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The value of
∫
𝛾

f (z) dz does not depend on the parametrization,

except for orientation.

Suppose 𝛾 : [a, b] → ℂ is C1 and
h : [c, d] → [a, b] is C1, h′ > 0 (increasing), h(c) = a, and h(d) = b.

Then 𝛾 ◦ h : [c, d] → ℂ is a new C1 path (different parametrization of 𝛾).
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The general version is more difficult and left as an exercise (we only morally need it).

Proposition (Reparametrization)
Suppose 𝛾 : [a, b] → ℂ and 𝛼 : [c, d] → ℂ are piecewise-C1 paths such that 𝛾

(
[a, b]

)
= 𝛼

(
[c, d]

)
.

Suppose either
(i) 𝛾 and 𝛼 are injective, or

(ii) 𝛾 |(a,b] and 𝛼 |(c,d] are injective and 𝛾(a) = 𝛼(c) = 𝛾(b) = 𝛼(d) (simple closed paths).
Then there exists a strictly monotone continuous h : [c, d] → [a, b] such that 𝛾
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t ∈ [c, d]. Furthermore:
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We often write down the boundary of some open set as our path
(as long as it’s piecewise-C1).

We consider any parametrization going counterclockwise around the interior.

For instance, given a disc Δr(p), we parametrize the boundary 𝜕Δr(p) by
𝛾 : [0, 2𝜋] → ℂ given by 𝛾(t) = p + reit,
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There is also the “u-substitution” from calculus.

Proposition
Let U,V ⊂ ℂ be open, 𝛾 : [a, b] → V piecewise-C1 path, g : V → U holomorphic (assume g′ is
continuous), and f : U → ℂ continuous. Then g ◦ 𝛾 is a piecewise-C1 path in U (possibly with
vanishing derivative, however, if g′ is zero on 𝛾) and∫

𝛾
f
(
g(z)

)
g′(z) dz =

∫
g◦𝛾

f (w) dw.

Proof: Clearly g ◦ 𝛾 is a piecewise-C1 path (except with perhaps vanishing derivative).
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We also integrate with respect to arclength (the ds from calculus).

For an f continuous on a piecewise-C1 path 𝛾 : [a, b] → ℂ, we define∫
𝛾

f (z) |dz| def
=

∫ b

a
f
(
𝛾(t)

)
|𝛾′(t)| dt.

For example, ∫
𝛾
|dz| =

∫ b

a
|𝛾′(t)| dt

(
=

∫
𝛾

ds
)

is the length of 𝛾.
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Proposition (Triangle inequality for line integrals)
Suppose 𝛾 : [a, b] → ℂ is a piecewise-C1 path and f is a continuous function on 𝛾. Then����∫

𝛾
f (z) dz

���� ≤ ∫
𝛾
|f (z)| |dz|.

In particular, if |f (z)| ≤ M on 𝛾 and ℓ =
∫
𝛾
|dz|, then����∫

𝛾
f (z) dz

���� ≤ Mℓ .

Proof: We estimate����∫
𝛾

f (z) dz
���� = �����∫ b

a
f
(
𝛾(t)

)
𝛾′(t) dt

����� ≤ ∫ b

a

��f (𝛾(t)) �� |𝛾′(t)| dt︸                    ︷︷                    ︸∫
𝛾
|f (z)| |dz|

≤ M
∫ b

a
|𝛾′(t)| dt. □
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Remark: Uniform convergence of the functions, fn → f , passes under the integral:

lim
n→∞

∫
𝛾

fn(z) dz =

∫
𝛾

f (z) dz lim
n→∞

∫
𝛾

fn(z) |dz| =
∫
𝛾

f (z) |dz|

Uniform convergence of the paths 𝛾n → 𝛾 does not (for either integral).

For instance, there exists (exercise) uniformly convergent 𝛾n → 0 such that

lim
n→∞

∫
𝛾n

|dz| = ∞

So arclength is not preserved under uniform convergence of paths.

For this you would also need 𝛾′
n to also converge (uniformly).
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