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Definition
Let U ⊂ ℂ be open. A set ℱ of holomorphic functions f : U → ℂ is called a normal family if
every sequence in ℱ has a subsequence that converges uniformly on compact subsets (the
limit need not be in ℱ ).

A set ℱ of functions on U is locally bounded if for every p ∈ U, there is a disc Δr(p) ⊂ U and
M > 0 such that ∥f ∥Δr(p) ≤ M for all f ∈ ℱ (i.e., |f (z)| ≤ M for all z ∈ Δr(p) and all f ∈ ℱ ).

In more modern language:

ℱ normal family
=

ℱ precompact in the space of holomorphic functions on U with the topology of uniform
convergence on compact subsets.

Exercise: Prove that “locally bounded” means “bounded on compact subsets.”
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Theorem (Montel)
Let U ⊂ ℂ be open and let ℱ be a locally bounded set of holomorphic functions on U. Then ℱ is a
normal family

(every sequence has a subsequence that converges uniformly on compact subsets).

We apply Arzelà–Ascoli, so we prove ℱ being holomorphic means ℱ is equicontinuous.

Proof: Consider p ∈ U, Δr(p) ⊂ U, such that ∥f ∥
Δr(p) ≤ M for all f ∈ ℱ .

If z ∈ Δr/2(p) and 𝜁 ∈ 𝜕Δr(p), then |𝜁 − z| ≥ r/2. So for z ∈ Δr/2(p) and all f ∈ ℱ ,

|f ′(z)| =
���� 1
2𝜋i

∫
𝜕Δr(p)

f (𝜁)
(𝜁 − z)2

d𝜁
���� ≤ 1

2𝜋

∫
𝜕Δr(p)

|f (𝜁)|
|𝜁 − z|2 |d𝜁 | ≤ 1

2𝜋

∫
𝜕Δr(p)

M
(r/2)2

|d𝜁 | = 4M
r

.

|f (z) − f (p)| =
����∫

[p,z]
f ′(𝜁) d𝜁

���� ≤ ∫
[p,z]

|f ′(𝜁)| |d𝜁 | ≤ 4M
r

|z − p|.

⇒ ℱ is equicontinuous ( 4M
r does not depend on f ).

⇒ Arzelà–Ascoli applies to any sequence in ℱ ⇒ ℱ is a normal family. □
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Montel’s theorem is good for finding extremal functions.

E.g., we will prove the Riemann mapping theorem: A biholomorphism of a simply
connected U to 𝔻 is a map that maximizes the derivative at a point.
Montel gives us a way of finding a maximizer.

Another commonly used consequence of Montel is Vitali’s theorem.

Theorem (Vitali)
Suppose U ⊂ ℂ is a domain, {fn} is a locally bounded sequence of holomorphic functions that
converges pointwise on a set E ⊂ U, and E has a limit point in U. Then {fn} converges uniformly
on compact subsets in U.

Proof is an exercise.
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Exercise: Prove the converse to Montel: If ℱ is a normal family of holomorphic functions
on an open set U ⊂ ℂ, then ℱ is locally bounded.

Exercise: Let U ⊂ ℂ be open and ℱ a normal family of holomorphic functions on U. Show
that {f ′ : f ∈ ℱ } is a normal family. Note: The converse is false without an extra
hypothesis.

Exercise: Let U ⊂ ℂ be a domain, p ∈ U, and suppose ∃ a nonconstant bounded
holomorphic function on U.
a) Prove ∃ a holomorphic F : U → 𝔻 such that F′(p) ≠ 0, and |f ′(p)| ≤ |F′(p)| for all
holomorphic f : U → 𝔻.
b) Show F(p) = 0.

Exercise: Show that if the partial sums of a power series centered at p are uniformly
bounded on Δr(p) for some r > 0, then the power series converges in Δr(p).
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