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An first order equation is linear if it is of the form

y′ + p(x)y = f (x)

That is, linear in y and y′. Dependence on x can be more complicated.

Linear equations are quite well-behaved, are easy to solve, and are quite common.

Trick is to multiply by some r(x) to make the left hand side look like

r(x)y′ + r(x)p(x)y =
d
dx

[
r(x)y

]
If we have such an r, then the equation is

d
dx

[
r(x)y

]
= r(x)f (x)

Integrate both sides, and solve for y:

y =
1

r(x)

(∫
r(x)f (x) dx + C

)
r(x) is called the integrating factor. That’s all great but ... What is r(x)?
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We want r(x) so that r′(x) = r(x)p(x):

r(x) = e
∫

p(x) dx

We compute:

y′ + p(x)y = f (x)
e
∫

p(x) dxy′ + e
∫

p(x) dxp(x)y = e
∫

p(x) dxf (x)
d
dx

[
e
∫

p(x) dxy
]
= e

∫
p(x) dxf (x)

e
∫

p(x) dxy =

∫
e
∫

p(x) dxf (x) dx + C

y = e−
∫

p(x) dx
(∫

e
∫

p(x) dxf (x) dx + C
)
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Example: Solve y′ + 2xy = ex−x2
, y(0) = −1

So p(x) = 2x and f (x) = ex−x2

The integrating factor is r(x) = e
∫

p(x) dx = ex2 . Compute:

ex2y′ + 2xex2y = ex−x2ex2

d
dx

[
ex2y

]
= ex

ex2y = ex + C

y = ex−x2 + Ce−x2

Solve for the initial condition: −1 = y(0) = 1 + C, so C = −2.

So
y = ex−x2 − 2e−x2
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Remark 1: Pick any antiderivative for e
∫

p(x)dx, no need to put in a constant of integration.

Remark 2: I find it is easiest to remember just the formula for r(x) and how to repeat the
process instead of memorizing the final formula.

Remark 3: Can’t always solve in closed form. A formula with a definite integral is useful.

Consider y′ + p(x)y = f (x), y(x0) = y0.

We have an explicit formula for the solution:

y(x) = e−
∫ x
x0

p(s) ds
(∫ x

x0

e
∫ t
x0

p(s) dsf (t) dt + y0

)
(∗)

Note all the “dummy” variables to write it correctly.

Exercise: Write the solution of y′ + y = ex2−x , y(0) = 10 as a definite integral
(no closed form solution exists).

Remark 4: There is a stronger version of Picard’s theorem for linear equations: Formula (∗)
says that if f (x) and p(x) are continuous on an interval (a, b), the solution also exists and is
continuous on (a, b). Nothing like that weird nonlinear y′ = y2 we saw before.
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process instead of memorizing the final formula.

Remark 3: Can’t always solve in closed form. A formula with a definite integral is useful.
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Example: A 100L tank contains 10kg of salt dissolved in 60L of water.
Brine (water and salt) of concentration 0.1kg/L flows in at 5L/min.
The tank is well stirred and solution flows out at 3L/min.

5 L/min, 0.1 kg/L

3 L/min

60 L
10 kg salt

How much salt is in the tank when the tank is full?

Let x = kg of salt in tank. Let t be time in minutes.

For small change Δt in t, x changes approx. as

Δx ≈ (rate in × concentration in)Δt − (rate out × concentration out)Δt

Divide by Δt and take the limit Δt → 0:
dx
dt

= (rate in × concentration in) − (rate out × concentration out)

Here rate in = 5, concentration in = 0.1, rate out = 3, concentration out = x
volume = x

60+(5−3)t

So
dx
dt

= (5 × 0.1) −
(
3 x

60 + 2t

)
or dx

dt
+ 3

60 + 2t
x = 0.5
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For dx
dt + 3

60+2tx = 0.5, the integrating factor is

r(t) = exp
(∫

3
60 + 2t

dt
)

= exp
(
3
2 ln(60 + 2t)

)
= (60 + 2t)3/2.

Compute

(60 + 2t)3/2 dx
dt

+ (60 + 2t)3/2 3
60 + 2t

x = 0.5(60 + 2t)3/2

d
dt

[
(60 + 2t)3/2x

]
= 0.5(60 + 2t)3/2

(60 + 2t)3/2x =

∫
0.5(60 + 2t)3/2dt + C

x = (60 + 2t)−3/2
∫ (60 + 2t)3/2

2 dt + C(60 + 2t)−3/2

x = (60 + 2t)−3/2 1
10 (60 + 2t)5/2 + C(60 + 2t)−3/2

x =
60 + 2t

10 + C(60 + 2t)−3/2
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At t = 0, x = 10: 10 = x(0)

= 60
10 + C(60)−3/2

= 6 + C(60)−3/2 ⇒ C = 4(603/2) ≈ 1859.03.
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Here’s a graph:

So when is the tank full?
The tank is full when 60 + 2t = 100, or t = 20.

What is x when tank is full?

x(20) = 60 + 40
10 + C(60 + 40)−3/2

≈ 10 + 1859.03(100)−3/2 ≈ 11.86

The concentration when the tank is full is
approx. 11.86/100 = 0.1186 kg/liter.

(we started with 1/6 or 0.1667 kg/liter.)
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