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Definition
A set U c Cis called star-like (or star-like with respect to zp) if there exists a point zg € U such
that the segment [z9, z] C U for every z € U.
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A convex set is star-like, but not vice versa.
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Then f has a primitive: There exists a holomorphic F: U — C such that F’ = f.
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Proposition

Suppose U C C is open and star-like, f: U — C is continuous, and

/ f(z)dz=0  forevery triangle T C U.
ar

Then f has a primitive: There exists a holomorphic F: U — C such that F’ = f.

Proof: Suppose U is star-like with respect to zg € U. Define

Consider a disc A,(z) c U,
and || < rsothatz+h e A/ (2).

U is star-like w.r.t. zp =
the entire triangle with vertices
20, z,and z + hisin U.
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By hypothesis / f(8)dC =0. So
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F(z+h)-F(z) 1 1
_ == d = - d
h h «/[;0,z+h]—[z(),z]f(C) =i /[z,z+h]f(C) ¢
1 1
- %/0 Flz+ thyhdt = /0 Fz+ thydt.
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1
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By hypothesis / f(8)dC =0. So

[z0,z]+[z,2z+h]—[z0,z+h]

F(z+h)-F(z) 1 1
_ == d = - d
h h /[;0,z+h]—[zo,z]f(C) =i /[z,z+h]f(C) ¢
1 1
- ﬁ/o Flz+ thyhdt = /0 Fz+ thydt.

In oth ds,
n other words F(z+h) - F(z)

I —f(z)’ = ’/Olf(z+th)dt—/01f(z)dt’

1
< /0 |f(z + th) — f(2)| dt.

By continuity of f at z,
. F(z+h)-F(z)
lim —————
h—0 h

=f(z). O
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Remark: C-valued function gives a vector-field on R2.
The corollary is a special case of a theorem from vector calculus:

In a star-like domain U C R?, if a C! vector field (u,v): U — R? satisfies ‘3—; = 99 (irrotational),

then there exists a real-valued f: R?> — R such that Vf = (u, v) (conservative vector field).



