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Graphs of the real and imaginary part:
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Proposition

For any two complex numbers z, w € C, et = e%e®.

Proof is an exercise (requires trig identities).

Euler’s formula (6 € R):

¢ = cos O +isin 6.
Meaning for 0 € R:
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We define sin and cos for z € C accordingly:

def €% —e™ %
z=——

2i

def eiz +e—iz
CcOSz = T,
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C is just the plane, so we can use polar coordinates for z = x + iy: x = rcos 0 and y = rsin 0.

Due to the Euler formula:

i0
— ol0 — T ) re
z=re"” =rcosO +irsin0 = x +iy.

We call re'® the polar form. 0

r = |z| = 4/x2 + y? is the modulus.

0 is called the argument.
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Polar form is good for multiplication and powers:

Suppose z = re'? and w = se'?,

o : : - .
zw = re%sel = rsel 0V, S=— == = (re) ngin0,
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Multiplication rotates by the argument and scales by the modulus.

Again note that i = ¢™/? is rotation counterclockwise by 90 degrees.

The downside is that the polar form is terrible for addition.



