9. Autonomous equations
(Notes on Diffy Qs, 1.6)

Jit{ Lebl

Oklahoma State University

The textbook: https://www.jirka.org/diffyqs/
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Z—f =f(x) (equation independent of time) is called an autonomous equation.
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i—f =k(A—-x) (Newton’s law of cooling) FereePe—7——
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small changes in initial condition still lead to the solution approaching x = 5as t — co.
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Call an x such that f(x) = 0 a critical point
(f(5) = 0in the plot)

The critical point x = A = 5 is stable,
small changes in initial condition still lead to the solution approaching x = 5as t — co.

A critical point that is not stable is called unstable.
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Consider the logistic equation: x’ = kx(M — x), for some k > 0 and M > 0.

Common model for population where there is a maximum sustainable population M.
(less catastrophic than x” = kx)

Example: x’ = 0.1x(5 — x)

Two critical points x = 0 and x = 5.
x = 0is unstable, x = 5 is stable.

By inspection,
5 if x(0) >0, =
tlim x(t) =40 if x(0) =0, , §
DNE or —oo if x(0) <O0. |

Note: Picture not enough to decide for x(0) < 0. x(f) may not exist for all time .

So to find long term behavior, x(t) for very large t, we don’t need to solve.
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eg., f(6)=—-0.6<0, f(1)=04>0, f(-1) = 0.6 <0



Armed with a phase diagram, easy to sketch solutions.
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Classifying critical points is also easy:

I I ¢ ¢
| i f nstable i bl

Remark: If one arrow points in and one out, sometimes called semistable.

Unstable points tend to be bad news:
Small changes in initial conditions lead to different outcomes.
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Example: Consider the logistic equation with harvesting.

An alien race really likes to eat humans,

they harvest & million humans per year.

x=millions of humans on the planet, t=time in years,
M=limiting population when no harvesting.

k > 0 is a number depending on how quickly humans multiply.

Equation becomes: x’ = kx(M —x) — h.

Find critical points (solve kx(M —x) —h = —kx? + kMx — h = 0)
There are two (quadratic formula). Give them names:

p kM + ~J(kM)? — 4hk . kM — [ (kM)? — 4hk

2k ’ 2k
3 possibilities: A > B, or A = B, or A and B both complex (i.e. no real solutions).
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As long as there are at least 1.55 million humans, the harvesting is sustainable.
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If there is an earthquake and population drops below B,



=0.1.

8and k

For example, let M

U XXX {7777
b\ NNNNNANN L 2
NVNNNNNNN L
R SA NN \\|/ /~
VW NNNNNNN L 4
VNNNNNNANN 7
VANNNNNNNY 7
VANN NN NN 7
VN NNNON NN
VA NNNNNNAN I 7 A
|\ NNN NN\
NNNNNN NN Y 7o
NN NNNNNAN L] 7~
WA NNNN N NN Y 2~
VANNNNNNANN 7 A
VANNNNNNAN L7
VAN NN NN W
VANNN NN NN
VA NNANNNNN 2
VANANNANN ] 77

=

8

=

g

i

1]

-~

0

g

5

T

20

0

¥ =01x8-x)-—
B ~ 1.55, unstable

1

A ~ 6.45, stable

As long as there are at least 1.55 million humans, the harvesting is sustainable.

If there is an earthquake and population drops below B,

the alien race becomes vegetarian. (not good for us either)
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If population starts above 4 million, it will tend towards 4 million.
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If population starts above 4 million, it will tend towards 4 million.

If the population drops below 4 million, humans die out.
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