
Cultivating Complex Analysis:
The open mapping theorem (5.5)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato



A continuous function from ℝ2 to ℝ2 can do all sorts of things to the topology.

(x, y) ↦→ (x, xy), takes all of ℝ2, which is both open and closed, to the set{
(x, y) : x ≠ 0 or y = 0

}
, which is neither open nor closed.

Holomorphic functions are always nice to your topology.

For a continuous map, f−1(V) is open whenever V is.

For a holomorphic map, f (V) is open whenever V is, unless f is constant.
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Theorem (Open mapping)
Let U ⊂ ℂ be a domain and f : U → ℂ be holomorphic and nonconstant. Then f (V) is an open set
for every open set V ⊂ U.

Proof: Suppose f is not constant. As U is connected, f is not constant near every point.

Given p ∈ V, ∃ Δr(p) ⊂ V and a 𝛿 > 0 such that |f (z) − f (p)| > 𝛿 for all z ∈ 𝜕Δr(p).

z ↦→ f (z) − f (p) has at least one zero in Δr(p).

Take w ∈ Δ𝛿
(
f (p)

)
. For all z ∈ 𝜕Δr(p),�� (f (z) − w

)
−
(
f (z) − f (p)

) �� = |f (p) − w| < 𝛿 < |f (z) − f (p)| .

By Rouché, z ↦→ f (z) − w has at least one zero in Δr(p). So

Δ𝛿
(
f (p)

)
⊂ f

(
Δr(p)

)
. □
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The open mapping theorem is a stronger version of the maximum principle.

f (p) is in the interior of f (V) for any open neighborhood V of p.
So |f (z)| cannot achieve a maximum at p.

The proof gives the more explicit:

|f (z) − f (p)| > 𝛿 for z ∈ 𝜕Δr(p), then Δ𝛿
(
f (p)

)
⊂ f

(
Δr(p)

)
.
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Exercise: Suppose U,V ⊂ ℂ are open and f : U → ℂ is holomorphic and bĳective.
Prove that f−1 : V → U is continuous.

We’ll prove in the next lecture that f−1 is, in fact, holomorphic.

Typical application/exercise of the open mapping theorem is something like:

Exercise: Let U ⊂ ℂ be a domain and let f : U → ℂ be holomorphic.
Prove that if (Im f (z))2 − (Re f (z))2 = 1 for all z ∈ U, then f is constant.
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