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cos(z2)

A quick (but hardly only) application is to compute integrals of expressions such as

that blow up somewhere inside the cycle.
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where C — g (_Cl is holomorphic. So ‘:
1O 4o [ 1O |
T NErth
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(by Cauchy’s theorem)
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Exercise: Suppose f is holomorphic in an open neighborhood of A,(p). Show that f at p is
the average of the values on JA,(p). That is, show

27

fp)= 5= [ Fo+reya



