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Recall, an automorphism of U is a biholomorphism f: U — U
(bijective such that f and f~! are both holomorphic).

Let us compute the automorphism group of the disc, Aut(D).
We start with certain specific automorphisms.

For a € D, define
z—a

def
Pa(2) = 1-az’
Proposition
For everya € D,
() ¢al@) =0, a(0) = =0, 94(0) =1 laP, P4(a)=
(i) @q(dD) = ID, and p,(D) = D,
(i) ¢, restricted to D is an automorphism of the disc and o' = ¢_,.

Proof is an exercise.
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Proposition
Iff € Aut(D), then there exists an a € D and 6 € R such that
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Schwarz says that forz € D\ {0}, |h(z)| = <1

h can have no zeros: h(z) = @ cannot be zero for z # 0 as g is injective,
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g is biholomorphic = g¢~!is continuous = ¢~ !(K) compact for compact K C D
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ie)

Apply ¢, to both sides of €z = @, o f to find f(z) = ¢p_a(z6'®) = €9 p_,-i0(2).
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Some good exercises to try:

Exercise: Given distinct a, b € D, show that there exists a unique f € Aut(D) such that
f(@)=band f(b) =a.

Exercise: The automorphisms of H = {z € C : Imz > 0} are of the form
numbers a, b, ¢, d such that ad — bc # 0.

az+b

e for real

Another fun exercise, a version of which seems to appear on many exams is the following:

Exercise: Suppose U C C is a domain, D ¢ U, and f: U — C is holomorphic such that
f(dD) c JD. Find a formula for f.

Hint: The idea is to show that you can divide by finitely many ¢,(z) for various a until you
get something that has no zeros in D and will have to be a constant.
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The Schwarz-Pick lemma gives a bound on the derivative at all points:
If f: D — D is holomorphic, nonconstant, and f(a) = b, then

1|2
1—al?’

If"(a)] <

Equality = £(z) = @_p(¢" pa(z)) for some 0 € R.



