
Cultivating Complex Analysis:
Inverses of holomorphic functions (5.6)

Jiří Lebl

Departemento pri Matematiko de Oklahoma Ŝtata Universitato



Let us restate the inverse function theorem.

Theorem (Inverse function theorem for holomorphic functions)
Suppose U ⊂ ℂ is open, f : U → ℂ is holomorphic, p ∈ U, and f ′(p) ≠ 0. Then there exist open sets
V,W ⊂ ℂ such that p ∈ V ⊂ U, f (V) = W, the restriction f |V is injective (one-to-one), and hence a
g : W → V exists such that g(w) = (f |V)−1(w) for all w ∈ W. Furthermore, g is holomorphic and

g′(w) = 1
f ′
(
g(w)

) for all w ∈ W.

In other words, if f ′ is nonzero somewhere, f is injective near that point.

Only local: f (z) = z2 maps ℂ \ {0} to itself, f ′ does not vanish, but f is 2-to-1 globally.
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Real functions can be injective and the derivative can vanish:
f : ℝ → ℝ, f (x) = x3, is injective but f ′(0) = 0.

Holomorphic functions locally all behave like z ↦→ zk, and that is injective only if k = 1.

Lemma
If U ⊂ ℂ is open and f : U → ℂ is holomorphic and injective, then f ′ is never zero.

Proof: Suppose f nonconstant and f ′(p) = 0.
Let Δr(p) ⊂ U be so that f ′ ≠ 0 on Δr(p) \ {p}, and |f (z) − f (p)| > 𝛿 > 0 for z ∈ 𝜕Δr(p).
z ↦→ f (z) − f (p) has a zero of multiplicity at least two.

Let w ∈ Δ𝛿
(
f (p)

)
\
{
f (p)

}
⇒ z ↦→ f (z) − w has at least two zeros (Rouché).

f ′ ≠ 0 in Δr(p) \ {p} ⇒ zeros of z ↦→ f (z) − w are simple
⇒ f (z) − w has at least two distinct zeros ⇒ f is not injective. □
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We can actually compute the inverse:

Lemma
If f : U → ℂ is holomorphic and injective, and Δr(p) ⊂ U. Then for all w ∈ f

(
Δr(p)

)
,

f−1(w) = 1
2𝜋i

∫
𝜕Δr(p)

f ′(z)z
f (z) − w

dz.

Proof: Fix w ∈ f
(
Δr(p)

)
and 𝜁 ∈ Δr(p) such that f (𝜁) = w.

f ′ is never zero, so z ↦→ f (z) − w has a simple zero at z = 𝜁.

By the residue theorem

1
2𝜋i

∫
𝜕Δr(p)

f ′(z)z
f (z) − w

dz = Res
(

f ′(z)z
f (z) − w

; 𝜁
)
=

f ′(𝜁)𝜁
f ′(𝜁) = 𝜁 = f−1(w). □

Consequently, f−1 is holomorphic without even using the inverse function theorem.
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Theorem
If U ⊂ ℂ is open and f : U → ℂ is holomorphic and injective, then f (U) is open, f ′ is never zero on
U, and f−1 : f (U) → U is holomorphic.

Proof: f (U) is open by the open mapping theorem.

By one of the lemmas, f ′ is never zero on U.

By the other (or IFT), f−1 is holomorphic. □
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