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Let U c C be open and f: U — C holomorphic. Then f is infinitely complex differentiable.
In particular, f’ is holomorphic.

Nothing like this is true for real differentiable functions.

Any continuous g: (a,b) — R is the derivative of a real differentiable function
Eg., f(x)= fcx g(t)dt forc € (a,b).

Even worse, the real derivative could even be discontinuous.
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We passed x and y derivatives under the integral sign (Leibniz rule), which is valid as
f(

the x and y derivatives of are continuous functions of (z, {) € A,(p) X dA(p).

) +1



As an aside we mention a result that will be needed later.



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.

Prove that % is a continuous function of U X (a, b).



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.

Prove that gf is a continuous function of U X (a, b).

L

Then show 5 and f are continuous.



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.

Prove that gf is a continuous function of U X (a, b).

L

Then show 5 and f are continuous.

The above is not true for real differentiable functions:



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.

Prove that gf is a continuous function of U X (a, b).

L

Then show 5 and f are continuous.

The above is not true for real differentiable functions:

Let f(x, t) = tsin(¥/t) for t # 0 and f(x,0) = 0



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.
Prove that gf is a continuous function of U X (a, b).

L

Then show 5 and f are continuous.

The above is not true for real differentiable functions:
Let f(x, t) = tsin(¥/t) for t # 0 and f(x,0) = 0

Then (exercise) f is continuous on R? and x  f(x, t) is differentiable for each fixed t.



As an aside we mention a result that will be needed later.

Exercise: Suppose f(z, t) is a continuous function of (z, t) € U x (a,b), where U c C is open,
and for every fixed t € (4, b), the function z — f(z, f) is holomorphic.

Prove that gf is a continuous function of U X (a, b).

L

Then show 5 and f are continuous.

The above is not true for real differentiable functions:
Let f(x, t) = tsin(¥/t) for t # 0 and f(x,0) = 0
Then (exercise) f is continuous on R? and x  f(x, t) is differentiable for each fixed t.

But % is not continuous as a function of both x and t.
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Theorem (Morera)
Let U c C be open and f: U — C continuous. Suppose that
f(z)dz=0
oT

for every triangle such that T C U. Then f is holomorphic.

It is far easier to integrate a continuous f than to show that f” exists.

Proof: Holomorphicity is local, so assume U is a disc.

A disc is star-like, and the hypothesis is precisely what we used to show that f has a
primitive F in a star-like U.

f =F in U, and complex derivatives are holomorphic.
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The reduction to a disc is necessary:
E.g., 1/z does not have a primitive in U = C \ {0},
but does satisfy hypotheses of Morera.

Typical application of Morera is something like the following exercise:

Exercise: Show that if f: C — C is continuous and holomorphic on C \ R, then f is
holomorphic everywhere.



