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where y is any circle of radius r, 0 < v < R, centered at p oriented counterclockwise.

Moreover,
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The last equality held because the sum converges uniformly in C € dA,(p)
(we'll justify that on the next slide).
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and so Z ( = p) converges uniformly absolutely (and hence uniformly).
We found a power series converging to f(z) for all z € A,(p).
By uniqueness of the power series, the ¢, is independent of .

We get the same series for every r and it converges in Ar(p).



The key is writing the Cauchy kernel as
1 1 C-p

-z (-pC-z




The key is writing the Cauchy kernel as
1 1 C-p

-z C-pC-z

and using the geometric series.

A common technique: the integral of a function against a kernel gains properties of the
kernel.



The key is writing the Cauchy kernel as
1 1 C-p

-z C-pC-z

and using the geometric series.

A common technique: the integral of a function against a kernel gains properties of the
kernel.

Besides analyticity, we also proved ST T
that the radius of convergence is u p
at least R, where R is the { ~
maximum R such that Ag(p) c U. ' R~



The key is writing the Cauchy kernel as
1 1 C-p

-z C-pC-z

and using the geometric series.

A common technique: the integral of a function against a kernel gains properties of the
kernel.

Besides analyticity, we also proved ' P
that the radius of convergence is u p
at least R, where R is the : ~
maximum R such that Ag(p) c U. ' R~

Note that the radius of convergence
gives bounds on the derivatives! T



The key is writing the Cauchy kernel as
1 1 C-p

-z C-pC-z

and using the geometric series.

A common technique: the integral of a function against a kernel gains properties of the
kernel.

Besides analyticity, we also proved ST T
that the radius of convergence is u p
at least R, where R is the { ~
maximum R such that Ag(p) c U. ' R~

Note that the radius of convergence

gives bounds on the derivatives!

So we know about the size of the derivatives at p just from knowing how far away from p is
f still holomorphic.



The key is writing the Cauchy kernel as
1 1 C-p

-z C-pC-z

and using the geometric series.

A common technique: the integral of a function against a kernel gains properties of the
kernel.

Besides analyticity, we also proved ST T
that the radius of convergence is u p
at least R, where R is the { ~
maximum R such that Ag(p) c U. ' R~

Note that the radius of convergence

gives bounds on the derivatives!

So we know about the size of the derivatives at p just from knowing how far away from p is
f still holomorphic.

Remark: Nothing like this is true for real-analytic functions such as ¢(x) = 1:7 whose
radius of convergence at x = 0is 1, but ¢: R — R is (real) analytic everywhere.
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Let us restate the main conclusion:

Corollary
Let U c C be an open set. A function f: U — C is holomorphic if and only if f is analytic.

Results we proved for analytic functions are true for holomorphic functions and vice versa.

E.g., it is easy to show that the composition of holomorphic functions is holomorphic via
the chain rule.

It is much harder to show this for analytic functions by directly manipulating power series.
But we don't have to, analytic functions are holomorphic.

We have also finally proved the following:
A convergent power series defines an analytic function.



