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The equation is
mx” +cx’ + kx = F(t),

m is the mass,

¢ if friction,

k is the spring constant, and

F(t) is an external force acting on the mass.

We are considering
F(t) = Fg cos(wt)
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We consider damped (¢ > 0) motion:
mx"” + cx’ + kx = Fo cos(wt).

Write: ¢ k

p:ﬁ, wo = Z

Equation becomes: E
X+ 2px’ + a)éx = EO cos(wt).

Roots of the characteristic equation are —p % ,/p? — w?, so the complementary solution is
Cret 4+ Cpe'2t if ¢ > 4km,

Xe = 3 Cre Pt + Cote P if ¢2 = 4km,

e (Cy cos(wit) + Casin(wit)) if ¢ < dkm,
where w1 = \Jw] - p2.

Note that x.(t) —» 0 as t — oo.
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xp = A cos(wt) + Bsin(wt).

We plug into the equation x” + 2px’ + wjx = % cos(wt):

((wj = @*)B = 2wpA) sin(wt) + (0§ — @?)A + 2wpB) cos(wt) = % cos(wt).



We need a particular solution. Try
xp = A cos(wt) + Bsin(wt).
We plug into the equation x” + 2px’ + wjx = % cos(wt):
(g — @*)B = 2wpA) sin(wt) + ((wj — @*)A + 2wpB) cos(wt) = % cos(wt).

Solve for A and B:

2_ 2
— F
A= (w3 — w*)Fy . B- 2wpFy y
mQ2wp)” +m(w? — w?) mQ2wp)* +m(w? — w?)

Compute the amplitude of x,:

C=VA2+B2= Fo

ma|Qap)* + (02 — @?)

> .



So our particular solution is

xp = A cos(wt) + Bsin(wt)
(w? — w?)F,
= 20 0 5 cos(wt) +
mQwp)” + m(a)g - w?)

2wpFy

sin(wt).
mQ2wp)* + m(a)é - (4)2)2



So our particular solution is

xp = Acos(wt) + Bsin(wt)
(w? — w?)F
= 20 0 5 cos(wt) +
mQwp)” + m(wé - w?)

2wpFy

sin(wt).
mQ2wp)* + m(wg - (uz)2

Or
Fo

mJ@wp)? + (@f - )’

xp = Ccos(wt —y) = cos(wt —y).



So our particular solution is

xp = Acos(wt) + Bsin(wt)

w? — w?)F 2wpF
= ( 20 o 5 cos(wt) + 5 d 5 sin(wt).
mQwp)” + m(a)é - w?) mQwp)” + m(wg - w?)
Or
Fo
xp = Ccos(wt —y) = cos(wt —y).

mJ@wp)? + (@f - )’
Remark: y can be computed as before, e.g. if A # 0 (v # wp), thentany = £ = wia_f) > If
0
A=0,thenB=C=

Fo —
T’ and y = 7/2.
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Call x, the transient solution and denote it by x;.

Call x, (the one above) the steady periodic solution and denote it by xsp.

So  x=xc+xp =X + Xepe

xyy — 0 ast — oo, so for large ¢, x4, is negligible.
Let’s ignore xy.

The larger the p (that is, ¢), the faster x, — 0,
= smaller “transient region.”

Xsp is not affected by initial conditions.

Remark: Undamped motion, ¢ = 0, means
“infinite transient region” (i.e., not “transient”)

We focus on xy, and its amplitude C.

k=1,m=1,F=1

10 15 20

,c=0.7and w = 1.1.
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There is no (pure) resonance as there is no factor of ¢ in
Fo
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Xsp = cos(wt —y).

We focus on the amplitude as we vary the forcing frequency w:
Fo * * * * *

mywp)® + (@3 - w?)?

Graph of C(w) withk=1,m=1,Fy=1:
Top line: ¢ = 0.4, middle line: c = 0.8,
bottom line: ¢ = 1.6.

C=Cw)=

Call the w > 0 that maximizes C the
practical resonance frequency.

C(w) is then the practical resonance amplitude.

We call this practical resonance.

Practical resonance gets bigger if ¢ gets smaller, and disappears when damping is too large.



To find the max of

find where

0=C(w) =

Fo
iy Cwp)? + (@f - )’

—20(2p? + w? - a)(z))Fo
32"

Clw) =

7

m((pr)2 + (a)(z) - a)2)2)

C'(w) = 0when w = 0 or 2p* + @? — wj = 0.
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To find the max of C(w) =

7

find where 0=C(w) =
m(Qwp)? + (@} - 0?))

C'(w) = 0when w = 0 or 2p* + @? — wj = 0.

At most one critical point for w > 0.
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To find the max of C(w) =

find where 0=C'(w)=

m(Qwp)? + (@} - 0?))
C'(w) = 0when w = 0 or 2p* + @? — wj = 0.

At most one critical point for w > 0.
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practical resonance w =
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To find the max of C(w) =

find where 0=C'(w)=

m(Qwp)? + (@} - 0?))
C'(w) = 0when w = 0 or 2p* + @? — wj = 0.

At most one critical point for w > 0.

So there is practical resonance if 2p* + w? — w3 = 0 has a solution (if w? — 2p* > 0):

practical resonance w =

If practical resonance occurs, it is smaller than wy.



Fo
m\/(Za)p)2 + (w% - a)z)2

—20(2p? + w? - a)(z))Fo
3/2°

To find the max of C(w) =

find where 0=C'(w)=
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At most one critical point for w > 0.

So there is practical resonance if 2p* + w? — w3 = 0 has a solution (if w? — 2p* > 0):

practical resonance w = y/w

If practical resonance occurs, it is smaller than wy.

For very small damping c, practical resonance frequency w = wy.

(Indeed, if ¢ = 0, wy is the (pure) resonance frequency.)
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To find the max of C(w) =

find where 0=C'(w)=
m(Qwp)? + (@} - 0?))

C'(w) = 0when w = 0 or 2p* + @? — wj = 0.

At most one critical point for w > 0.

So there is practical resonance if 2p* + w? — w3 = 0 has a solution (if w? — 2p* > 0):

- = — 2
practical resonance w = /wg — 2p*.

If practical resonance occurs, it is smaller than wy.

For very small damping c, practical resonance frequency w =~ wo.
(Indeed, if ¢ = 0, wy is the (pure) resonance frequency.)

As ¢ grows, practical resonance frequency w goes to 0.



Fo
m\/(2a)p)2 + (w% - a)z)2

—20(2p? + w? - a)(z))Fo
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To find the max of C(w) =

find where 0=C'(w)=
m(Qwp)? + (@} - 0?))

C'(w) = 0when w = 0 or 2p* + @? — wj = 0.

At most one critical point for w > 0.

So there is practical resonance if 2p* + w? — w3 = 0 has a solution (if w? — 2p* > 0):

practical resonance w = /w2 — 2p2.

If practical resonance occurs, it is smaller than wy.

For very small damping c, practical resonance frequency w =~ wo.
(Indeed, if ¢ = 0, wy is the (pure) resonance frequency.)

As c grows, practical resonance frequency w goes to 0.

Remark: C(w) » 0asw — . = Large forcing frequency means small amplitude.



