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Mathematics is the language of science, and differential equations are the most basic and
important part of it.

You’ve already solved differential equations in calculus: You found antiderivatives.

Example you may not have seen:
(Newton’s law of cooling with variable ambient temperature)

dx
dt

+ x = 2 cos t.

x is the dependent variable
t is the independent variable

It is a first order differential equation.
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What do we want do do with dx
dt

+ x = 2 cos t ?

We want to find a solution x in terms of t: If we plug x into the equation, it is satisfied.

x = x(t) = cos t + sin t is a solution.

Why?
dx
dt

+ x = (− sin t + cos t)︸            ︷︷            ︸
dx
dt

+ (cos t + sin t)︸          ︷︷          ︸
x

= 2 cos t.

Yay!
x = x(t) = cos t + sin t + e−t is also a solution.

dx
dt

+ x = (− sin t + cos t − e−t)︸                    ︷︷                    ︸
dx
dt

+ (cos t + sin t + e−t)︸                 ︷︷                 ︸
x

= 2 cos t.
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All solutions to dx
dt

+ x = 2 cos t are of the form

x = cos t + sin t + Ce−t (C is a constant)
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Finding solutions is hard: No completely general method.

For simple cases we find exact analytic solutions.

For complicated cases we may have to be satisfied with approximate, numerical solutions.
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Example: (Exponential growth model)

P population of bacteria in a Petri dish.

At time 0, there is 100 bacteria, 10 seconds later there are 200.
Question: How many bacteria will there be at time 60 (1 minute)?

Assume enough food and space.

Rate of growth is proportional to the population, so our model is:

dP
dt

= kP (k > 0 constant),

Solution is P(t) = Cekt (C a constant).

Check: dP
dt

= Ckekt = kP ✓
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Now what? We have P(t) = Cekt, but we don’t know C and we don’t know k.

We do know P(0) = 100 and P(10) = 200.

100 = P(0) = Cek0 = C 200 = P(10) = 100 ek10 so 2 = e10k or k = ln 2
10 ≈ 0.069

So P(t) = 100e(ln 2)t/10 ≈ 100e0.069t
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P(60) = 6400
So at 1 minute there are 6400 bacteria.

Exactly?

At 61 seconds is there exactly
P(61) ≈ 6859.35 bacteria?

Obviously this is approximate.
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Typically k is known and we solve one initial condition such as P(0) = 100 to get C.

Example: Suppose P′ = P is the equation.

P(t) = Cet (giving all solutions) is called the general solution.

Given the initial condition P(0) = 100 the solution

P(t) = 100 et is called the particular solution.
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Four fundamental equations: (y dependent variable, x independent variable)

1.
dy
dx

= ky, k > 0

General solution: y(x) = Cekx

2.
dy
dx

= −ky, k > 0

General solution: y(x) = Ce−kx

3.
d2y
dx2 = −k2y, k > 0

General solution: y(x) = C1 cos(kx) + C2 sin(kx)
second order differential equation so two unknown constants C1 and C2.

4.
d2y
dx2 = k2y, k > 0

General solution: y(x) = C1ekx + C2e−kx or y(x) = D1 cosh(kx) + D2 sinh(kx)
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For those that have not seen sinh and cosh, the hyperbolic sine and hyperbolic cosine:

cosh x =
ex + e−x

2 , sinh x =
ex − e−x

2 .

Some properties:

cosh 0 = 1, sinh 0 = 0, d
dx

cosh x = sinh x, d
dx

sinh x = cosh x.

Remark: The shape of the graph of cosh is called a catenary. The arch in Saint Louis is an
inverted cosh:

y = −127.7 ft · cosh(x/127.7 ft) + 757.7 ft.
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Here are the graphs of sinh and cosh:

-5.0 -2.5 0.0 2.5 5.0

-5.0 -2.5 0.0 2.5 5.0

-75

-50

-25

0

25

50

75

-75

-50

-25

0

25

50

75
sinh(x)

-5.0 -2.5 0.0 2.5 5.0

-5.0 -2.5 0.0 2.5 5.0

0

20

40

60

0

20

40

60

cosh(x)



Compare with the graphs of exponential growth ex and exponential decay e−x
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Just for completeness here are the graphs of sin and cos:
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