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How do we solve nonhomogeneous equations? E.g.,
y' +5y +6y=2x+1 (Write Ly = 2x + 1 for short).
Consider the associated homogeneous equation:
v +5y +6y=0  (Ly=0).
Its general solution v, (i.e. Ly, = 0) is called the complementary solution.
Find any one particular solution y, of Ly, = 2x + 1.
Y =Yc+Yyp, isthe general solution to Ly = 2x + 1 as L is a linear operator:
Ly = L(yc +yp) = Lyc + Ly, = 0+ (2x + 1).

Why is it the general solution? Suppose y, and ¥, be two particular solutions: Then

L(yp —¥p) = Lyp — Ljp = 2x +1) = (2x + 1) = 0.
The difference is a solution to the associated homogeneous equation.

Theorem: If y. is the general solution to Ly, = 0 and y, is any particular solution to
Ly, = f(x), then
Y=Yc+Yp is the general solution to Ly = f(x).
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Solving the complementary problem:  y, = Cie™* + Cae™>".
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We guess in a smart way. We want y,, such that Ly, = 2x + 1. Derivatives of polynomials
are polynomials. So are their linear combinations.

Try: y,=Ax+B
Yy + 5y, + 6y, = (Ax + B)” + 5(Ax + B)" + 6(Ax + B) = 0 + 5A + 6Ax + 6B = 6Ax + (5A + 6B).

Wewant 6Ax+ (5A+6B)=2x+1 or 6A=2and5A+6B=1.
= A=13and B = -1/s.

1 1 3x-1
Let Yp=3%¥"5= g

Solving the complementary problem:  y, = Cie™* + Cae™>".

The general solution is
3x—-1

Y= Cre™® + Cre™ + 5
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1 5 2 5 3x-1 3e2-203%43x-1

= — — —p —+ =
¥y=3¢ 7g° 9 9

Warning: Do not solve for constants in y. before adding y,! Write y = y. + y, and then
solve for constants.

Note: Do not forget lower degree terms even if they don’t appear on the right hand side:

Eg, for Ly=x>+1, tryy,=Ax>+Bx>+Cx+D.
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So  y, = Acos(2x) + Bsin(2x) =
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For Ly=e¥, tryy,=Ae"

And we can combine exponentials, sines, cosines, and polynomials:
For Ly = (1+3x?)e ™ cos(mx),
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Similarly for exponentials:

For Ly=e¥, tryy,=Ae"

And we can combine exponentials, sines, cosines, and polynomials:
For Ly = (1+3x?)e ™ cos(mx),

try y, = (A + Bx + Cx?) ™ cos(nx) + (D + Ex + Fx?) e™* sin(tx).

Plug in, then solve for A, B, C, D, E, and F.
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Trick: Multiply guess by x:  y, = Axe>™.

y, = Ae® +3Axe™ and  y] = 6Ae> + 9Axe™

Yy = 9yp = 64> + 9Axe™ — 9Axe™ = 6Ae™.
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No way to solve for A.
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Those guesses may not always work. The guess could get eaten by the left hand side.
Example: Consider y” — 9y = &**.
Try guessing vy, = Ae3%:
Yy =y = (9Ae*) — 9(Ae*) = 0 # &>*.

No way to solve for A.
Hint: To save work, compute the complimentary solution first. Here, y. = Cre73* 4 Cpe®™.
Trick: Multiply guess by x:  y, = Axe>™.

y, = Ae® +3Axe™ and  y] = 6Ae> + 9Axe™

Yy = 9yp = 64> + 9Axe™ — 9Axe™ = 6Ae™.
= 6AF =¥ = 6A=1 = A=l

The general solution is

1
Y=Y +yp=Cie > + Ce™ + G xe>.



Multiplying by x once may not be enough:
Example: Consider y” — 6y’ + 9y = €.
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So y, = Axe>* does not get rid of the duplication with y..
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Example: Consider y” — 6y’ + 9y = ¢>*.
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So y, = Axe>* does not get rid of the duplication with y..
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Multiplying by x once may not be enough:
Example: Consider y” — 6y’ + 9y = ¢>*.
ye = C1e%* + Coxe®™.
So y, = Axe>* does not get rid of the duplication with y..

Solution? Guess  y, = Ax?¢.



Multiplying by x once may not be enough:
Example: Consider y” — 6y’ + 9y = ¢>*.
ye = C1e%* + Coxe®™.
So y, = Axe>* does not get rid of the duplication with y..
Solution? Guess  y, = Ax?¢.

So keep multiplying by x until duplication is gone but no more.



What if the right-hand side has several terms, e.g.,

Ly = ¢ + cos x.



What if the right-hand side has several terms, e.g.,
Ly = e + cosx.

Find a particular u that solves

Lu = é*.
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What if the right-hand side has several terms, e.g.,
Ly = e + cosx.

Find a particular u that solves

Lu = é*.

Find particular v that solves
Lv = cosx.

y=u+v solves Ly=e* +cosx:

Ly = L(u+v) = Lu+ Lo = ¢* + cos x.



