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The equation is
mx” + cx’ + kx = F(t),

m is the mass,

c if friction,

k is the spring constant, and

F(t) is an external force acting on the mass.

We consider periodic forces F(t), and the simplest periodic force is
F(t) = Fy cos(wt)

Note: Using Fourier series, all periodic functions can be understood via this simple case.
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We start with undamped (¢ = 0) motion:
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The complementary solution is
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(Including B sin(wt) doesn't hurt, you'll see B = 0). We find (exercise)
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The general solution is
F

x = Cy cos(wot) + Cy sin(wot) + m(a)z—oaﬂ) cos(wt) or

2

x = Ccos(wot — y) + > 0 cos(wt).
m(wg — w?)

A superposition of two phase shifted cosine waves at different frequencies.
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C, =0, so

x= % (cos(mtt) — cos(4t)).
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Using the identity  2sin (452) sin (432) = cosB - cos A, we find

X = 20 2 sin 4_—nt sin 4+—nt
- 16— 72 2 2 :

The solution is a high frequency wave modulated by a low frequency wave.
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What about the case wy = w?

From x, = cos(wt), we suspect that something “blows up” when w approaches wy.

Fo
m(wi—w?)
Undetermined coefficients says we should try
xp = At cos(wt) + Bt sin(wt) (the sine term is needed this time).

Write the equation as X"+ w?x = %‘J cos(wt) and plug in x, to find
. Fo
2Bw cos(wt) — 2Aw sin(wt) = P cos(wt).

A=0and B = 2 . The particular solution is me tsin(wt) and the general

m(u
X = Xx¢ + x, = Cy cos(wt) + Cp sin(wt) + Fo tsin(wt)
= = @ @ —_— In\wr).

c 4 1 2 mw

Note the t in the x,, so x, grows without bound as t — oo.

F[)t —Fot
xp oscillates between and 5=

x. only oscillates between +,/C3 + C.
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Resonance can be good:

We can create large oscillations 25
with small force.

Examples: Swinging a child, quartz watches,
NMR/MR], ...
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Resonance can be bad:
Examples: Earthquakes, vibrations in engines, soldiers marching on a bridge, . ..



