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We're trying to solve Ly = f(x).

Undetermined coefficients needs f(x) and its derivatives to be of the same general form.
What about Ly = tanx, that is, f(x) = tanx?

f'(x) = sec?x,

f”(x) = 2sec? x tanzx,

F"(x) = 4sec? x tan® x + 2 sec* x,

F®(x) = 8sec? x tan® x + 16 sec* x tanx,

O (x) = 16 sec? x tan* x + 88 sec* x tan? x + 16 sec® x,

No luck ...
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Variation of parameters can handle tan x or any other f(x) (but computations can get tedious).

The technique works for the general linear equations of any order, but we stick to constant
coefficient second order equations.

Suppose Ly = 0 (associated homogeneous equation) has the general solution
Ciy1 + Coyo,

where C1, C, are constants.

We look for a solution of Ly = f(x) of the form
Y = u1y1 + uzly,

where 11, 1, are functions.



Example: Solve y” +y = tanx.



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form

Y = U1 COSX + Up SINX = U1Yy1 + Ul.



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form
Y = U1 COSX + Up SINX = U1Yy1 + Ul.

Compute
y = Wiy + upya) + (iy; + ayy).



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form
Y = U1 COSX + Up SINX = U1Yy1 + Ul.

Compute
y = Wiy + upya) + (iy; + ayy).

We have two unknown functions (11, 1) and one condition (Ly = f(x)), so we can still
impose another condition.



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form
Y = U1 COSX + Up SINX = U1Yy1 + Ul.

Compute

y' = Wiy1 +ugy2) + (ury; + uzys).
We have two unknown functions (11, 1) and one condition (Ly = f(x)), so we can still
impose another condition. Wouldn't it be convenient if

uiyr +upy =07



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form
Y = U1 COSX + Up SINX = U1Yy1 + Ul.

Compute
y = Wiy + upya) + (iy; + ayy).

We have two unknown functions (11, 1) and one condition (Ly = f(x)), so we can still
impose another condition. Wouldn't it be convenient if

uiyr +upy =07

Yes? So let’s assume that!



Example: Solve y” +y = tanx.

Complementary solution:
Ye = Cicosx + Cysinx.

So let’s look for a solution of the form
Y = U1 COSX + Up SINX = U1Yy1 + Ul.

Compute

y' = Wiy1 +ugy2) + (ury; + uzys).
We have two unknown functions (11, 1) and one condition (Ly = f(x)), so we can still
impose another condition. Wouldn't it be convenient if

uiyr +upy =07

Yes? So let’s assume that! Then
Y =y + w2y



Start with
y = ulyi + uzyé.



Start with
Y =uy] + oy,
Differentiate

’

y” = (uyyy +uu3yp) + (g + uizyy).



Start with
Y = uy; + w2y

Differentiate
’

y" = (ujy; +upysy) + (uayy + uzyy).

y1and ys solve y” +y =0,s0y) = —y1 and y; = —yp».



Start with
Y = uy; + w2y

Differentiate

’

y" = (ujy; +upysy) + (uayy + uzyy).
y1and ys solve y” +y =0,s0y) = —y1 and y; = —yp».
So

y” = (Wiyy +ugys) = (uays + uzy)



Start with
Y = uy; + w2y

Differentiate

’
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Start with
Y = uy; + w2y
Differentiate
y" = (Whyy +upys) + (ayy + uayy).
y1and ys solve y” +y =0,s0y) = —y1 and y; = —yp».

So
Y = (ujy] + upys) = (urys + waya) = (ufy; + ujys) — y
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’

y//+y=Ly=u1y’1 +u£yé_



Start with
Y =uy] + oy,
Differentiate
' = s+ ) + Gy + 1)
y1and ys solve y” +y =0,s0y) = —y1 and y; = —yp».
So
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’
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Start with
y = ulyi + uzy;.

Differentiate

’

y" = (ujy; +upysy) + (uayy + uzyy).
y1and yy solve y” +y = 0,s0y; = —y1 and y3 = —».
So

y” = (uyyy +upyy) — (uaya + uoya) = (ujy) +upys) —y

In other words
’

y" +y =Ly = ujy| +uy;.
Sooo0 ... for y to satisfy Ly = f(x), we must have f(x) = ujy] + ujy;.

To summarize we need to solve the two imposed conditions:

uiy1 + upy2 =0,
uyy; + uyys = f(x).
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Integrate

uj cosx + uy sinx =0,

—ujsinx + ujy cosx = tan x.

uj cosxsinx + u} sinx =0,
2

—17 SINX COS X + 1 COS” X = tan X cos X = sin x.

u)(sin® x + cos® x) = sinx,

;o
u; = sinx,
, —sin®x
U} = ———— = COosX — secx.
cos x

ul=/uidxz/(Cosx—secx)dx=sinx—1n|secx+tanx|,

u2:/u§dx:/sinxdx=—cosx.



In our case
uj cosx + uysinx =0,

—ujsinx + ujy cosx = tan x.

Hence
uj cosxsinx + u} sinx =0,
—u7 Sin X cos x + i} cos®x = tanxcosx = sin x.
And thus
u)(sin® x + cos® x) = sinx,
, )
uy = sinx,
, = sin® x
U] = ———— = COSX — secX.
cos X
Integrate

u1=/uidxz/(cosx—secx)dx=sinx—ln|secx+tanx|,

u2:/u’2dx:/sinxdx=—cosx.

(Forget about constants of integration, we want a particular solution)
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So
Yp = U1y1 + U2y
= cosxsinx — cos x In|secx + tan x| — cos x sin x
= —cosx In|secx + tan x].

The general solution to y” + y = tanx is

y = Cicosx + Cysinx — cosx In|secx + tan x].

In general, the procedure for finding y, using variation parameters (2nd order) is
1) Solve the associated homogeneous equation.
2) Solve for uj and u}, in

uiyr +uy2 =0,
ujyy + upys = f(x).

3) Integrate to get u1 and u5 to find vy, = uiy1 + uoy».



So
Yp = U1y1 + U2y
= cosxsinx — cos x In|secx + tan x| — cos x sin x
= —cosx In|secx + tan x].

The general solution to y” + y = tanx is

y = Cicosx + Cysinx — cosx In|secx + tan x].

In general, the procedure for finding y, using variation parameters (2nd order) is
1) Solve the associated homogeneous equation.
2) Solve for uj and u}, in

uiyr +uy2 =0,
uryy + upyh = f(x).
3) Integrate to get u1 and u5 to find vy, = uiy1 + uoy».

Note: Undetermined coefficients are usually less tedious if applicable.



