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% has an isolated singularity at z = 0.

It is a pole of order 1.

The Laurent series at z = 0 is just 1/z,
and all coefficients of order less than —1 are zero.



OK, we could make this more complicated:
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OK, we could make this more complicated:
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Again, pole of order 1 atz =0,
and all coefficients in the series of order less than —1 are zero.
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Or even more complicated:

1 1 1 1
—+=+-+-—= "
23 22z 1-z ZZ



Or even more complicated:
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A pole of order 3,
and all coefficients in the series of order less than —3 are zero.




has an essential singularity at z = 0,
and has nonzero coefficients of all negative orders.
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It is not difficult to prove the general statement:

Proposition
Suppose f: A(p) \ {p} — C is holomorphic, and
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f@= > culz—p)"
is the corresponding Laurent series. The singularity at p is
(i) removable if and only if c, = 0 foralln <0,
(ii) a pole of order k € N if and only if c, = 0 for all n < —k and c_; # 0,
(iii) essential if and only if c, # O for infinitely many negative n.

The proof is left as an exercise.
Hint: Laurent series is unique, and for a removable singularity equals the power series.



Definition
At an isolated singularity, the negative part of the Laurent series
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Definition
At an isolated singularity, the negative part of the Laurent series
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Z cn(z — P)n
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is called the principal part.

Observation: If P(z) is the principal part of f(z) at p, then f(z) — P(z) has a removable
singularity at p.
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The example ¢*/* motivates the following concept.

Given an entire f: C — C, we talk about its singularity at infinity.
C c Cy and V/z is a self mapping of Co that swaps co and 0.

z > f(1/z) has an isolated singularity at 0, and that’s the “singularity of f at co.”

¢* has an essential singularity at infinity,
because e!/? has an essential singularity at 0.



Exercise: Prove that if f has a pole at the origin and g has an essential singularity at the
origin, then f + g has an essential singularity at the origin.
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Exercise: Prove that if f has a pole at the origin and g has an essential singularity at the
origin, then f + g has an essential singularity at the origin.

Exercise: If f has a pole at p, then ¢/?) has an essential singularity at p.
Hint: First do it for a simple pole.

Exercise: Show that an entire holomorphic f: C — C has a pole at infinity if and only if it
is a nonconstant polynomial. The order of the pole is the degree of the polynomial.

Exercise: Show that if f: C — C is an automorphism, then f(z) = az + b for some constants
a # 0 and b. Hint: Show that f has a simple pole at infinity.



