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fu: U — C. Then {f,} contains a subsequence that converges uniformly on compact subsets.

Proof: d(z, JU) = distance to the boundary of U. Define
K,={zeU:d(z,dU) > /nand |z| < n}.

K, is compact (it is closed in C and bounded), U =JK,,

K; ={ze U:d(z,dU) > 1/rand |z| < ¢} (exercise), K;C K;

. and U =UKj].

Arzela—-Ascoli theorem on compact sets =
3 subsequence {f1,,} of {f,} converging uniformly on Kj.
3 subsequence {f2,,} of {f1,,} converging uniformly on Kj, and so on.

Consider {fy}. Any compact K C U is in some K; (open cover).



Corollary (Arzela—Ascoli)

Let U c C be open and let {f,,} be pointwise bounded and equicontinuous sequence of functions
fu: U — C. Then {f,} contains a subsequence that converges uniformly on compact subsets.

Proof: d(z, JU) = distance to the boundary of U. Define
K,={zeU:d(z,dU) > /nand |z| < n}.

K, is compact (it is closed in C and bounded), U =JK,,

K; ={ze U:d(z,dU) > Vrand |z| < ¢} (exercise), K;C K}, ,,

and U = JKj.
Arzela—-Ascoli theorem on compact sets =
3 subsequence {f1,,} of {f,} converging uniformly on Kj.

3 subsequence {f2,,} of {f1,,} converging uniformly on Kj, and so on.

Consider {fy}. Any compact K C U is in some K; (open cover).
The tail {f,,n},, is a subsequence of {f¢n}, ;.



Corollary (Arzela—Ascoli)

Let U c C be open and let {f,,} be pointwise bounded and equicontinuous sequence of functions
fu: U — C. Then {f,} contains a subsequence that converges uniformly on compact subsets.

Proof: d(z, JU) = distance to the boundary of U. Define
K,={zeU:d(z,dU) > /nand |z| < n}.

K, is compact (it is closed in C and bounded), U =JK,,

K; ={ze U:d(z,dU) > Vrand |z| < ¢} (exercise), K;C K}, ,,

and U = JKj.
Arzela—-Ascoli theorem on compact sets =
3 subsequence {f1,,} of {f,} converging uniformly on Kj.

3 subsequence {f2,,} of {f1,,} converging uniformly on Kj, and so on.

Consider {fy}. Any compact K C U is in some K; (open cover).
The tail {f,,n},, is a subsequence of {f¢n}, ;.
= {fun} uniformly convergent on K; and thus on K.



Exercise: Suppose that f,,: [0,1] — C are functions that are pointwise bounded, (real)
differentiable, and for some M > 0, we have |f,(t)] < M for all f € [0, 1] and all n. Prove that
there exists a subsequence that converges uniformly on [0, 1].



Exercise: Suppose that f,,: [0,1] — C are functions that are pointwise bounded, (real)
differentiable, and for some M > 0, we have |f,(t)] < M for all f € [0, 1] and all n. Prove that
there exists a subsequence that converges uniformly on [0, 1].

Exercise: Suppose f,;: dD — C are uniformly bounded continuous functions. Let g(z, w)
be a continuous function on D x dD. Define F,: D — C by

F.(z) = /alDfn(w)g(z, w) dw.

Show that {F,} has a uniformly convergent subsequence.



Exercise: Suppose that f,,: [0,1] — C are functions that are pointwise bounded, (real)
differentiable, and for some M > 0, we have |f,(t)] < M for all f € [0, 1] and all n. Prove that
there exists a subsequence that converges uniformly on [0, 1].

Exercise: Suppose f,;: dD — C are uniformly bounded continuous functions. Let g(z, w)
be a continuous function on D x dD. Define F,: D — C by

F.(z) = /alDfn(w)g(z, w) dw.

Show that {F,} has a uniformly convergent subsequence.

Exercise: Suppose (X, d) is a compact metric space and {f,} an equicontinuous sequence of
functions on X. If {f,} converges pointwise, show that it converges uniformly.



