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Graphs of the real and imaginary part:
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Proposition

For any two complex numbers z, w € C, et = e%e®.

Proof is an exercise (requires trig identities).

Euler’s formula (6 € R):
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Meaning for 0 € R:
0, ,—i0 i0 _ i
: eV +e . ; e’ —e
cosG=Ree’9=T, sm@=Imele=T
i

We define sin and cos for z € C accordingly:

def €% —e™ %
z=———
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def eiz +e—iz
COSz = T,
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C is just the plane, so we can use polar coordinates for z = x +iy: x = rcos 0 and y = rsin 0.

Due to the Euler formula:

i0
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z=re" =rcosO +irsinf =x+iy.

We call re® the polar form. 0

r = |z| = y/x% + y2 is the modulus.

0 is called the argument.
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Polar form is good for multiplication and powers:
Suppose z = re'? and w = se'¥,
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Multiplication rotates by the argument and scales by the modulus.

Again note that i = ¢/ is rotation counterclockwise by 90 degrees.

The downside is that the polar form is terrible for addition.



