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Consider a constant coefficient linear differential equation Lx = f (t).

Consider f (t) the input and x(t) the output.

We want a way to analyze outputs for all sorts of inputs (but same L). E.g., we want to
understand how a specific circuit responds to different inputs.

Consider the initial conditions are zero.

Taking the Laplace transform the equation becomes

A(s)X(s) = F(s).

The ratio X(s)
F(s) =

1
A(s) is called the transfer function and we denote it by H(s). So

X(s) = H(s)F(s).

The output X(s) is just a multiplication away from the input F(s).

Moreover, as H(s) = X(s)
F(s) , we need to simply know the output X(s) for one input F(s) to find

the output for all inputs. We don’t even need to know L itself, just its output.
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Example: Consider x′′ + 𝜔2
0x = f (t) (zero initial conditions).

Laplace transform the equation:

s2X(s) + 𝜔2
0X(s) = F(s).

The transfer function is
H(s) = X(s)

F(s) =
1

s2 + 𝜔2
0
.

So if the input is the constant f (t) = 1, then F(s) = 1/s.
Then the output is

X(s) = H(s)F(s) = 1
s2 + 𝜔2

0

1
s
.

The inverse Laplace transform gives

x(t) = 1 − cos(𝜔0t)
𝜔2

0
.

For any other input f (t), the output (in s-space) is again simply

X(s) = H(s)F(s) = 1
s2 + 𝜔2

0
F(s).
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Laplace also deals with integrals easily.

Applying the definition and a little bit of calculus gives the property

ℒ
{∫ t

0
f (𝜏) d𝜏

}
=

1
s

F(s) or perhaps
∫ t

0
f (𝜏) d𝜏 = ℒ−1

{
1
s

F(s)
}
.

Example:

ℒ−1
{

1
s(s2 + 1)

}
= ℒ−1

{
1
s

1
s2 + 1

}
=

∫ t

0
ℒ−1

{
1

s2 + 1

}
d𝜏 =

∫ t

0
sin 𝜏 d𝜏 = 1 − cos t.
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An equation containing integrals is called an integral equation.

Example: Solve for x(t) in

x(t) − t =
∫ t

0
x(𝜏) d𝜏.

Apply the Laplace transform. Remember ℒ
{∫ t

0 f (𝜏) d𝜏
}
= 1

s F(s).

X(s) − 1
s2 =

1
s

X(s).

So
X(s) = 1

s(s − 1) =
1

s − 1 − 1
s
.

The inverse Laplace transform gives

x(t) = et − 1.
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How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4
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0.00

0.25

0.50

0.75

1.00

0.00
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1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt

=

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s)

=
1

1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).

So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt

=
1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)

=
−e−s

(1 − e−s)s + 1
s2 .



How about periodic functions? That is, an f (t) where f (t) = f (t+ P) for some P (the period).

F(s) =
∫ ∞

0
e−stf (t) dt =

∫ P

0
e−stf (t) dt +

∫ ∞

P
e−stf (t) dt

=

∫ P

0
e−stf (t) dt +

∫ ∞

0
e−s(t+P)f (t + P) dt =

∫ P

0
e−stf (t) dt + e−Ps

∫ ∞

0
e−stf (t) dt

=

∫ P

0
e−stf (t) dt + e−PsF(s).

Solve for F(s) = 1
1 − e−Ps

∫ P

0
e−stf (t) dt.

Example: Suppose f (t) is a sawtooth, that is,
f (t) = t for 0 ≤ t < 1 and f (t) = f (t + 1).
So f (t) = t − 1 for 1 ≤ t < 2,
f (t) = t − 2 for 2 ≤ t < 3, etc.

0 1 2 3 4

0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Then P = 1 and

F(s) = 1
1 − e−s

∫ 1

0
e−stt dt = 1

1 − e−s

(
−e−s

s
− e−s

s2 + 1
s2

)
=

−e−s

(1 − e−s)s + 1
s2 .


