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Laurent series is an expansion for a holomorphic function around a hole (or a singularity).

Given 0 ≤ r1 < r2 ≤ ∞ and p ∈ ℂ, define

ann(p; r1 , r2)
def
= {z ∈ ℂ : r1 < |z − p| < r2}.

When 0 < r1 < r2 < ∞ we call this set an annulus.

When r1 = 0 or r2 = ∞, it’s not really what one would call an annulus:

ann(p; 0, r) = Δr(p) \ {p} (punctured disc)

ann(p; r,∞) = ℂ \ Δr(p)
ann(p; 0,∞) = ℂ \ {p} (punctured plane)
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Laurent series is series of the form
∞∑

n=−∞
cn(z − p)n.

Note that a Laurent series is a power series if cn = 0 for all n < 0.

Convergence of a double series such as

∞∑
n=−∞

an

means
∞∑

n=−∞
an = lim

N→−∞

−1∑
n=N

an + lim
M→∞

M∑
n=0

an.

For Laurent series we generally have absolute convergence and the limit can be taken in
any way, but it is still useful to split the series like this.
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Write a Laurent series as
∞∑

n=−∞
cn(z − p)n =

∞∑
n=0

cn(z − p)n +
−1∑

n=−∞
cn(z − p)n

=

∞∑
n=0

cn(z − p)n +
∞∑

n=1
c−n

(
1

z − p

)n

.

So the Laurent series behaves like two power series: One series in z − p and one in 1
z−p .

E.g., the first part converges in Δr2(p), and the second in ℂ \ Δr1(p), so the full series
converges (uniformly absolutely on compact subsets) in ann(p; r1 , r2) if r1 < r2.

Example:

e1/z =

∞∑
n=0

1
n!

(
1
z

)n

=

0∑
n=−∞

1
(−n)!z

n ,

converging uniformly absolutely on compact subsets of ℂ \ {0}.

Example:
1

1 − z
=

−1
z

1
1 − 1

z
=

−1
z

∞∑
n=0

(
1
z

)n

=

−1∑
n=−∞

−zn ,

converging uniformly absolutely on compact subsets of ann(0; 1,∞) = ℂ \𝔻.
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We will prove that the Laurent series is unique, and so as for power series,
it does not matter how we obtain it.

We computed some examples in an ad hoc way,
but those are the unique Laurent series for those functions.

We will prove that the coefficients can be computed via an integral.

However, computation of Laurent series is often done by other means than by
computation of the integral; it is often done as we did above.

One of the main applications of complex analysis in engineering is to compute integrals by
computing certain coefficients of the Laurent series by other means than integration.
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