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Note that f f(x) dx means an antiderivative.

An antiderivative can be computed via a definite integral:

y(x) = / f(t)dt +C.

Even if there is no “closed form” answer, that gives you an exact formula.

Usually also an initial condition (IC)  y(xo) = yo.
X
The solution to " = f(x), y(x0) = yois y(x) = / ft)dt + yo.
E%)
Is it a solution to the DE? Yes by FTC!

%
Does it satisfy the IC?  y(xg) = / fOdt+yo=yo. v
X0

Example: Solve i’ = e, y(0) = 1.

X
y(x) = / e dt+ 1.
0
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So far, that’s just regular Calc 1.
How about ' =f(y) ?

d
Write it in the Leibniz notation: % =f(y).
. dx 1
Inverse function theorem says: — = —.
dy  f(y)

1
Now integrate:  x(y) = / —dy + C.
8 v o
What's wrong? We have x in terms of y, not y in terms x.

So solve for y!
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Example: Let’s use the method to solve vy’ = ky (k > 0).

Note that y = 0 is a solution.

d
Assume y # 0 and write Z_

dy ky
Integrate: x(y)=x= %lnlyl + D,
D is an arbitrary constant.
Solve for y: ly| = KD = 7kDekx,
If we let C be arbitrary, then y = Cé®* includes all the possibilities, including y = 0.
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Example: Find the solution of ¥’ = 2, y(0) = 1.

Note that y = 0 is a solution, so we can now assume y # 0.

Write: dx =—. Integrate: x = - +C. Solve for y:
dy y y

1
C—-x

The general solutionis y = or y=0.

IC y(0)=1 leadstoC=1ory = 11: 3] + - ‘
This solution has a singularity. o F
y “blows up” as x — 1. N

¥’ = y* seems so nice,
yet y is so badly behaved.

y is only defined on (-0, 1)

(1, 00), doesn’t include our IC.

So the right hand side of the graph af ~ . ‘
isn’t really part of our solution.
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Problems solvable by integration often deal with velocity, acceleration, and distance.

Example: A car drives at a speed of e'/? meters per second, where t is time in seconds.

How far did the car get in 2 seconds (starting at t = 0)? How far in 10 seconds?
Denote by x the distance traveled. Equationis  x’ = e/2.

General solutionis:  x(t) = 2¢!/2 + C.

Att=0,x=0,50ICis: 0=x(0)=2""2+C=24+C = C=-2.

Solution:  x(t) = 2¢t/2 — 2.

At 2 and 10 seconds we are at

x(2) =267 =2 ~ 344 meters,  x(10) = 20192 — 2 ~ 294 meters.
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Example: Suppose that the car accelerates at > m/s2. At time t = 0 the car is at the 1 meter
mark and is traveling at 10 m/s. Where is the car at time t = 10?

Actually a second order problem.

Let x be the distance. =~ Then x’ is the velocity. And x” is the acceleration.
The full problem: x” =12, x(0)=1, x’(0)=10.

Give x" aname, say v = x’.

Then we have the subproblem: v' =#2, ©v(0) = 10.

So solve for v, then as x” = v solve for x by integration.

Exercise
Solve for v, and then solve for x. Find x(10) to answer the question.




