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Theorem (Identity)

Suppose U C C is a domain, and f: U — C analytic. If Z; = {z € U:f(z) = 0} has a limit point
in U, then f is identically zero. In other words, all points of Zy are isolated unless f = 0.

Definition
The points in the set Zs are called the zeros of f.

Common application:
If the function is zero on a nonempty open subset, then f = 0.
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Zy is closed (in U, of course) as f is continuous.
Must show that points of Z; are isolated.
WLOG 0 € U, 0 € Zf, 0 not in the interior of Z;.
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Let k be the smallest k such that c; # 0 (exists since f is not identically zero nearby).

f(z) = Zk i 2=z g(z)
n=k

g(z) is a convergent power series and g(0) = ¢, # 0.

g is continuous and so g(z) # 0 in a whole neighborhood of 0.

k

z" is only zero at 0 = 0 is an isolated zero of f.
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Let Z]’( be the interior points (nonisolated points).
Z} is closed (in U) (Zf is closed and points in ZJQ cannot approach isolated points).

Z} is open and closed and U is connected = either U = Zjﬁ or Z} =0.
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If f(z) is a power series ata and f(a) = 0 (and f # 0), we can factor out some power of z — a:

f@) = (z-0a)g(2),

where g(z) is a power series at a such that g(a) # 0.



