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Recall our setup:

damping c

m
k F(t)

x

The equation is
mx′′ + cx′ + kx = F(t),

m is the mass,
c if friction,
k is the spring constant, and
F(t) is an external force acting on the mass.

We are considering
F(t) = F0 cos(𝜔t)
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We consider damped (c > 0) motion:

mx′′ + cx′ + kx = F0 cos(𝜔t).

Write:
p =

c
2m

, 𝜔0 =

√
k
m
.

Equation becomes:
x′′ + 2px′ + 𝜔2

0x =
F0
m

cos(𝜔t).

Roots of the characteristic equation are −p ±
√

p2 − 𝜔2
0, so the complementary solution is

xc =


C1er1t + C2er2t if c2 > 4km,

C1e−pt + C2te−pt if c2 = 4km,

e−pt (C1 cos(𝜔1t) + C2 sin(𝜔1t)
)

if c2 < 4km,

where 𝜔1 =

√
𝜔2

0 − p2.

Note that xc(t) → 0 as t → ∞.
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We need a particular solution. Try

xp = A cos(𝜔t) + B sin(𝜔t).

We plug into the equation x′′ + 2px′ + 𝜔2
0x =

F0
m cos(𝜔t):(

(𝜔2
0 − 𝜔2)B − 2𝜔pA

)
sin(𝜔t) +

(
(𝜔2

0 − 𝜔2)A + 2𝜔pB
)
cos(𝜔t) = F0

m
cos(𝜔t).

Solve for A and B:

A =
(𝜔2

0 − 𝜔2)F0

m(2𝜔p)2 + m(𝜔2
0 − 𝜔2)2

, B =
2𝜔pF0

m(2𝜔p)2 + m(𝜔2
0 − 𝜔2)2

.

Compute the amplitude of xp:

C =
√

A2 + B2 =
F0

m
√
(2𝜔p)2 + (𝜔2

0 − 𝜔2)2
.
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So our particular solution is

xp = A cos(𝜔t) + B sin(𝜔t)

=
(𝜔2
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m(2𝜔p)2 + m(𝜔2
0 − 𝜔2)2

cos(𝜔t) + 2𝜔pF0

m(2𝜔p)2 + m(𝜔2
0 − 𝜔2)2

sin(𝜔t).

Or
xp = C cos(𝜔t − 𝛾) = F0

m
√
(2𝜔p)2 + (𝜔2

0 − 𝜔2)2
cos(𝜔t − 𝛾).

Remark: 𝛾 can be computed as before, e.g. if A ≠ 0 (𝜔 ≠ 𝜔0), then tan 𝛾 = B
A =

2𝜔p
𝜔2

0−𝜔2 . If

A = 0, then B = C =
F0

2m𝜔p , and 𝛾 = 𝜋/2.
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Call xc the transient solution and denote it by xtr.

Call xp (the one above) the steady periodic solution and denote it by xsp.

So x = xc + xp = xtr + xsp.

xtr → 0 as t → ∞, so for large t, xtr is negligible.
Let’s ignore xtr.
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k = 1, m = 1, F0 = 1, c = 0.7, and 𝜔 = 1.1.

The larger the p (that is, c), the faster xtr → 0,
⇒ smaller “transient region.”

xsp is not affected by initial conditions.

Remark: Undamped motion, c = 0, means
“infinite transient region” (i.e., not “transient”)

We focus on xsp and its amplitude C.
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There is no (pure) resonance as there is no factor of t in

xsp =
F0

m
√
(2𝜔p)2 + (𝜔2

0 − 𝜔2)2
cos(𝜔t − 𝛾).

We focus on the amplitude as we vary the forcing frequency 𝜔:

C = C(𝜔) = F0

m
√
(2𝜔p)2 + (𝜔2

0 − 𝜔2)2
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Graph of C(𝜔) with k = 1, m = 1, F0 = 1:
Top line: c = 0.4, middle line: c = 0.8,
bottom line: c = 1.6.

Call the 𝜔 > 0 that maximizes C the
practical resonance frequency.

C(𝜔) is then the practical resonance amplitude.

We call this practical resonance.

Practical resonance gets bigger if c gets smaller, and disappears when damping is too large.
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For very small damping c, practical resonance frequency 𝜔 ≈ 𝜔0.
(Indeed, if c = 0, 𝜔0 is the (pure) resonance frequency.)
As c grows, practical resonance frequency 𝜔 goes to 0.

Remark: C(𝜔) → 0 as 𝜔 → ∞. ⇒ Large forcing frequency means small amplitude.
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