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So c_1 is the only thing left after integration. It’s the “residue.”
Definition
Let the residue of f at p be

Res(f; p) def c_q.
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1
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By Cauchy, we can compute the integral over any cycle via the residues inside. That’s the
Residue theorem.



Theorem (Residue theorem)
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Suppose U c Cis open, S C U is a finite subset, and T is a cycle in U \ S homologous to zero in U.
Suppose f: U\ S — C is holomorphic (isolated singularities on S). Then

i /f(z) dz = Z n(L; p) Res(f; p).

peS

(Recall, “homologous to zero in U” means n(I';z) = 0forallze C\ U.

Proof: Write S = {w1, ..., ws}.
Letrq,...,r; be positive such that

Ay (w1), ..., Ay, (wy) are mutually disjoint
and Ay (wj) C U for all j.

Define the cycle r
A=T — n(;w) dA, (w1) — -+ — n(T;we) A, (wy).
In the picture n(I;w;) =1, n(T;wz) = 0, and n(T; ws) = 2
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Recognize the formula for c_; at wy:

L. f(z)dz = Res(f; wy).
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