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Definition
The k from the lemma is called the order of the zero at p.

If the order is 1, we say p is a simple zero.
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In fact (exercise), there is a disc A,(p) and some C; > 0 and C, > 0 such that
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The conclusion of the lemma still holds if f(p) # 0, in which case order is k = 0 (and g = f).
So we could say that if f(p) # O, then f has a zero of order 0.

We'll even see negative orders in just a bit.

To avoid confusion, by “f has a zero,” we mean an honest zero of positive order.

If f®)(p) = 0 for all k, one could say that f has a zero of infinite order.

For f holomorphic, infinite order = the power series is zero = f is identically zero.

So every zero of a nonconstant holomorphic function has finite order.

This is not true for just real differentiable (not holomorphic) functions (see the exercises):
E.g., letf(0) = 0 and f(x) = e"*/** for x € R \ {0}.
f is infinitely differentiable, f*)(0) = 0 for all k, but f has an isolated zero.
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Exercise: Prove L'Hopital’s rule: If f and g are holomorphic near p, both with an isolated

Ji©) f@@)

zero at p, and hm e exists (including possibly o), then hm RE) exists and equals the

same thing.



