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A set X is convex if [a, b] ⊂ X for all a, b ∈ X.

Let a, b, c ∈ ℂ be noncollinear.

A triangle T is with vertices a, b, c is the convex hull of {a, b, c}, that is, the smallest convex
set containing the points.

In other words, T is the set of points

t1a + t2b + t3c,

where t1 , t2 , t3 ∈ [0, 1] and t1 + t2 + t3 = 1.

The triangle is oriented positively if the vertices
are ordered so that a, b, c goes counterclockwise.

T

c

ba
The boundary 𝜕T of T is defined as the cycle

𝜕T = [a, b] + [b, c] + [c, a].
Note that our triangle T is the solid triangle
(includes the interior).
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Theorem (Cauchy–Goursat)
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, and T ⊂ U is a triangle. Then∫

𝜕T
f (z) dz = 0.

It is important is that T ⊂ U means the whole solid triangle is in U, not just the boundary.

Remark: It is a “Goursat” theorem not just “Cauchy” because of the proof: We do not
assume that f ′ is continuous as we have not proved that yet.

Proof: We prove the contrapositive.

Suppose f is continuous and suppose ∃ T ⊂ U such that����∫
𝜕T

f (z) dz
���� = c ≠ 0.

We will find a point where f is not complex differentiable.
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Cut T into four subtriangles T1, T2, T3, T4
(cut each side in half) T3

T4
T1 T2

Orient each Tj positively:

The inner sides cancel.

So

c =
����∫

𝜕T
f (z) dz

���� = ����∫
𝜕T1

f (z) dz +
∫
𝜕T2

f (z) dz +
∫
𝜕T3

f (z) dz +
∫
𝜕T4

f (z) dz
���� .

So for some triangle Tj, the integral is at least c
4 .

Label that subtriangle T1 = Tj and
����∫

𝜕T1
f (z) dz

���� ≥ c
4 .

Cut T1 into subtriangles T1
1, T1

2, T1
3, T1

4. Integral over some 𝜕T1
j is at least c

42 , so label it T2.
Rinse and repeat.

After k iterations for the kth triangle Tk,
����∫

𝜕Tk
f (z) dz

���� ≥ c
4k .
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Tk ⊂ Tk−1 ⊂ · · · ⊂ T and in each step the triangle is exactly half the size (similar triangles):

diam(Tk) = 1
2 diam(Tk−1) = 1

2k diam(T).

The triangles are compact ⇒ the intersection is nonempty.
The diameter goes to zero ⇒ the intersection is a single point:

{z0} =

∞⋂
k=1

Tk.

Write f (z) = f (z0) + 𝛼(z − z0) + g(z) for some 𝛼 ∈ ℂ.

Were f complex differentiable at z0, then for some 𝛼, g(z)
z−z0

would go to zero as z → z0.

We will prove g(z)
z−z0

never goes to zero (no matter what 𝛼 is).

Fix 𝛼. If g(z0) ≠ 0, we are done.

So assume g(z0) = 0. Cauchy’s theorem for polynomials says∫
𝜕Tk

f (z) dz =

∫
𝜕Tk

(
f (z0) + 𝛼(z − z0) + g(z)

)
dz =

∫
𝜕Tk

g(z) dz.
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A useful version of this result is the following exercise:

Exercise: Suppose T ⊂ ℂ is a triangle and f : T → ℂ a continuous function whose
restriction to the interior of T is holomorphic. Prove that

∫
𝜕T f (z) dz = 0.

Hint: Passing some sort of limit under the integral is required.
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