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Terminology: zeros/poles counted with multiplicity: f(z) = 22(z — 1)° has the zeros
21,22,23,24,25 = 0/ 0/ 1/ 1/ 1.
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Theorem (Argument principle)

Suppose U c C is open and I is a cycle in U homologous to zero in U. Suppose f: U — C isa
meromorphic function with no zeros or poles on I'. Let z1, . . ., z, denote the zeros of f counted with
multiplicity, and let p1, . .., py denote the poles of f counted with multiplicity. Then
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’ n {
L e - S izt - ) npohtpo.
f( ) k=1 k=1

h()




Terminology: zeros/poles counted with multiplicity: f(z) = 22(z — 1)° has the zeros
21,22,23,24,25 = Or 0/ 1/ 1/ 1.

Theorem (Argument principle)

Suppose U c C is open and I is a cycle in U homologous to zero in U. Suppose f: U — C isa
meromorphic function with no zeros or poles on I'. Let z1, . . ., z, denote the zeros of f counted with
multiplicity, and let p1, . .., py denote the poles of f counted with multiplicity. Then

f,(z) n {
dz = Zn(l";zk) - Zn(l";pk).

2 Jr f2) k=1 k=1

Furthermore, if h: U — C is holomorphic, then

’ n {
L e - S izt - ) npohtpo.
f( ) k=1 k=1

h()

# of poles/zero normally countable, but can assume finite above.



Suppose n(I';z) =1 or0forallz e U.
The “inside of I'” are the points where n(I';z) = 1.
If there are n zeros and £ poles (counting multiplicity) inside I, then
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The “inside of I'” are the points where n(I';z) = 1.
If there are n zeros and £ poles (counting multiplicity) inside I, then
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The integral fr f(( 2 4z gives i times the change in argument of f as we traverse I, since the

“antiderivative” of j;Tz)) islogf(z) =log|f(z)| +iargf(z).



Suppose n(I';z) =1 or0forallz e U.
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Consider a zero of f of multiplicity m or pole of order —m.
WLOG suppose it is the origin.
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Write f(z) = z"F(z) where F(0) # 0 and h(z) = h(0) + zH(z).
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Consider a zero of f of multiplicity m or pole of order —m.
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Write f(z) = z"F(z) where F(0) # 0 and h(z) = h(0) + zH(z).
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Consider a zero of f of multiplicity m or pole of order —m.
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Proof: h(z)% has isolated singularities at the zeros and poles of f. Let S be the set of
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)
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If zq,...,z, are zeros of f inside I (going around them once), then
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
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Related application:
If zq,...,z, are zeros of f inside I (going around them once), then
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If there is one simple zero z( of f within I', then
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