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Given y′ = f (x) we integrate to solve: y =
∫

f (x) dx + C.

Similarly we solved y′ = f (y) by writing x in terms of y.

But the strategy doesn’t work for the general y′ = f (x, y).
Integrating yields

y =

∫
f (x, y) dx + C.

But if the equation is so-called “separable,” then we can still integrate.
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A differential equation is separable if we can write it as

y′ = f (x)g(y),

Using the Leibniz notation
dy
dx

= f (x)g(y), rewrite it as

dy
g(y) = f (x) dx.

Integrate both sides: ∫ dy
g(y) =

∫
f (x) dx + C.

Solve for y (if you can).
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Example: Consider y′ = xy.

y = 0 is a solution, so remember that and assume y ≠ 0 from now.

Write:
dy
dx

= xy as 1
y

dy = x dx Integrate:
∫ dy

y
=

∫
x dx + C

⇒ ln |y| = x2

2 + C ⇒ |y| = e
x2
2 +C = eCe

x2
2

eC is an arbitrary positive constant.
Because of the absolute value we could replace it with a negative.
And y = 0 is also a solution.

So the general solution is y = De
x2
2 (D a constant).

Check: y′ = Dxe
x2
2 = x

(
De

x2
2

)
= xy. ✓
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It appears as if we are integrating with two different variables.

So why does it work?

Note that y = y(x) and
dy
dx

are functions of x.

Write
dy
dx

= f (x)g(y) as 1
g(y)

dy
dx

= f (x).

Now integrate both sides wrt x:
∫

1
g(y)

dy
dx

dx =

∫
f (x) dx + C.

Substitution formula from calculus says
∫

1
g(y) dy =

∫
f (x) dx + C. ✓
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Solving for y can be difficult.

Example: Consider y′ =
xy

y2 + 1
. y = 0 is a solution, so assume y ≠ 0 from now.

Separate variables:
y2 + 1

y
dy =

(
y + 1

y

)
dy = x dx. Integrate:

y2

2 + ln |y| = x2

2 + C,

Simplify y2 + 2 ln |y| = x2 + D (D = 2C).

We can’t solve for y in a “nice” expression.
Just leave it as is. It is called an implicit solution.

We can still check that it satisfies the equation.
Differentiate remembering that y = y(x) is a function of x:

y′
(
2y + 2/y

)
= 2x ⇒ y′

(
2y + 2/y

) y
2(y2 + 1) = 2x

y
2(y2 + 1) ⇒ y′ =

xy
y2 + 1

✓

The general solution is

y2 + 2 ln |y| = x2 + C, and y = 0.

Solutions such as y = 0 are sometimes called singular solutions.
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Computing values of y given x is tricky.

You might even get multiple values.

Often one uses computers to find values.

Here is what the set of points (x, y) satisfying y2 + 2 ln |y| = x2 looks like:

-5.0 -2.5 0.0 2.5 5.0

-5.0 -2.5 0.0 2.5 5.0

-5.0

-2.5

0.0

2.5

5.0

-5.0

-2.5

0.0

2.5

5.0

The initial condition tells you which solution to take. E.g., the top curve satisfies y(1) = 1.
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A couple more examples of separable equations:

Example: Solve x2y′ = 1 − x2 + y2 − x2y2, y(1) = 0.

Factor: x2y′ = (1 − x2)(1 + y2).
Separate variables, integrate, and solve for y:

y′

1 + y2 =
1 − x2

x2 ⇒ y′

1 + y2 =
1
x2 − 1 ⇒ arctan(y) = −1

x
− x + C

⇒ y = tan
(
−1
x

− x + C
)

Solve for IC: 0 = tan(−2 + C) ⇒ C = 2 (or C = 2 + 𝜋, or C = 2 + 2𝜋, etc.)

The particular solution we seek is y = tan
(
−1
x

− x + 2
)
.
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Example: Bob wants to drink coffee at 60◦C.

Initially (time t = 0), the temperature was 89◦C.
One minute later, the temperature was 85◦C.
The room has temperature 22◦C.
When can Bob start drinking?

Let T = the temperature of the coffee in ◦C.
Let A = the ambient temperature in ◦C

Newton’s law of cooling states dT
dt

= k(A − T) for some k > 0.

We have A = 22, T(0) = 89, T(1) = 85.

Separate variables, integrate (note that T − A > 0):
1

T − A
dT
dt

= −k ⇒ ln(T − A) = −kt + C ⇒ T − A = D e−kt ⇒ T = A + D e−kt

⇒ T = 22 + D e−kt

First condition: 89 = T(0) = 22 + D ⇒ D = 67 ⇒ T = 22 + 67 e−kt

Second condition 85 = T(1) = 22 + 67 e−k ⇒ k = − ln 85−22
67 ≈ 0.0616
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So approximately T = 22 + 67e−0.0616t

Solve T = 60 for time t: 60 = 22 + 67e−0.0616t ⇒ t = − ln 60−22
67

0.0616 ≈ 9.21 minutes.

Bob can start drinking a little over 9 minutes from when the coffee was made.
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Example: Find the general solution to y′ = −xy2

3 .

y = 0 is a solution (a singular solution).

Assume y ≠ 0 and solve:

−3
y2 y′ = x ⇒ 3

y
=

x2

2 + C ⇒ y =
3

x2/2 + C
=

6
x2 + 2C

The general solution is

y =
6

x2 + 2C
and y = 0.
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