Cultivating Complex Analysis:
The Riemann sphere (1.3)

Jif{ Lebl

Departemento pri Matematiko de Oklahoma Stata Universitato



Real numbers are sometimes extended to add +co.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):

Coo = CU {o0}.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.

We call C., the Riemann sphere.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.
We call C., the Riemann sphere.

To define topology, define a bijection g: Coo — Co by

Iz ifz#0andz # oo,
g(z) =qoo ifz=0,
0 ifz=oco.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.

We call C, the Riemann sphere.
To define topology, define a bijection g: Coo — Co by

Iz ifz#0andz # oo,
gz) =0 ifz=0,
0 ifz=oco.

We want all open sets in C to be open in Ce.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.
We call C, the Riemann sphere.

To define topology, define a bijection g: Coo — Co by

Iz ifz#0andz # oo,
gz) =0 ifz=0,
0 ifz=oco.
We want all open sets in C to be open in Ce.

Neighborhoods of oo are g(U) for neighborhoods U of 0.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.
We call C, the Riemann sphere.

To define topology, define a bijection g: Coo — Co by

Iz ifz#0andz # oo,
gz) =0 ifz=0,
0 ifz=oc0.
We want all open sets in C to be open in Ce.
Neighborhoods of oo are g(U) for neighborhoods U of 0.

If talking about convergence at z € C, we just use the normal topology.



Real numbers are sometimes extended to add +co.

Similarly, the complex plane is extended by adding oo (only one infinity):
Coo = CU {o0}.
We call C, the Riemann sphere.
To define topology, define a bijection g: Coo — Co by
Iz ifz#0andz # oo,
gz) =0 ifz=0,
0 ifz=oc0.
We want all open sets in C to be open in Ce.
Neighborhoods of oo are g(U) for neighborhoods U of 0.
If talking about convergence at z € C, we just use the normal topology.

If talking about convergence at oo, we map with g and consider the topology at 0.
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z0€ C: limf(z) =0inCe & VM > 036 > 0such that |f(z)| > M whenever |z — zg| < 9.
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L€Cw:  limf(z) =L e limf(}/) =

zg € Coo: ZILr%f(z) 0 & le)r%f(z =0.
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Remark: Be careful about limits in extended real sense vs. Riemann sphere sense:

1 . .
lim — does not exist, but lim - = 0.
x—0 X z—0 Z

(if we think of x=real, and z=complex.)

We’ll use Riemann sphere sense unless otherwise noted or obvious. We may use +oo to
distinguish from Riemann sphere o if confusion could arise.
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If ¢ # o0, declare ¢ + o0 = oo,

Neither co + co nor co — co makes sense:

if f(z) = z and g(z) = —z, then zhjg f(z) = oo, ZILHJO ¢(z) = oo, but zh~>no10 (f(z) + g(z)) = 0.
If ¢ # 0, then define ¢/0 = co and ¢ - 00 = o0.

If ¢ # o0, then define ¢/« = 0.

0 - o0, 0/0, and *°/« are undefined.

Note that this is different from the extended real arithmetic.



