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An LFT, %, can be viewed as a 2 X 2 complex matrix.

We need to view the Riemann sphere as the so-called (one-dimensional) complex
projective space.

Define the equivalence relation ~ on C2 \ {0} by u ~ v & u = Av for some A € C. Define
cp! N0},

CP! is the set of “complex lines through the origin” in C2,

or the set of one-dimensional vector subspaces of C2.

Denote by [z : w] € CP! the equivalence class containing (z, w) € C?\ {0}.
Define the bijection W: Co, — CP! as

\p(z):{[zzl] %fzeC,
[1:0] ifz=co.
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AsM[%]=[%*5], the function f corresponds to the linear map v — Mo on C2.
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Note that any scalar multiple of M gives the same f.
An invertible M is a map from C? \ {0} to C2\ {0}.
Let t: C2\ {0} — CP! be the map n((z, w)) = [z : w].

We have the commutative diagram:

c2\ {0} 5 2\ {0}

b b
cpt 2LV cpt

o | . ol |
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The inverse of an LFT is an LFT, simply invert the matrix.

The formula M~ = L [ 4 -] gives a handy formula for the inverse of an LFT. You can

also just forget about dividing by the determinant since everything is up to a multiple.
So LFTs form a group under composition, the Mdbius group.

The group is generated by T,, D,, and I fora € C.
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