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There are many types of differential equations.

Most broadly:

o Ordinary differential equations (ODE):
Only one independent variable.

o Partial differential equations (PDE):
Several independent variables, using partial derivatives.
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2 2 2
3—: = % + g_yz (Wave equation in 2 dimensions)
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If there is more than one equation it is a system of differential equations.
Examples:
A system of ordinary differential equations (system of ODE):

Y =x, X' =y.

Maxwell’s equations for electromagnetics are a system of partial differential equations
(system of PDE):

V-D=p, V-B=0,

- OB S
VXE=—-—— VXH=]+—.
ot’ J ot

(Note: divergence V- and curl Vx are written in partial derivatives in x, y, z.)
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The highest order derivative that appears is the order of the equation (or system).

d

dz k is a first order ODE equation.

d?y d

é + d_}/ + y = sin(x) is a second order ODE equation.
Oy P

a QxZ + Btg =0 is a fourth order PDE equation.

Remark: The most common equations in physics are first and second order.
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An equation is linear if the dependent variable(s) and their derivatives appear linearly.
(“linearly”: only first powers, not multiplied together, divided, or composed with
functions such as sin or exp.)

An ODE of order n can be put into the form:

dn d”‘l d
an(x) Y . 10— J +'--+a1(x)£ +ao(x)y = b(x).

E.g., linear 2nd grder ODE: ”

d ax2
Note: The dependence on x need not be linear, only the dependence on y.

1
+sm(x)— +x%y = p

E.g., nonlinear 2" order PDE (Burger’s equation):
dy dy_ Py
ot Vox T Vo
E.g., nonlinear 1% order ODE: J
X _ 2

ar ="

Remark: Nonlinear equations are notoriously difficult to handle.
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A linear equation is homogeneous if all terms depend on the dependent variable.
Otherwise, it is nonhomogeneous or inhomogeneous.

Examples:
Homogeneous: 2
d - +sm(x)— +x? y=0
W Py
ot =0
n n—1
y "y dy _
an(x)ﬁ + 01,1_1(x)dxn_1 +e al(x)ﬁ +ap(x)y =0
Inhomogeneous: " 2

+ ()d+ 1
e sin(x xy—x

dx

— +x+t=0

dt
The inhomogeneity is often some “outside input” into the physical system.
We solve an inhomogeneous equation using the solution to the corresponding
homogeneous equation.
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A linear equation has constant coefficients if the coefficients are constants (except for
perhaps the inhomogeneity). A general constant coefficient linear ODE:

dy
1 + - +a1£ +apy = b(x),

aop,ai, ... ,a, are constants, b may depend on x.

Finally, an equation (or system) is aufonomous if the equation does not depend on the
independent variable at all.

dx . dx .
Eg., E =22 is autonomous, but E = xt is not.

Autonomous equations often appear when the setup is independent of time.
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First order, linear, inhomogeneous, constant coefficient PDE system.



