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Because we have lots of tricks to compute c_1. We'll go over a few.
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Minor technicality: Why the symmetric limit is sufficient?



Sometimes we just recognize a path integral.



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

i0 z+1/z

On the unitcirclez =1/z.  Soifz=¢% cos0 =Rez= =5 and sinf =Imz = 1z

2i




Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

i0 z+1/z

On the unitcirclez =1/z.  Soifz=¢% cos0 =Rez= =5 and sinf =Imz = 1z

2i

Example: Suppose c > 1.

2n 1
JE—ts
o C+cosf



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

i0 z+1/z

On the unitcirclez =1/z.  Soifz=¢% cos0 =Rez= =5 and sinf =Imz = 1z

2i

Example: Suppose c > 1.

2n
1
/ —dQZ/ %,ldz
o C+cosf 3DC+Z+2/zzz



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

i0 z+1/z

On the unitcirclez =1/z.  Soifz=¢% cos0 =Rez= =5 and sinf =Imz = 1z

2i

Example: Suppose c > 1.

2n
1 1 1
[Fot i [ L leeaf 1
o C+cosf 3DC+Z+2/212 op 22 +2cz+1



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

On the unitcirclez = 1/z.  Soifz=¢9, cosO =Rez= “Tl/z and sin0 = Imz = =L

2i

Example: Suppose c > 1.

2n
1 1 1
[Fot i [ L leeaf 1
o C+cosf 3DC+Z+2/212 op 22 +2cz+1

————— has two poles: —c + Vc? — 1, one inside and one outside the unit circle.
224+ 2cz+1



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

1 . -1
i cosO =Rez = “T/Z and sin6 = Imz = =

On the unitcirclez = 1/z.  Soifz =¢ T

Example: Suppose c > 1.

2n
1
[ orgito= [ —tppt=ti [ o
g C+cos0 3DC+Z+1/Zzz oD 22 +2cz+1

————— has two poles: —c + Vc? — 1, one inside and one outside the unit circle.
224+ 2cz+1

2n
/ _r d6 = (-2i)(2mi) Res (; —Cc+ 1)
0

c+cosO 24 2cz+1’



Sometimes we just recognize a path integral.

Often, integrals of trigonometric functions are integrals over the unit circle.

1 . -1
i cosO =Rez = “T/Z and sin6 = Imz = =

On the unitcirclez = 1/z.  Soifz =¢ T

Example: Suppose c > 1.

2n
1
[ orgito= [ —tppt=ti [ o
g C+cos0 3DC+Z+1/Zzz oD 22 +2cz+1

————— has two poles: —c + Vc? — 1, one inside and one outside the unit circle.
224+ 2cz+1

mo 1 2n
/ — 40 = (-2)2ni)Res | ——;—c+ V2 - 1| = .
g C+cos0 22 +2cz+1 2_1




A common computation via the residue theorem are inverse Laplace transforms.
Mellin’s inversion formula says that given a transform F(s), the original f(t) is given by

)= L7 FO)] = 5 lim [ tFo)ds

for some c € R (usually ¢ > 0) is the inverse.



A common computation via the residue theorem are inverse Laplace transforms.
Mellin’s inversion formula says that given a transform F(s), the original f(t) is given by

)= L7 FO)] = 5 lim [ tFo)ds

for some c € R (usually ¢ > 0) is the inverse.
As an exercise, try your hand at computing a few. Say

1
s(s+1)

52

(s+2)2(s2+1)

-1

Lt , or




A common computation via the residue theorem are inverse Laplace transforms.
Mellin’s inversion formula says that given a transform F(s), the original f(t) is given by

)= L7 FO)] = 5 lim [ tFo)ds

for some c € R (usually ¢ > 0) is the inverse.
As an exercise, try your hand at computing a few. Say

1
s(s+1)

52

(s+2)2(s2+1)

Hint: Pick the correct vertical line (pick a ¢) and an arc that goes around all the poles.

-1

Lt , or




