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Suppose I is a cycle and p ¢ T. Then n(L; p) is an integer.

Idea: Follow a branch of log, then the argument differs by an integer multiple of 2m.

Proof: I'is a “sum” of closed paths, so WLOG consider a closed piecewise-C! path
y:[0,1] = C.

y can be covered by finitely many discs Dy, ..., D, none of which contain p.

(cover the whole closed curve, of course)



The discs Dy, ..., Dy, cover y.



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that

Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1).



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 1
n(y;p) = Z_M,Az—pdz




The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1lt
RN WP A X0

"= g ) T T iy Y0 -p



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 1 [t Y1)
n(y P) 2711 yz—pdz 27‘(1 0 y(t) p 27‘(12[17/() p



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 1 [t Y1)
n(y P) 2711 yz—pdz 27‘(1 0 y(t) p 27‘(12[17/() p

= o IZL/ y(t)) = Li(y(t-1))



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = Lia (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 1 [t Y1)
n(y P) 2711 yz—pdz 27‘(1 0 y(t) p 27‘(12[17/() p

b IZL/ Y6) = Li(y (1)) = 5 (Latz0) = L z0).



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = L (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 [ ()
n(y;p) = 2711 ; Edz 2mi 0 y(t) p Zm Z/tl y(t) - P
=5 ZZL/ Y6) = Li(y (1)) = 5 (Latz0) = L z0).

L, and L1 are branches of log,



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = L (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 [ ()
n(y;p) = 2711 ; Edz 2mi 0 y(t) p Zm Z/tl y(t) - P
=5 ZZL/ Y6) = Li(y (1)) = 5 (Latz0) = L z0).

L, and L1 are branches of log,
each is log|zg| + iargzg for some value of arg,



The discs Dy, ..., Dy, cover y.

And the discs can be chosen (exercise) so that there is a partition
0=ty <t <t <---<t, =1, where y([tj-1,]) C Dj for every j.

Each Dj is star-likeand p ¢ D; =  Jabranch L; of log(z — p) on each Dj, such that
Li(y(t)) = L (y(t)) (L1 is an arbitrary branch).

Call zg = y(0) = y(1). So

1 [ ()
n(y;p) = 2711 ; Edz 2mi 0 y(t) p Zm Z/tl y(t) - P
=5 ZZL/ Y6) = Li(y (1)) = 5 (Latz0) = L z0).

L, and L1 are branches of log,
each is log|zg| + iargzg for some value of arg,
their difference is 27tki for some k € Z.



Proposition

Given a cycle T, the function z — n(I’; z) is constant on the topological components of C \ T.




Proposition

Given a cycle T, the function z — n(I’; z) is constant on the topological components of C \ T.
Furthermore, n(I'; z) = 0 for z on the unbounded component of C \ T.




Proposition

Given a cycle T, the function z — n(I’; z) is constant on the topological components of C \ T.
Furthermore, n(I'; z) = 0 for z on the unbounded component of C \ T.

As T is compact, is a unique unbounded component of C \ T..



Proposition
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Example:

unbounded component
nI;z)=0
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On the unbounded component, there are p with arbitrarily large d(p, I).

So n(I'; p) = 0 on this component.
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