25. Transforms of derivatives and ODEs, part 1
(Notes on Diffy Qs, 6.2)

Jit{ Lebl

Oklahoma State University

The textbook: https://www.jirka.org/diffyqs/


https://www.jirka.org/diffyqs/

To solve ODEs with Laplace, we need to know how derivatives transform.



To solve ODEs with Laplace, we need to know how derivatives transform.

Suppose g(t) is a differentiable function of exponential order:



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and tlim e~'g(t) = 0 when s > c.



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and tlim e~'g(t) = 0 when s > c.

L{g'1}



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and tlim e~'g(t) = 0 when s > c.

L{g0) = /O estg/ () db



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and lim e‘Stg(t) =0 whens > c.

clgw= [ evga= o] - [T



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and lim e‘Stg(t) =0 whens > c.

rlgwh= [ etgwa= o] - [T = g0 +sciso).



To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and lim e‘Stg(t) =0 whens > c.
rlgwh= [ etgwa= o] - [T = g0 +sciso).

Rinse and repeat for higher derivatives:

f  L{f®} =F@s)

g'(t)  sG(s) - g(0)

g"(t)  $*G(s) —s(0) — g'(0)

g () $°G(s) - s%g(0) —s¢'(0) - g”(0)




To solve ODEs with Laplace, we need to know how derivatives transform.
Suppose g(t) is a differentiable function of exponential order:

|g(#)] < Me" for large t, so L{g(t)} exists and lim e‘Stg(t) =0 whens > c.
rlgwh= [ etgwa= o] - [T = g0 +sciso).

Rinse and repeat for higher derivatives:

f  L{f®} =F@s)

g'(t)  sG(s) - g(0)

g"(t)  $*G(s) —s(0) — g'(0)

g () $°G(s) - s%g(0) —s¢'(0) - g”(0)

Notice: G(s) is not differentiated, it is multiplied by s.
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Take the inverse Laplace transform:

X(s) =

x(t) = % cos(t) — % cos(2t) + sin(t).
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So the procedure for constant coefficient linear ODEs is simple:

1. Transform the equation (the equation becomes algebraic):
x(t)  — X(s),
X)) —  sX(s) - x(0),
x"(t) —  $2X(s) —sx(0) — x'(0),
etc.
2. Plug in the initial conditions.
3. Solve for X(s).

4. Compute x(t) = L7} {X(s)}.

Remark 1: To be useful, everything in sight (namely the right hand side, the input) must
have a Laplace transform. E.g., won't work for x” + x = tan(#).

Remark 2: On the other hand, Laplace can solve equations with many right hand sides
(inputs) that the other techniques have no chance of handling.
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One type of function Laplace is very good at handling are functions defined piecewise.

Here’s where Heaviside comes in:

0 if t<0,
u(t) = .
1 if t>0.

Most commonly used as

(t—a) = 0 if t<a,
TN it

Example: Suppose

£(t) = {0

sint if t> m.

if t<m,

Using Heaviside:  f(t) = u(t — ) sint.
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Exercise (need to use partial fractions):

Lt {5(521—4—1)} =1-cost.
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L{1—cost} = m and the second shifting property (in reverse) says

£ = £ ez cost) = (- costi- D)t~
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we have
x(t) = (1 = cos(t — 1)) u(t — 1)
— (1= cos(t — 5)) u(t - 5).
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