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Suppose U ¢ Cisopenand p € U.
A holomorphic f: U\ {p} — C has an isolated singularity at p.

An isolated singularity is removable if there exists a holomorphic F: U — C such that
f(z) =F(z) forallz € U\ {p}.
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An isolated singularity that is neither removable nor a pole is an essential singularity.

Examples: Pole: 1/, essential: e!/Z.
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Theorem (Riemann extension theorem)

Suppose U c Cis open, p € U, and f: U \ {p} — C is holomorphic.
If f is bounded (near p suffices), then p is a removable singularity.

Proof: Let g(z) = (z - p)zf (z) forz # pand g(p) = 0.
g is holomorphicin U \ {p}.
Supposing f is bounded,

lim g(z) - g(p)
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So g is complex differentiable at p and so holomorphic on U.
As g(p) =0and g'(p) = 0, g has a zero of order k > 2.
Write g(z) = (z - p)kh(z), where & is holomorphic on U.

Then f(z) = (z — p)k_Zh(z), that is, p is a removable singularity.
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The Riemann extension theorem is (of course) not true for functions that are not
holomorphic.
Exercise: Prove that % is a bounded infinitely (real) differentiable function on

R2\ {(0,0)} with an isolated singularity, and this function does not extend through the
singularity even continuously.
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and (i) is done.
For the converse statement suppose g(z) has a removable singularity.
Then g(z) = (z - p)‘]qo(z) where p(p) # 0.

Then
f@)=z-p e,

f(z) either goes to oo if k > { (f has a pole) or
is bounded near p if k < ¢ (f has a removable singularity). |



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z — p)kf (z)is
bounded near p is called the order of the pole.




Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.




Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.

Symmetry between zeros and poles:



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.
Symmetry between zeros and poles:

If f has a zero of order k at p, then 1/ has a pole of order k at p.



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.
Symmetry between zeros and poles:
If f has a zero of order k at p, then 1/ has a pole of order k at p.

If f has a pole of order k at p, then 1/f has a removable singularity, and the extended
function has a zero of order k at p.



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.
Symmetry between zeros and poles:
If f has a zero of order k at p, then 1/ has a pole of order k at p.

If f has a pole of order k at p, then 1/f has a removable singularity, and the extended
function has a zero of order k at p.

More precisely, if f has a pole or a removable singularity we can write f(z) = (z — p)'g(z) for
some { € Z and some holomorphic g such that g(p) # 0.



Definition
Given a holomorphic function f with a pole at p, the smallest k € N such that (z - p)kf (z) is
bounded near p is called the order of the pole. A pole of order 1 is called a simple pole.

So if f has a pole at p, then

for holomorphic g nonzero at p, and k is the order of the pole.
Symmetry between zeros and poles:
If f has a zero of order k at p, then 1/ has a pole of order k at p.

If f has a pole of order k at p, then 1/f has a removable singularity, and the extended
function has a zero of order k at p.

More precisely, if f has a pole or a removable singularity we can write f(z) = (z — p)'g(z) for
some { € Z and some holomorphic g such that g(p) # 0.

p is a zero of order £ if { > 0, and p is a pole of order —{ if £ < 0.



A useful exercise that parallels a result we proved for zeros:



A useful exercise that parallels a result we proved for zeros:

Exercise: Suppose f has a pole of order k € N at p. Show that there exists a holomorphic g
defined near p such that g(p) = 0 and g’(p) # 0 and such that near p

1
(8(2))

f(2) =

R



