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Review: Given ay” +by' +cy=0
Tryy =e™  ar’e™ +bre™ +ce™ =0

Divide by €’ to get the characteristic equation of the ODE:

ar> +br+c = 0.

—b + Vb? — 4ac
2a '
= ¢ and ¢"?* are linearly independent solutions.

Solve for the r: 7,7 =

If r = rq = ro, then ¢ and xe’* are linearly independent solutions.

But, what if the characteristic equation has no real roots? E.g., 72 + 1 = 0.
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The exponential should satisfy e**¥ = eeV.
So €a+ib — eaeib‘
Euler’s formula: €% =cos0 +isin@ and e7% =cos0 —isin6
= il = ot = 7(cos b + isinb) = e cos b + ie? sin b

60 4 p=i0 210
Exercise: Check the identities: cosf = — and sinf = o
Remark: Most trig identities follow from ¢*** = e%¢® for complex numbers.
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The roots are always a pair of the form «a + if.
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The exponential is complex valued and so must be Cy, C;. Let’s do better.
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Suppose the roots are complex, that is, b> — 4ac < 0.
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The roots are (quadratic formula) 11,72 = % 211 o

The roots are always a pair of the form «a + if.

The general solutionis y = Cyel@+B)¥ + Cpela=iP)x,

The exponential is complex valued and so must be Cy, C;. Let’s do better.

Write 17 = e(@*P)X = 9% cos(Bx) + ie** sin(Bx), y2 = el @7B* = ¢%* cos(Bx) — ie®* sin(Bx).

YitY2 _ ax -y

These are also solutions:  y3 = 5 cos(Bx) ys= 5 = ¢* sin(fBx)



ay” + by’ + cy = 0 has the characteristic equation ar? + br + ¢ = 0.
Suppose the roots are complex, that is, b> — 4ac < 0.

b+ Vb? —dac _ —b V4ac - b2

The roots are (quadratic formula) 11,72 = % 211 o

The roots are always a pair of the form «a + if.

The general solutionis y = Cyel@+B)¥ + Cpela=iP)x,

The exponential is complex valued and so must be Cy, C;. Let’s do better.

Write 17 = e(@*P)X = 9% cos(Bx) + ie** sin(Bx), y2 = el @7B* = ¢%* cos(Bx) — ie®* sin(Bx).

YitY2 _ ax -y

These are also solutions:  y3 = 5 cos(Bx) ys= 5 = ¢* sin(fBx)

Theorem

If the characteristic equation has the roots a + if (i.e., b* — 4ac < 0), then the general solution is

y = C1e™ cos(Bx) + C2e™* sin(Bx).
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Example: Solve y” +k*y =0, fora constantk > 0.

Characteristic equation is 2 + k% = 0, roots are r = +ik, the general solution is
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Example: Solve y” +k*y =0, fora constantk > 0.

Characteristic equation is 2 + k% = 0, roots are r = +ik, the general solution is
q g
y = C1 cos(kx) + Co sin(kx).

Example: Solve y” —6y' +13y =0, y(0) =0, y’(0) = 10.

Characteristic equation is 2 — 6r + 13 = 0.
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Example: Solve y” +k*y =0, fora constantk > 0.

Characteristic equation is 72 + k% = 0, roots are r = +ik, the general solution is

y = C1 cos(kx) + Co sin(kx).

Example: Solve y” —6y' +13y =0, y(0) =0, y’(0) = 10.

Characteristic equation is 2 — 6r + 13 = 0.
Complete the square (r — 3)* + 22 = 0, s0 r = 3 + 2i, the general solution is

y = C1°* cos(2x) + Coe> sin(2x).

0=y(0)=C1e°cos0+ Cre’sin0=C; = C; =0andy = Cpe* sin(2x).
Y’ = 3C2e% sin(2x) + 2C2¢** cos(2x) = 10 = y/(0) = 2C, or C; = 5.

The solution is
y = 5¢3 sin(2x)



Complex numbers are useful also for the Cauchy—Euler equations.

Exercise: Suppose (b — a)* — 4ac < 0. Find a formula for the general solution of
ax?y” + bxy’ + cy = 0. Hint: Try y = " and note x" = ¢'I"*,



Complex numbers are useful also for the Cauchy—Euler equations.

Exercise: Suppose (b — a)* — 4ac < 0. Find a formula for the general solution of
ax?y” + bxy’ + cy = 0. Hint: Try y = " and note x" = ¢'I"*,

Try it with something simple like xzy/ "+y=0.



