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damping c

m
k F(t)

x

Consider mx′′ + cx′ + kx = 0 with c > 0.
(damping is present)

Rewrite the equation as

x′′ + 2px′ + 𝜔2
0x = 0, where 𝜔0 =

√
k
m
, p =

c
2m

.

Characteristic equation: r2 + 2pr + 𝜔2
0 = 0.

Roots: r = −p ±
√

p2 − 𝜔2
0.

Solution depends on roots being real or complex, that is, if

p2 − 𝜔2
0 =

( c
2m

)2
− k

m
=

c2 − 4km
4m2 is positive or negative.

Real roots if c2 − 4km ≥ 0 or c ≥ 2
√

km (overdamped / critically damped)

Complex roots if c2 − 4km < 0 or c < 2
√

km (underdamped)
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Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.
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As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.

Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,

⇒ C1er1t = −C2er2t ⇒ −C1
C2

= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t

⇒ −C1
C2

= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 1: Overdamped, c2 − 4km > 0.

Two real roots: r1 , r2 = −p ±
√

p2 − 𝜔2
0.

Both roots negative as
√

p2 − 𝜔2
0 < p.

Solution: x(t) = C1er1t + C2er2t.

0 25 50 75 100

0 25 50 75 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

As r1 , r2 are negative, x(t) → 0 as t → ∞.

No oscillation:
The graph crosses the t-axis at most once.
Why? Solve 0 = C1er1t + C2er2t,
⇒ C1er1t = −C2er2t ⇒ −C1

C2
= e(r2−r1)t ⇒ at most one solution! (or no solution)

Example: The mass is released from rest at position x0: x(0) = x0 and x′(0) = 0.

x(t) = x0
r1 − r2

(
r1er2t − r2er1t) .



Case 2: Critically damped, c2 − 4km = 0.

Only one root: −p.

Solution
x(t) = C1e−pt + C2te−pt.

Behavior very similar to overdamped: After all, infinitely close to overdamped.

Everything is an approximation of reality, so best not to dwell on this edge case.
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Case 3: Underdamped, c2 − 4km < 0.

Roots are complex:

r = −p ±
√

p2 − 𝜔2
0 = −p ±

√
−1

√
𝜔2

0 − p2

= −p ± i𝜔1, where 𝜔1 =

√
𝜔2

0 − p2.

Solution:

x(t) = e−pt (A cos(𝜔1t) + B sin(𝜔1t)
)
, or

x(t) = Ce−pt cos(𝜔1t − 𝛾).
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Figure shows envelope curves Ce−pt and −Ce−pt.
Still x(t) → 0 as t → ∞.

𝜔1 is the angular pseudo-frequency and is always smaller than 𝜔0.

𝜔1 gets smaller and smaller as c (and hence p) grows.

As c2 gets close to 4km, 𝜔1 approaches 0. As c gets close to 0, 𝜔1 approaches 𝜔0.

The envelope curves become flatter and flatter as c (and hence p) goes to 0.
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