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Theorem (Superposition)

Suppose y1 and y, are two solutions of the homogeneous equation y” + p(x)y’ + q(x)y = 0. Then

y(x) = Cry1(x) + Caya(x)

also solves the equation for arbitrary constants Cy and Ca.

We call Cyy1 + Cay2 a linear combination of y; and y».

Proof: Lety = Clyl + Czyz. Then

v +py +qy = (Ciya + Cay2)” + p(Ciy1 + Coy2)” + q(Ciy1 + Cayo)
= Cry{ + Cyy + Cipy; + Capyy, + Cigyr + Cagya

= Ci(y] +pyy +ay1) + Ca(ys + pys + qy2)
=C1-0+C-0=0.
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An operator is a thing that eats functions and spits out functions.

Define the operator L by
Ly=y"+py +qy.

The homogeneous differential equation becomes Ly = 0.

The operator L is linear if

L(Ciy1 + Coy2) = CiLy1 + CoLy,  (almost like multiplying by L)
Nicer proof of the theorem:
Suppose that Ly; = 0 and Ly, = 0. Then
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Example: y” — k?y = 0 has solutions y; = ¢ and y, = ™.
by oot bt

Recall that cosht = ¢ +2€ , sinht= c-¢

2

—kx

e = (1/2)é + (1/2)e™™ = (1/2)y1 + (1/2)y2  is a solution

So cosh(kx) = ¢

fex —kx

. e —e . .
And sinh(kx) = — = (1/2)e"* + (=1/2)e7*x = (1/2)y1 + (=1/2)y2  is a solution
sinh and cosh are sometimes more convenient than the exponential.

Exercise: Verify that

cosh0 =1, sinh0 =0,
i[cosht] =sinht i[ i ht] = ht
T = , T sin = cosht,

cosh’®t —sinh®t = 1.
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Theorem (Existence and uniqueness)

Suppose p, q, f are continuous functions on some interval 1, a is a number in 1, and by, by are
constants. Then the equation

¥ +p()y +qx)y = f(x),

has exactly one solution y(x) defined on the interval I satisfying the initial conditions

y@) =by,  y'(a)="b1.

Example: y” + k*y = 0 with y(0) = by and y’(0) = by has the solution

h

y(x) = bo cos(kx) + .

sin(kx).

Verify IC:  y(0) = by cos(0) + b—kl sin(0) = by.
Y (x) = —kbg sin(kx) + by cos(kx) = y'(0) = —kbg sin(0) + by cos(0) = b.
Similarly, y” — k?y = 0 with y(0) = by and y'(0) = by has the solution

y(x) = bo cosh(kx) + %1 sinh(kx).
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Two functions y1 and y, are linearly independent if one is not a constant multiple of the other.

Theorem

Let p, q be continuous functions. Let y1 and y, be two linearly independent solutions to the
homogeneous equation y” + p(x)y’ + q(x)y = 0. Then every other solution is of the form

y = Ciyr + Coyo. (i.e., that’s the general solution)

Example: y; = sinx and y, = cosx solve y” +y = 0.

sin and cos are linearly independent: If sin x = A cos x for some constant A, then let x = 0
to get A = 0. But then sinx = 0 for all x, that’s nonsense.

y1 and y; are linearly independent and
y=Cicosx + Cysinx

is the general solution to y” +y = 0.
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To see y; and y» are linearly independent, suppose y1 = Ay».
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1
Example: y” — 2x2y = 0 has solutions y; = x> and y, = =
To see y; and y» are linearly independent, suppose y1 = Ay».

Solve for A = 21 = 23, That's not a constant! = y1 and y» are linearly independent.

W

1
= y=Cx?+ ng is the general solution.
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If you have one solution we can find the second via the reduction of order method.

Suppose y; solves y” + p(x)y’ + g(x)y = 0.
Try to find a second solution of the form y,(x) = y1(x)v(x). Plug in:

0 =yy +p)y; +q(x)y2 = yyv + 2y10" + y19” +p(x) (v + y10') +q(x) Y10
~——
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0
= 110" + Qyy + py)v’ + (] + (X))

Soy1v” + 2y} + p(x)y1)v’ = 0.

Write w = v" and we have a first order ODE  yyw’ + (2y] + p(x)y1)w = 0.

Solve for w, and find v by antidifferentiating.

Example: y; = x is a solution to y” + x~ 'y’ — x72y = 0, let’s find y».

= w+3w=0 = w=Cx3 = v:z_—; = yzzylv:%?

1 1
Any C works, e.g.,,C = -2fory, = U The general solutionis y = Cix + ng.



We can even just write down a formula

y2(0) = 1(%) / 7 .
ylx



A useful warm-up for next time:

Exercise: For x?y” — xy’ = 0, find two solutions, show that they are linearly independent
and find the general solution.



A useful warm-up for next time:

Exercise: For x?y” — xy’ = 0, find two solutions, show that they are linearly independent
and find the general solution.
Hint: Try y = x".



A useful warm-up for next time:

Exercise: For x?y” — xy’ = 0, find two solutions, show that they are linearly independent
and find the general solution.
Hint: Try y = x".

Equations of the form ax?y” + bxy’ + cy = 0 are called Euler’s equations or Cauchy—Euler

equations.



