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Theorem (Hurwitz)
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such that n(I';z) is 0 or 1 for all z ¢ T'. Suppose f has no zeros on I and k zeros (counting
multiplicity) in V = {z € U\ T : n(T;z) = 1}. Then there is an N such that for all n > N, f, has k
zeros (counting multiplicity) in V.
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Let U c C be open and f,,: U — C a sequence of holomorphic functions converging uniformly on
compact subsets to a holomorphic f: U — C. Suppose I is a cycle in U homologous to zero in U,
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zeros (counting multiplicity) in V.

Proof: I' is compact = thereisa 6 > 0suchthatd < |f(z)| forallzeT.
{fu} converges uniformly to f onT.

For n large enough,
@) -f,@)] <5 <|f@  VzeT

Rouché’s theorem = f and f, have the same number of zeros in V. |

“No zeros onI'” isnecessary: I'=dD, f(z)=z-1, fu(z)=2z+(1- %).
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Example: For every integer k > 0, 3 N such that Vd > N,

(=1)"
Pa(z) = Z(Zn)'

has exactly 2k zeros in A(0).

Proof:
P, are the partial sums of the power series of cos(z), which has exactly 2k zeros in Ar(0).
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The usual application is for a small disc:

Suppose {f,} is a sequence of holomorphic functions on U converging uniformly on
compact subsets to f. Suppose zy is a zero of f of order k.

Then for a small enough A,(zp), 3 N such thatVn > N,
fn has k zeros counting multiplicity in A,(zo).
(use T' = dA,(zp))

Hurwitz theorem does not work for real functions.

Example:
flx)=x2, fulx)=x>+1.  f, — f uniformly, but f, never zero.

f@) =22, fulz)=2*+ % fu — f uniformly.

S|

Forany € > 0, z2 + 1 has two zeros in A.(0), for large enough n: i
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Injective holomorphic mappings are called univalent.

Corollary

Suppose U c C is a domain and f,,: U — C are univalent holomorphic functions that converge
uniformly on compact subsets to f: U — C. Then f is either univalent or constant.

Proof: Suppose f is nonconstant. Suppose 3 distinct z; and z in U such that
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Another common application is the following exercise.

Exercise: Suppose U C C is a domain, and f,,: U — C are holomorphic, nowhere zero, and
converge uniformly on compact subsets to f: U — C. Show that either f is nowhere zero,
or f is identically zero.



