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Some patterns to look for:
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vy’ v=y
yzy/ v = ]/3
(cosy)y’ v =siny
(siny)y’ v =cosy
y'e¥ v=¢Y

Try to substitute in the “most complicated” part.

Nothing wrong with making many guesses.
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Bernoulli equations:  y’ + p(x)y = q(x)y".

Ifn=0orn=1 = linear, we can solve.

1-n

Otherwise v = y~~" will result in a linear eq.

Example: Solve xy’ +y(x+1)+xy°> =0, y(1) =1

Note: p(x) = (x + 1)/x and g(x) = —1. (eq. isy’ + Xy = =)
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We just need to solve this linear equation.
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In the solution, we assume x > 0 or x < 0 depending on the initial condition.



Example: Solve x%y' =y?>+xy, y(1)=1.



Example: Solve x%y' =y?>+xy, y(1)=1.

Write v/ = (/x)* +y/x, soF(v)=v>+0



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0

Assume x > 0 due to the initial condition.



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

Solve: /F(v)—v /—dv—ln|x|+C




Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1
Solve: /F(v)_vdv:/;dv:lnlxl+c = 7=Inx+C



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0

Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

-1
Inx+C

Solve: / ! dv:/ldv:1n|x|+C = _—1=1nx+C = v=
F(v)—v 02 v



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0

Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

-1
Inx+C

Solve: / ! dv:/ldv:1n|x|+C = _—1=1nx+C = v=
F(v)—v 02 v

y -1

= lenx+C



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0

Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

-1
Inx+C

Solve: / ! dv:/ldv:1n|x|+C = _—1=1nx+C = v=
F(v)—v 02 v

v _ -1 =X
x Inx+C Y= TInx+C

=



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
1 : = — =1 —_ = =
Solve /F(v)—vdv /vz dv=In|x|+C = > Inx+C = v nrsC
y -1 =X
= X Inz+C Y= hx+cC

1=y(1)



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
lve: = — = [ —
Solve /F(v)—vdv /vzdv Injx|+C = > Inx+C = v nrsC
y -1 =X
= X Inz+C Y= hx+cC
-1
1=y(1)=

In1+C



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
lve: = — = [ —
Solve /F(v)—vdv /vzdv Injx|+C = > Inx+C = v nrsC
y -1 =X
= X lx+C Y= nx+C
-1 -1
1=y(1)= —

1+C C



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
lve: = — = [ —
Solve /F(v)—vdv /vzdv Injx|+C = > Inx+C = v nrsC
y -1 =X
= X lx+C Y= nx+C
1=y(1)= L N

nl+C C



Example: Solve x?y' =y? +xy, y(1)=1.
Write v/ = (/x)* +y/x, soF(v)=v>+0
Assume x > 0 due to the initial condition.

Substituting ©v=Y/x asabovegets xv' =v*+v-v=0?

1 1 -1 -1
lve: = — = [ —
Solve /F(v)—vdv /vzdv Injx|+C = > Inx+C = v nrsC
y -1 =X
= X Inz+C Y= hx+cC
-1 -1
1=y()= nitC _C C=-
—x
= y=

Inx-1



