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We also consider y as a set, we write y to mean y([a, b]).

E.g., wesay yisinUory c Uif y([a,b]) c U.
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Note, for example, on t € (0,1), y’(t) = 1, and so limy; ’(t) = 1.
Similarly lim,; y'(t) = i, etc.
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line integral (or path integral, curve integral, contour integral)

b
/ fz)dz & / Fly(®)y (b dt.

The RHS makes sense: The integrand is bounded and continuous except at finitely many
points, so Riemann integrable.

The definition makes sense even if y’(t) is zero somewhere.
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For n € Z, we claim 2
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When n + 1 = 0, the integral is 27 and i+l =1,
Other n are a calculus exercise.

Note that the value of the integral does not depend on r.
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In fact, if you also write dz = dx — idy, you can write any integral

/de+Qdy as /PdZ+GdZ

Y }

and vice versa (exercise).



