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“Mean-value property”:

Exercise: A continuous f: R — R is harmonic (affine linear) & (*) holds for all [4, b].
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So f = h and f is harmonic.



For C? functions, just because f, — f uniformly, doesn’t mean that V2f, goes to V2f.



For C? functions, just because f,, — f uniformly, doesn’t mean that Vf, goes to Vf.

But it does for harmonic functions.



For C? functions, just because f,, — f uniformly, doesn’t mean that Vf, goes to Vf.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.




For C? functions, just because f,, — f uniformly, doesn’t mean that Vf, goes to Vf.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.



For C? functions, just because f,, — f uniformly, doesn’t mean that Vf, goes to Vf.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.

If Ay(p) c U, then {f,} converges uniformly on dA,(p). So



For C? functions, just because f,, — f uniformly, doesn’t mean that Vf, goes to Vf.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.

If Ay(p) c U, then {f,} converges uniformly on dA,(p). So

f(p) = lim fu(p)



For C? functions, just because f, — f uniformly, doesn’t mean that V?f, goes to V?f.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.

If Ay(p) c U, then {f,} converges uniformly on dA,(p). So

flp) = lim fu(p) = lim i/_. falp +1€%) dO

n—oo 27T



For C? functions, just because f, — f uniformly, doesn’t mean that V?f, goes to V?f.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.

If Ay(p) c U, then {f,} converges uniformly on dA,(p). So

flp) = lim fu(p) = lim L [ fulp +1e0)dO = % [ flp+re?)do.

n—oo 27T



For C? functions, just because f, — f uniformly, doesn’t mean that V?f, goes to V?f.
But it does for harmonic functions.

Theorem (Harnack’s first)

Let U c C be open, and let f,,: U — R be a sequence of harmonic functions converging uniformly
on compact subsets to f: U — R. Then f is harmonic.

Proof: Firstly, f is continuous.

If Ay(p) c U, then {f,} converges uniformly on dA,(p). So

flp) = lim fu(p) = lim L [ fulp +1e0)dO = % [ flp+re?)do.

n—oo 27T

Done by mean-value property. m]
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Exercise: Let U C C be open. Prove that a continuous f: U — R is harmonic if and only if
it satisfies the disc mean-value property for every A,(p) C U:
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