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Terminology: zeros/poles counted with multiplicity: f (z) = z2(z − 1)3 has the zeros
z1 , z2 , z3 , z4 , z5 = 0, 0, 1, 1, 1.

Theorem (Argument principle)

Suppose U ⊂ ℂ is open and Γ is a cycle in U homologous to zero in U. Suppose f : U → ℂ∞ is a
meromorphic function with no zeros or poles on Γ. Let z1 , . . . , zn denote the zeros of f counted with
multiplicity, and let p1 , . . . , pℓ denote the poles of f counted with multiplicity. Then

1
2𝜋i

∫
Γ

f ′(z)
f (z) dz =

n∑
k=1

n(Γ; zk) −
ℓ∑

k=1
n(Γ; pk).

Furthermore, if h : U → ℂ is holomorphic, then

1
2𝜋i

∫
Γ

h(z) f
′(z)
f (z) dz =

n∑
k=1

n(Γ; zk)h(zk) −
ℓ∑

k=1
n(Γ; pk)h(pk).

# of poles/zero normally countable, but can assume finite above.
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Suppose n(Γ; z) = 1 or 0 for all z ∈ U.

The “inside of Γ” are the points where n(Γ; z) = 1.

If there are n zeros and ℓ poles (counting multiplicity) inside Γ, then

1
2𝜋i

∫
Γ

f ′(z)
f (z) dz = n − ℓ .

The integral
∫
Γ

f ′(z)
f (z) dz gives i times the change in argument of f as we traverse Γ, since the

“antiderivative” of f ′(z)
f (z) is log f (z) = log|f (z)| + i arg f (z).

Another interpretation:

1
2𝜋i

∫
𝛾

f ′(z)
f (z) dz =

1
2𝜋i

∫
f◦𝛾

1
𝜁

d𝜁 = n(f ◦ 𝛾; 0).
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Proof: h(z) f ′(z)
f (z) has isolated singularities at the zeros and poles of f .

Let S be the set of
zeros and poles of f . By residue theorem

1
2𝜋i

∫
Γ

h(z) f
′(z)
f (z) dz =

∑
p∈S

n(Γ; p)Res
(
h

f ′

f
; p
)
.

Consider a zero of f of multiplicity m or pole of order −m.
WLOG suppose it is the origin.

Write f (z) = zmF(z) where F(0) ≠ 0 and h(z) = h(0) + zH(z).

h(z) f
′(z)
f (z) =

(
h(0) + zH(z)

) mzm−1F(z) + zmF′(z)
zmF(z) = m h(0)1

z
+ h(0)F

′(z)
F(z) + H(z)mF(z) + zF′(z)

F(z) .

Everything except m h(0) 1
z is holomorphic. So

Res
(
h

f ′

f
; 0
)
= m h(0) □
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Application: Locate zeros of holomorphic f (e.g. polynomials) by computing
(even numerically)

1
2𝜋i

∫
Γ

f ′(z)
f (z) dz.

Related application:
If z1 , . . . , zn are zeros of f inside Γ (going around them once), then

1
2𝜋i

∫
Γ

zk f ′(z)
f (z) dz = zk

1 + · · · + zk
n.

If there is one simple zero z0 of f within Γ, then

1
2𝜋i

∫
Γ

z
f ′(z)
f (z) dz = z0.
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