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Both roots negative as  [p? — w? < p.
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Case 1: Overdamped, ¢* — 4km > 0. s . o

Two real roots: 11,12 = —p £ 4[p* — a)g.
Both roots negative as  [p? — w? < p.

Solution:  x(t) = Ciett + Core™t. Wk

Asry, 1y are negative, x(t) —» Oast — oo.

No oscillation:
The graph crosses the t-axis at most once. ‘ ‘ ‘

Why? Solve 0 = Cie"t! + Cpe™, ’ “ ” "
= Cet=-Ce?t = _C—il =em )t = at most one solution! (or no solution)

Example: The mass is released from rest at position xg: x(0) = xp and x’(0) = 0.

x(t) = —

(re™" — e .

rn—n
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Only one root:  —p.
Solution
x(t) = Cre™P + Cote ™',
Behavior very similar to overdamped: After all, infinitely close to overdamped.

Everything is an approximation of reality, so best not to dwell on this edge case.
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Figure shows envelope curves Ce™?' and —Ce™7'.
Still x(t) — 0 as t — co.

w1 is the angular pseudo-frequency and is always smaller than wp.
w1 gets smaller and smaller as c (and hence p) grows.
As ¢? gets close to 4km, w1 approaches 0.  As ¢ gets close to 0, w1 approaches wy.

The envelope curves become flatter and flatter as c (and hence p) goes to 0.



