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Key point: The limits are “as a complex h goes to 0.”
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Definition
Let U c C be open. A function f: U — C is complex differentiable at zo € U if the limit

def .. flzo +h) = f(zo)

f(z0) = lljn}) — exists.

We call f'(zg) the complex derivative of f at zg. Sometimes % is used.

f: U — Cis holomorphic if it is complex differentiable at every point.
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An exercise:
Proposition

IfU c Cisopenand f: U — C is holomorphic, then f is continuous.




	
	
	
	
	
	
	
	

