorphic functions with no zeros or
poles on I such that

If(z) —g@)| < |f(z)] +1g(z)]  forallz€T.

Let V ={z € U\T :n(l;z) = 1}. Let Ny, Ny be the number of zeros in V and Pf, Pq the number of
poles in V (both counting multiplicity) of f and g respectively. Then

Nf - P = N, - P,

Corollary (Rouché)

Let U, I and V be as in the theorem. Suppose f: U — C and g: U — C are holomorphic such that
|f(z) — g(2)| < |f(2)| +1g(2)| for all z € T. Then f and g have the same number of zeros (counting
multiplicity) in V.




Classical statement of the theorem uses the weaker inequality

If(2) =g < [f(2)l



Classical statement of the theorem uses the weaker inequality

If(2) = 8(2)l < [f(z)]
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f ( ) is never negative (and it is never zero) on I' (hence on a neighborhood).

So ¢(z) =
Let Log be the principal branch of log on C \ (=eo, 0].

The function % has an antiderivative Log o@ on a neighborhood of I'.

By Cauchy’s theorem for derivatives, together with the argument principle:
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= (Nf = Py) = (Ng = Py).
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The classical hypothesis |f(z) — g(z)| < |f(z)| is often sufficient.
Example: Consider P(z) = z" + 1. Let us use Rouché to show that all the zeros are on dD.

On aAl—E(O)/
|P(z) -1 =]2[" <1=|1].

By Rouché P(z) and 1 have the same number of zeros in A_(0).

On dA14¢(0),
|P(z) - 2"| =1 < |Z"].

By Rouché, P(z) and z" have the same number of zeros in Aj1¢(0).
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=22 <23 =||242%| - |2Y| < |2* + 2427

z* + 2422 has zeros at +V24i (outside D) and two zeros at the origin (inside D). So P(z) also
has two zeros in D.

If |z| = 46 + €, then
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(Actually the largest zero of P has modulus less than 10).



