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Proposition (Reparametrization)
Suppose y: [a,b] — Cand a: [c,d] — C are piecewise-C' paths such that y([a, b]) = a([c, d]).
Suppose either
(i) y and a are injective, or
(i) ¥l@p) and a|(,q) are injective and y(a) = a(c) = y(b) = a(d) (simple closed paths).

Then there exists a strictly monotone continuous h: [c,d] — [a, b] such that y (h(t)) = a(t) for all
t € [c,d]. Furthermore:

(i) If his increasing, then for every f continuous on the path, / fz)dz = / f(z)dz.
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(ii) If his decreasing, then for every f continuous on the path, / flz)dz = - / f(z)dz.
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We often write down the boundary of some open set as our path
(as long as it’s piecewise-C1).

We consider any parametrization going counterclockwise around the interior.

For instance, given a disc A,(p), we parametrize the boundary JA,(p) by
y: [0,2n] — C given by y(t) = p + re',
and then

dz = dz.
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Proposition

Let U,V C C beopen, y: [a,b] — V piecewise-C! path, g: V. — U holomorphic (assume g’ is
continuous), and f: U — C continuous. Then g o y is a piecewise-C' path in U (possibly with
vanishing derivative, however, if g’ is zero on y) and
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Proof: Clearly g o  is a piecewise-C! path (except with perhaps vanishing derivative).

Apply the chain rule, (g o y)'(t) = &' (y(1)y'(t):

b b
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For example,

is the length of y.
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Remark: Uniform convergence of the functions, f, — f, passes under the integral:

lim [ fu(e)dz = [ f@dz  lim [ fu(2) 2] = [ f@)1d]

Uniform convergence of the paths y, — y does not (for either integral).

For instance, there exists (exercise) uniformly convergent y, — 0 such that
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So arclength is not preserved under uniform convergence of paths.

For this you would also need y;, to also converge (uniformly).



