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We return to mass on a spring, but now with nonzero forcing function F(t):

damping c

m
k F(t)

x

The equation is
mx′′ + cx′ + kx = F(t),

m is the mass,
c if friction,
k is the spring constant, and
F(t) is an external force acting on the mass.

We consider periodic forces F(t), and the simplest periodic force is

F(t) = F0 cos(𝜔t)

Note: Using Fourier series, all periodic functions can be understood via this simple case.
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We start with undamped (c = 0) motion:

mx′′ + kx = F0 cos(𝜔t).

The complementary solution is

xc = C1 cos(𝜔0t) + C2 sin(𝜔0t), where 𝜔0 =
√

k/m = natural (angular) frequency.

𝜔0 is the frequency at which the system “wants to oscillate” without any force F.
First suppose 𝜔0 ≠ 𝜔.
Using the method of undetermined coefficients we try xp = A cos(𝜔t) and solve for A.
(Including B sin(𝜔t) doesn’t hurt, you’ll see B = 0). We find (exercise)

xp =
F0

m(𝜔2
0 − 𝜔2)

cos(𝜔t).
The general solution is

x = C1 cos(𝜔0t) + C2 sin(𝜔0t) + F0

m(𝜔2
0 − 𝜔2)

cos(𝜔t) or

x = C cos(𝜔0t − 𝛾) + F0

m(𝜔2
0 − 𝜔2)

cos(𝜔t).

A superposition of two phase shifted cosine waves at different frequencies.
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Example: Solve 0.5x′′ + 8x = 10 cos(𝜋t), x(0) = 0, x′(0) = 0.

𝜔 = 𝜋, 𝜔0 =
√

8/0.5 = 4, F0 = 10, m = 0.5.

The general solution is

x = C1 cos(4t) + C2 sin(4t) + 20
16 − 𝜋2 cos(𝜋t).

Solve for C1 and C2 to find

C1 =
−20

16 − 𝜋2 , C2 = 0, so

x =
20

16 − 𝜋2
(
cos(𝜋t) − cos(4t)

)
.
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Notice the “beating” in the figure.

Using the identity 2 sin
(A−B

2
)
sin

(A+B
2

)
= cos B − cos A, we find

x =
20

16 − 𝜋2

(
2 sin

(
4 − 𝜋

2 t
)

sin
(
4 + 𝜋

2 t
))

.

The solution is a high frequency wave modulated by a low frequency wave.
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What about the case 𝜔0 = 𝜔?

From xp =
F0

m(𝜔2
0−𝜔2) cos(𝜔t), we suspect that something “blows up” when 𝜔 approaches 𝜔0.

Undetermined coefficients says we should try

xp = At cos(𝜔t) + Bt sin(𝜔t) (the sine term is needed this time).

Write the equation as x′′ + 𝜔2x =
F0
m cos(𝜔t) and plug in xp to find

2B𝜔 cos(𝜔t) − 2A𝜔 sin(𝜔t) = F0
m

cos(𝜔t).

A = 0 and B =
F0

2m𝜔 . The particular solution is F0
2m𝜔 t sin(𝜔t) and the general

x = xc + xp = C1 cos(𝜔t) + C2 sin(𝜔t) + F0
2m𝜔

t sin(𝜔t).

Note the t in the xp, so xp grows without bound as t → ∞.
xp oscillates between F0t

2m𝜔 and −F0t
2m𝜔 .

xc only oscillates between ±
√

C2
1 + C2

2.
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For C1 = C2 = 0, F0 = 2, m = 1, 𝜔 = 𝜋,

x = 1
𝜋 t sin(𝜋t).
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So when 𝜔 = 𝜔0, we produce wild
ever growing oscillations. This behavior
is called resonance or pure resonance.

Resonance can be good:
We can create large oscillations
with small force.
Examples: Swinging a child, quartz watches,
NMR/MRI, . . .

Resonance can be bad:
Examples: Earthquakes, vibrations in engines, soldiers marching on a bridge, . . .
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