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Moreover, if f is of exponential order, then

lim F(s) = 0.
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where F(s) and G(s) are polynomials.

If % is the Laplace transform of an exponential order function, it goes to zero as s — oo:

So the degree of F(s) is smaller than that of G(s). That is, % is a proper rational function.

For proper rational functions, partial fractions method applies without polynomial
division, and the techniques above always work.

Though for partial fractions, you still need to factor the denominator, which can be hard
(finding roots).



