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Recall, a zero of a function f is a point z such that f (z) = 0.

By the identity theorem, zeros of (nonconstant) holomorphic functions are isolated.

Lemma
Let U ⊂ ℂ be open, f : U → ℂ be holomorphic, p ∈ U, and f has an isolated zero at p.
Then there exists a unique k ∈ ℕ and a holomorphic g : U → ℂ such that

f (z) = (z − p)kg(z) and g(p) ≠ 0.

Furthermore, k is the smallest integer such that the kth derivative f (k)(p) ≠ 0.

Before we prove the lemma, let us give a name to this integer k.

Definition
The k from the lemma is called the order of the zero at p.
If the order is 1, we say p is a simple zero.
We also say that k is the multiplicity of the zero.
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An equivalent definition of order is the largest k such that f (z)
(z−p)k

is bounded near p.

In fact (exercise), there is a disc Δr(p) and some C1 > 0 and C2 > 0 such that

C1|z − p|k ≤ |f (z)| ≤ C2|z − p|k ∀z ∈ Δr(p).

The conclusion of the lemma still holds if f (p) ≠ 0, in which case order is k = 0 (and g = f ).

So we could say that if f (p) ≠ 0, then f has a zero of order 0.

We’ll even see negative orders in just a bit.

To avoid confusion, by “f has a zero,” we mean an honest zero of positive order.

If f (k)(p) = 0 for all k, one could say that f has a zero of infinite order.

For f holomorphic, infinite order ⇒ the power series is zero ⇒ f is identically zero.

So every zero of a nonconstant holomorphic function has finite order.

This is not true for just real differentiable (not holomorphic) functions (see the exercises):
E.g., let f (0) = 0 and f (x) = e−1/x2 for x ∈ ℝ \ {0}.
f is infinitely differentiable, f (k)(0) = 0 for all k, but f has an isolated zero.
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Proof of the lemma: On U \ {p}, g(z) = f (z)
(z−p)k

is holomorphic for any k.

For z in some disc Δr(p),

f (z) =
∞∑

n=0
cn(z − p)n =

∞∑
n=k

cn(z − p)n = (z − p)k
∞∑

n=0
cn+k(z − p)n ,

where k is the smallest n such that cn ≠ 0 (hence the “Furthermore”).

Clearly k > 0.

The series
∑∞

n=0 cn+k(z − p)n is equal to f (z)
(z−p)k

on Δr(p) \ {p}.

So this series gives g near p. Let g(p) = ck, and g : U → ℂ is holomorphic.

Uniqueness of k: Suppose (z − p)k1g1(z) = (z − p)k2g2(z), where g1(p) ≠ 0 and g2(p) ≠ 0.

WLOG suppose k1 ≤ k2, then g1(z) = (z − p)k2−k1g2(z).
Plug in z = p to see k2 = k1. □
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Near a zero of order k, a holomorphic function acts like zk acts near the origin:

Theorem
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, and p ∈ U is a zero of f of order k ∈ ℕ (an
honest zero). Then there exists an open neighborhood V of p and a holomorphic g : V → ℂ such that

f (z) =
(
g(z)

)k
, where g(p) = 0 and g′(p) ≠ 0.

More fancy: g is a local biholomorphic change of variables near p that makes p into the
origin, and makes f into zk.

Proof: Let V = Δr(p) be such that f (z) ≠ 0 for any z ∈ Δr(p) \ {p}.

Lemma says ∃ holomorphic h : Δr(p) → ℂ such that h(p) ≠ 0 and f (z) = (z − p)kh(z).
In particular, h(z) ≠ 0 for any z ∈ Δr(p) (h is nowhere zero).

As Δr(p) is simply connected ⇒∃ holomorphic 𝜑 : Δr(p) → ℂ such that 𝜑k = h.

Let g(z) = (z − p)𝜑(z). (So gk = f and g(p) = 0)

As g′(z) = (z − p)𝜑′(z) + 𝜑(z), we have g′(p) = 𝜑(p) ≠ 0. □
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Every semester, someone wants to use L’Hôpital on homework without proof. You can
prove it now.

Exercise: Prove L’Hôpital’s rule: If f and g are holomorphic near p, both with an isolated
zero at p, and lim

z→p
f ′(z)
g′(z) exists (including possibly ∞), then lim

z→p
f (z)
g(z) exists and equals the

same thing.
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