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Let’s go through some of the very basic calculus on holomorphic functions.
First, let’s solve a differential equation.

Proposition

Let U c C be a domain (open and connected), and f: U — C be holomorphic, and f'(z) = 0 for all
z € U. Then f is a constant.

The proof is just the standard real result, since f’(z) = 0 implies that the real derivative is
also zero (a zero 2 X 2 matrix).
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Proposition (Chain rule)

Let Uc Cand V c Cbeopen, f: U— V complex differentiable at z € U, and g: V — C complex
differentiable at f(z). Then the composition g o f is complex differentiable at z and
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We give two proofs. One is an adaptation of the proof of the one-variable result from real
analysis, and the other uses the real result for functions of R? to R2.

Proof A: Leth # 0, and let k = f(z + h) — f(z). Assume first k # 0.
gof)z+h) —(gof)z) glfz+h) -g(f@)flz+h) —f(z)

h a fz+h)—f(z) h
_g(f@) +k) = g(f(2) fz+ 1) - f(2)
B k h ’

A differentiable function is continuous, sok — 0 as h — 0.
If k = 0, the difference quotient is zero, but k = 0 only happens (for small k) if f’(z) = 0.

Multiplication is continuous, so take the limit # — 0 to finish. ]
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Proof B: Complex differentiable functions are real differentiable: Apply the real chain rule.

Forw=f(z) eV,
D(g Of)lz = Dg|wa|z‘

The 2 x 2 matrices Dg|,, and Df|; correspond to complex numbers ¢’(w) and f'(z).

The product Dg|,Df]| of two such matrices again corresponds to a complex number:
the product of the two numbers, g'(w)f’(z).

So D(g o f)|, corresponds to the pertinent complex number. o
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Chain rule of the same sort holds if we plug in a real differentiable function of one variable.
If y: (a,b) — Cis (real) differentiable, where y = a + i, then

write Y’ = a’ +if’; could be interpreted as a 2 X 1 matrix (column vector) [g: ]

Proposition (Chain rule)

Let U c C be open, y: (a,b) — U (real) differentiable at t € (a,b), and f: U — C complex
differentiable at y(t). Then the composition f o y is (real) differentiable at t and
(Foyy(® =f (y®)y'®).

Proof: The first proof just works as is, let’s see the second proof.

Letz = y(t). Then
D(f o y)It = Df|:Dy|:.

Df|, corresponds to multiplication by f’(z), and Dy|; is the 2 X 1 matrix (column vector)
represented by y’(t). The result follows. o
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Proposition

Let U c C be open, and f: U — Cand g: U — C holomorphic.
(i) f + g is holomorphic and % [f(z) + g(z)] =f"(2) + ' (2).
(ii) fg is holomorphic and % [f(z)g(z)] = f'(2)3(z) + f(2)g'(2).

(iii) /g is holomorphic on {z eU:g(z)# 0} and % [g(l—z)] = (_gl(z))z.
(@)

Proof: Exercise. Just adapt the one real variable proof.

Remark: A holomorphic function is continuous so {z € U : g(z) # 0} is open.
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Proposition (Power rule and its consequences)
(i) For every integer n, the function z +— z" is holomorphic where defined (outside the origin if n
negative) and L [z"| = nz"ifn # 0 and L [2°] = 0.
(ii) A polynomial P(z) = Zn =0 CnZ" is holomorphic and P'(z) = Zd:1 (n + 1)cyy12"

(iii) Rational functions Q((Z)) are holomorphic on the set where Q is not zero.

Proof: Again exercise.
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Let’s mention an exercise that is easy to do now and relates to an earlier side remark.

Define f: C — Cby f(0) = 0and f(z) = ™= for z # 0.

It is an exercise that g_Z' %, g—;, and 3—; exist at all points (including the origin) and satisfy

the Cauchy—Riemann equations, but f is not even continuous at the origin.

The key is of course that f is not differentiable (neither real nor complex) at the origin.



