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But if 0 is an argument of z, then so is 0 + 2m, 0 — 27, or 0 + k2n forany k € Z
arg z is not a function but a multivalued function:

def
arg z =

..,0—-411,0 -21,0,0 + 21,0 +4m, ...
Note that arg 0 is undefined.
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To try to solve the multivaluedness, we define the principal branch of arg:

Argz L 0, where - < 0 < 7.

A good attempt.

Alas Arg is discontinuous
on the negative real axis.

Remark: Some authors make principal
branch take values in [0, 27).
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Let’s see what the exponential does to C.
e*tW = %" implies €* is never zero (exercise).
In fact, the complex exponential is onto C \ {0}.

The complex exponential is not one-to-one, it is infinitely-many-to-one. For any integer k,

ez+z'k2n — ezeik2n = 6%,



& =
= Xty —
=¢*e
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the circle of radius e°.
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o7 = Xty = pXply
So ¢* takes a vertical line, x = ¢, to .

the circle of radius ¢°.

It takes the strip a < x < b to the T
annulus {wEC:e”<|w| <eb}. ] -

It takes a horizontal line, y = ¢, to
a ray from the origin, 6 = c.

So the strip a < y < b goes to the sector {w eC:"a<argw < b”}.

Remark: ¢ takes the set given by 2kmt < Imz < 2(k + 1)rt in a one-to-one way onto C \ {0}.



