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All these operations are defined in terms of operations on the real an
which are continuous. Details left as exercise.

imaginary parts



If p € Cand r > 0, define the disc of radius r around p as

A(p) def {ze C:lz—pl <r}.



If p € C and r > 0, define the disc of radius r around p as
def
A(p) = {ze C:lz—pl < r}.

D % A(0) = {z eC:lz < 1} unit disc.



If p € C and r > 0, define the disc of radius r around p as
def
A(p) = {ze C:lz—pl < r}.

D % A1(0) = {z eC:|z| < 1} unit disc.

A useful “version” of D is the upper half-plane:

[I-[Id:ef{zeC:Imz>O}.



If p € C and r > 0, define the disc of radius r around p as
Mlp) € {ze Cilz—pl <1},

D % A(0) = {z eC:lz < 1} unit disc.

A useful “version” of D is the upper half-plane:

& {ze C:Imz > 0}.

Definition

An open and connected set U C C is called a domain.
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Iff: [a,b] — C, f is (Riemann) integrable if u and v are, and
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Proposition

Suppose f: [a,b] — C is (Riemann) integrable. Then |f| is (Riemann) integrable and

/ubf(t)dt < /ab[f(t)| dt.




