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Take a closed disc A,(0) C U,
where r is small enough so that [f(z)| < |[f(0)| = f(0) whenever |z| < r.
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Proof is an exercise.



There’s a version for a miminum if you avoid zeros:

Exercise: (Minimum modulus principle) Suppose U C Cis a domainand f: U — Cis
holomorphic. If |[f(z)| achieves a local minimum at p € U and f(p) # 0, then f is constant.



