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Let us consider linear equations of order higher than 2 — Mostly the same idea.

Theorem (Superposition)
If y1, y2, . . . , yn are solutions of the homogeneous equation

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = 0,

then the linear combination

y(x) = C1y1(x) + C2y2(x) + · · · + Cnyn(x)

is also a solution for arbitrary constants C1 ,C2 , . . . ,Cn.
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Theorem (Existence and uniqueness)
Suppose p0 through pn−1, and f are continuous functions on some interval I, a is a number in I, and
b0 , b1 , . . . , bn−1 are constants. Then the equation

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = f (x)

has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y(a) = b0 , y′(a) = b1 , . . . , y(n−1)(a) = bn−1.



To use superposition, we need enough linearly independent solutions.

The functions y1, y2, . . . , yn are linearly independent if the equation

c1y1 + c2y2 + · · · + cnyn = 0

has only the trivial solution c1 = c2 = · · · = cn = 0.

If there is a solution where, e.g., c1 ≠ 0, then we can solve for y1 as a linear combination of
the others. The functions are then linearly dependent.

Example: Show that ex , e2x , e3x are linearly independent.

Consider
c1ex + c2e2x + c3e3x = 0.

Write z = ex ⇒ z2 = e2x and z3 = e3x ⇒

c1z + c2z2 + c3z3 = 0.

This polynomial must be zero for any positive number z = ex ⇒ it is identically zero
⇒ c1 = c2 = c3 = 0 ⇒ the functions are linearly independent.
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Let’s show that ex , e2x , e3x are linearly independent in another way:

Start with
c1ex + c2e2x + c3e3x = 0.

Divide by e3x:
c1e−2x + c2e−x + c3 = 0.

True for all x, so let x → ∞ ⇒ c3 = 0.

So c1ex + c2e2x = 0. Rinse, repeat!

A third way: Suppose
c1ex + c2e2x + c3e3x = 0.

This has to be true for all x, so plug in x = 0, x = 1, and x = 2.

We must have

c1 + c2 + c3 = 0 and c1e + c2e2 + c3e3 = 0 and c1e2 + c2e4 + c3e6 = 0.

Solving the three equations yields c1 = c2 = c3 = 0.

A so-called Wronskian can also be used, but let’s skip it.
The main thing to understand is the meaning of linear independence!
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Example: The functions ex, e−x, and cosh x are linearly dependent:

cosh x =
ex + e−x

2 or 2 cosh x − ex − e−x = 0.

Note: You must consider all the functions at once. The functions ex and e−x are linearly
independent.

Theorem
If y1, y2, . . . , yn are linearly independent solutions of the homogeneous equation

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = 0,

then the general solution can be written as

y(x) = C1y1(x) + C2y2(x) + · · · + Cnyn(x).
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Example: Solve y′′′ − 3y′′ − y′ + 3y = 0 subject to y(0) = 1, y′(0) = 2, and y′′(0) = 3.

Try: y = erx:
r3erx︸︷︷︸

y′′′

−3 r2erx︸︷︷︸
y′′

− rerx︸︷︷︸
y′

+3 erx︸︷︷︸
y

= 0.

We divide by erx: r3 − 3r2 − r + 3 = 0.

Find the roots! By trial and error r = −1, 1, 3.

So solutions are y1 = e−x, y2 = ex, y3 = e3x.

The general solution is
y = C1e−x + C2ex + C3e3x.

Initial conditions say

1 = y(0) = C1 + C2 + C3 , 2 = y′(0) = −C1 + C2 + 3C3 , 3 = y′′(0) = C1 + C2 + 9C3.
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y =
−1
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The real trick is finding the roots.

There are complicated formulas for degree 3 and 4 polynomials.

There is no formula for degree 5 or higher.

But there are always n roots for an nth degree polynomial, though they can be repeated,
and they may be complex.

One often uses a computer, but a good strategy to do it by hand is to plug in some easy
numbers to start with: Start with 0, then try 1 and −1, then try other integers.

E.g., for r3 − 3r2 − r + 3 = 0, we find r1 = 1 and r2 = −1 are roots by trying.
The third root r3 is easy to find:

r3 − 3r2 − r + 3 = (r − r1)(r − r2)(r − r3)

So the constant term is
3 = (−r1)(−r2)(−r3).

So 3 = (−1)(1)(−r3) or r3 = 3.
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If a real root r is repeated k times, then we have solutions

erx , xerx , x2erx , . . . , xk−1erx.

Example: Solve y(4) − 3y′′′ + 3y′′ − y′ = 0.

The characteristic equation is r4 − 3r3 + 3r2 − r = 0.

By inspection r4 − 3r3 + 3r2 − r = r(r − 1)3.

The roots are r = 0, 1, 1, 1. (r = 1 has multiplicity 3)

The general solution is
y = (C1 + C2x + C3x2) ex︸                   ︷︷                   ︸

terms coming from r=1

+ C4︸︷︷︸
from r=0

.
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Complex roots come in pairs r = 𝛼 ± i𝛽.

If we have such a pair each repeated k times, the corresponding solution is

(C0 + C1x + · · · + Ck−1xk−1) e𝛼x cos(𝛽x) + (D0 + D1x + · · · + Dk−1xk−1) e𝛼x sin(𝛽x).

Example: Solve y(4) − 4y′′′ + 8y′′ − 8y′ + 4y = 0.

The characteristic equation is r4 − 4r3 + 8r2 − 8r + 4 = 0
⇒ (r2 − 2r + 2)2 = 0 ⇒

(
(r − 1)2 + 1

)2
= 0.

Roots are 1 ± i, both with multiplicity 2.

The general solution is

y = (C1 + C2x) ex cos x + (C3 + C4x) ex sin x.
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