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Example: Consider x” + a)(z)x = f(#) (zero initial conditions).
Laplace transform the equation:
$2X(s) + @3X(s) = F(s).
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For any other input f(t), the output (in s-space) is again simply

X(s) = H(s)F(s) = j F(s).
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The inverse Laplace transform gives

x(f) = et —1.
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