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Then Df|,, corresponds to multiplication by & = ‘;—;‘LO z£|20 = @'z() 1a—y|20.
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Proposition

Let U c Cbeopen and f = u +iv: U — C be a function. Then f is complex differentiable at

zo € U if and only if f (real) differentiable at zy € U with % =&| gpd 2| = -2

|zo - (9_y|zo dx |zo - Elzo'
In this case, f’(zo) = %LO + i%to = g—;|ZO - ig—;|20.
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Corollary

Let U c Cbeopenandlet f = u +iv: U — C be a function such that gﬁ, g;, ng and 3; exist and
are continuous (that is, f is continuously differentiable). Then
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if and only if f is holomorphic (complex differentiable at all z € U), or in other words,
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exists for all z € U.

The equations (1) are called the Cauchy—Riemann equations.
Complex analysis is the study of their solutions.

Remark: If only the partial derivatives exist but aren’t continuous, the function may fail to
be differentiable (or even continuous) and may not be holomorphic even if it satisfies (1).
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and hence sin z and cos z are also holomorphic.

Hint: Note that e**¥ = ¢* cosy + ie* sin y and use the Corollary from previous slide.



