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2
So the general solutionis y =DeZ (D a constant).

Check: i’ = Dxe’ = x (De%) = xy. v
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It appears as if we are integrating with two different variables.

So why does it work?

d
Note that y = y(x) and % are functions of x.

: dy 1
erte E _f(x)g(y) as g(y) dx f( )
Now integrate both sides wrt x: % o dx = / f(x)dx +C.

Substitution formula from calculus says / ) dy = / f(x)dx + C.
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Example: Consider ' =

y = 0 is a solution, so assume y # 0 from now.

1 e x?
dy = |y + }; dy = xdx. Integrate: E+ln|y| = E+C'

Separate variables:

Simplify y*+2In|yl =x*+D (D =2C).
We can't solve for y in a “nice” expression.

Just leave it as is. It is called an implicit solution.
We can still check that it satisfies the equation.

Differentiate remembering that y = y(x) is a function of x:

y oy ,_ Y
224D 224D B 4

Vy+) =22 =y 2+
The general solution is
v +2Inly| = x> +C, and y=0.

Solutions such as y = 0 are sometimes called singular solutions.
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Computing values of y given x is tricky. You might even get multiple values.

Often one uses computers to find values.

Here is what the set of points (x, y) satisfying y> + 21In|y| = x* looks like:
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The initial condition tells you which solution to take
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. E.g., the top curve satisfies y(1) = 1.
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A couple more examples of separable equations:
Example: Solve x%y =1-x*+y> —x%y%, y(1) =0.
Factor:  x%y’ = (1-x°)(1 + ).
Separate variables, integrate, and solve for y:
v _1w v 1
1+y? x? 1+y> «?

-1
-1 = arctan(y) = 7—x+C

-1
=tan|— -
= y an(x x+C)
Solve forIC: O=tan(-2+C) = C=2 (orC=2+m,0rC=2+2m,etc.)

-1
The particular solution we seek is vy = tan (? —-x+ 2).
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Example: Bob wants to drink coffee at 60°C.
Initially (time ¢ = 0), the temperature was 89°C.
One minute later, the temperature was 85°C.
The room has temperature 22°C.

When can Bob start drinking?

Let T = the temperature of the coffee in °C.

Let A = the ambient temperature in °C

Newton’s law of cooling states % =k(A-T) forsomek > 0.

We have A =22, T(0) =89, T(1) =
Separate variables, integrate (note that T — A > 0):

1 dT
T—A dt

= T=22+De™

=—k = InT-A)=-kt+C = T-A=De™ = T=A+De™

First condition: 89=T(0)=22+D = D=67 = T=22+67¢*
Second condition 85=T(1)=22+67¢* = k=-In%=2~0.0616



So approximately T = 22 + 67¢0-0616¢



So approximately T = 22 + 67¢~0-0016¢

Solve T = 60 for time t: 60 = 22 + 67¢~0-0616



So approximately T = 22 + 67¢~0-0016¢

60-22
Solve T = 60 for time t: 60 = 22 + 67e~ 00616t  — ¢ — ——1’5‘05{6



So approximately T = 22 + 67¢~0-0016¢

60-22
In ¥

Solve T = 60 for time t: 60 = 22 + 67¢ 001" =t = —Z=&— ~ 9.21 minutes.



So approximately T = 22 + 67¢~0-0616¢

Solve T = 60 for time t: 60 = 22 + 67e~ 00616t  — ¢ — —E ~ 9.21 minutes.
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Graphs of the coffee temperature function T(t) over different time frames.
89, 85, 60 lines are marked on the left, and T = A line is marked on the right.
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y = 0is a solution (a singular solution).
Assume y # 0 and solve:

_y =X

yZ
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Example: Find the general solution to y’ = —~.
y = 0is a solution (a singular solution).

Assume y # 0 and solve:

;—zy’zx = 5:%+C
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Example: Find the general solution to y’ = —~.

y = 0is a solution (a singular solution).
Assume y # 0 and solve:
-3, 3 x? 3 6

—_ = _ = — C = =
yzy * oz 2" -y Ph+C x2+2C
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Example: Find the general solution to y’ = —~.

y = 0is a solution (a singular solution).
Assume y # 0 and solve:

_—3’—x = §—x—2+C = y= 5 __6
YT S 2 Y= Enrc T #vaC

The general solution is

6

y:m and y=0



