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Consider the primitive of zn.

If n ≠ −1, the primitive is zn+1

n + 1 (not defined at z = 0 if n + 1 < 0)

What about z−1 = 1/z?

Consider the slit plane

U = ℂ \ (−∞, 0] = ℂ \
{
z ∈ ℂ : Re z ≤ 0, Im z = 0

}
.

U is star-like ⇒ holomorphic functions on U have a primitive on U, including 1/z.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U → ℂ

We want to show Log z = log|z| + i Arg z (principal branch of the argument).
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Set L(z) = log|z| + i Arg z (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(z) = elog|z|ei Arg z = |z|ei Arg z = z.

L is the inverse of the exponential ⇒ L is holomorphic.

Differentiate z = eL(z): 1 = L′(z)eL(z) = L′(z)z.
Et voilà!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
log z def

= log|z| + i arg z.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.
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Here are the real and imaginary parts of log z = log|z| + i arg z:

Re z Im z
Re z Im z

If we travel the unit circle in the z-plane, we travel the marked path on the graph.

The real part is a nice function, it is the normal real log: (0,∞) → ℝ applied to |z|.
The imaginary part has infinitely many values.

Nevertheless, it is the correct definition. Much more useful than the principal branch.
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How do we use log? To compute line integrals:

Parametrize 𝜕𝔻 starting and ending at z = 1 and compute:∫
𝜕𝔻

1
z

dz = log 1 − log 1 = 2𝜋i.

That’s nonsense! Let’s make it better:∫
𝜕𝔻

1
z

dz “=” log 1 − log 1 “=” 2𝜋i.

Maybe still not quite right.

It works by following one “branch” of the logarithm along the path and then subtracting.

Let’s see that graph again.
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What we do:

We start with the value log 1 = 0.

Then we follow the graph around the circle until we end at log 1 = 2𝜋i.
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A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of log z
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

That’s what we did in the computation above.
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