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Theorem (Cauchy integral formula (homology version))

Suppose U c C is open, f: U — C is holomorphic, and I is a cycle in U homologous to zero in L.
Then forz € U\T,
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Suppose U C Cis open, f: U — C is holomorphic, and T is a cycle in U homologous to zero in U.

Then
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Proof: Fixz e U\T.
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0=n(l;2)(z-2)f(z) = 7 z‘/% =5 l/f(C) C. O

Remark: Cauchy integral formula and Cauchy’s theorem are equivalent logically (if you
prove one the other follows).
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Cycles Tp and I'y in U € C are homologous in U if n(I'p; p) = n(T'y;p) forallp € C\ U.

Equivalently, I'g — I'; is homologous to zero in U.

Corollary
Let U c C be open and f: U — C holomorphic. If two cycles Ty and I'1 in U are homologous in U,

then
‘/Fof(z)dz = /rlf(z)dz.

That is useful for computing integrals:
Given a complicated cycle, find a simple one that is homologous.

E.g. (exercise), any cycle in C \ {0} is homologous to ndD for some n € Z.

Remark: Being “homologous” is an equivalence relation and the set of equivalence classes
of cycles is an abelian group (under the cycle addition, exercise). This group is called the
first homology group of U.



