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We’re trying to solve Ly = f (x).

Undetermined coefficients needs f (x) and its derivatives to be of the same general form.

What about Ly = tan x, that is, f (x) = tan x?

f ′(x) = sec2 x,
f ′′(x) = 2 sec2 x tan x,
f ′′′(x) = 4 sec2 x tan2 x + 2 sec4 x,
f (4)(x) = 8 sec2 x tan3 x + 16 sec4 x tan x,
f (5)(x) = 16 sec2 x tan4 x + 88 sec4 x tan2 x + 16 sec6 x,
. . .

No luck ...
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Variation of parameters can handle tan x or any other f (x) (but computations can get tedious).

The technique works for the general linear equations of any order, but we stick to constant
coefficient second order equations.

Suppose Ly = 0 (associated homogeneous equation) has the general solution

C1y1 + C2y2 ,

where C1 ,C2 are constants.

We look for a solution of Ly = f (x) of the form

y = u1y1 + u2y2 ,

where u1 , u2 are functions.
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Example: Solve y′′ + y = tan x.

Complementary solution:
yc = C1 cos x + C2 sin x.

So let’s look for a solution of the form

y = u1 cos x + u2 sin x = u1y1 + u2y2.

Compute
y′ = (u′

1y1 + u′
2y2) + (u1y′1 + u2y′2).

We have two unknown functions (u1 , u2) and one condition (Ly = f (x)), so we can still
impose another condition. Wouldn’t it be convenient if

u′
1y1 + u′

2y2 = 0 ?

Yes? So let’s assume that! Then
y′ = u1y′1 + u2y′2.
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Start with
y′ = u1y′1 + u2y′2.

Differentiate
y′′ = (u′

1y′1 + u′
2y′2) + (u1y′′1 + u2y′′2 ).

y1 and y2 solve y′′ + y = 0, so y′′1 = −y1 and y′′2 = −y2.

So
y′′ = (u′

1y′1 + u′
2y′2) − (u1y1 + u2y2) = (u′

1y′1 + u′
2y′2) − y

In other words
y′′ + y = Ly = u′

1y′1 + u′
2y′2.

Soooo ... for y to satisfy Ly = f (x), we must have f (x) = u′
1y′1 + u′

2y′2.

To summarize we need to solve the two imposed conditions:

u′
1y1 + u′

2y2 = 0,
u′

1y′1 + u′
2y′2 = f (x).
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In our case
u′

1 cos x + u′
2 sin x = 0,

−u′
1 sin x + u′

2 cos x = tan x.

Hence
u′

1 cos x sin x + u′
2 sin2 x = 0,

−u′
1 sin x cos x + u′

2 cos2 x = tan x cos x = sin x.

And thus
u′

2
(
sin2 x + cos2 x

)
= sin x,

u′
2 = sin x,

u′
1 =

− sin2 x
cos x

= cos x − sec x.

Integrate

u1 =

∫
u′

1 dx =

∫
(cos x − sec x) dx = sin x − ln |sec x + tan x| ,

u2 =

∫
u′

2 dx =

∫
sin x dx = − cos x.

(Forget about constants of integration, we want a particular solution)
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So

yp = u1y1 + u2y2

= cos x sin x − cos x ln|sec x + tan x| − cos x sin x

= − cos x ln|sec x + tan x|.
The general solution to y′′ + y = tan x is

y = C1 cos x + C2 sin x − cos x ln|sec x + tan x|.

In general, the procedure for finding yp using variation parameters (2nd order) is
1) Solve the associated homogeneous equation.
2) Solve for u′

1 and u′
2 in

u′
1y1 + u′

2y2 = 0,
u′

1y′1 + u′
2y′2 = f (x).

3) Integrate to get u1 and u2 to find yp = u1y1 + u2y2.

Note: Undetermined coefficients are usually less tedious if applicable.
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