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So a uniformly absolutely convergent series converges uniformly.
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Let us mention a couple of useful results as exercises.

Exercise: (Weierstrass M-test) Let X be a set and f,,: X — C is a sequence of functions such
that [fn(x)l <M, forallx € Xand n € N.

If >} M, < oo, then }’ f,(x) converges uniformly absolutely on X.

Exercise: Suppose X, 2,2" and Y., b,z" have a radius of convergence at least > 0.
Show that ), (a, + b,)z" has a radius of convergence at least r and converges to the sum
of the two series.



