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An exact equation is an equation that encodes

F(x, y) = constant

for a potential function F(x, y).

Naming suggests electric potential or potential energy.

Such equations come up when there is some conservation law at play.
(e.g., conservation of energy)
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Example: Let F(x, y) = x2 + y2
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Solutions to F(x, y) = x2 + y2 = C.

Take the total derivative of F:

dF =
𝜕F
𝜕x

dx + 𝜕F
𝜕y

dy = Fxdx + Fydy.

So dF = 2x dx + 2y dy.

The differential equation for F(x, y) = C is

dF = 0.

In this case,

2x dx + 2y dy = 0 or 2x + 2y
dy
dx

= 0
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In general, M dx + N dy = 0, or M + N dy
dx = 0 is exact if it is dF = 0.

In other words, M dx + N dy = 0 is exact if there is an F such that M = Fx and N = Fy.

So 2x dx + 2y dy = 0 is exact.

x2 + y2 = C are implicit solutions.

y = ±
√

C − x2 are the explicit solutions.

Normally, we start with M dx + N dy = 0 and we wish to find the unknown F(x, y).
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Interpretation: At each point (x, y) there is a vector ®v = (M,N) giving a vector field.

®v is a conservative vector field if it comes with a potential function F, where ®v =

(
𝜕F
𝜕x ,

𝜕F
𝜕y

)
.

Let 𝛾 be a path in the plane from (x1 , y1) and ending at (x2 , y2) and think of ®v as force.

The work required to move along 𝛾 is
∫
𝛾
®v(®r) · d®r =

∫
𝛾

M dx + N dy = F(x2 , y2) − F(x1 , y1).

In other words, work done depends only on endpoints.

Example: Force of gravity is conservative (assuming 2D) — F is the gravitational potential.
Work done by moving a mass only depends on the change in elevation.

Exact equations are conservative vector fields, and their implicit solutions are given by the
potential functions.
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The process is:

1) We are given an equation M + N dy
dx = 0

2) We determine if the equation is exact.

3) If it is, we try to find an F such that Fx = M and Fy = N.

F
(
x, y(x)

)
= C gives an implicit solution.

Note: Adding a constant to F does not change anything.
If F(x, y) works, F(x, y) + 3 or F(x, y) − 8 also work.
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Example: Consider 2x + 2y dy
dx = 0. Forget we knew what F was.

M = 2x and N = 2y.

If F exists, Fx(x, y) = 2x.

Integrate in x: F(x, y) = x2 + A(y), for some function A(y) (constant of integration).

Differentiate in y and set it equal to N:

2y = Fy(x, y) = A′(y).
Integrate 2y = A′(y): A(y) = y2 (no need for a constant of integration).

So

F(x, y) = x2 + A(y) = x2 + y2.
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The procedure (if equation is exact):

(i) Integrate Fx = M in x resulting in F(x, y) = something + A(y).
(ii) Differentiate F in y, and set that equal to N to find A(y) by integration.
Roles of x and y (and so M and N) can be reversed.
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Example: Consider 2x + y + xy dy
dx = 0.

M = 2x + y, N = xy.

We try as before. Suppose F exists.

Fx(x, y) = 2x + y.

Integrate in x: F(x, y) = x2 + xy + A(y)
Differentiate in y and set equal to N:

N = xy = Fy(x, y) = x + A′(y).
But there is no way to write xy = x + A′(y), no matter what A′(y) is.

The equation is not exact! F does not exist.
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How to check if F exists?

If F exists, then M = Fx and N = Fy.

Then
𝜕M
𝜕y

=
𝜕2F
𝜕y𝜕x

=
𝜕2F
𝜕x𝜕y

=
𝜕N
𝜕x

.

In fact:

Theorem (Poincaré)
If M and N are continuously differentiable functions of (x, y), and 𝜕M

𝜕y = 𝜕N
𝜕x , then near any point

there is a function F(x, y) such that M = 𝜕F
𝜕x and N = 𝜕F

𝜕y .

Note: The theorem doesn’t say a global F exists, only local.

Back to example: If M = 2x + y and N = xy, then My = 1 and Nx = y. Not equal. Not exact.
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Example: Solve
dy
dx

=
−2x − y

x − 1 , y(0) = 1.

Write the equation as (2x + y) + (x − 1)dy
dx

= 0, so M = 2x + y and N = x − 1.

My = 1 = Nx so the equation is exact.

Integrate M in x: F(x, y) = x2 + xy + A(y)
Differentiate in y and set to N to find x − 1 = x + A′(y)
A′(y) = −1 so A(y) = −y works. Take F(x, y) = x2 + xy − y.

Implicit (general) solution is x2 + xy − y = C

y(0) = 1 ⇒ F(0, 1) = C ⇒ 02 + 0 × 1 − 1 = C ⇒ C = −1.

Finally, solve x2 + xy − y = −1 for y:

y =
−x2 − 1
x − 1 .
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Example: Solve
−y

x2 + y2 dx + x
x2 + y2 dy = 0, y(1) = 2.

(Exercise: My = Nx)

The vector field (M,N) is not conservative on the entire plane minus the origin.
Problem: Let 𝛾 be a circle around the origin counterclockwise starting and ending at (1, 0).
If F existed we would have (computation left to interested student)

0 = F(1, 0) − F(1, 0) =
∫
𝛾

Fx dx + Fy dy =

∫
𝛾

−y
x2 + y2 dx + x

x2 + y2 dy = 2𝜋 Nonsense!

There is no F defined for all (x, y) ≠ (0, 0).
The theorem only guaranteed F defined locally.

Suppose x > 0 (note the IC).
Integrate M in x to find F(x, y) = arctan

(
y/x

)
.

Implicit solution: arctan
(
y/x

)
= C.

Explicit solution: y = tan(C)x.
As y(1) = 2, we get tan(C) = 2,
so y = 2x is the solution (only for x > 0).
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If F existed we would have (computation left to interested student)

0 = F(1, 0) − F(1, 0) =
∫
𝛾

Fx dx + Fy dy

=

∫
𝛾

−y
x2 + y2 dx + x

x2 + y2 dy = 2𝜋 Nonsense!

There is no F defined for all (x, y) ≠ (0, 0).
The theorem only guaranteed F defined locally.

Suppose x > 0 (note the IC).
Integrate M in x to find F(x, y) = arctan

(
y/x

)
.

Implicit solution: arctan
(
y/x

)
= C.

Explicit solution: y = tan(C)x.
As y(1) = 2, we get tan(C) = 2,
so y = 2x is the solution (only for x > 0).
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