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Definition
Let U ⊂ ℂ be open. A twice continuously differentiable f : U → ℝ is harmonic if

∇2f =
𝜕2f
𝜕x2 + 𝜕2f

𝜕y2 = 0 on U.

∇2 (sometimes written Δ) is the Laplacian.

Convenient to write using Wirtinger operators:

4 𝜕2

𝜕z̄𝜕z
f = 4

[
1
2

(
𝜕

𝜕x
+ i 𝜕

𝜕y

)] [
1
2

(
𝜕

𝜕x
− i 𝜕

𝜕y

)]
f =

[
𝜕2

𝜕x2 + 𝜕2

𝜕y2

]
f = ∇2f .

f is harmonic ⇔ 𝜕f
𝜕z

is holomorphic.
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Suppose f : U → ℝ is harmonic.

Find (locally) a primitive g of the holomorphic
𝜕f
𝜕z

.

Let c(z) = f (z) − g(z) ⇒ c is C2 and 𝜕c
𝜕z

=
𝜕f
𝜕z

− 𝜕g
𝜕z

=
𝜕f
𝜕z

− 𝜕f
𝜕z

= 0.

Let h = c̄ ⇒ 𝜕h
𝜕z̄

=
𝜕c̄
𝜕z̄

=
𝜕c
𝜕z

= 0 ⇒ h is holomorphic.

⇒ f (z) = g(z) + h(z), g and h holomorphic.

Let 𝜑 = g + h. As f is real-valued,

f (z) = Re f (z) = g(z) + h(z) + g(z) + h(z)
2 =

g(z) + h(z) + g(z) + h(z)
2 = Re 𝜑(z).

Note: This works locally, or in a simply connected U where we can find the primitive g.

Proposition
Let U ⊂ ℂ be a simply connected domain and f : U → ℝ a harmonic function. Then there exists a
holomorphic 𝜑 : U → ℂ such that f = Re 𝜑.

Similarly f is the imaginary part of some holomorphic function.
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A quick corollary:

Proposition
If U ⊂ ℂ is open and f : U → ℝ is harmonic, then f is infinitely (real) differentiable.

Proof: Holomorphic functions are infinitely differentiable.



Definition
Let U ⊂ ℂ be open and f : U → ℝ harmonic. If g : U → ℝ is harmonic and f + ig is
holomorphic, then g is called the harmonic conjugate of f .

Every harmonic f on a simply connected domain has a harmonic conjugate.

On ℂ \ {0}, z ↦→ log|z| is harmonic, but fails to have a harmonic conjugate.

If it did have a harmonic conjugate then log would have a branch in ℂ \ {0}.
Which follows from:

Proposition
If U ⊂ ℂ is a domain f : U → ℝ is harmonic and g1 and g2 are two harmonic conjugates of f , then
g1 = g2 + C for some C ∈ ℝ.

Proof:
(f + ig1) − (f + ig2)

i
= g1 − g2 is holomorphic, real-valued ⇒ constant.
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The real and imaginary parts of a holomorphic function are harmonic.

The modulus |f (z)| is not.

But log|f (z)| is harmonic (where f is nonzero).

Proposition
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic and never zero. Then

z ↦→ log|f (z)|

is harmonic.

Proof: Exercise.
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Exercise: Suppose U ⊂ ℂ is a simply connected domain and f : U → ℝ harmonic. Prove
there exists a holomorphic 𝜑 : U → ℂ such that f (z) = log|𝜑(z)|.

Exercise: Let U,V ⊂ ℂ be open sets and f : U → V be holomorphic. Prove:
a) If g : V → ℝ is harmonic, then g ◦ f is harmonic.
b) If f is a biholomorphism, then g : V → ℝ is harmonic if and only if g ◦ f is harmonic.

Exercise: Prove the Liouville theorem for harmonic functions: If f : ℂ → ℝ is harmonic
and nonnegative, then f is constant.

“bounded” for holomorphic functions ↔ “nonnegative” for harmonic functions:

If f is bounded and holomorphic,
then log|f (z) + M| or Re f (z) + M is nonnegative for large enough M.

Conversely, if log|f (z)| ≥ 0, then 1
f (z) is bounded,

and if Re f (z) ≥ 0, then
f (z) − 1
f (z) + 1

is bounded.
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Remark: Writing 𝜕2

𝜕x2 + 𝜕2

𝜕y2 = 4 𝜕2

𝜕z̄𝜕z
so that we can integrate twice may sound familiar.

It is like the D’Alembert solution of the one-dimensional wave equation.

The wave operator is (using (x, t) for tradition’s sake):

𝜕2

𝜕t2 − 𝜕2

𝜕x2 =

[
𝜕

𝜕t
− 𝜕

𝜕x

] [
𝜕

𝜕t
+ 𝜕

𝜕x

]
.

Write 𝜇 = x + t and 𝜂 = x − t (characteristic coordinates), then

𝜕2

𝜕t2 − 𝜕2

𝜕x2 = −4 𝜕2

𝜕𝜂𝜕𝜇
.

A solution f to the wave equation is

f (x, t) = A(𝜇) + B(𝜂) = A(x + t) + B(x − t).

Two waves travelling in opposite directions.
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𝜕x2 =

[
𝜕

𝜕t
− 𝜕

𝜕x

] [
𝜕

𝜕t
+ 𝜕

𝜕x

]
.

Write 𝜇 = x + t and 𝜂 = x − t (characteristic coordinates), then

𝜕2

𝜕t2 − 𝜕2

𝜕x2 = −4 𝜕2

𝜕𝜂𝜕𝜇
.

A solution f to the wave equation is

f (x, t) = A(𝜇) + B(𝜂) = A(x + t) + B(x − t).

Two waves travelling in opposite directions.


