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Eg.,y =xy. 3] : .
At (2,1.5), draw a line of slope xy =2x 1.5 =3
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but we can always figure out the shape and behavior of the solutions.
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Consider the general first order equation y’
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At (2,1.5), draw a line of slope xy
Now do it for a grid of points.

Eg,y =xy.
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Consider the general first order equation y’

=3

2x1.5

At (2,1.5), draw a line of slope xy
Now do it for a grid of points.
This is called the slope field.

Eg,y =xy.
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Note how in this case we can tell from the slope field that all solutions just tend to y
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So answer to (ii) can also be false.
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If A = 100, the solution blows up when x = 1& = 0.01. The solution exists for x < 0.01.



