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exist and are never zero.

We also consider y as a set, we write y to mean y([a, b]).

E.g., wesay yisin Uor y c Uif y([a,b]) c U.
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Note, for example, on t € (0,1), y’(t) = 1, and so limy; () = 1.
Similarly lim,; y'(t) = i, etc.
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Given a piecewise-C! path y: [a,b] — C and a continuous function f on y, we define the
line integral (or path integral, curve integral, contour integral)

b
/ fz)dz & / Fly()y (b dt.
Y a

The RHS makes sense: The integrand is bounded and continuous except at finitely many
points, so Riemann integrable.

The definition makes sense even if y’(t) is zero somewhere.
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When n + 1 = 0, the integral is 27 and i+l =1,
Other n are a calculus exercise.

Note that the value of the integral does not depend on r.
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Just write dz = dx + i dy, which means writing y(f) = x(f) + i y(f):

b
dz = dx +idy) = Ydx +if(z)dy = B)x'(t) +i H)y'(t)) dt.
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In fact, if you also write dz = dx — idy, you can write any integral

/de+Qdy as /Fdz+GdZ

Y }

and vice versa (exercise).



