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For a holomorphic map, f(V) is open whenever V is, unless f is constant.
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Let U c C be a domain and f: U — C be holomorphic and nonconstant. Then f(V) is an open set
for every open set V C U.

Proof: Suppose f is not constant. As U is connected, f is not constant near every point.
GivenpeV, 3 m c Vand a 6 > 0 such that |[f(z) — f(p)| > 0 for all z € JA,(p).

z = f(z) — f(p) has at least one zero in A,(p).

Take w € As(f(p)). For all z € dA(p),

[(f@) - w) = (@) = f(p)] = [f(p) —w| < 6 < |f(z) - f(p)]-

By Rouché, z — f(z) — w has at least one zero in A,(p). So

As(f(p)) < f(Arlp). O
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The open mapping theorem is a stronger version of the maximum principle.

f(p) is in the interior of f(V) for any open neighborhood V of p.
So |f(z)| cannot achieve a maximum at p.

The proof gives the more explicit:

If(z) = f(p)| > 6 for z € IA,(p), then As (f(p)) C f(Ar(p))-
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Typical application/exercise of the open mapping theorem is something like:

Exercise: Let U C C be a domain and let f: U — C be holomorphic.
Prove that if (Imf(z))? — (Ref(z))? = 1 for all z € U, then f is constant.



