Cultivating Complex Analysis:
Types of singularities and Riemann extension (5.2.1)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato



Definition
Suppose U ¢ Cisopenand p € U.




Definition
Suppose U ¢ Cisopenand p € U.
A holomorphicf: U\ {p} — C has an isolated singularity at p.




Definition
Suppose U C Cisopenand p € U.
A holomorphic f: U\ {p} — C has an isolated singularity at p.

An isolated singularity is removable if there exists a holomorphic F: U — C such that
f(z) =F(z) forallz € U\ {p}.




Definition
Suppose U C Cisopenand p € U.
A holomorphic f: U\ {p} — C has an isolated singularity at p.

An isolated singularity is removable if there exists a holomorphic F: U — C such that
f(z) =F(z) forallz € U\ {p}.

An isolated singularity p is a pole if lim f(z) = co.
Z—)p




Definition
Suppose U C Cisopenand p € U.
A holomorphic f: U\ {p} — C has an isolated singularity at p.

An isolated singularity is removable if there exists a holomorphic F: U — C such that
f(z) =F(z) forallz € U\ {p}.

An isolated singularity p is a pole if lim f(z) = oo.
Z%p

An isolated singularity that is neither removable nor a pole is an essential singularity.




Definition
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A holomorphic f: U\ {p} — C has an isolated singularity at p.
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An isolated singularity that is neither removable nor a pole is an essential singularity.

Examples: Pole: 1/, essential: e!/Z.
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Theorem (Riemann extension theorem)

Suppose U C Cis open, p € U, and f: U \ {p} — C is holomorphic.
If f is bounded (near p suffices), then p is a removable singularity.

Proof: Let g(z) = (z - p)zf (z) forz # pand g(p) = 0.
g is holomorphicin U \ {p}.
Supposing f is bounded,
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So g is complex differentiable at p and so holomorphic on U.
As g(p) =0and g’(p) = 0, g has a zero of order k > 2.

Write g(z) = (z — p)kh(z), where /1 is holomorphic on U.

Then f(z) = (z - p)k_zh(z), that is, p is a removable singularity.



Exercise: Prove thatif f: D\ {0} — D\ {0} is an automorphism, then f(z) = ¢!z for some 6.



Exercise: Prove thatif f: D\ {0} — D\ {0} is an automorphism, then f(z) = ¢!z for some 6.

The Riemann extension theorem is (of course) not true for functions that are not
holomorphic.



Exercise: Prove thatif f: D\ {0} — D\ {0} is an automorphism, then f(z) = ¢!z for some 6.
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Xy
x2+y?
R2\ {(0,0)} with an isolated singularity, and this function does not extend through the
singularity even continuously.

Exercise: Prove that

is a bounded infinitely (real) differentiable function on
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