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are piecewise-C! paths in U. We integrate over I as
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Two chains I'1 and I'; in U are equivalent (we will write I'y = I'p) if
/ flz)dz = / f(z)dz for all continuous f: U — C.
I I

Define the zero chain 0 by defining /0 f(z)dz = 0 for all continuous f: U — C.
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Chain arithmetic is done in the obvious way:

IfTy = 2]/1 +72 and I, = 3)/2 + 73,
thenT + T, = 2y1 +4y2 + ys.

Similarly, 3’y = 61 + 3y2.
We write —T for (-1)I'.  (Same as running all the y; backwards.)

I is equivalent to the zero chain if

/rf(z)dz =0

for all continuous f, and the chains I'y and I'; are equivalent if I'1 —I'; = 0.

Remark: The domain of the continuous f is not a big deal. Whether on U, I'1 UT, or C. By
Tietze’s extension theorem every continuous function on a closed subset of C (e.g., I'1 UT)
extends to a continuous function on C.

Remark: Equivalence is for all continuous functions. We will show later that for many U
and many I, fr f(z)dz = 0 for all holomorphic f.
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Vice versa, for any chain where the paths connect together end to end, we could replace
them with a single path.

Given two points z, w € C, the segment [z, w] is the path y: [0,1] — C given by
() = (1 — t)z + tw. (In chain arithmetic, —[z, w] = [w, z].)

A path is polygonal if it is equivalent to a chain [z1, zo] + [2z2, z3] + - - - + [2k-1, 2]

Note that for any continuous f and a path, we can find a nearby polygonal path where the
integral of f is arbitrarily close to the original (exercise).

So really, knowing how to integrate polygonal paths is “good enough.”

Most often used paths are composed of segments and arcs of circles.



