Cultivating Complex Analysis:
The logarithm (4.1.1)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato

Consider the primitive of z".

Consider the primitive of z".

n+1

If n # -1, the primitive is (notdefined atz=0ifn+1 < 0)

n+1

Consider the primitive of z".

n+1

If n # -1, the primitive is (notdefined atz=0ifn+1 < 0)

n+1
What about z7! = 1/2?

Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z71 = 1/2?

Consider the slit plane

U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z71 = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.

Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1
What about z7! = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U— C

Consider the primitive of z".

n+1

If n # -1, the primitive is (not defined atz=0ifn+1 < 0)

n+1

What about z7! = 1/2?

Consider the slit plane
U=C\(-»,0]=C\ {ze C:Rez < 0,Imz = 0}.

U is star-like = holomorphic functions on U have a primitive on U, including 1/-.

Require this primitive to be 0 at z = 1 to obtain the principal branch of the logarithm:

Log: U— C

We want to show Log z = log|z| + i Arg z (principal branch of the argument).

Set L(z) = log|z| + i Argz (WTS that L = Log).

Set L(z) = log|z| + i Argz (WTS that L = Log).
L(1) = 0 = Log(1), good!

Set L(z) = log|z| + i Argz (WTS that L = Log).
L(1) = 0 = Log(1), good!

eL(z) — eloglzleiArgz — |Z|eiArgz =z

Set L(z) = log|z| + i Argz (WTS that L = Log).
L(1) = 0 = Log(1), good!
eL(z) — eloglzleiArgz — |Z|eiArgz =z

L is the inverse of the exponential = L is holomorphic.

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(@) = ploglzl ji Argz — |Z|eiArgz =z

L is the inverse of the exponential = L is holomorphic.

Differentiate z = eL®):

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL(@) = ploglzl ji Argz — |Z|eiArgz =z

L is the inverse of the exponential = L is holomorphic.

Differentiate z = () 1=L(z)et® = L'(z)z.

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL2) = ploglel piArgz — |5|piArgz —

L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L(z)et® = L'(z)z.

Et voila!

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

eL2) = loglzl i Argz — || piArgz — 5

L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L(z)et® = L'(z)z.

Et voila!

Using a different branch of the argument gets another antiderivative.

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

¢La) = ploglal i Argz — | |piArgz — 5

L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L'(z)et® = L/(z)z.

Et voila!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
logz o log|z| +iargz.

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

¢La) = ploglal i Argz — | |piArgz — 5

L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L'(z)et® = L/(z)z.

Et voila!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
logz o log|z| +iargz.

That sounds crazy:

Set L(z) = log|z| + i Argz (WTS that L = Log).

L(1) = 0 = Log(1), good!

¢La) = ploglal i Argz — | |piArgz — 5

L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L'(z)et® = L/(z)z.

Et voila!

Using a different branch of the argument gets another antiderivative.

Emboldened, we define
logz o log|z| +iargz.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and

Set L(z) = log|z| + i Argz (WTS that L = Log).
L(1) = 0 = Log(1), good!
¢La) = ploglal i Argz — | |piArgz — 5
L is the inverse of the exponential = L is holomorphic.
Differentiate z = () 1=L'(z)et® = L/(z)z.
Et voila!
Using a different branch of the argument gets another antiderivative.
Emboldened, we define
logz o log|z| +iargz.

That sounds crazy:
1) The log on the right (the real log) is different than the log on the left, and
2) arg has infinitely many values.

Here are the real and imaginary parts of logz = log|z| + iarg z:

[/

\

{

g
{
{

{127\
|
il

"
X

{

NN
i

z

)
~

Here are the real and imaginary parts of logz = log|z| + iarg z:

If we travel the unit circle in the z-plane, we travel the marked path on the graph.

Here are the real and imaginary parts of logz = log|z| + iarg z:

If we travel the unit circle in the z-plane, we travel the marked path on the graph.

The real part is a nice function, it is the normal real log: (0, c0) — R applied to |z|.

Here are the real and imaginary parts of logz = log|z| + iarg z:

If we travel the unit circle in the z-plane, we travel the marked path on the graph.
The real part is a nice function, it is the normal real log: (0, c0) — R applied to |z|.

The imaginary part has infinitely many values.

Here are the real and imaginary parts of logz = log|z| + iarg z:

If we travel the unit circle in the z-plane, we travel the marked path on the graph.
The real part is a nice function, it is the normal real log: (0, c0) — R applied to |z|.
The imaginary part has infinitely many values.

Nevertheless, it is the correct definition. Much more useful than the principal branch.

How do we use log? To compute line integrals:

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:

/ 1dz
oD Z

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:

'/aD%dz=logl—log1

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:

1
/ Zdz=logl—log1 = 2r1i.
aD

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

1 .
/ Zdz “=" logl-1logl “=" 2mi.
oD

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

1 .
/ Zdz “=" logl-1logl “=" 2mi.
oD

Maybe still not quite right.

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

1
/ Edz “=" logl-1logl “=" 2mi.
oD

Maybe still not quite right.
It works by following one “branch” of the logarithm along the path and then subtracting.

How do we use log? To compute line integrals:

Parametrize JD starting and ending at z = 1 and compute:
1 .
—dz =log1—log1 = 2mi.
D 2

That’s nonsense! Let’s make it better:

1
/ Edz “=" logl-1logl “=" 2mi.
oD

Maybe still not quite right.
It works by following one “branch” of the logarithm along the path and then subtracting.
Let’s see that graph again.

What we do:

What we do:

=0.

We start with the value log 1

[]]12%

W

S]]

Rez

What we do:

=0.

We start with the value log 1

Then we follow the graph around the circle until we end at log 1 = 2.

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point).

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

A branch of the logarithm in U is an antiderivative of 1/z in U that equals one value of logz
at every point.

We follow a branch along a path by taking a branch in a (small enough) neighborhood,
then change to another branch in another neighborhood (equal at some point). Etc.

That’s what we did in the computation above.

