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Theorem (Hurwitz)
Let U ⊂ ℂ be open and fn : U → ℂ a sequence of holomorphic functions converging uniformly on
compact subsets to a holomorphic f : U → ℂ. Suppose Γ is a cycle in U homologous to zero in U,
such that n(Γ; z) is 0 or 1 for all z ∉ Γ. Suppose f has no zeros on Γ and k zeros (counting
multiplicity) in V = {z ∈ U : n(Γ; z) = 1}. Then there is an N such that for all n ≥ N, fn has k
zeros (counting multiplicity) in V.

Proof: Γ is compact ⇒ there is a 𝛿 > 0 such that 𝛿 < |f (z)| for all z ∈ Γ.

{fn} converges uniformly to f on Γ.

For n large enough,
|f (z) − fn(z)| < 𝛿 < |f (z)| ∀z ∈ Γ

Rouché’s theorem ⇒ f and fn have the same number of zeros in V. □

“No zeros on Γ” is necessary: Γ = 𝜕𝔻, f (z) = z − 1, fn(z) = z + (1 − 1
n ).
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Example: For every integer k > 0, ∃ N such that ∀ d ≥ N,

Pd(z) =
d∑

n=0

(−1)n

(2n)! z2n

has exactly 2k zeros in Δ𝜋k(0).

Proof:
Pd are the partial sums of the power series of cos(z), which has exactly 2k zeros in Δ𝜋k(0).
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The usual application is for a small disc:

Suppose {fn} is a sequence of holomorphic functions on U converging uniformly on
compact subsets to f . Suppose z0 is a zero of f of order k.

Then for a small enough Δr(z0), ∃ N such that ∀ n ≥ N,
fn has k zeros counting multiplicity in Δr(z0).
(use Γ = 𝜕Δr(z0))

Hurwitz theorem does not work for real functions.

Example:
f (x) = x2, fn(x) = x2 + 1

n . fn → f uniformly, but fn never zero.

f (z) = z2, fn(z) = z2 + 1
n . fn → f uniformly.

For any 𝜖 > 0, z2 + 1
n has two zeros in Δ𝜖(0), for large enough n: ±i

√
1
n .
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Injective holomorphic mappings are called univalent.

Corollary
Suppose U ⊂ ℂ is a domain and fn : U → ℂ are univalent holomorphic functions that converge
uniformly on compact subsets to f : U → ℂ. Then f is either univalent or constant.

Proof: Suppose f is nonconstant. Suppose ∃ distinct z1 and z2 in U such that
f (z1) = f (z2) = w.

f − w has isolated zeros at z1 and z2.

Take Δr(z1),Δr(z2) ⊂ U,
Δr(z1) ∩ Δr(z2) = ∅,
such that f − w is not zero on Δr(z1) \ {z1} or Δr(z2) \ {z2}.

Hurwitz ⇒ for large enough n, fn − w has the same number of zeros in Δr(z1) as f − w.
Same for Δr(z2).

⇒ ∃ z′1 ∈ Δr(z1) and z′2 ∈ Δr(z2) such that fn(z′1) = fn(z′2) = w.

⇒ fn not univalent. □
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Another common application is the following exercise.

Exercise: Suppose U ⊂ ℂ is a domain, and fn : U → ℂ are holomorphic, nowhere zero, and
converge uniformly on compact subsets to f : U → ℂ. Show that either f is nowhere zero,
or f is identically zero.
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