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Solving differential equations is hard! It would be a lot easier if there were no derivatives.

Laplace transform to the rescue:

algebraic equation algebraic solution

differential equation solution to differential equation

easy

inverse Laplace transform

hard

Laplace transform

Other applications: electrical circuit analysis, NMR spectroscopy, signal processing, etc.

Laplace transform is similar to the Fourier transform and Fourier series.

What it does: Laplace takes a function of time t and gives a function of “frequency” s:

ℒ
{
f (t)

}
= F(s)

Notation: We will use capital letters to represent the Laplace transforms.
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In particular, consider
mx′′(t) + cx′(t) + kx(t) = f (t).

Think of t as time, f (t) as the input signal, and x(t) as the output.

We will take t = 0 to be the initial time and consider x(t) only for t ≥ 0.

Example: In the mass-spring system, the external force is the input and the position of the
mass is the output.

Example: Or in the RLC circuit, the change in voltage on the electric source was the input
and the current in the circuit is the output.

Solution procedure:
We transform the input f (t) into F(s).
We transform the equation to get an equation in the transforms X(s) and F(s).
We solve for X(s) by algebra.

Then we invert the transform of X(s) to find the output x(t).
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Definition: Suppose that f (t) is a function of time t ≥ 0. Then

ℒ
{
f (t)

}
= F(s) def

=

∫ ∞

0
e−stf (t) dt.

Example: Consider f (t) = 1

ℒ{1} =

∫ ∞

0
e−st dt =

[
e−st

−s

]∞
t=0

= lim
h→∞

[
e−st

−s

]h

t=0
= lim

h→∞

(
e−sh

−s
− 1

−s

)
=

1
s
.

Limit exists for s > 0 ⇒ ℒ{1} only defined for s > 0.

Example: Consider f (t) = e−at

ℒ
{
e−at} =

∫ ∞

0
e−ste−at dt =

∫ ∞

0
e−(s+a)t dt =

[
e−(s+a)t

−(s + a)

]∞
t=0

=
1

s + a
.

Limit exists for s + a > 0 (that is, s > −a) ⇒ ℒ
{
e−at} only defined for s > −a.
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Example: Consider f (t) = t, and assume s > 0

ℒ{t} =

∫ ∞

0
e−stt dt

=

[
−te−st

s

]∞
t=0

+ 1
s

∫ ∞

0
e−st dt = 0 + 1

s

[
e−st

−s

]∞
t=0

=
1
s2 .

Example: Consider the unit step function, sometimes the Heaviside function

u(t) =
{

0 if t < 0,
1 if t ≥ 0,

or more generally u(t − a) =
{

0 if t < a,
1 if t ≥ a.

The formulation with a number a ≥ 0 is more useful: u(t − a) is 0 for t < a and 1 for t ≥ a.
Again assume s > 0.

ℒ
{
u(t − a)

}
=

∫ ∞

0
e−stu(t − a) dt =

∫ ∞

a
e−st dt =

[
e−st

−s

]∞
t=a

=
e−as

s
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Here are some useful Laplace transforms (C, 𝜔, and a are constants):

f (t) ℒ
{
f (t)

}
= F(s) f (t) ℒ

{
f (t)

}
= F(s)

C C
s

sin(𝜔t) 𝜔

s2 + 𝜔2

t 1
s2 cos(𝜔t) s

s2 + 𝜔2

t2 2
s3 sinh(𝜔t) 𝜔

s2 − 𝜔2

t3 6
s4 cosh(𝜔t) s

s2 − 𝜔2

tn n!
sn+1 u(t − a) e−as

s
(a ≥ 0)

e−at 1
s + a

Exercise: Verify the table.
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The transform is defined by an integral and integral is linear, so if C is a constant

ℒ
{
Cf (t)

}

=

∫ ∞

0
e−stCf (t) dt = C

∫ ∞

0
e−stf (t) dt = Cℒ

{
f (t)

}
.

Similarly, if A and B are constants:

ℒ
{
Af (t) + Bg(t)

}
= Aℒ

{
f (t)

}
+ Bℒ

{
g(t)

}
.

Example:

ℒ
{
2+9t+ sin(2t)+5e−2t} = ℒ

{
2
}
+9ℒ

{
t
}
+ℒ

{
sin(2t)

}
+5ℒ

{
e−2t} =

2
s
+ 9

s2 +
2

s2 + 4
+ 5

s + 2 .

Caution: In general
ℒ
{
f (t)g(t)

}
≠ ℒ

{
f (t)

}
ℒ
{
g(t)

}
.

Remark: Not all functions have a Laplace transform. E.g., 1
t , tan t, or et2
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