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numbers ¢, € C for n € Z such that
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converging uniformly absolutely on compact subsets of ann(p; r1,r2). The numbers ¢, are given by
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where y is any circle of radius s, r1 < s < ry, centered at p oriented counterclockwise.
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We will expand the two integrals separately.
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We can swap the series limit with the integral as the convergence is uniform on the circle.
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(The last equality because [, (€ p)"""1dC # 0 only when 1 = m.)



We differentiate /antidifferentiate formally (except for antidifferentiating the c_1(z — p)_l).



We differentiate/antidifferentiate formally (except for antidifferentiating the c_1(z — p)_l).

Proposition
Supposep € C,0< 11 <1 < 00, and f: ann(p;r1,r2) — C is defined by

[ee]

f(z) = Z cn(z—p)", converging uniformly on compact subsets of ann(p;r1,12).

n=—oo




We differentiate /antidifferentiate formally (except for antidifferentiating the c_i(z — p) ™).

Proposition
Supposep € C,0< 11 <1 < 00, and f: ann(p;r1,r2) — C is defined by

[ee]

f(z) = Z cn(z—p)", converging uniformly on compact subsets of ann(p;r1,12).

n=-—oo

(i) Then f is holomorphic and its derivative is defined by

f'(z) = Z nea(z—p)"™t,  converging uniformly on compact subsets of ann(p;r1, ).

n=-—oo




We differentiate /antidifferentiate formally (except for antidifferentiating the c_i(z — p) ™).

Proposition
Supposep € C,0< 11 <1 < 00, and f: ann(p;r1,r2) — C is defined by

[ee]

f(z) = Z cn(z—p)", converging uniformly on compact subsets of ann(p;r1,12).

n=-—oo

(i) Then f is holomorphic and its derivative is defined by

f'(z) = Z nea(z—p)"™t,  converging uniformly on compact subsets of ann(p;r1, ).

n=—o0o0
(if) Ifc.1 =0, then f = F', where

[ee]

F(z) = Z nCJ': 7 (z—p)"*',  converging uniformly on compact subsets of ann(p;r1,r2).

n=—oo,n#-1
y.




We differentiate /antidifferentiate formally (except for antidifferentiating the c_i(z — p) ™).

Proposition
Supposep € C,0< 11 <1 < 00, and f: ann(p;r1,r2) — C is defined by

[ee]

f(z) = Z cn(z—p)", converging uniformly on compact subsets of ann(p;r1,12).

n=-—oo

(i) Then f is holomorphic and its derivative is defined by

f'(z) = Z nea(z—p)"™t,  converging uniformly on compact subsets of ann(p;r1, ).

n=—o0o0
(if) Ifc.1 =0, then f = F', where

[ee]

F(z) = Z nCJ': 7 (z—p)"*',  converging uniformly on compact subsets of ann(p;r1,r2).

n=—oo,n#-1
y.

Proof: Exercise.



Some more useful exercises:



Some more useful exercises:

Exercise: Suppose f and g are holomorphic functions defined on ann(p; ry, 2). Let a, be
the coefficients in the Laurent series for f and b, be the coefficients in the Laurent series for
g. Suppose that a, § € C. Show that the Laurent series for the function af + g has
coefficients aa,, + b,.
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Exercise: Suppose f and g are holomorphic functions defined on ann(p; ry, 2). Let a, be
the coefficients in the Laurent series for f and b, be the coefficients in the Laurent series for
g. Suppose that a, § € C. Show that the Laurent series for the function af + g has
coefficients aa,, + b,.

Exercise: Expand the function f(z) = m in the sets ann(0;0, 1), ann(0; 1, 2), and
ann(0; 2, o).



