Cultivating Complex Analysis:
The logarithm (4.1.1)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato



Consider the primitive of z".



Consider the primitive of z".

n+1

If n # -1, the primitive is (notdefined atz=0ifn+1 < 0)

n+1



Consider the primitive of z".

n+1

If n # -1, the primitive is (notdefined atz=0ifn+1 < 0)

n+1
What about z7! = 1/2?



Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z71 = 1/2?

Consider the slit plane

U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.



Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z71 = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.



Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z7! = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U— C



Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1

What about z7! = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U— C

We want to show Log z = log|z| + i Arg z (principal branch of the argument).
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Set L(z) = log|z| + i Argz (WTS that L = Log).
L(1) = 0 = Log(1), good!
¢La) = ploglal i Argz — | |piArgz — 5
L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L'(z)et® = L/(z)z.
Et voila!
Using a different branch of the argument gets another antiderivative.
Emboldened, we define
logz o log|z| +iargz.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.
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Here are the real and imaginary parts of logz = log|z| + iarg z:

If we travel the unit circle in the z-plane, we travel the marked path on the graph.
The real part is a nice function, it is the normal real log: (0, c0) — R applied to |z|.
The imaginary part has infinitely many values.

Nevertheless, it is the correct definition. Much more useful than the principal branch.
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How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

1
/ Edz “=" logl-1logl “=" 2mi.
oD

Maybe still not quite right.
It works by following one “branch” of the logarithm along the path and then subtracting.
Let’s see that graph again.
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What we do:

=0.

We start with the value log 1

Then we follow the graph around the circle until we end at log 1 = 2.
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A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

That’s what we did in the computation above.



