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Consider a general first order ODE:

dy
dx

= f (x, y), or y′ = f (x, y).

There is no single, simple procedure where you turn a crank and out pops a solution.

In the case
y′ = f (x),

antidifferentiate (integrate) both sides:∫
y′(x) dx =

∫
f (x) dx + C, or y(x) =

∫
f (x) dx + C.

That’s the general solution.

Example: Find the general solution of y′ = 3x2.

Integrate: y = x3 + C.

Check (differentiate): y′ = 3x2. ✓
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Note that
∫

f (x) dx means an antiderivative.

An antiderivative can be computed via a definite integral:

y(x) =
∫ x

x0

f (t) dt + C.

Even if there is no “closed form” answer, that gives you an exact formula.

Usually also an initial condition (IC) y(x0) = y0.

The solution to y′ = f (x), y(x0) = y0 is y(x) =
∫ x

x0

f (t) dt + y0.

Is it a solution to the DE? Yes by FTC!

Does it satisfy the IC? y(x0) =
∫ x0

x0

f (t) dt + y0 = y0. ✓

Example: Solve y′ = e−x2 , y(0) = 1.

y(x) =
∫ x

0
e−t2 dt + 1.
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So far, that’s just regular Calc 1.

How about y′ = f (y) ?

Write it in the Leibniz notation:
dy
dx

= f (y).

Inverse function theorem says: dx
dy

=
1

f (y) .

Now integrate: x(y) =
∫

1
f (y) dy + C.

What’s wrong? We have x in terms of y, not y in terms x.

So solve for y!
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Example: Let’s use the method to solve y′ = ky (k > 0).

Note that y = 0 is a solution.

Assume y ≠ 0 and write dx
dy

=
1
ky

.

Integrate: x(y) = x =
1
k

ln |y| + D,

D is an arbitrary constant.

Solve for y: |y| = ekx−kD = e−kDekx.

If we let C be arbitrary, then y = Cekx includes all the possibilities, including y = 0.
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Example: Find the solution of y′ = y2, y(0) = 1.

Note that y = 0 is a solution, so we can now assume y ≠ 0.

Write: dx
dy

=
1
y2 . Integrate: x =

−1
y

+ C. Solve for y: y =
1

C − x
.

The general solution is y =
1

C − x
or y = 0.

IC y(0) = 1 leads to C = 1 or y = 1
1−x .

This solution has a singularity.

y “blows up” as x → 1.
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y′ = y2 seems so nice,
yet y is so badly behaved.

y is only defined on (−∞, 1)
(1,∞), doesn’t include our IC.

So the right hand side of the graph
isn’t really part of our solution.
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Problems solvable by integration often deal with velocity, acceleration, and distance.

Example: A car drives at a speed of et/2 meters per second, where t is time in seconds.
How far did the car get in 2 seconds (starting at t = 0)? How far in 10 seconds?

Denote by x the distance traveled. Equation is x′ = et/2.

General solution is: x(t) = 2et/2 + C.

At t = 0, x = 0, so IC is: 0 = x(0) = 2e0/2 + C = 2 + C ⇒ C = −2.

Solution: x(t) = 2et/2 − 2.

At 2 and 10 seconds we are at

x(2) = 2e2/2 − 2 ≈ 3.44 meters, x(10) = 2e10/2 − 2 ≈ 294 meters.
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Example: Suppose that the car accelerates at t2 m/s2.

At time t = 0 the car is at the 1 meter
mark and is traveling at 10 m/s. Where is the car at time t = 10?

Actually a second order problem.

Let x be the distance. Then x′ is the velocity. And x′′ is the acceleration.

The full problem: x′′ = t2 , x(0) = 1, x′(0) = 10.

Give x′ a name, say v = x′.

Then we have the subproblem: v′ = t2 , v(0) = 10.

So solve for v, then as x′ = v solve for x by integration.

Exercise
Solve for v, and then solve for x. Find x(10) to answer the question.
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