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Introduction

0.1 Notes about these notes
This book originated from my class notes for teaching Math 286, differential equations, at the
University of Illinois at Urbana-Champaign in fall 2008 and spring 2009. It is a first course on
differential equations for engineers. I have also taught Math 285 at UIUC and Math 20D at UCSD
using a subset of this book. The standard book for the UIUC course is Edwards and Penney,
Differential Equations and Boundary Value Problems [EP], fourth edition. Some examples and
applications are taken more or less from this book, though they also appear in many other sources,
of course. Among other books I have used as sources of information and inspiration are E.L. Ince’s
classic (and inexpensive) Ordinary Differential Equations [I], and also my undergraduate textbooks,
Stanley Farlow’s Differential Equations and Their Applications [F], which is now available from
Dover, Berg and McGregor’s Elementary Partial Differential Equations [BM], and Boyce and
DiPrima’s Elementary Differential Equations and Boundary Value Problems [BD]. See the Further
Reading chapter at the end of the book.

I taught the UIUC courses with the IODE software (http://www.math.uiuc.edu/iode/).
IODE is a free software package that is used either with Matlab (proprietary) or Octave (free
software). Projects and labs from the IODE website are referenced throughout the notes. They need
not be used for this course, but I recommend using them. The graphs in the notes were made with
the Genius software (see http://www.jirka.org/genius.html). I have used Genius in class to
show these (and other) graphs.

These notes are available from http://www.jirka.org/diffyqs/. Check there for any
possible updates or errata. The LATEX source is also available from the same site for possible
modification and customization.

I would like to acknowledge Rick Laugesen. I have used his handwritten class notes the first
time I taught Math 286. My organization of this book, and the choice of material covered, is heavily
influenced by his class notes. Many examples and computations are taken from his notes. I am also
heavily indebted to Rick for all the advice he has given me, not just on teaching Math 286. For
spotting errors and other suggestions, I would also like to acknowledge (in no particular order): John
P. D’Angelo, Sean Raleigh, Jessica Robinson, Michael Angelini, Leonardo Gomes, Jeff Winegar,
Ian Simon, Thomas Wicklund, Eliot Brenner, Sean Robinson, Jannett Susberry, Dana Al-Quadi,
Cesar Alvarez, Cem Bagdatlioglu, Nathan Wong, Alison Shive, Shawn White, Wing Yip Ho, Joanne
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6 INTRODUCTION

Shin, Gladys Cruz, Jonathan Gomez, Janelle Louie, Navid Froutan, Grace Victorine, Paul Pearson,
Jared Teague, and probably others I have forgotten. Finally I would like to acknowledge NSF grant
DMS-0900885.

The organization of these notes to some degree requires that they be done in order. Later chapters
can be dropped. The dependence of the material covered is roughly given in the following diagram:

Introduction

��
Chapter 1

��
Chapter 2

((

��

vv ++
Chapter 3

((

Chapter 6 Chapter 7

Chapter 4

��
Chapter 5

There are some references in chapters 4 and 5 to material from chapter 3 (some linear algebra),
but these references are not absolutely essential and can be skimmed over, so chapter 3 can safely be
dropped, while still covering chapters 4 and 5. The notes are done for two types of courses. Either
at 4 hours a week for a semester (Math 286 at UIUC):

Introduction, chapter 1, chapter 2, chapter 3, chapter 4, chapter 5 (or 6 or 7).

Or a shorter version (Math 285 at UIUC) of the course at 3 hours a week for a semester:

Introduction, chapter 1, chapter 2, chapter 4, (and maybe chapter 5, 6, or 7).

The schedule assumes you spend two class periods in the computer lab with IODE. IODE need
not be used for either version. If IODE is not used, some additional material (such as chapter 7)
may need to be covered instead.

The lengths of the chapter on Laplace transform (chapter 6) and the chapter on Sturm-Liouville
(chapter 5) are approximately the same and are interchangeable time-wise. Laplace transform is not
normally covered at UIUC 285/286. I think it is essential that any notes on differential equations at
least mention the Laplace transform. Power series (chapter 7) is a shorter chapter that may be easier
to fit in if time is short.
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0.2 Introduction to differential equations
Note: more than 1 lecture, §1.1 in [EP], chapter 1 in [BD]

0.2.1 Differential equations
The laws of physics are generally written down as differential equations. Therefore, all of science
and engineering use differential equations to some degree. Understanding differential equations is
essential to understanding almost anything you will study in your science and engineering classes.
You can think of mathematics as the language of science, and differential equations are one of
the most important parts of this language as far as science and engineering are concerned. As
an analogy, suppose that all your classes from now on were given in Swahili. Then it would be
important to first learn Swahili, otherwise you will have a very tough time getting a good grade in
your other classes.

You have already seen many differential equations without perhaps knowing about it. And
you have even solved simple differential equations when you were taking calculus. Let us see an
example you may not have seen:

dx
dt

+ x = 2 cos t. (1)

Here x is the dependent variable and t is the independent variable. Equation (1) is a basic example
of a differential equation. In fact it is an example of a first order differential equation, since it
involves only the first derivative of the dependent variable. This equation arises from Newton’s law
of cooling where the ambient temperature oscillates with time.

0.2.2 Solutions of differential equations
Solving the differential equation means finding x in terms of t. That is, we want to find a function
of t, which we will call x, such that when we plug x, t, and dx

dt into (1), the equation holds. It is the
same idea as it would be for a normal (algebraic) equation of just x and t. We claim that

x = x(t) = cos t + sin t

is a solution. How do we check? We simply plug x into equation (1)! First we need to compute dx
dt .

We find that dx
dt = − sin t + cos t. Now let us compute the left hand side of (1).

dx
dt

+ x = (− sin t + cos t) + (cos t + sin t) = 2 cos t.

Yay! We got precisely the right hand side. But there is more! We claim x = cos t + sin t + e−t is also
a solution. Let us try,

dx
dt

= − sin t + cos t − e−t.
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Again plugging into the left hand side of (1)

dx
dt

+ x = (− sin t + cos t − e−t) + (cos t + sin t + e−t) = 2 cos t.

And it works yet again!
So there can be many different solutions. In fact, for this equation all solutions can be written in

the form
x = cos t + sin t + Ce−t

for some constant C. See Figure 1 for the graph of a few of these solutions. We will see how we
can find these solutions a few lectures from now.

It turns out that solving differential equations

0 1 2 3 4 5
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0
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Figure 1: Few solutions of dx
dt + x = 2 cos t.

can be quite hard. There is no general method
that solves every differential equation. We will
generally focus on how to get exact formulas for
solutions of certain differential equations, but we
will also spend a little bit of time on getting ap-
proximate solutions.

For most of the course we will look at ordi-
nary differential equations or ODEs, by which we
mean that there is only one independent variable
and derivatives are only with respect to this one
variable. If there are several independent vari-
ables, we will get partial differential equations or
PDEs. We will briefly see these near the end of
the course.

Even for ODEs, which are very well under-
stood, it is not a simple question of turning a crank to get answers. It is important to know when it
is easy to find solutions and how to do so. Although in real applications you will leave much of the
actual calculations to computers, you need to understand what they are doing. It is often necessary
to simplify or transform your equations into something that a computer can understand and solve.
You may need to make certain assumptions and changes in your model to achieve this.

To be a successful engineer or scientist, you will be required to solve problems in your job that
you have never seen before. It is important to learn problem solving techniques, so that you may
apply those techniques to new problems. A common mistake is to expect to learn some prescription
for solving all the problems you will encounter in your later career. This course is no exception.

0.2.3 Differential equations in practice
So how do we use differential equations in science and engineering? First, we have some real

world problem that we wish to understand. We make some simplifying assumptions and create a
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mathematical model. That is, we translate the real world situation into a set of differential equations.
Then we apply mathematics to get some sort of a mathematical solution. There is still something
left to do. We have to interpret the results. We have to figure out what the mathematical solution
says about the real world problem we started with.

Learning how to formulate the mathematical

solve
Mathematical

Real world problem

interpret

Mathematical
solutionmodel

abstract

model and how to interpret the results is what
your physics and engineering classes do. In this
course we will focus mostly on the mathematical
analysis. Sometimes we will work with simple real
world examples, so that we have some intuition
and motivation about what we are doing.

Let us look at an example of this process. One of the most basic differential equations is the
standard exponential growth model. Let P denote the population of some bacteria on a Petri dish.
We assume that there is enough food and enough space. Then the rate of growth of bacteria will
be proportional to the population. I.e. a large population grows quicker. Let t denote time (say in
seconds) and P the population. Our model will be

dP
dt

= kP,

for some positive constant k > 0.
Example 0.2.1: Suppose there are 100 bacteria at time 0 and 200 bacteria at time 10s. How many
bacteria will there be 1 minute from time 0 (in 60 seconds)?

First we have to solve the equation. We claim that a solution is given by

P(t) = Cekt,

where C is a constant. Let us try:
dP
dt

= Ckekt = kP.

And it really is a solution.
OK, so what now? We do not know C and we do not know k. But we know something. We

know that P(0) = 100, and we also know that P(10) = 200. Let us plug these conditions in and see
what happens.

100 = P(0) = Cek0 = C,

200 = P(10) = 100 ek10.

Therefore, 2 = e10k or ln 2
10 = k ≈ 0.069. So we know that

P(t) = 100 e(ln 2)t/10 ≈ 100 e0.069t.

At one minute, t = 60, the population is P(60) = 6400. See Figure 2 on the next page.
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Let us talk about the interpretation of the results. Does our solution mean that there must be
exactly 6400 bacteria on the plate at 60s? No! We have made assumptions that might not be exactly
true. But if our assumptions are reasonable, then there will be approximately 6400 bacteria. Also
note that in real life P is a discrete quantity, not a real number. However, our model has no problem
saying that for example at 61 seconds, P(61) ≈ 6859.35.

Normally, the k in P′ = kP will be known, and

0 10 20 30 40 50 60
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Figure 2: Bacteria growth in the first 60 sec-
onds.

you will want to solve the equation for different
initial conditions. What does that mean? Suppose
k = 1 for simplicity. Now suppose we want to
solve the equation dP

dt = P subject to P(0) = 1000
(the initial condition). Then the solution turns out
to be (exercise)

P(t) = 1000 et.

We will call P(t) = Cet the general solution,
as every solution of the equation can be written
in this form for some constant C. Then you will
need an initial condition to find out what C is to
find the particular solution we are looking for.
Generally, when we say “particular solution,” we
just mean some solution.

Let us get to what we will call the four fundamental equations. These equations appear very
often and it is useful to just memorize what their solutions are. These solutions are reasonably easy
to guess by recalling properties of exponentials, sines, and cosines. They are also simple to check,
which is something that you should always do. There is no need to wonder if you have remembered
the solution correctly.

First such equation is,
dy
dx

= ky,

for some constant k > 0. Here y is the dependent and x the independent variable. The general
solution for this equation is

y(x) = Cekx.

We have already seen that this function is a solution above with different variable names.

Next,
dy
dx

= −ky,

for some constant k > 0. The general solution for this equation is

y(x) = Ce−kx.
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Exercise 0.2.1: Check that the y given is really a solution to the equation.

Next, take the second order differential equation

d2y
dx2 = −k2y,

for some constant k > 0. The general solution for this equation is

y(x) = C1 cos(kx) + C2 sin(kx).

Note that because we have a second order differential equation, we have two constants in our general
solution.

Exercise 0.2.2: Check that the y given is really a solution to the equation.

And finally, take the second order differential equation

d2y
dx2 = k2y,

for some constant k > 0. The general solution for this equation is

y(x) = C1ekx + C2e−kx,

or
y(x) = D1 cosh(kx) + D2 sinh(kx).

For those that do not know, cosh and sinh are defined by

cosh x =
ex + e−x

2
,

sinh x =
ex − e−x

2
.

These functions are sometimes easier to work with than exponentials. They have some nice familiar
properties such as cosh 0 = 1, sinh 0 = 0, and d

dx cosh x = sinh x (no that is not a typo) and
d
dx sinh x = cosh x.

Exercise 0.2.3: Check that both forms of the y given are really solutions to the equation.

An interesting note about cosh: The graph of cosh is the exact shape a hanging chain will make.
This shape is called a catenary. Contrary to popular belief this is not a parabola. If you invert the
graph of cosh it is also the ideal arch for supporting its own weight. For example, the gateway
arch in Saint Louis is an inverted graph of cosh (if it were just a parabola it might fall down). The
formula used in the design is inscribed inside the arch:

y = −127.7 ft · cosh(x/127.7 ft) + 757.7 ft.
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0.2.4 Exercises
Exercise 0.2.4: Show that x = e4t is a solution to x′′′ − 12x′′ + 48x′ − 64x = 0.

Exercise 0.2.5: Show that x = et is not a solution to x′′′ − 12x′′ + 48x′ − 64x = 0.

Exercise 0.2.6: Is y = sin t a solution to
(

dy
dt

)2
= 1 − y2? Justify.

Exercise 0.2.7: Let y′′ + 2y′ − 8y = 0. Now try a solution of the form y = erx for some (unknown)
constant r. Is this a solution for some r? If so, find all such r.

Exercise 0.2.8: Verify that x = Ce−2t is a solution to x′ = −2x. Find C to solve for the initial
condition x(0) = 100.

Exercise 0.2.9: Verify that x = C1e−t + C2e2t is a solution to x′′ − x′ − 2x = 0. Find C1 and C2 to
solve for the initial conditions x(0) = 10 and x′(0) = 0.

Exercise 0.2.10: Find a solution to (x′)2 + x2 = 4 using your knowledge of derivatives of functions
that you know from basic calculus.

Exercise 0.2.11: Solve:

a)
dA
dt

= −10A, A(0) = 5.

b)
dH
dx

= 3H, H(0) = 1.

c)
dy
dx

= 4y, y(0) = 0, y′(0) = 1.

d)
dx
dy

= −9x, x(0) = 1, x′(0) = 0.

Note: Exercises with numbers 101 and higher have solutions in the back

Exercise 0.2.101: Show that x = e−2t is a solution to x′′ + 4x′ + 4x = 0.

Exercise 0.2.102: Is y = x2 a solution to x2y′′ − 2y = 0? Justify.

Exercise 0.2.103: Let xy′′ − y′ = 0. Try a solution of the form y = xr. Is this a solution for some r?
If so, find all such r.

Exercise 0.2.104: Verify that x = C1et + C2 is a solution to x′′ − x′ = 0. Find C1 and C2 so that x
satisfies x(0) = 10 and x′(0) = 100.

Exercise 0.2.105: Solve dϕ
ds = 8ϕ and ϕ(0) = −9.



Chapter 1

First order ODEs

1.1 Integrals as solutions
Note: 1 lecture (or less), §1.2 in [EP], covered in §1.2 and §2.1 in [BD]

A first order ODE is an equation of the form

dy
dx

= f (x, y),

or just
y′ = f (x, y).

In general, there is no simple formula or procedure one can follow to find solutions. In the next few
lectures we will look at special cases where solutions are not difficult to obtain. In this section, let
us assume that f is a function of x alone, that is, the equation is

y′ = f (x). (1.1)

We could just integrate (antidifferentiate) both sides with respect to x.∫
y′(x) dx =

∫
f (x) dx + C,

that is
y(x) =

∫
f (x) dx + C.

This y(x) is actually the general solution. So to solve (1.1), we find some antiderivative of f (x) and
then we add an arbitrary constant to get the general solution.

Now is a good time to discuss a point about calculus notation and terminology. Calculus
textbooks muddy the waters by talking about the integral as primarily the so-called indefinite

13
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integral. The indefinite integral is really the antiderivative (in fact the whole one-parameter family
of antiderivatives). There really exists only one integral and that is the definite integral. The only
reason for the indefinite integral notation is that we can always write an antiderivative as a (definite)
integral. That is, by the fundamental theorem of calculus we can always write

∫
f (x) dx + C as∫ x

x0

f (t) dt + C.

Hence the terminology to integrate when we may really mean to antidifferentiate. Integration is
just one way to compute the antiderivative (and it is a way that always works, see the following
examples). Integration is defined as the area under the graph, it only happens to also compute
antiderivatives. For sake of consistency, we will keep using the indefinite integral notation when we
want an antiderivative, and you should always think of the definite integral.

Example 1.1.1: Find the general solution of y′ = 3x2.
Elementary calculus tells us that the general solution must be y = x3 + C. Let us check: y′ = 3x2.

We have gotten precisely our equation back.

Normally, we also have an initial condition such as y(x0) = y0 for some two numbers x0 and y0

(x0 is usually 0, but not always). We can then write the solution as a definite integral in a nice way.
Suppose our problem is y′ = f (x), y(x0) = y0. Then the solution is

y(x) =

∫ x

x0

f (s) ds + y0. (1.2)

Let us check! We compute y′ = f (x) (by fundamental theorem of calculus) and by Jupiter, y is a
solution. Is it the one satisfying the initial condition? Well, y(x0) =

∫ x0

x0
f (x) dx + y0 = y0. It is!

Do note that the definite integral and the indefinite integral (antidifferentiation) are completely
different beasts. The definite integral always evaluates to a number. Therefore, (1.2) is a formula
we can plug into the calculator or a computer, and it will be happy to calculate specific values for us.
We will easily be able to plot the solution and work with it just like with any other function. It is not
so crucial to always find a closed form for the antiderivative.

Example 1.1.2: Solve
y′ = e−x2

, y(0) = 1.

By the preceding discussion, the solution must be

y(x) =

∫ x

0
e−s2

ds + 1.

Here is a good way to make fun of your friends taking second semester calculus. Tell them to find
the closed form solution. Ha ha ha (bad math joke). It is not possible (in closed form). There is
absolutely nothing wrong with writing the solution as a definite integral. This particular integral is
in fact very important in statistics.
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Using this method, we can also solve equations of the form

y′ = f (y).

Let us write the equation in Leibniz notation.

dy
dx

= f (y).

Now we use the inverse function theorem from calculus to switch the roles of x and y to obtain

dx
dy

=
1

f (y)
.

What we are doing seems like algebra with dx and dy. It is tempting to just do algebra with dx
and dy as if they were numbers. And in this case it does work. Be careful, however, as this sort of
hand-waving calculation can lead to trouble, especially when more than one independent variable is
involved. At this point we can simply integrate,

x(y) =

∫
1

f (y)
dy + C.

Finally, we try to solve for y.

Example 1.1.3: Previously, we guessed y′ = ky (for some k > 0) has the solution y = Cekx. We
can now find the solution without guessing. First we note that y = 0 is a solution. Henceforth, we
assume y , 0. We write

dx
dy

=
1
ky
.

We integrate to obtain

x(y) = x =
1
k

ln |y| + D,

where D is an arbitrary constant. Now we solve for y (actually for |y|).

|y| = ekx−kD = e−kDekx.

If we replace e−kD with an arbitrary constant C we can get rid of the absolute value bars (we can
do this as D was arbitrary). In this way, we also incorporate the solution y = 0. We get the same
general solution as we guessed before, y = Cekx.

Example 1.1.4: Find the general solution of y′ = y2.
First we note that y = 0 is a solution. We can now assume that y , 0. Write

dx
dy

=
1
y2 .
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We integrate to get

x =
−1
y

+ C.

We solve for y = 1
C−x . So the general solution is

y =
1

C − x
or y = 0.

Note the singularities of the solution. If for example C = 1, then the solution “blows up” as we
approach x = 1. Generally, it is hard to tell from just looking at the equation itself how the solution
is going to behave. The equation y′ = y2 is very nice and defined everywhere, but the solution is
only defined on some interval (−∞,C) or (C,∞).

Classical problems leading to differential equations solvable by integration are problems dealing
with velocity, acceleration and distance. You have surely seen these problems before in your
calculus class.

Example 1.1.5: Suppose a car drives at a speed et/2 meters per second, where t is time in seconds.
How far did the car get in 2 seconds (starting at t = 0)? How far in 10 seconds?

Let x denote the distance the car traveled. The equation is

x′ = et/2.

We can just integrate this equation to get that

x(t) = 2et/2 + C.

We still need to figure out C. We know that when t = 0, then x = 0. That is, x(0) = 0. So

0 = x(0) = 2e0/2 + C = 2 + C.

Thus C = −2 and
x(t) = 2et/2 − 2.

Now we just plug in to get where the car is at 2 and at 10 seconds. We obtain

x(2) = 2e2/2 − 2 ≈ 3.44 meters, x(10) = 2e10/2 − 2 ≈ 294 meters.

Example 1.1.6: Suppose that the car accelerates at a rate of t2 m/s2. At time t = 0 the car is at the 1
meter mark and is traveling at 10 m/s. Where is the car at time t = 10.

Well this is actually a second order problem. If x is the distance traveled, then x′ is the velocity,
and x′′ is the acceleration. The equation with initial conditions is

x′′ = t2, x(0) = 1, x′(0) = 10.

What if we say x′ = v. Then we have the problem

v′ = t2, v(0) = 10.

Once we solve for v, we can integrate and find x.

Exercise 1.1.1: Solve for v, and then solve for x. Find x(10) to answer the question.
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1.1.1 Exercises
Exercise 1.1.2: Solve dy

dx = x2 + x for y(1) = 3.

Exercise 1.1.3: Solve dy
dx = sin(5x) for y(0) = 2.

Exercise 1.1.4: Solve dy
dx = 1

x2−1 for y(0) = 0.

Exercise 1.1.5: Solve y′ = y3 for y(0) = 1.

Exercise 1.1.6 (little harder): Solve y′ = (y − 1)(y + 1) for y(0) = 3.

Exercise 1.1.7: Solve dy
dx = 1

y+1 for y(0) = 0.

Exercise 1.1.8: Solve y′′ = sin x for y(0) = 0.

Exercise 1.1.9: A spaceship is traveling at the speed 2t2 + 1 km/s (t is time in seconds). It is pointing
directly away from earth and at time t = 0 it is 1000 kilometers from earth. How far from earth is it
at one minute from time t = 0?

Exercise 1.1.10: Solve dx
dt = sin(t2) + t, x(0) = 20. It is OK to leave your answer as a definite

integral.

Exercise 1.1.101: Solve dy
dx = ex + x and y(0) = 10.

Exercise 1.1.102: Solve x′ = 1
x2 , x(1) = 1.

Exercise 1.1.103: Solve x′ = 1
cos(x) , x(0) = π

2 .

Exercise 1.1.104: Sid is in a car travelling at speed 10t + 70 miles per hour away from Las Vegas,
where t is in hours. At t = 0 the Sid is 10 miles away from Vegas. How far from Vegas is Sid 2 hours
later.
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1.2 Slope fields
Note: 1 lecture, §1.3 in [EP], §1.1 in [BD]

At this point it may be good to first try the Lab I and/or Project I from the IODE website:
http://www.math.uiuc.edu/iode/.

As we said, the general first order equation we are studying looks like

y′ = f (x, y).

In general, we cannot simply solve these kinds of equations explicitly. It would be good if we could
at least figure out the shape and behavior of the solutions, or if we could even find approximate
solutions for any equation.

1.2.1 Slope fields
As you have seen in IODE Lab I (if you did it), the equation y′ = f (x, y) gives you a slope at each
point in the (x, y)-plane. We can plot the slope at lots of points as a short line through the point
(x, y) with the slope f (x, y). See Figure 1.1.

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Figure 1.1: Slope field of y′ = xy.
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Figure 1.2: Slope field of y′ = xy with a graph
of solutions satisfying y(0) = 0.2, y(0) = 0, and
y(0) = −0.2.

We call this picture the slope field of the equation. If we are given a specific initial condition
y(x0) = y0, we can look at the location (x0, y0) and follow the slopes. See Figure 1.2.

By looking at the slope field we can get a lot of information about the behavior of solutions. For
example, in Figure 1.2 we can see what the solutions do when the initial conditions are y(0) > 0,
y(0) = 0 and y(0) < 0. Note that a small change in the initial condition causes quite different

http://www.math.uiuc.edu/iode/
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behavior. On the other hand, plotting a few solutions of the equation y′ = −y, we see that no matter
what y(0) is, all solutions tend to zero as x tends to infinity. See Figure 1.3.
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Figure 1.3: Slope field of y′ = −y with a graph of a few solutions.

1.2.2 Existence and uniqueness
We wish to ask two fundamental questions about the problem

y′ = f (x, y), y(x0) = y0.

(i) Does a solution exist?

(ii) Is the solution unique (if it exists)?

What do you think is the answer? The answer seems to be yes to both does it not? Well, pretty
much. But there are cases when the answer to either question can be no.

Since generally the equations we encounter in applications come from real life situations, it
seems logical that a solution always exists. It also has to be unique if we believe our universe is
deterministic. If the solution does not exist, or if it is not unique, we have probably not devised the
correct model. Hence, it is good to know when things go wrong and why.

Example 1.2.1: Attempt to solve:

y′ =
1
x
, y(0) = 0.

Integrate to find the general solution y = ln |x|+ C. Note that the solution does not exist at x = 0.
See Figure 1.4 on the next page.
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Figure 1.4: Slope field of y′ = 1/x.
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Figure 1.5: Slope field of y′ = 2
√
|y| with two

solutions satisfying y(0) = 0.

Example 1.2.2: Solve:
y′ = 2

√
|y|, y(0) = 0.

See Figure 1.5. Note that y = 0 is a solution. But also the function

y(x) =

x2 if x ≥ 0,
−x2 if x < 0.

It is actually hard to tell by staring at the slope field that the solution will not be unique. Is there
any hope? Of course there is. It turns out that the following theorem is true. It is known as Picard’s
theorem∗.

Theorem 1.2.1 (Picard’s theorem on existence and uniqueness). If f (x, y) is continuous (as a
function of two variables) and ∂ f

∂y exists and is continuous near some (x0, y0), then a solution to

y′ = f (x, y), y(x0) = y0,

exists (at least for some small interval of x’s) and is unique.

Note that the problems y′ = 1/x, y(0) = 0 and y′ = 2
√
|y|, y(0) = 0 do not satisfy the hypothesis

of the theorem. Even if we can use the theorem, we ought to be careful about this existence business.
It is quite possible that the solution only exists for a short while.

Example 1.2.3: For some constant A, solve:

y′ = y2, y(0) = A.

∗Named after the French mathematician Charles Émile Picard (1856 – 1941)

http://en.wikipedia.org/wiki/Charles_%C3%89mile_Picard
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We know how to solve this equation. First assume that A , 0, so y is not equal to zero at least
for some x near 0. So x′ = 1/y2, so x = −1/y + C, so y = 1

C−x . If y(0) = A, then C = 1/A so

y =
1

1/A − x
.

If A = 0, then y = 0 is a solution.
For example, when A = 1 the solution “blows up” at x = 1. Hence, the solution does not exist

for all x even if the equation is nice everywhere. The equation y′ = y2 certainly looks nice.

For the most of this course we will be interested in equations where existence and uniqueness
holds, and in fact holds “globally” unlike for the equation y′ = y2.

1.2.3 Exercises
Exercise 1.2.1: Sketch direction field for y′ = ex−y. How do the solutions behave as x grows? Can
you guess a particular solution by looking at the direction field?

Exercise 1.2.2: Sketch direction field for y′ = x2.

Exercise 1.2.3: Sketch direction field for y′ = y2.

Exercise 1.2.4: Is it possible to solve the equation y′ =
xy

cos x for y(0) = 1? Justify.

Exercise 1.2.5: Is it possible to solve the equation y′ = y
√
|x| for y(0) = 0? Is the solution unique?

Justify.

Exercise 1.2.101: Sketch the slopefield of y′ = y3. Can you visually find the solution that satisfies
y(0) = 0?

Exercise 1.2.102: Is it possible to solve y′ = xy for y(0) = 0? Is the solution unique?

Exercise 1.2.103: Is it possible to solve y′ = x
x2−1 for y(1) = 0?
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1.3 Separable equations
Note: 1 lecture, §1.4 in [EP], §2.2 in [BD]

When a differential equation is of the form y′ = f (x), we can just integrate: y =
∫

f (x) dx + C.
Unfortunately this method no longer works for the general form of the equation y′ = f (x, y).
Integrating both sides yields

y =

∫
f (x, y) dx + C.

Notice the dependence on y in the integral.

1.3.1 Separable equations
Let us suppose that the equation is separable. That is, let us consider

y′ = f (x)g(y),

for some functions f (x) and g(y). Let us write the equation in the Leibniz notation

dy
dx

= f (x)g(y).

Then we rewrite the equation as
dy

g(y)
= f (x) dx.

Now both sides look like something we can integrate. We obtain∫
dy

g(y)
=

∫
f (x) dx + C.

If we can find closed form expressions for these two integrals, we can, perhaps, solve for y.

Example 1.3.1: Take the equation
y′ = xy.

First note that y = 0 is a solution, so assume y , 0 from now on. Write the equation as dy
dx = xy, then∫

dy
y

=

∫
x dx + C.

We compute the antiderivatives to get

ln |y| =
x2

2
+ C.
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Or
|y| = e

x2
2 +C = e

x2
2 eC = De

x2
2 ,

where D > 0 is some constant. Because y = 0 is a solution and because of the absolute value we
actually can write:

y = De
x2
2 ,

for any number D (including zero or negative).
We check:

y′ = Dxe
x2
2 = x

(
De

x2
2

)
= xy.

Yay!

We should be a little bit more careful with this method. You may be worried that we were
integrating in two different variables. We seemed to be doing a different operation to each side. Let
us work this method out more rigorously.

dy
dx

= f (x)g(y)

We rewrite the equation as follows. Note that y = y(x) is a function of x and so is dy
dx !

1
g(y)

dy
dx

= f (x)

We integrate both sides with respect to x.∫
1

g(y)
dy
dx

dx =

∫
f (x) dx + C.

We can use the change of variables formula.∫
1

g(y)
dy =

∫
f (x) dx + C.

And we are done.

1.3.2 Implicit solutions
It is clear that we might sometimes get stuck even if we can do the integration. For example, take
the separable equation

y′ =
xy

y2 + 1
.

We separate variables,
y2 + 1

y
dy =

(
y +

1
y

)
dy = x dx.
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We integrate to get
y2

2
+ ln |y| =

x2

2
+ C,

or perhaps the easier looking expression (where D = 2C)

y2 + 2 ln |y| = x2 + D.

It is not easy to find the solution explicitly as it is hard to solve for y. We will, therefore, leave the
solution in this form and call it an implicit solution. It is still easy to check that implicit solutions
satisfy the differential equation. In this case, we differentiate to get

y′
(
2y +

2
y

)
= 2x.

It is simple to see that the differential equation holds. If you want to compute values for y, you
might have to be tricky. For example, you can graph x as a function of y, and then flip your paper.
Computers are also good at some of these tricks, but you have to be careful.

We note above that the equation also has a solution y = 0. In this case, it turns out that the
general solution is y2 + 2 ln |y| = x2 + C together with y = 0. These outlying solutions such as y = 0
are sometimes called singular solutions.

1.3.3 Examples
Example 1.3.2: Solve x2y′ = 1 − x2 + y2 − x2y2, y(1) = 0.

First factor the right hand side to obtain

x2y′ = (1 − x2)(1 + y2).

We separate variables, integrate and solve for y

y′

1 + y2 =
1 − x2

x2 ,

y′

1 + y2 =
1
x2 − 1,

arctan(y) =
−1
x
− x + C,

y = tan
(
−1
x
− x + C

)
.

Now solve for the initial condition, 0 = tan(−2 + C) to get C = 2 (or 2 + π, etc. . . ). The solution we
are seeking is, therefore,

y = tan
(
−1
x
− x + 2

)
.
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Example 1.3.3: Suppose Bob made a cup of coffee, and the water was boiling (100 degrees Celsius)
at time t = 0 minutes. Suppose Bob likes to drink his coffee at 70 degrees. Let the ambient (room)
temperature be 26 degrees. Furthermore, suppose Bob measured the temperature of the coffee at 1
minute and found that it dropped to 95 degrees. When should Bob start drinking?

Let T be the temperature of coffee, let A be the ambient (room) temperature. Then for some k
the temperature of coffee is:

dT
dt

= k(A − T ).

For our setup A = 26, T (0) = 100, T (1) = 95. We separate variables and integrate (C and D will
denote arbitrary constants)

1
T − A

dT
dt

= −k,

ln(T − A) = −kt + C, (note that T − A > 0)

T − A = D e−kt,

T = D e−kt + A.

That is, T = 26 + D e−kt. We plug in the first condition 100 = T (0) = 26 + D and hence
D = 74. We have T = 26 + 74 e−kt. We plug in 95 = T (1) = 26 + 74 e−k. Solving for k we get
k = − ln 95−26

74 ≈ 0.07. Now we solve for the time t that gives us a temperature of 70 degrees. That

is, we solve 70 = 26 + 74e−0.07t to get t = −
ln 70−26

74
0.07 ≈ 7.43 minutes. So Bob can begin to drink the

coffee at about 7 and a half minutes from the time Bob made it. Probably about the amount of time
it took us to calculate how long it would take.

Example 1.3.4: Find the general solution to y′ =
−xy2

3 (including singular solutions).
First note that y = 0 is a solution (a singular solution). So assume that y , 0 and write

−3
y2 y′ = x,

3
y

=
x2

2
+ C,

y =
3

x2/2 + C
=

6
x2 + 2C

.

1.3.4 Exercises
Exercise 1.3.1: Solve y′ = x/y.

Exercise 1.3.2: Solve y′ = x2y.

Exercise 1.3.3: Solve
dx
dt

= (x2 − 1) t, for x(0) = 0.
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Exercise 1.3.4: Solve
dx
dt

= x sin(t), for x(0) = 1.

Exercise 1.3.5: Solve
dy
dx

= xy + x + y + 1. Hint: Factor the right hand side.

Exercise 1.3.6: Solve xy′ = y + 2x2y, where y(1) = 1.

Exercise 1.3.7: Solve
dy
dx

=
y2 + 1
x2 + 1

, for y(0) = 1.

Exercise 1.3.8: Find an implicit solution for
dy
dx

=
x2 + 1
y2 + 1

, for y(0) = 1.

Exercise 1.3.9: Find explicit solution for y′ = xe−y, y(0) = 1.

Exercise 1.3.10: Find explicit solution for xy′ = e−y, for y(1) = 1.

Exercise 1.3.11: Find explicit solution for y′ = ye−x2
, y(0) = 1. It is alright to leave a definite

integral in your answer.

Exercise 1.3.12: Suppose a cup of coffee is at 100 degrees Celsius at time t = 0, it is at 70 degrees
at t = 10 minutes, and it is at 50 degrees at t = 20 minutes. Compute the ambient temperature.

Exercise 1.3.101: Solve y′ = 2xy.

Exercise 1.3.102: Solve x′ = 3xt2 − 3t2, x(0) = 2.

Exercise 1.3.103: Find implicit solution for x′ = 1
3x2+1 , x(0) = 1.

Exercise 1.3.104: Find explicit solution to xy′ = y2, y(1) = 1.
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1.4 Linear equations and the integrating factor
Note: 1 lecture, §1.5 in [EP], §2.1 in [BD]

One of the most important types of equations we will learn how to solve are the so-called linear
equations. In fact, the majority of the course will focus on linear equations. In this lecture we will
focus on the first order linear equation. A first order equation is linear if we can put it into the
following form:

y′ + p(x)y = f (x). (1.3)

Here the word “linear” means linear in y and y′; no higher powers nor functions of y or y′ appear.
The dependence on x can be more complicated.

Solutions of linear equations have nice properties. For example, the solution exists wherever
p(x) and f (x) are defined, and has the same regularity (read: it is just as nice). But most importantly
for us right now, there is a method for solving linear first order equations.

First we find a function r(x) such that

r(x)y′ + r(x)p(x)y =
d
dx

[
r(x)y

]
.

Then we can multiply both sides of (1.3) by r(x) to obtain

d
dx

[
r(x)y

]
= r(x) f (x).

Now we integrate both sides. The right hand side does not depend on y and the left hand side is
written as a derivative of a function. Afterwards, we solve for y. The function r(x) is called the
integrating factor and the method is called the integrating factor method.

We are looking for a function r(x), such that if we differentiate it, we get the same function back
multiplied by p(x). That seems like a job for the exponential function! Let

r(x) = e
∫

p(x)dx.

We compute:

y′ + p(x)y = f (x),

e
∫

p(x)dxy′ + e
∫

p(x)dx p(x)y = e
∫

p(x)dx f (x),
d
dx

[
e
∫

p(x)dxy
]

= e
∫

p(x)dx f (x),

e
∫

p(x)dxy =

∫
e
∫

p(x)dx f (x) dx + C,

y = e−
∫

p(x)dx

(∫
e
∫

p(x)dx f (x) dx + C
)
.

Of course, to get a closed form formula for y, we need to be able to find a closed form formula
for the integrals appearing above.
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Example 1.4.1: Solve
y′ + 2xy = ex−x2

, y(0) = −1.

First note that p(x) = 2x and f (x) = ex−x2
. The integrating factor is r(x) = e

∫
p(x) dx = ex2

. We
multiply both sides of the equation by r(x) to get

ex2
y′ + 2xex2

y = ex−x2
ex2
,

d
dx

[
ex2

y
]

= ex.

We integrate

ex2
y = ex + C,

y = ex−x2
+ Ce−x2

.

Next, we solve for the initial condition −1 = y(0) = 1 + C, so C = −2. The solution is

y = ex−x2
− 2e−x2

.

Note that we do not care which antiderivative we take when computing e
∫

p(x)dx. You can always
add a constant of integration, but those constants will not matter in the end.

Exercise 1.4.1: Try it! Add a constant of integration to the integral in the integrating factor and
show that the solution you get in the end is the same as what we got above.

An advice: Do not try to remember the formula itself, that is way too hard. It is easier to
remember the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to know how to write
the solution in definite integral form. A definite integral is something that you can plug into a
computer or a calculator. Suppose we are given

y′ + p(x)y = f (x), y(x0) = y0.

Look at the solution and write the integrals as definite integrals.

y(x) = e−
∫ x

x0
p(s) ds

(∫ x

x0

e
∫ t

x0
p(s) ds f (t) dt + y0

)
. (1.4)

You should be careful to properly use dummy variables here. If you now plug such a formula into a
computer or a calculator, it will be happy to give you numerical answers.

Exercise 1.4.2: Check that y(x0) = y0 in formula (1.4).
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Exercise 1.4.3: Write the solution of the following problem as a definite integral, but try to simplify
as far as you can. You will not be able to find the solution in closed form.

y′ + y = ex2−x, y(0) = 10.

Remark 1.4.1: Before we move on, we should note some interesting properties of linear equations.
First, for the linear initial value problem y′ + p(x)y = f (x), y(x0) = y0, there is always an explicit
formula (1.4) for the solution. Second, it follows from the formula (1.4) that if p(x) and f (x)
are continuous on some interval (a, b), then the solution y(x) exists and is differentiable on (a, b).
Compare with the simple nonlinear example we have seen previously, y′ = y2, and compare to
Theorem 1.2.1.

Example 1.4.2: Let us discuss a common simple application of linear equations. This type of
problem is used often in real life. For example, linear equations are used in figuring out the
concentration of chemicals in bodies of water (rivers and lakes).

A 100 liter tank contains 10 kilograms of salt dissolved in 60 liters of

60 L

3 L/min

10 kg of salt

5 L/min, 0.1 kg/L
water. Solution of water and salt (brine) with concentration of 0.1 kilograms
per liter is flowing in at the rate of 5 liters a minute. The solution in the
tank is well stirred and flows out at a rate of 3 liters a minute. How much
salt is in the tank when the tank is full?

Let us come up with the equation. Let x denote the kilograms of salt
in the tank, let t denote the time in minutes. Then for a small change ∆t
in time, the change in x (denoted ∆x) is approximately

∆x ≈ (rate in × concentration in)∆t − (rate out × concentration out)∆t.

Dividing through by ∆t and taking the limit ∆t → 0 we see that

dx
dt

= (rate in × concentration in) − (rate out × concentration out).

In our example, we have

rate in = 5,
concentration in = 0.1,

rate out = 3,

concentration out =
x

volume
=

x
60 + (5 − 3)t

.

Our equation is, therefore,
dx
dt

= (5 × 0.1) −
(
3

x
60 + 2t

)
.

Or in the form (1.3)
dx
dt

+
3

60 + 2t
x = 0.5.
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Let us solve. The integrating factor is

r(t) = exp
(∫

3
60 + 2t

dt
)

= exp
(
3
2

ln(60 + 2t)
)

= (60 + 2t)3/2.

We multiply both sides of the equation to get

(60 + 2t)3/2 dx
dt

+ (60 + 2t)3/2 3
60 + 2t

x = 0.5(60 + 2t)3/2,

d
dt

[
(60 + 2t)3/2x

]
= 0.5(60 + 2t)3/2,

(60 + 2t)3/2x =

∫
0.5(60 + 2t)3/2dt + C,

x = (60 + 2t)−3/2
∫

(60 + 2t)3/2

2
dt + C(60 + 2t)−3/2,

x = (60 + 2t)−3/2 1
10

(60 + 2t)5/2 + C(60 + 2t)−3/2,

x =
60 + 2t

10
+ C(60 + 2t)−3/2.

We need to find C. We know that at t = 0, x = 10. So

10 = x(0) =
60
10

+ C(60)−3/2 = 6 + C(60)−3/2,

or
C = 4(603/2) ≈ 1859.03.

We are interested in x when the tank is full. So we note that the tank
is full when 60 + 2t = 100, or when t = 20. So

x(20) =
60 + 40

10
+ C(60 + 40)−3/2

≈ 10 + 1859.03(100)−3/2 ≈ 11.86.

The concentration at the end is approximately 0.1186 kg/liter and we
started with 1/6 or 0.167 kg/liter.

1.4.1 Exercises
In the exercises, feel free to leave answer as a definite integral if a closed form solution cannot be
found. If you can find a closed form solution, you should give that.

Exercise 1.4.4: Solve y′ + xy = x.

Exercise 1.4.5: Solve y′ + 6y = ex.
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Exercise 1.4.6: Solve y′ + 3x2y = sin(x) e−x3
, with y(0) = 1.

Exercise 1.4.7: Solve y′ + cos(x)y = cos(x).

Exercise 1.4.8: Solve 1
x2+1 y′ + xy = 3, with y(0) = 0.

Exercise 1.4.9: Suppose there are two lakes located on a stream. Clean water flows into the first
lake, then the water from the first lake flows into the second lake, and then water from the second
lake flows further downstream. The in and out flow from each lake is 500 liters per hour. The first
lake contains 100 thousand liters of water and the second lake contains 200 thousand liters of water.
A truck with 500 kg of toxic substance crashes into the first lake. Assume that the water is being
continually mixed perfectly by the stream. a) Find the concentration of toxic substance as a function
of time in both lakes. b) When will the concentration in the first lake be below 0.001 kg per liter. c)
When will the concentration in the second lake be maximal.

Exercise 1.4.10: Newton’s law of cooling states that dx
dt = −k(x − A) where x is the temperature,

t is time, A is the ambient temperature, and k > 0 is a constant. Suppose that A = A0 cos(ωt) for
some constants A0 and ω. That is, the ambient temperature oscillates (for example night and day
temperatures). a) Find the general solution. b) In the long term, will the initial conditions make
much of a difference? Why or why not.

Exercise 1.4.11: Initially 5 grams of salt are dissolved in 20 liters of water. Brine with concentration
of salt 2 grams of salt per liter is added at a rate of 3 liters a minute. The tank is mixed well and is
drained at 3 liters a minute. How long does the process have to continue until there are 20 grams of
salt in the tank?

Exercise 1.4.12: Initially a tank contains 10 liters of pure water. Brine of unknown (but constant)
concentration of salt is flowing in at 1 liter per minute. The water is mixed well and drained at 1
liter per minute. In 20 minutes there are 15 grams of salt in the tank. What is the concentration of
salt in the incoming brine?

Exercise 1.4.101: Solve y′ + 3x2y = x2.

Exercise 1.4.102: Solve y′ + 2 sin(2x)y = 2 sin(2x), y(π/2) = 3.

Exercise 1.4.103: Suppose a water tank is being pumped out at 3 L/min. The water tank starts at 10 L
of clean water. Water with toxic substance is flowing into the tank at 2 L/min, with concentration 20t g/L

at time t. When the tank is half empty, how many grams of toxic substance are in the tank (assuming
perfect mixing)?

Exercise 1.4.104: Suppose we have bacteria on a plate and suppose that we are slowly adding a
toxic substance such that the rate of growth is slowing down. That is suppose that dP

dt = (2 − 0.1t)P.
If P(0) = 1000, find the population at t = 5.
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1.5 Substitution
Note: 1 lecture, §1.6 in [EP], not in [BD]

Just like when solving integrals, one method to try is to change variables to end up with a
simpler equation to solve.

1.5.1 Substitution
The equation

y′ = (x − y + 1)2

is neither separable nor linear. What can we do? How about trying to change variables, so that in
the new variables the equation is simpler. We will use another variable v, which we will treat as a
function of x. Let us try

v = x − y + 1.
We need to figure out y′ in terms of v′, v and x. We differentiate (in x) to obtain v′ = 1 − y′. So
y′ = 1 − v′. We plug this into the equation to get

1 − v′ = v2.

In other words, v′ = 1 − v2. Such an equation we know how to solve.
1

1 − v2 dv = dx.

So
1
2

ln
∣∣∣∣∣v + 1
v − 1

∣∣∣∣∣ = x + C,∣∣∣∣∣v + 1
v − 1

∣∣∣∣∣ = e2x+2C,

or v+1
v−1 = De2x for some constant D. Note that v = 1 and v = −1 are also solutions.
Now we need to “unsubstitute” to obtain

x − y + 2
x − y

= De2x,

and also the two solutions x − y + 1 = 1 or y = x, and x − y + 1 = −1 or y = x + 2. We solve the first
equation for y.

x − y + 2 = (x − y)De2x,

x − y + 2 = Dxe2x − yDe2x,

−y + yDe2x = Dxe2x − x − 2,

y (−1 + De2x) = Dxe2x − x − 2,

y =
Dxe2x − x − 2

De2x − 1
.
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Note that D = 0 gives y = x + 2, but no value of D gives the solution y = x.

Substitution in differential equations is applied in much the same way that it is applied in
calculus. You guess. Several different substitutions might work. There are some general things to
look for. We summarize a few of these in a table.

When you see Try substituting

yy′ v = y2

y2y′ v = y3

(cos y)y′ v = sin y
(sin y)y′ v = cos y
y′ey v = ey

Usually you try to substitute in the “most complicated” part of the equation with the hopes of
simplifying it. The above table is just a rule of thumb. You might have to modify your guesses. If a
substitution does not work (it does not make the equation any simpler), try a different one.

1.5.2 Bernoulli equations
There are some forms of equations where there is a general rule for substitution that always works.
One such example is the so-called Bernoulli equation†.

y′ + p(x)y = q(x)yn.

This equation looks a lot like a linear equation except for the yn. If n = 0 or n = 1, then the equation
is linear and we can solve it. Otherwise, the substitution v = y1−n transforms the Bernoulli equation
into a linear equation. Note that n need not be an integer.

Example 1.5.1: Solve
xy′ + y(x + 1) + xy5 = 0, y(1) = 1.

First, the equation is Bernoulli (p(x) = (x + 1)/x and q(x) = −1). We substitute

v = y1−5 = y−4, v′ = −4y−5y′.

In other words, (−1/4) y5v′ = y′. So

xy′ + y(x + 1) + xy5 = 0,

−xy5

4
v′ + y(x + 1) + xy5 = 0,

−x
4

v′ + y−4(x + 1) + x = 0,

−x
4

v′ + v(x + 1) + x = 0,

†There are several things called Bernoulli equations, this is just one of them. The Bernoullis were a prominent Swiss
family of mathematicians. These particular equations are named for Jacob Bernoulli (1654 – 1705).

http://en.wikipedia.org/wiki/Jacob_Bernoulli
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and finally

v′ −
4(x + 1)

x
v = 4.

Now the equation is linear. We can use the integrating factor method. In particular, we will use
formula (1.4). Let us assume that x > 0 so |x| = x. This assumption is OK, as our initial condition
is x = 1. Let us compute the integrating factor. Here p(s) from formula (1.4) is −4(s+1)

s .

e
∫ x

1 p(s) ds = exp
(∫ x

1

−4(s + 1)
s

ds
)

= e−4x−4 ln(x)+4 = e−4x+4x−4 =
e−4x+4

x4 ,

e−
∫ x

1 p(s) ds = e4x+4 ln(x)−4 = e4x−4x4.

We now plug in to (1.4)

v(x) = e−
∫ x

1 p(s) ds

(∫ x

1
e
∫ t

1 p(s) ds4 dt + 1
)

= e4x−4x4
(∫ x

1
4

e−4t+4

t4 dt + 1
)
.

Note that the integral in this expression is not possible to find in closed form. As we said before, it
is perfectly fine to have a definite integral in our solution. Now “unsubstitute”

y−4 = e4x−4x4
(
4
∫ x

1

e−4t+4

t4 dt + 1
)
,

y =
e−x+1

x
(
4
∫ x

1
e−4t+4

t4 dt + 1
)1/4 .

1.5.3 Homogeneous equations
Another type of equations we can solve by substitution are the so-called homogeneous equations.
Suppose that we can write the differential equation as

y′ = F
(y

x

)
.

Here we try the substitutions

v =
y
x

and therefore y′ = v + xv′.

We note that the equation is transformed into

v + xv′ = F(v) or xv′ = F(v) − v or
v′

F(v) − v
=

1
x
.
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Hence an implicit solution is ∫
1

F(v) − v
dv = ln |x| + C.

Example 1.5.2: Solve
x2y′ = y2 + xy, y(1) = 1.

We put the equation into the form y′ = (y/x)2 + y/x. Now we substitute v = y/x to get the separable
equation

xv′ = v2 + v − v = v2,

which has a solution ∫
1
v2 dv = ln |x| + C,

−1
v

= ln |x| + C,

v =
−1

ln |x| + C
.

We unsubstitute

y
x

=
−1

ln |x| + C
,

y =
−x

ln |x| + C
.

We want y(1) = 1, so

1 = y(1) =
−1

ln |1| + C
=
−1
C
.

Thus C = −1 and the solution we are looking for is

y =
−x

ln |x| − 1
.

1.5.4 Exercises
Hint: Answers need not always be in closed form.

Exercise 1.5.1: Solve y′ + y(x2 − 1) + xy6 = 0, with y(1) = 1.

Exercise 1.5.2: Solve 2yy′ + 1 = y2 + x, with y(0) = 1.

Exercise 1.5.3: Solve y′ + xy = y4, with y(0) = 1.

Exercise 1.5.4: Solve yy′ + x =
√

x2 + y2.
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Exercise 1.5.5: Solve y′ = (x + y − 1)2.

Exercise 1.5.6: Solve y′ =
x2−y2

xy , with y(1) = 2.

Exercise 1.5.101: Solve xy′ + y + y2 = 0, y(1) = 2.

Exercise 1.5.102: Solve xy′ + y + x = 0, y(1) = 1.

Exercise 1.5.103: Solve y2y′ = y3 − 3x, y(0) = 2.

Exercise 1.5.104: Solve 2yy′ = ey2−x2
+ 2x.
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1.6 Autonomous equations

Note: 1 lecture, §2.2 in [EP], §2.5 in [BD]

Let us consider problems of the form

dx
dt

= f (x),

where the derivative of solutions depends only on x (the dependent variable). Such equations are
called autonomous equations. If we think of t as time, the naming comes from the fact that the
equation is independent of time.

Let us come back to the cooling coffee problem (see Example 1.3.3). Newton’s law of cooling
says that

dx
dt

= −k(x − A),

where x is the temperature, t is time, k is some constant, and A is the ambient temperature. See
Figure 1.6 for an example with k = 0.3 and A = 5.

Note the solution x = A (in the figure x = 5). We call these constant solutions the equilibrium
solutions. The points on the x axis where f (x) = 0 are called critical points. The point x = A is
a critical point. In fact, each critical point corresponds to an equilibrium solution. Note also, by
looking at the graph, that the solution x = A is “stable” in that small perturbations in x do not lead
to substantially different solutions as t grows. If we change the initial condition a little bit, then as
t → ∞ we get x→ A. We call such critical points stable. In this simple example it turns out that all
solutions in fact go to A as t → ∞. If a critical point is not stable we would say it is unstable.

0 5 10 15 20

0 5 10 15 20

-10

-5

0

5

10

-10

-5

0

5

10

Figure 1.6: Slope field and some solutions of
x′ = −0.3 (x − 5).
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Figure 1.7: Slope field and some solutions of
x′ = 0.1 x (5 − x).
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Let us consider the logistic equation

dx
dt

= kx(M − x),

for some positive k and M. This equation is commonly used to model population if we know the
limiting population M, that is the maximum sustainable population. The logistic equation leads to
less catastrophic predictions on world population than x′ = kx. In the real world there is no such
thing as negative population, but we will still consider negative x for the purposes of the math.

See Figure 1.7 on the preceding page for an example. Note two critical points, x = 0 and x = 5.
The critical point at x = 5 is stable. On the other hand the critical point at x = 0 is unstable.

It is not really necessary to find the exact solutions to talk about the long term behavior of the
solutions. For example, from the above we can easily see that

lim
t→∞

x(t) =


5 if x(0) > 0,
0 if x(0) = 0,
DNE or −∞ if x(0) < 0.

Where DNE means “does not exist.” From just looking at the slope field we cannot quite decide
what happens if x(0) < 0. It could be that the solution does not exist for t all the way to∞. Think
of the equation x′ = x2, we have seen that it only exists for some finite period of time. Same can
happen here. In our example equation above it will actually turn out that the solution does not exist
for all time, but to see that we would have to solve the equation. In any case, the solution does go to
−∞, but it may get there rather quickly.

Often we are interested only in the long term behavior of the solution and we would be doing
unnecessary work if we solved the equation exactly. It is easier to just look at the phase diagram or
phase portrait, which is a simple way to visualize the behavior of autonomous equations. In this
case there is one dependent variable x. We draw the x axis, we mark all the critical points, and then
we draw arrows in between. If f (x) > 0, we draw an up arrow. If f (x) < 0, we draw a down arrow.

x = 5

x = 0

Armed with the phase diagram, it is easy to sketch the solutions approximately.

Exercise 1.6.1: Try sketching a few solutions simply from looking at the phase diagram. Check
with the preceding graphs if you are getting the type of curves.
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Once we draw the phase diagram, we can easily classify critical points as stable or unstable‡.

unstable stable

Since any mathematical model we cook up will only be an approximation to the real world,
unstable points are generally bad news.

Let us think about the logistic equation with harvesting. Suppose an alien race really likes to
eat humans. They keep a planet with humans on it and harvest the humans at a rate of h million
humans per year. Suppose x is the number of humans in millions on the planet and t is time in years.
Let M be the limiting population when no harvesting is done. k > 0 is some constant depending on
how fast humans multiply. Our equation becomes

dx
dt

= kx(M − x) − h.

We expand the right hand side and solve for critical points
dx
dt

= −kx2 + kMx − h.

Critical points A and B are

A =
kM +

√
(kM)2

− 4hk
2k

, B =
kM −

√
(kM)2

− 4hk
2k

.

Exercise 1.6.2: Draw the phase diagram for different possibilities. Note that these possibilities are
A > B, or A = B, or A and B both complex (i.e. no real solutions). Hint: Fix some simple k and M
and then vary h.

For example, let M = 8 and k = 0.1. When h = 1, then A and B are distinct and positive. The
graph we will get is given in Figure 1.8 on the next page. As long as the population starts above B,
which is approximately 1.55 million, then the population will not die out. It will in fact tend towards
A ≈ 6.45 million. If ever some catastrophe happens and the population drops below B, humans will
die out, and the fast food restaurant serving them will go out of business.

When h = 1.6, then A = B = 4. There is only one critical point and it is unstable. When the
population starts above 4 million it will tend towards 4 million. If it ever drops below 4 million,
humans will die out on the planet. This scenario is not one that we (as the human fast food proprietor)
want to be in. A small perturbation of the equilibrium state and we are out of business. There is no
room for error. See Figure 1.9 on the following page.

Finally if we are harvesting at 2 million humans per year, there are no critical points. The
population will always plummet towards zero, no matter how well stocked the planet starts. See
Figure 1.10 on the next page.

‡The unstable points that have one of the arrows pointing towards the critical point are sometimes called semistable.
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Figure 1.8: Slope field and some solutions of
x′ = 0.1 x (8 − x) − 1.
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Figure 1.9: Slope field and some solutions of
x′ = 0.1 x (8 − x) − 1.6.
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Figure 1.10: Slope field and some solutions of x′ = 0.1 x (8 − x) − 2.

1.6.1 Exercises
Exercise 1.6.3: Let x′ = x2. a) Draw the phase diagram, find the critical points and mark them
stable or unstable. b) Sketch typical solutions of the equation. c) Find lim

t→∞
x(t) for the solution with

the initial condition x(0) = −1.

Exercise 1.6.4: Let x′ = sin x. a) Draw the phase diagram for −4π ≤ x ≤ 4π. On this interval
mark the critical points stable or unstable. b) Sketch typical solutions of the equation. c) Find
limt→∞ x(t) for the solution with the initial condition x(0) = 1.

Exercise 1.6.5: Suppose f (x) is positive for 0 < x < 1, it is zero when x = 0 and x = 1, and it is
negative for all other x. a) Draw the phase diagram for x′ = f (x), find the critical points and mark
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them stable or unstable. b) Sketch typical solutions of the equation. c) Find lim
t→∞

x(t) for the solution
with the initial condition x(0) = 0.5.

Exercise 1.6.6: Start with the logistic equation dx
dt = kx(M − x). Suppose that we modify our

harvesting. That is we will only harvest an amount proportional to current population. In other
words we harvest hx per unit of time for some h > 0 (Similar to earlier example with h replaced
with hx). a) Construct the differential equation. b) Show that if kM > h, then the equation is still
logistic. c) What happens when kM < h?

Exercise 1.6.101: Let x′ = (x − 1)(x − 2)x2. a) Sketch the phase diagram and find critical points.
b) Classify the critical points. c) If x(0) = 0.5 then find lim

t→∞
x(t).

Exercise 1.6.102: Let x′ = e−x. a) Find and classify all critical points. b) Find lim
t→∞

x(t) given any
initial condition.

Exercise 1.6.103: Assume that a population of fish in a lake satisfies dx
dt = kx(M − x). Now suppose

that fish are continually added at A fish per unit of time. a) Find the differential equation for x. b)
What is the new limiting population.
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1.7 Numerical methods: Euler’s method
Note: 1 lecture, §2.4 in [EP], §8.1 in [BD]

At this point it may be good to first try the Lab II and/or Project II from the IODE website:
http://www.math.uiuc.edu/iode/.

As we said before, unless f (x, y) is of a special form, it is generally very hard if not impossible
to get a nice formula for the solution of the problem

y′ = f (x, y), y(x0) = y0.

What if we want to find the value of the solution at some particular x? Or perhaps we want to
produce a graph of the solution to inspect the behavior. In this section we will learn about the basics
of numerical approximation of solutions.

The simplest method for approximating a solution is Euler’s method§. It works as follows: We
take x0 and compute the slope k = f (x0, y0). The slope is the change in y per unit change in x. We
follow the line for an interval of length h on the x axis. Hence if y = y0 at x0, then we will say that
y1 (the approximate value of y at x1 = x0 + h) will be y1 = y0 + hk. Rinse, repeat! That is, compute
x2 and y2 using x1 and y1. For an example of the first two steps of the method see Figure 1.11.
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Figure 1.11: First two steps of Euler’s method with h = 1 for the equation y′ =
y2

3 with initial
conditions y(0) = 1.

More abstractly, for any i = 1, 2, 3, . . ., we compute

xi+1 = xi + h, yi+1 = yi + h f (xi, yi).

The line segments we get are an approximate graph of the solution. Generally it is not exactly the
solution. See Figure 1.12 on the next page for the plot of the real solution and the approximation.

§Named after the Swiss mathematician Leonhard Paul Euler (1707 – 1783). Do note the correct pronunciation of
the name sounds more like “oiler.”

http://www.math.uiuc.edu/iode/
http://en.wikipedia.org/wiki/Euler
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Figure 1.12: Two steps of Euler’s method (step size 1) and the exact solution for the equation y′ =
y2

3
with initial conditions y(0) = 1.

Let us see what happens with the equation y′ = y2/3, y(0) = 1. Let us try to approximate y(2)
using Euler’s method. In Figures 1.11 and 1.12 we have graphically approximated y(2) with step
size 1. With step size 1 we have y(2) ≈ 1.926. The real answer is 3. So we are approximately 1.074
off. Let us halve the step size. Computing y4 with h = 0.5, we find that y(2) ≈ 2.209, so an error of
about 0.791. Table 1.1 on the following page gives the values computed for various parameters.

Exercise 1.7.1: Solve this equation exactly and show that y(2) = 3.

The difference between the actual solution and the approximate solution we will call the error.
We will usually talk about just the size of the error and we do not care much about its sign. The
main point is, that we usually do not know the real solution, so we only have a vague understanding
of the error. If we knew the error exactly . . . what is the point of doing the approximation?

We notice that except for the first few times, every time we halved the interval the error
approximately halved. This halving of the error is a general feature of Euler’s method as it is a first
order method. In the IODE Project II you are asked to implement a second order method. A second
order method reduces the error to approximately one quarter every time we halve the interval.

Note that to get the error to be within 0.1 of the answer we had to already do 64 steps. To get
it to within 0.01 we would have to halve another three or four times, meaning doing 512 to 1024
steps. That is quite a bit to do by hand. The improved Euler method from IODE Project II should
quarter the error every time we halve the interval, so we would have to approximately do half as
many “halvings” to get the same error. This reduction can be a big deal. With 10 halvings (starting
at h = 1) we have 1024 steps, whereas with 5 halvings we only have to do 32 steps, assuming
that the error was comparable to start with. A computer may not care about this difference for a
problem this simple, but suppose each step would take a second to compute (the function may be
substantially more difficult to compute than y2/3). Then the difference is 32 seconds versus about
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h Approximate y(2) Error Error
Previous error

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385

0.015625 2.95035 0.04965 0.51779
0.0078125 2.97472 0.02528 0.50913

Table 1.1: Euler’s method approximation of y(2) where of y′ = y2/3, y(0) = 1.

17 minutes. Note: We are not being altogether fair, a second order method would probably double
the time to do each step. Even so, it is 1 minute versus 17 minutes. Next, suppose that we have to
repeat such a calculation for different parameters a thousand times. You get the idea.

Note that we do not know the error! How do we know what is the right step size? Essentially
we keep halving the interval, and if we are lucky, we can estimate the error from a few of these
calculations and the assumption that the error goes down by a factor of one half each time (if we are
using standard Euler).

Exercise 1.7.2: In the table above, suppose you do not know the error. Take the approximate values
of the function in the last two lines, assume that the error goes down by a factor of 2. Can you
estimate the error in the last time from this? Does it (approximately) agree with the table? Now do
it for the first two rows. Does this agree with the table?

Let us talk a little bit more about the example y′ = y2/3, y(0) = 1. Suppose that instead of the
value y(2) we wish to find y(3). The results of this effort are listed in Table 1.2 on the next page for
successive halvings of h. What is going on here? Well, you should solve the equation exactly and
you will notice that the solution does not exist at x = 3. In fact, the solution goes to infinity when
you approach x = 3.

Another case when things can go bad is if the solution oscillates wildly near some point. Such
an example is given in IODE Project II. In this case, the solution may exist at all points, but even
a better approximation method than Euler would need an insanely small step size to compute the
solution with reasonable precision. And computers might not be able to handle such a small step
size anyway.

In real applications we would not use a simple method such as Euler’s. The simplest method that
would probably be used in a real application is the standard Runge-Kutta method (see exercises).
That is a fourth order method, meaning that if we halve the interval, the error generally goes down
by a factor of 16.
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h Approximate y(3)

1 3.16232
0.5 4.54329

0.25 6.86079
0.125 10.80321

0.0625 17.59893
0.03125 29.46004

0.015625 50.40121
0.0078125 87.75769

Table 1.2: Attempts to use Euler’s to approximate y(3) where of y′ = y2/3, y(0) = 1.

Choosing the right method to use and the right step size can be very tricky. There are several
competing factors to consider.

• Computational time: Each step takes computer time. Even if the function f is simple to
compute, we do it many times over. Large step size means faster computation, but perhaps
not the right precision.

• Roundoff errors: Computers only compute with a certain number of significant digits. Errors
introduced by rounding numbers off during our computations become noticeable when the
step size becomes too small relative to the quantities we are working with. So reducing step
size may in fact make errors worse.

• Stability: Certain equations may be numerically unstable. What may happen is that the
numbers never seem to stabilize no matter how many times we halve the interval. We may
need a ridiculously small interval size which may not be practical due to roundoff errors or
computational time considerations. Such problems are sometimes called stiff . In the worst
case the numerical computations might be giving us bogus numbers that look like a correct
answer. Just because the numbers have stabilized after successive halving, does not mean that
we must have the right answer.

We have seen just the beginnings of the challenges that appear in real applications. Numerical
approximation of solutions to differential equations is an active research area for engineers and
mathematicians. For example, the general purpose method used for the ODE solver in Matlab and
Octave (as of this writing) is a method that appeared in the literature only in the 1980s.
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1.7.1 Exercises

Exercise 1.7.3: Consider
dx
dt

= (2t − x)2, x(0) = 2. Use Euler’s method with step size h = 0.5 to
approximate x(1).

Exercise 1.7.4: Consider
dx
dt

= t − x, x(0) = 1. a) Use Euler’s method with step sizes h =

1, 1/2, 1/4, 1/8 to approximate x(1). b) Solve the equation exactly. c) Describe what happens to the
errors for each h you used. That is, find the factor by which the error changed each time you halved
the interval.

Exercise 1.7.5: Approximate the value of e by looking at the initial value problem y′ = y with
y(0) = 1 and approximating y(1) using Euler’s method with a step size of 0.2.

Exercise 1.7.6: Example of numerical instability: Take y′ = −5y, y(0) = 1. We know that the
solution should decay to zero as x grows. Using Euler’s method, start with h = 1 and compute
y1, y2, y3, y4 to try to approximate y(4). What happened? Now halve the interval. Keep halving the
interval and approximating y(4) until the numbers you are getting start to stabilize (that is, until
they start going towards zero). Note: You might want to use a calculator.

The simplest method used in practice is the Runge-Kutta method. Consider dy
dx = f (x, y),

y(x0) = y0, and a step size h. Everything is the same as in Euler’s method, except the computation
of yi+1 and xi+1.

k1 = f (xi, yi),
k2 = f (xi + h/2, yi + k1h/2), xi+1 = xi + h,

k3 = f (xi + h/2, yi + k2h/2), yi+1 = yi +
k1 + 2k2 + 2k3 + k4

6
h,

k4 = f (xi + h, yi + k3h).

Exercise 1.7.7: Consider
dy
dx

= yx2, y(0) = 1. a) Use Runge-Kutta (see above) with step sizes h = 1
and h = 1/2 to approximate y(1). b) Use Euler’s method with h = 1 and h = 1/2. c) Solve exactly, find
the exact value of y(1), and compare.

Exercise 1.7.101: Let x′ = sin(xt), and x(0) = 1. Approximate x(1) using Euler’s method with step
sizes 1, 0.5, 0.25. Use a calculator and compute up to 4 decimal digits.

Exercise 1.7.102: Let x′ = 2t, and x(0) = 0. a) Approximate x(4) using Euler’s method with step
sizes 4, 2, and 1. b) Solve exactly, and compute the errors. c) Compute the factor by which the
errors changed.

Exercise 1.7.103: Let x′ = xext+1, and x(0) = 0. a) Approximate x(4) using Euler’s method with
step sizes 4, 2, and 1. b) Guess an exact solution based on part a) and compute the errors.



Chapter 2

Higher order linear ODEs

2.1 Second order linear ODEs
Note: less than 1 lecture, first part of §3.1 in [EP], parts of §3.1 and §3.2 in [BD]

Let us consider the general second order linear differential equation

A(x)y′′ + B(x)y′ + C(x)y = F(x).

We usually divide through by A(x) to get

y′′ + p(x)y′ + q(x)y = f (x), (2.1)

where p(x) = B(x)/A(x), q(x) = C(x)/A(x), and f (x) = F(x)/A(x). The word linear means that the equation
contains no powers nor functions of y, y′, and y′′.

In the special case when f (x) = 0 we have a so-called homogeneous equation

y′′ + p(x)y′ + q(x)y = 0. (2.2)

We have already seen some second order linear homogeneous equations.

y′′ + k2y = 0 Two solutions are: y1 = cos(kx), y2 = sin(kx).

y′′ − k2y = 0 Two solutions are: y1 = ekx, y2 = e−kx.

If we know two solutions of a linear homogeneous equation, we know a lot more of them.

Theorem 2.1.1 (Superposition). Suppose y1 and y2 are two solutions of the homogeneous equation
(2.2). Then

y(x) = C1y1(x) + C2y2(x),

also solves (2.2) for arbitrary constants C1 and C2.

47
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That is, we can add solutions together and multiply them by constants to obtain new and different
solutions. We call the expression C1y1 + C2y2 a linear combination of y1 and y2. Let us prove this
theorem; the proof is very enlightening and illustrates how linear equations work.

Proof: Let y = C1y1 + C2y2. Then

y′′ + py′ + qy = (C1y1 + C2y2)′′ + p(C1y1 + C2y2)′ + q(C1y1 + C2y2)
= C1y′′1 + C2y′′2 + C1 py′1 + C2 py′2 + C1qy1 + C2qy2

= C1(y′′1 + py′1 + qy1) + C2(y′′2 + py′2 + qy2)
= C1 · 0 + C2 · 0 = 0.

The proof becomes even simpler to state if we use the operator notation. An operator is an
object that eats functions and spits out functions (kind of like what a function is, but a function eats
numbers and spits out numbers). Define the operator L by

Ly = y′′ + py′ + qy.

The differential equation now becomes Ly = 0. The operator (and the equation) L being linear
means that L(C1y1 + C2y2) = C1Ly1 + C2Ly2. The proof above becomes

Ly = L(C1y1 + C2y2) = C1Ly1 + C2Ly2 = C1 · 0 + C2 · 0 = 0.

Two different solutions to the second equation y′′ − k2y = 0 are y1 = cosh(kx) and y2 = sinh(kx).
Let us remind ourselves of the definition, cosh x = ex+e−x

2 and sinh x = ex−e−x

2 . Therefore, these are
solutions by superposition as they are linear combinations of the two exponential solutions.

The functions sinh and cosh are sometimes more convenient to use than the exponential. Let us
review some of their properties.

cosh 0 = 1 sinh 0 = 0
d
dx

cosh x = sinh x
d
dx

sinh x = cosh x

cosh2 x − sinh2 x = 1

Exercise 2.1.1: Derive these properties using the definitions of sinh and cosh in terms of exponen-
tials.

Linear equations have nice and simple answers to the existence and uniqueness question.

Theorem 2.1.2 (Existence and uniqueness). Suppose p, q, f are continuous functions and a, b0, b1

are constants. The equation
y′′ + p(x)y′ + q(x)y = f (x),

has exactly one solution y(x) satisfying the initial conditions

y(a) = b0, y′(a) = b1.
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For example, the equation y′′ + k2y = 0 with y(0) = b0 and y′(0) = b1 has the solution

y(x) = b0 cos(kx) +
b1

k
sin(kx).

The equation y′′ − k2y = 0 with y(0) = b0 and y′(0) = b1 has the solution

y(x) = b0 cosh(kx) +
b1

k
sinh(kx).

Using cosh and sinh in this solution allows us to solve for the initial conditions in a cleaner way
than if we have used the exponentials.

The initial conditions for a second order ODE consist of two equations. Common sense tells us
that if we have two arbitrary constants and two equations, then we should be able to solve for the
constants and find a solution to the differential equation satisfying the initial conditions.

Question: Suppose we find two different solutions y1 and y2 to the homogeneous equation (2.2).
Can every solution be written (using superposition) in the form y = C1y1 + C2y2?

Answer is affirmative! Provided that y1 and y2 are different enough in the following sense. We
will say y1 and y2 are linearly independent if one is not a constant multiple of the other.

Theorem 2.1.3. Let p, q, f be continuous functions and take the homogeneous equation (2.2). Let
y1 and y2 be two linearly independent solutions to (2.2). Then every other solution is of the form

y = C1y1 + C2y2.

That is, y = C1y1 + C2y2 is the general solution.

For example, we found the solutions y1 = sin x and y2 = cos x for the equation y′′ + y = 0. It is
not hard to see that sine and cosine are not constant multiples of each other. If sin x = A cos x for
some constant A, we let x = 0 and this would imply A = 0. But then sin x = 0 for all x, which is
preposterous. So y1 and y2 are linearly independent. Hence

y = C1 cos x + C2 sin x

is the general solution to y′′ + y = 0.

We will study the solution of nonhomogeneous equations in § 2.5. We will first focus on finding
general solutions to homogeneous equations.

2.1.1 Exercises
Exercise 2.1.2: Show that y = ex and y = e2x are linearly independent.

Exercise 2.1.3: Take y′′ + 5y = 10x + 5. Find (guess!) a solution.
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Exercise 2.1.4: Prove the superposition principle for nonhomogeneous equations. Suppose that y1

is a solution to Ly1 = f (x) and y2 is a solution to Ly2 = g(x) (same linear operator L). Show that y
solves Ly = f (x) + g(x).

Exercise 2.1.5: For the equation x2y′′ − xy′ = 0, find two solutions, show that they are linearly
independent and find the general solution. Hint: Try y = xr.

Note that equations of the form ax2y′′ + bxy′ + cy = 0 are called Euler’s equations or Cauchy-
Euler equations. They are solved by trying y = xr and solving for r (we can assume that x ≥ 0 for
simplicity).

Exercise 2.1.6: Suppose that (b − a)2
− 4ac > 0. a) Find a formula for the general solution

of ax2y′′ + bxy′ + cy = 0. Hint: Try y = xr and find a formula for r. b) What happens when
(b − a)2

− 4ac = 0 or (b − a)2
− 4ac < 0?

We will revisit the case when (b − a)2
− 4ac < 0 later.

Exercise 2.1.7: Same equation as in Exercise 2.1.6. Suppose (b − a)2
− 4ac = 0. Find a formula

for the general solution of ax2y′′ + bxy′ + cy = 0. Hint: Try y = xr ln x for the second solution.

If you have one solution to a second order linear homogeneous equation you can find another
one. This is the reduction of order method.

Exercise 2.1.8 (reduction of order): Suppose y1 is a solution to y′′ + p(x)y′ + q(x)y = 0. Show that

y2(x) = y1(x)
∫

e−
∫

p(x) dx(
y1(x)

)2 dx

is also a solution.

Note: If you wish to come up with the formula for reduction of order yourself, start by trying
y2(x) = y1(x)v(x). Then plug y2 into the equation, use the fact that y1 is a solution, substitute w = v′,
and you have a first order linear equation in w. Solve for w and then for v. When solving for w, make
sure to include a constant of integration. Let us solve some famous equations using the method.

Exercise 2.1.9 (Chebyshev’s equation of order 1): Take (1− x2)y′′ − xy′ + y = 0. a) Show that y = x
is a solution. b) Use reduction of order to find a second linearly independent solution. c) Write
down the general solution.

Exercise 2.1.10 (Hermite’s equation of order 2): Take y′′ − 2xy′ + 4y = 0. a) Show that y = 1 − 2x2

is a solution. b) Use reduction of order to find a second linearly independent solution. c) Write
down the general solution.

Exercise 2.1.101: Are sin(x) and ex linearly independent? Justify.

Exercise 2.1.102: Are ex and ex+2 linearly independent? Justify.

Exercise 2.1.103: Guess a solution to y′′ + y′ + y = 5.

Exercise 2.1.104: Find the general solution to xy′′ + y′ = 0. Hint: notice that it is a first order
ODE in y′.
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2.2 Constant coefficient second order linear ODEs
Note: more than 1 lecture, second part of §3.1 in [EP], §3.1 in [BD]

Suppose we have the problem

y′′ − 6y′ + 8y = 0, y(0) = −2, y′(0) = 6.

This is a second order linear homogeneous equation with constant coefficients. Constant coefficients
means that the functions in front of y′′, y′, and y are constants, not depending on x.

To guess a solution, think of a function that you know stays essentially the same when we
differentiate it, so that we can take the function and its derivatives, add some multiples of these
together, and end up with zero.

Let us try a solution of the form y = erx. Then y′ = rerx and y′′ = r2erx. Plug in to get

y′′ − 6y′ + 8y = 0,

r2erx − 6rerx + 8erx = 0,

r2 − 6r + 8 = 0 (divide through by erx),
(r − 2)(r − 4) = 0.

Hence, if r = 2 or r = 4, then erx is a solution. So let y1 = e2x and y2 = e4x.

Exercise 2.2.1: Check that y1 and y2 are solutions.

The functions e2x and e4x are linearly independent. If they were not linearly independent we
could write e4x = Ce2x for some constant C, implying that e2x = C for all x, which is clearly not
possible. Hence, we can write the general solution as

y = C1e2x + C2e4x.

We need to solve for C1 and C2. To apply the initial conditions we first find y′ = 2C1e2x + 4C2e4x.
We plug in x = 0 and solve.

−2 = y(0) = C1 + C2,

6 = y′(0) = 2C1 + 4C2.

Either apply some matrix algebra, or just solve these by high school math. For example, divide the
second equation by 2 to obtain 3 = C1 + 2C2, and subtract the two equations to get 5 = C2. Then
C1 = −7 as −2 = C1 + 5. Hence, the solution we are looking for is

y = −7e2x + 5e4x.

Let us generalize this example into a method. Suppose that we have an equation

ay′′ + by′ + cy = 0, (2.3)
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where a, b, c are constants. Try the solution y = erx to obtain

ar2erx + brerx + cerx = 0,

ar2 + br + c = 0.

The equation ar2 + br + c = 0 is called the characteristic equation of the ODE. Solve for the r by
using the quadratic formula.

r1, r2 =
−b ±

√
b2 − 4ac

2a
.

Therefore, we have er1 x and er2 x as solutions. There is still a difficulty if r1 = r2, but it is not hard to
overcome.

Theorem 2.2.1. Suppose that r1 and r2 are the roots of the characteristic equation.

(i) If r1 and r2 are distinct and real (when b2 − 4ac > 0), then (2.3) has the general solution

y = C1er1 x + C2er2 x.

(ii) If r1 = r2 (happens when b2 − 4ac = 0), then (2.3) has the general solution

y = (C1 + C2x) er1 x.

For another example of the first case, take the equation y′′ − k2y = 0. Here the characteristic
equation is r2 − k2 = 0 or (r − k)(r + k) = 0. Consequently, e−kx and ekx are the two linearly
independent solutions.

Example 2.2.1: Find the general solution of

y′′ − 8y′ + 16y = 0.

The characteristic equation is r2 − 8r + 16 = (r − 4)2 = 0. The equation has a double root
r1 = r2 = 4. The general solution is, therefore,

y = (C1 + C2x) e4x = C1e4x + C2xe4x.

Exercise 2.2.2: Check that e4x and xe4x are linearly independent.

That e4x solves the equation is clear. If xe4x solves the equation, then we know we are done. Let
us compute y′ = e4x + 4xe4x and y′′ = 8e4x + 16xe4x. Plug in

y′′ − 8y′ + 16y = 8e4x + 16xe4x − 8(e4x + 4xe4x) + 16xe4x = 0.

We should note that in practice, doubled root rarely happens. If coefficients are picked truly
randomly we are very unlikely to get a doubled root.

Let us give a short proof for why the solution xerx works when the root is doubled. This case
is really a limiting case of when the two roots are distinct and very close. Note that er2 x−er1 x

r2−r1
is a

solution when the roots are distinct. When we take the limit as r1 goes to r2, we are really taking
the derivative of erx using r as the variable. Therefore, the limit is xerx, and hence this is a solution
in the doubled root case.
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2.2.1 Complex numbers and Euler’s formula
It may happen that a polynomial has some complex roots. For example, the equation r2 + 1 = 0
has no real roots, but it does have two complex roots. Here we review some properties of complex
numbers.

Complex numbers may seem a strange concept especially because of the terminology. There
is nothing imaginary or really complicated about complex numbers. A complex number is simply
a pair of real numbers, (a, b). We can think of a complex number as a point in the plane. We
add complex numbers in the straightforward way, (a, b) + (c, d) = (a + c, b + d). We define a
multiplication by

(a, b) × (c, d) def
= (ac − bd, ad + bc).

It turns out that with this multiplication rule, all the standard properties of arithmetic hold. Further,
and most importantly (0, 1) × (0, 1) = (−1, 0).

Generally we just write (a, b) as a + ib, and we treat i as if it were an unknown. We can just
do arithmetic with complex numbers just as we would do with polynomials. The property we just
mentioned becomes i2 = −1. So whenever we see i2, we can replace it by −1. The numbers i and −i
are roots of r2 + 1 = 0.

Note that engineers often use the letter j instead of i for the square root of −1. We will use the
mathematicians’ convention and use i.

Exercise 2.2.3: Make sure you understand (that you can justify) the following identities:

• i2 = −1, i3 = −i, i4 = 1,

•
1
i

= −i,

• (3 − 7i)(−2 − 9i) = · · · = −69 − 13i,

• (3 − 2i)(3 + 2i) = 32 − (2i)2 = 32 + 22 = 13,

• 1
3−2i = 1

3−2i
3+2i
3+2i = 3+2i

13 = 3
13 + 2

13 i.

We can also define the exponential ea+ib of a complex number. We can do this by just writing
down the Taylor series and plugging in the complex number. Because most properties of the
exponential can be proved by looking at the Taylor series, we note that many such properties still
hold for the complex exponential. For example, ex+y = exey. This means that ea+ib = eaeib. Hence if
we can compute eib, we can compute ea+ib. For eib we will use the so-called Euler’s formula.

Theorem 2.2.2 (Euler’s formula).

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ.



54 CHAPTER 2. HIGHER ORDER LINEAR ODES

Exercise 2.2.4: Using Euler’s formula, check the identities:

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

Exercise 2.2.5: Double angle identities: Start with ei(2θ) =
(
eiθ)2. Use Euler on each side and

deduce:
cos(2θ) = cos2 θ − sin2 θ and sin(2θ) = 2 sin θ cos θ.

For a complex number a + ib we call a the real part and b the imaginary part of the number.
Often the following notation is used,

Re(a + ib) = a and Im(a + ib) = b.

2.2.2 Complex roots
Now suppose that the equation ay′′+by′+cy = 0 has the characteristic equation ar2 +br +c = 0 that
has complex roots. By quadratic formula the roots are −b±

√
b2−4ac

2a . These are complex if b2−4ac < 0.
In this case we can see that the roots are

r1, r2 =
−b
2a
± i

√
4ac − b2

2a
.

As you can see, we will always get a pair of roots of the form α ± iβ. In this case we can still write
the solution as

y = C1e(α+iβ)x + C2e(α−iβ)x.

However, the exponential is now complex valued. We would need to allow C1 and C2 to be complex
numbers to obtain a real-valued solution (which is what we are after). While there is nothing
particularly wrong with this approach, it can make calculations harder and it is generally preferred
to find two real-valued solutions.

Here we can use Euler’s formula. Let

y1 = e(α+iβ)x and y2 = e(α−iβ)x.

Then note that

y1 = eαx cos(βx) + ieαx sin(βx),
y2 = eαx cos(βx) − ieαx sin(βx).

Linear combinations of solutions are also solutions. Hence,

y3 =
y1 + y2

2
= eαx cos(βx),

y4 =
y1 − y2

2i
= eαx sin(βx),

are also solutions. Furthermore, they are real-valued. It is not hard to see that they are linearly
independent (not multiples of each other). Therefore, we have the following theorem.
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Theorem 2.2.3. Take the equation

ay′′ + by′ + cy = 0.

If the characteristic equation has the roots α ± iβ (when b2 − 4ac < 0), then the general solution is

y = C1eαx cos(βx) + C2eαx sin(βx).

Example 2.2.2: Find the general solution of y′′ + k2y = 0, for a constant k > 0.
The characteristic equation is r2 + k2 = 0. Therefore, the roots are r = ±ik and by the theorem

we have the general solution
y = C1 cos(kx) + C2 sin(kx).

Example 2.2.3: Find the solution of y′′ − 6y′ + 13y = 0, y(0) = 0, y′(0) = 10.
The characteristic equation is r2−6r +13 = 0. By completing the square we get (r − 3)2 +22 = 0

and hence the roots are r = 3 ± 2i. By the theorem we have the general solution

y = C1e3x cos(2x) + C2e3x sin(2x).

To find the solution satisfying the initial conditions, we first plug in zero to get

0 = y(0) = C1e0 cos 0 + C2e0 sin 0 = C1.

Hence C1 = 0 and y = C2e3x sin(2x). We differentiate

y′ = 3C2e3x sin(2x) + 2C2e3x cos(2x).

We again plug in the initial condition and obtain 10 = y′(0) = 2C2, or C2 = 5. Hence the solution
we are seeking is

y = 5e3x sin(2x).

2.2.3 Exercises
Exercise 2.2.6: Find the general solution of 2y′′ + 2y′ − 4y = 0.

Exercise 2.2.7: Find the general solution of y′′ + 9y′ − 10y = 0.

Exercise 2.2.8: Solve y′′ − 8y′ + 16y = 0 for y(0) = 2, y′(0) = 0.

Exercise 2.2.9: Solve y′′ + 9y′ = 0 for y(0) = 1, y′(0) = 1.

Exercise 2.2.10: Find the general solution of 2y′′ + 50y = 0.

Exercise 2.2.11: Find the general solution of y′′ + 6y′ + 13y = 0.
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Exercise 2.2.12: Find the general solution of y′′ = 0 using the methods of this section.

Exercise 2.2.13: The method of this section applies to equations of other orders than two. We will
see higher orders later. Try to solve the first order equation 2y′ + 3y = 0 using the methods of this
section.

Exercise 2.2.14: Let us revisit Euler’s equations of Exercise 2.1.6 on page 50. Suppose now that
(b − a)2

− 4ac < 0. Find a formula for the general solution of ax2y′′ + bxy′ + cy = 0. Hint: Note
that xr = er ln x.

Exercise 2.2.101: Find the general solution to y′′ + 4y′ + 2y = 0.

Exercise 2.2.102: Find the general solution to y′′ − 6y′ + 9y = 0.

Exercise 2.2.103: Find the solution to 2y′′ + y′ + y = 0, y(0) = 1, y′(0) = −2.

Exercise 2.2.104: Find the solution to 2y′′ + y′ − 3y = 0, y(0) = a, y′(0) = b.
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2.3 Higher order linear ODEs
Note: somewhat more than 1 lecture, §3.2 and §3.3 in [EP], §4.1 and §4.2 in [BD]

After reading this lecture, it may be good to try Project III from the IODE website: http:
//www.math.uiuc.edu/iode/.

Equations that appear in applications tend to be second order. Higher order equations do appear
from time to time, but it is a general assumption of modern physics that the world is “second order.”

The basic results about linear ODEs of higher order are essentially the same as for second order
equations, with 2 replaced by n. The important concept of linear independence is somewhat more
complicated when more than two functions are involved.

For higher order constant coefficient ODEs, the methods are also somewhat harder to apply, but
we will not dwell on these. We can always use the methods for systems of linear equations from
chapter 3 to solve higher order constant coefficient equations.

So let us start with a general homogeneous linear equation

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = 0. (2.4)

Theorem 2.3.1 (Superposition). Suppose y1, y2, . . . , yn are solutions of the homogeneous equation
(2.4). Then

y(x) = C1y1(x) + C2y2(x) + · · · + Cnyn(x)

also solves (2.4) for arbitrary constants C1, . . . , Cn.

In other words, a linear combination of solutions to (2.4) is also a solution to (2.4). We also
have the existence and uniqueness theorem for nonhomogeneous linear equations.

Theorem 2.3.2 (Existence and uniqueness). Suppose p0 through pn−1, and f are continuous func-
tions and a, b0, b1, . . . , bn−1 are constants. The equation

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = f (x)

has exactly one solution y(x) satisfying the initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1.

2.3.1 Linear independence
When we had two functions y1 and y2 we said they were linearly independent if one was not the
multiple of the other. Same idea holds for n functions. In this case it is easier to state as follows.
The functions y1, y2, . . . , yn are linearly independent if

c1y1 + c2y2 + · · · + cnyn = 0

has only the trivial solution c1 = c2 = · · · = cn = 0, where the equation must hold for all x. If we can
solve equation with some constants where for example c1 , 0, then we can solve for y1 as a linear
combination of the others. If the functions are not linearly independent, they are linearly dependent.

http://www.math.uiuc.edu/iode/
http://www.math.uiuc.edu/iode/
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Example 2.3.1: Show that ex, e2x, e3x are linearly independent.
Let us give several ways to show this fact. Many textbooks (including [EP] and [F]) introduce

Wronskians, but that is really not necessary here.
Let us write down

c1ex + c2e2x + c3e3x = 0.

We use rules of exponentials and write z = ex. Then we have

c1z + c2z2 + c3z3 = 0.

The left hand side is a third degree polynomial in z. It can either be identically zero, or it can have
at most 3 zeros. Therefore, it is identically zero, c1 = c2 = c3 = 0, and the functions are linearly
independent.

Let us try another way. As before we write

c1ex + c2e2x + c3e3x = 0.

This equation has to hold for all x. What we could do is divide through by e3x to get

c1e−2x + c2e−x + c3 = 0.

As the equation is true for all x, let x → ∞. After taking the limit we see that c3 = 0. Hence our
equation becomes

c1ex + c2e2x = 0.

Rinse, repeat!
How about yet another way. We again write

c1ex + c2e2x + c3e3x = 0.

We can evaluate the equation and its derivatives at different values of x to obtain equations for c1,
c2, and c3. Let us first divide by ex for simplicity.

c1 + c2ex + c3e2x = 0.

We set x = 0 to get the equation c1 + c2 + c3 = 0. Now differentiate both sides

c2ex + 2c3e2x = 0.

We set x = 0 to get c2 + 2c3 = 0. We divide by ex again and differentiate to get 2c3ex = 0. It is clear
that c3 is zero. Then c2 must be zero as c2 = −2c3, and c1 must be zero because c1 + c2 + c3 = 0.

There is no one best way to do it. All of these methods are perfectly valid.

Example 2.3.2: On the other hand, the functions ex, e−x, and cosh x are linearly dependent. Simply
apply definition of the hyperbolic cosine:

cosh x =
ex + e−x

2
or 2 cosh x − ex − e−x = 0.



2.3. HIGHER ORDER LINEAR ODES 59

2.3.2 Constant coefficient higher order ODEs
When we have a higher order constant coefficient homogeneous linear equation. The song and
dance is exactly the same as it was for second order. We just need to find more solutions. If the
equation is nth order we need to find n linearly independent solutions. It is best seen by example.

Example 2.3.3: Find the general solution to

y′′′ − 3y′′ − y′ + 3y = 0. (2.5)

Try: y = erx. We plug in and get

r3erx − 3r2erx − rerx + 3erx = 0.

We divide through by erx. Then
r3 − 3r2 − r + 3 = 0.

The trick now is to find the roots. There is a formula for the roots of degree 3 and 4 polynomials
but it is very complicated. There is no formula for higher degree polynomials. That does not mean
that the roots do not exist. There are always n roots for an nth degree polynomial. They might be
repeated and they might be complex. Computers are pretty good at finding roots approximately for
reasonable size polynomials.

A good place to start is to plot the polynomial and check where it is zero. We can also simply
try plugging in. We just start plugging in numbers r = −2,−1, 0, 1, 2, . . . and see if we get a hit (we
can also try complex roots). Even if we do not get a hit, we may get an indication of where the root
is. For example, we plug r = −2 into our polynomial and get −15; we plug in r = 0 and get 3. That
means there is a root between r = −2 and r = 0 because the sign changed. If we find one root, say
r1, then we know (r − r1) is a factor of our polynomial. Polynomial long division can then be used.

A good strategy is to begin with r = −1, 1, or 0. These are easy to compute. Our polynomial
happens to have two such roots, r1 = −1 and r2 = 1. There should be 3 roots and the last root is
reasonably easy to find. The constant term in a polynomial is the multiple of the negations of all the
roots because r3 − 3r2 − r + 3 = (r − r1)(r − r2)(r − r3). In our case we see that

3 = (−r1)(−r2)(−r3) = (1)(−1)(−r3) = r3.

You should check that r3 = 3 really is a root. Hence we know that e−x, ex and e3x are solutions
to (2.5). They are linearly independent as can easily be checked, and there are 3 of them, which
happens to be exactly the number we need. Hence the general solution is

y = C1e−x + C2ex + C3e3x.

Suppose we were given some initial conditions y(0) = 1, y′(0) = 2, and y′′(0) = 3. Then

1 = y(0) = C1 + C2 + C3,

2 = y′(0) = −C1 + C2 + 3C3,

3 = y′′(0) = C1 + C2 + 9C3.
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It is possible to find the solution by high school algebra, but it would be a pain. The only sensible
way to solve a system of equations such as this is to use matrix algebra, see § 3.2. For now we note
that the solution is C1 = −1/4, C2 = 1 and C3 = 1/4. The specific solution to the ODE is

y =
−1
4

e−x + ex +
1
4

e3x.

Next, suppose that we have real roots, but they are repeated. Let us say we have a root r repeated
k times. In the spirit of the second order solution, and for the same reasons, we have the solutions

erx, xerx, x2erx, . . . , xk−1erx.

We take a linear combination of these solutions to find the general solution.

Example 2.3.4: Solve
y(4) − 3y′′′ + 3y′′ − y′ = 0.

We note that the characteristic equation is

r4 − 3r3 + 3r2 − r = 0.

By inspection we note that r4 − 3r3 + 3r2 − r = r(r − 1)3. Hence the roots given with multiplicity
are r = 0, 1, 1, 1. Thus the general solution is

y = (C1 + C2x + C3x2) ex︸                    ︷︷                    ︸
terms coming from r = 1

+ C4︸︷︷︸
from r = 0

.

Similarly to the second order case we can handle complex roots. Complex roots always come in
pairs r = α±iβ. Suppose we have two such complex roots, each repeated k times. The corresponding
solution is

(C0 + C1x + · · · + Ck−1xk−1) eαx cos(βx) + (D0 + D1x + · · · + Dk−1xk−1) eαx sin(βx).

where C0, . . . , Ck−1, D0, . . . , Dk−1 are arbitrary constants.

Example 2.3.5: Solve
y(4) − 4y′′′ + 8y′′ − 8y′ + 4y = 0.

The characteristic equation is

r4 − 4r3 + 8r2 − 8r + 4 = 0,

(r2 − 2r + 2)2
= 0,(

(r − 1)2 + 1
)2

= 0.

Hence the roots are 1 ± i, both with multiplicity 2. Hence the general solution to the ODE is

y = (C1 + C2x) ex cos x + (C3 + C4x) ex sin x.

The way we solved the characteristic equation above is really by guessing or by inspection. It is not
so easy in general. We could also have asked a computer or an advanced calculator for the roots.
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2.3.3 Exercises
Exercise 2.3.1: Find the general solution for y′′′ − y′′ + y′ − y = 0.

Exercise 2.3.2: Find the general solution for y(4) − 5y′′′ + 6y′′ = 0.

Exercise 2.3.3: Find the general solution for y′′′ + 2y′′ + 2y′ = 0.

Exercise 2.3.4: Suppose the characteristic equation for a differential equation is (r − 1)2(r − 2)2 =

0. a) Find such a differential equation. b) Find its general solution.

Exercise 2.3.5: Suppose that a fourth order equation has a solution y = 2e4xx cos x. a) Find such
an equation. b) Find the initial conditions that the given solution satisfies.

Exercise 2.3.6: Find the general solution for the equation of Exercise 2.3.5.

Exercise 2.3.7: Let f (x) = ex − cos x, g(x) = ex + cos x, and h(x) = cos x. Are f (x), g(x), and h(x)
linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.8: Let f (x) = 0, g(x) = cos x, and h(x) = sin x. Are f (x), g(x), and h(x) linearly
independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.9: Are x, x2, and x4 linearly independent? If so, show it, if not, find a linear combina-
tion that works.

Exercise 2.3.10: Are ex, xex, and x2ex linearly independent? If so, show it, if not, find a linear
combination that works.

Exercise 2.3.101: Find the general solution of y(5) − y(4) = 0

Exercise 2.3.102: Suppose that the characteristic equation of a third order differential equation
has roots 3,±2i. a) What is the characteristic equation? b) Find the corresponding differential
equation. c) Find the general solution.

Exercise 2.3.103: Solve 1001y′′′ + 3.2y′′ + πy′ −
√

4y = 0, y(0) = 0, y′(0) = 0, y′′(0) = 0.

Exercise 2.3.104: Are ex, ex+1, e2x, sin(x) linearly independent? If so, show it, if not find a linear
combination that works.

Exercise 2.3.105: Are sin(x), x, x sin(x) linearly independent? If so, show it, if not find a linear
combination that works.
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2.4 Mechanical vibrations
Note: 2 lectures, §3.4 in [EP], §3.7 in [BD]

Let us look at some applications of linear second order constant coefficient equations.

2.4.1 Some examples

Our first example is a mass on a spring. Suppose we have

damping c

m
k F(t)

a mass m > 0 (in kilograms) connected by a spring with spring
constant k > 0 (in newtons per meter) to a fixed wall. There may be
some external force F(t) (in newtons) acting on the mass. Finally,
there is some friction measured by c ≥ 0 (in newton-seconds per

meter) as the mass slides along the floor (or perhaps there is a damper connected).
Let x be the displacement of the mass (x = 0 is the rest position), with x growing to the right

(away from the wall). The force exerted by the spring is proportional to the compression of the
spring by Hooke’s law. Therefore, it is kx in the negative direction. Similarly the amount of force
exerted by friction is proportional to the velocity of the mass. By Newton’s second law we know
that force equals mass times acceleration and hence mx′′ = F(t) − cx′ − kx or

mx′′ + cx′ + kx = F(t).

This is a linear second order constant coefficient ODE. We set up some terminology about this
equation. We say the motion is

(i) forced, if F . 0 (if F is not identically zero),

(ii) unforced or free, if F ≡ 0 (if F is identically zero),

(iii) damped, if c > 0, and

(iv) undamped, if c = 0.

This system appears in lots of applications even if it does not at first seem like it. Many real
world scenarios can be simplified to a mass on a spring. For example, a bungee jump setup is
essentially a mass and spring system (you are the mass). It would be good if someone did the math
before you jump off the bridge, right? Let us give 2 other examples.

Here is an example for electrical engineers. Suppose that we have the

E L
C

R

pictured RLC circuit. There is a resistor with a resistance of R ohms, an
inductor with an inductance of L henries, and a capacitor with a capacitance
of C farads. There is also an electric source (such as a battery) giving a
voltage of E(t) volts at time t (measured in seconds). Let Q(t) be the charge
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in coulombs on the capacitor and I(t) be the current in the circuit. The relation between the two is
Q′ = I. By elementary principles we have that LI′ + RI + Q/C = E. If we differentiate we get

LI′′(t) + RI′(t) +
1
C

I(t) = E′(t).

This is an nonhomogeneous second order constant coefficient linear equation. Further, as L,R, and
C are all positive, this system behaves just like the mass and spring system. The position of the mass
is replaced by the current. Mass is replaced by the inductance, damping is replaced by resistance
and the spring constant is replaced by one over the capacitance. The change in voltage becomes the
forcing function. Hence for constant voltage this is an unforced motion.

Our next example is going to behave like a mass and spring system

θ
L

only approximately. Suppose we have a mass m on a pendulum of length L.
We wish to find an equation for the angle θ(t). Let g be the force of gravity.
Elementary physics mandates that the equation is of the form

θ′′ +
g
L

sin θ = 0.

This equation can be derived using Newton’s second law; force equals mass times acceleration.
The acceleration is Lθ′′ and mass is m. So mLθ′′ has to be equal to the tangential component of the
force given by the gravity. This is mg sin θ in the opposite direction. The m curiously cancels from
the equation.

Now we make our approximation. For small θ we have that approximately sin θ ≈ θ. This can
be seen by looking at the graph. In Figure 2.1 we can see that for approximately −0.5 < θ < 0.5 (in
radians) the graphs of sin θ and θ are almost the same.

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5
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0.0

0.5

1.0

Figure 2.1: The graphs of sin θ and θ (in radians).
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Therefore, when the swings are small, θ is always small and we can model the behavior by the
simpler linear equation

θ′′ +
g
L
θ = 0.

Note that the errors that we get from the approximation build up. So after a very long time, the
behavior of the real system might be substantially different from our solution. Also we will see that
in a mass-spring system, the amplitude is independent of the period. This is not true for a pendulum.
Nevertheless, for reasonably short periods of time and small swings (for example if the pendulum is
very long), the approximation is reasonably good.

In real world problems it is very often necessary to make these types of simplifications. There-
fore, it is good to understand both the mathematics and the physics of the situation to see if the
simplification is valid in the context of the questions we are trying to answer.

2.4.2 Free undamped motion
In this section we will only consider free or unforced motion, as we cannot yet solve nonhomoge-
neous equations. Let us start with undamped motion where c = 0. We have the equation

mx′′ + kx = 0.

If we divide by m and let ω0 =
√

k/m, then we can write the equation as

x′′ + ω2
0x = 0.

The general solution to this equation is

x(t) = A cos(ω0t) + B sin(ω0t).

By a trigonometric identity, we have that for two different constants C and γ, we have

A cos(ω0t) + B sin(ω0t) = C cos(ω0t − γ).

It is not hard to compute that C =
√

A2 + B2 and tan γ = B/A. Therefore, we let C and γ be our
arbitrary constants and write x(t) = C cos(ω0t − γ).

Exercise 2.4.1: Justify the above identity and verify the equations for C and γ. Hint: Start with
cos(α − β) = cos(α) cos(β) + sin(α) sin(β) and multiply by C. Then think what should α and β be.

While it is generally easier to use the first form with A and B to solve for the initial conditions,
the second form is much more natural. The constants C and γ have very nice interpretation. We
look at the form of the solution

x(t) = C cos(ω0t − γ).
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We can see that the amplitude is C, ω0 is the (angular) frequency, and γ is the so-called phase shift.
The phase shift just shifts the graph left or right. We call ω0 the natural (angular) frequency. This
entire setup is usually called simple harmonic motion.

Let us pause to explain the word angular before the word frequency. The units of ω0 are radians
per unit time, not cycles per unit time as is the usual measure of frequency. Because we know one
cycle is 2π radians, the usual frequency is given by ω0

2π . It is simply a matter of where we put the
constant 2π, and that is a matter of taste.

The period of the motion is one over the frequency (in cycles per unit time) and hence 2π
ω0

. That
is the amount of time it takes to complete one full oscillation.

Example 2.4.1: Suppose that m = 2 kg and k = 8 N/m. The whole mass and spring setup is sitting
on a truck that was traveling at 1 m/s. The truck crashes and hence stops. The mass was held in place
0.5 meters forward from the rest position. During the crash the mass gets loose. That is, the mass is
now moving forward at 1 m/s, while the other end of the spring is held in place. The mass therefore
starts oscillating. What is the frequency of the resulting oscillation and what is the amplitude. The
units are the mks units (meters-kilograms-seconds).

The setup means that the mass was at half a meter in the positive direction during the crash and
relative to the wall the spring is mounted to, the mass was moving forward (in the positive direction)
at 1 m/s. This gives us the initial conditions.

So the equation with initial conditions is

2x′′ + 8x = 0, x(0) = 0.5, x′(0) = 1.

We can directly compute ω0 =
√

k/m =
√

4 = 2. Hence the angular frequency is 2. The usual
frequency in Hertz (cycles per second) is 2/2π = 1/π ≈ 0.318.

The general solution is
x(t) = A cos(2t) + B sin(2t).

Letting x(0) = 0.5 means A = 0.5. Then x′(t) = −2(0.5) sin(2t) + 2B cos(2t). Letting x′(0) = 1 we
get B = 0.5. Therefore, the amplitude is C =

√
A2 + B2 =

√
0.25 + 0.25 =

√
0.5 ≈ 0.707. The

solution is
x(t) = 0.5 cos(2t) + 0.5 sin(2t).

A plot of x(t) is shown in Figure 2.2 on the following page.

In general, for free undamped motion, a solution of the form

x(t) = A cos(ω0t) + B sin(ω0t),

corresponds to the initial conditions x(0) = A and x′(0) = ω0B. Therefore, it is easy to figure out A
and B from the initial conditions. The amplitude and the phase shift can then be computed from
A and B. In the example, we have already found the amplitude C. Let us compute the phase shift.
We know that tan γ = B/A = 1. We take the arctangent of 1 and get approximately 0.785. We still
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Figure 2.2: Simple undamped oscillation.

need to check if this γ is in the correct quadrant (and add π to γ if it is not). Since both A and B are
positive, then γ should be in the first quadrant, and 0.785 radians really is in the first quadrant.

Note: Many calculators and computer software do not only have the atan function for arctangent,
but also what is sometimes called atan2. This function takes two arguments, B and A, and returns
a γ in the correct quadrant for you.

2.4.3 Free damped motion
Let us now focus on damped motion. Let us rewrite the equation

mx′′ + cx′ + kx = 0,

as
x′′ + 2px′ + ω2

0x = 0,

where

ω0 =

√
k
m
, p =

c
2m

.

The characteristic equation is
r2 + 2pr + ω2

0 = 0.

Using the quadratic formula we get that the roots are

r = −p ±
√

p2 − ω2
0.

The form of the solution depends on whether we get complex or real roots. We get real roots if and
only if the following number is nonnegative:

p2 − ω2
0 =

( c
2m

)2
−

k
m

=
c2 − 4km

4m2 .
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The sign of p2−ω2
0 is the same as the sign of c2−4km. Thus we get real roots if and only if c2−4km

is nonnegative, or in other words if c2 ≥ 4km.

Overdamping

When c2−4km > 0, we say the system is overdamped. In this case, there are two distinct real roots r1

and r2. Notice that both roots are negative. As
√

p2 − ω2
0 is always less than p, then −p±

√
p2 − ω2

0

is negative.
The solution is
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Figure 2.3: Overdamped motion for several dif-
ferent initial conditions.

x(t) = C1er1t + C2er2t.

Since r1, r2 are negative, x(t) → 0 as t → ∞.
Thus the mass will tend towards the rest position
as time goes to infinity. For a few sample plots
for different initial conditions, see Figure 2.3.

Do note that no oscillation happens. In fact,
the graph will cross the x axis at most once. To see
why, we try to solve 0 = C1er1t +C2er2t. Therefore,
C1er1t = −C2er2t and using laws of exponents we
obtain

−C1

C2
= e(r2−r1)t.

This equation has at most one solution t ≥ 0. For
some initial conditions the graph will never cross the x axis, as is evident from the sample graphs.

Example 2.4.2: Suppose the mass is released from rest. That is x(0) = x0 and x′(0) = 0. Then

x(t) =
x0

r1 − r2

(
r1er2t − r2er1t) .

It is not hard to see that this satisfies the initial conditions.

Critical damping

When c2 − 4km = 0, we say the system is critically damped. In this case, there is one root of
multiplicity 2 and this root is −p. Therefore, our solution is

x(t) = C1e−pt + C2te−pt.

The behavior of a critically damped system is very similar to an overdamped system. After all a
critically damped system is in some sense a limit of overdamped systems. Since these equations
are really only an approximation to the real world, in reality we are never critically damped, it is a
place we can only reach in theory. We are always a little bit underdamped or a little bit overdamped.
It is better not to dwell on critical damping.
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Underdamping

When c2 − 4km < 0, we say the system is
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Figure 2.4: Underdamped motion with the en-
velope curves shown.

underdamped. In this case, the roots are complex.

r = −p ±
√

p2 − ω2
0

= −p ±
√
−1

√
ω2

0 − p2

= −p ± iω1,

where ω1 =

√
ω2

0 − p2. Our solution is

x(t) = e−pt(A cos(ω1t) + B sin(ω1t)
)
,

or
x(t) = Ce−pt cos(ω1t − γ).

An example plot is given in Figure 2.4. Note that
we still have that x(t)→ 0 as t → ∞.

In the figure we also show the envelope curves Ce−pt and −Ce−pt. The solution is the oscillating
line between the two envelope curves. The envelope curves give the maximum amplitude of the
oscillation at any given point in time. For example if you are bungee jumping, you are really
interested in computing the envelope curve so that you do not hit the concrete with your head.

The phase shift γ just shifts the graph left or right but within the envelope curves (the envelope
curves do not change if γ changes).

Finally note that the angular pseudo-frequency (we do not call it a frequency since the solution
is not really a periodic function) ω1 becomes smaller when the damping c (and hence p) becomes
larger. This makes sense. When we change the damping just a little bit, we do not expect the
behavior of the solution to change dramatically. If we keep making c larger, then at some point
the solution should start looking like the solution for critical damping or overdamping, where no
oscillation happens. So if c2 approaches 4km, we want ω1 to approach 0.

On the other hand when c becomes smaller, ω1 approaches ω0 (ω1 is always smaller than ω0),
and the solution looks more and more like the steady periodic motion of the undamped case. The
envelope curves become flatter and flatter as c (and hence p) goes to 0.

2.4.4 Exercises
Exercise 2.4.2: Consider a mass and spring system with a mass m = 2, spring constant k = 3, and
damping constant c = 1. a) Set up and find the general solution of the system. b) Is the system
underdamped, overdamped or critically damped? c) If the system is not critically damped, find a c
that makes the system critically damped.
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Exercise 2.4.3: Do Exercise 2.4.2 for m = 3, k = 12, and c = 12.

Exercise 2.4.4: Using the mks units (meters-kilograms-seconds), suppose you have a spring with
spring constant 4 N/m. You want to use it to weigh items. Assume no friction. You place the mass
on the spring and put it in motion. a) You count and find that the frequency is 0.8 Hz (cycles per
second). What is the mass? b) Find a formula for the mass m given the frequency ω in Hz.

Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not
know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup.
You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured
1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping
constant). b) Find a formula for the mass in terms of the frequency in Hz. Note that there may be
more than one possible mass for a given frequency. c) For an unknown object you measured 0.2 Hz,
what is the mass of the object? Suppose that you know that the mass of the unknown object is more
than a kilogram.

Exercise 2.4.6: Suppose you wish to measure the friction a mass of 0.1 kg experiences as it slides
along a floor (you wish to find c). You have a spring with spring constant k = 5 N/m. You take the
spring, you attach it to the mass and fix it to a wall. Then you pull on the spring and let the mass go.
You find that the mass oscillates with frequency 1 Hz. What is the friction?

Exercise 2.4.101: A mass of 2 kilograms is on a spring with spring constant k newtons per meter
with no damping. Suppose the system is at rest and at time t = 0 the mass is kicked and starts
travelling at 2 meters per second. How large does k have to be to so that the mass does not go
further than 3 meters from the rest position.

Exercise 2.4.102: Suppose we have an RLC circuit with a resistor of 100 miliohms (0.1 ohms),
inductor of inductance of 50 millihenries (0.05 henries), and a capacitor of 5 farads, with constant
voltage. a) Set up the ODE equation for the current I. b) Find the general solution. c) Solve for
I(0) = 10 and I′(0) = 0.

Exercise 2.4.103: A 5000 kg railcar hits a bumper (a spring) at 1 m/s, and the spring compresses
by 0.1 m. Assume no damping. a) Find k. b) Find out how far does the spring compress when a
10000 kg railcar hits the spring at the same speed. c) If the spring would break if it compresses
further than 0.3 m, what is the maximum mass of a railcar that can hit it at 1 m/s? d) What is the
maximum mass of a railcar that can hit the spring without breaking at 2 m/s?
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2.5 Nonhomogeneous equations
Note: 2 lectures, §3.5 in [EP], §3.5 and §3.6 in [BD]

2.5.1 Solving nonhomogeneous equations
We have solved linear constant coefficient homogeneous equations. What about nonhomogeneous
linear ODEs? For example, the equations for forced mechanical vibrations. That is, suppose we
have an equation such as

y′′ + 5y′ + 6y = 2x + 1. (2.6)

We will write Ly = 2x + 1 when the exact form of the operator is not important. We solve
(2.6) in the following manner. First, we find the general solution yc to the associated homogeneous
equation

y′′ + 5y′ + 6y = 0. (2.7)

We call yc the complementary solution. Next, we find a single particular solution yp to (2.6) in
some way. Then

y = yc + yp

is the general solution to (2.6). We have Lyc = 0 and Lyp = 2x + 1. As L is a linear operator we
verify that y is a solution, Ly = L(yc + yp) = Lyc + Lyp = 0 + (2x + 1). Let us see why we obtain the
general solution.

Let yp and ỹp be two different particular solutions to (2.6). Write the difference as w = yp − ỹp.
Then plug w into the left hand side of the equation to get

w′′ + 5w′ + 6w = (y′′p + 5y′p + 6yp) − (ỹ′′p + 5ỹ′p + 6ỹp) = (2x + 1) − (2x + 1) = 0.

Using the operator notation the calculation becomes simpler. As L is a linear operator we write

Lw = L(yp − ỹp) = Lyp − Lỹp = (2x + 1) − (2x + 1) = 0.

So w = yp − ỹp is a solution to (2.7), that is Lw = 0. Any two solutions of (2.6) differ by a solution
to the homogeneous equation (2.7). The solution y = yc + yp includes all solutions to (2.6), since yc

is the general solution to the associated homogeneous equation.

Theorem 2.5.1. Let Ly = f (x) be a linear ODE (not necessarily constant coefficient). Let yc be
the general solution to the associated homogeneous equation Ly = 0 and let yp be any particular
solution to Ly = f (x). Then the general solution to Ly = f (x) is

y = yc + yp.

The moral of the story is that we can find the particular solution in any old way. If we find a
different particular solution (by a different method, or simply by guessing), then we still get the
same general solution. The formula may look different, and the constants we will have to choose to
satisfy the initial conditions may be different, but it is the same solution.
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2.5.2 Undetermined coefficients
The trick is to somehow, in a smart way, guess one particular solution to (2.6). Note that 2x + 1 is a
polynomial, and the left hand side of the equation will be a polynomial if we let y be a polynomial
of the same degree. Let us try

yp = Ax + B.

We plug in to obtain

y′′p + 5y′p + 6yp = (Ax + B)′′ + 5(Ax + B)′ + 6(Ax + B) = 0 + 5A + 6Ax + 6B = 6Ax + (5A + 6B).

So 6Ax + (5A + 6B) = 2x + 1. Therefore, A = 1/3 and B = −1/9. That means yp = 1
3 x − 1

9 = 3x−1
9 .

Solving the complementary problem (exercise!) we get

yc = C1e−2x + C2e−3x.

Hence the general solution to (2.6) is

y = C1e−2x + C2e−3x +
3x − 1

9
.

Now suppose we are further given some initial conditions. For example, y(0) = 0 and y′(0) = 1/3.
First find y′ = −2C1e−2x − 3C2e−3x + 1/3. Then

0 = y(0) = C1 + C2 −
1
9
,

1
3

= y′(0) = −2C1 − 3C2 +
1
3
.

We solve to get C1 = 1/3 and C2 = −2/9. The particular solution we want is

y(x) =
1
3

e−2x −
2
9

e−3x +
3x − 1

9
=

3e−2x − 2e−3x + 3x − 1
9

.

Exercise 2.5.1: Check that y really solves the equation (2.6) and the given initial conditions.

Note: A common mistake is to solve for constants using the initial conditions with yc and only
add the particular solution yp after that. That will not work. You need to first compute y = yc + yp

and only then solve for the constants using the initial conditions.

A right hand side consisting of exponentials, sines, and cosines can be handled similarly. For
example,

y′′ + 2y′ + 2y = cos(2x).

Let us find some yp. We start by guessing the solution includes some multiple of cos(2x). We may
have to also add a multiple of sin(2x) to our guess since derivatives of cosine are sines. We try

yp = A cos(2x) + B sin(2x).
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We plug yp into the equation and we get

−4A cos(2x) − 4B sin(2x) − 4A sin(2x) + 4B cos(2x) + 2A cos(2x) + 2B sin(2x) = cos(2x).

The left hand side must equal to right hand side. We group terms and we get that −4A + 4B + 2A = 1
and −4B − 4A + 2B = 0. So −2A + 4B = 1 and 2A + B = 0 and hence A = −1/10 and B = 1/5. So

yp = A cos(2x) + B sin(2x) =
− cos(2x) + 2 sin(2x)

10
.

Similarly, if the right hand side contains exponentials we try exponentials. For example, for

Ly = e3x,

we will try y = Ae3x as our guess and try to solve for A.

When the right hand side is a multiple of sines, cosines, exponentials, and polynomials, we can
use the product rule for differentiation to come up with a guess. We need to guess a form for yp such
that Lyp is of the same form, and has all the terms needed to for the right hand side. For example,

Ly = (1 + 3x2) e−x cos(πx).

For this equation, we will guess

yp = (A + Bx + Cx2) e−x cos(πx) + (D + Ex + Fx2) e−x sin(πx).

We will plug in and then hopefully get equations that we can solve for A, B,C,D, E, F. As you can
see this can make for a very long and tedious calculation very quickly. C’est la vie!

There is one hiccup in all this. It could be that our guess actually solves the associated
homogeneous equation. That is, suppose we have

y′′ − 9y = e3x.

We would love to guess y = Ae3x, but if we plug this into the left hand side of the equation we get

y′′ − 9y = 9Ae3x − 9Ae3x = 0 , e3x.

There is no way we can choose A to make the left hand side be e3x. The trick in this case is to
multiply our guess by x to get rid of duplication with the complementary solution. That is first we
compute yc (solution to Ly = 0)

yc = C1e−3x + C2e3x

and we note that the e3x term is a duplicate with our desired guess. We modify our guess to
y = Axe3x and notice there is no duplication anymore. Let us try. Note that y′ = Ae3x + 3Axe3x and
y′′ = 6Ae3x + 9Axe3x. So

y′′ − 9y = 6Ae3x + 9Axe3x − 9Axe3x = 6Ae3x.
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So 6Ae3x is supposed to equal e3x. Hence, 6A = 1 and so A = 1/6. Thus we can now write the
general solution as

y = yc + yp = C1e−3x + C2e3x +
1
6

xe3x.

It is possible that multiplying by x does not get rid of all duplication. For example,

y′′ − 6y′ + 9y = e3x.

The complementary solution is yc = C1e3x +C2xe3x. Guessing y = Axe3x would not get us anywhere.
In this case we want to guess yp = Ax2e3x. Basically, we want to multiply our guess by x until all
duplication is gone. But no more! Multiplying too many times will not work.

Finally, what if the right hand side has several terms, such as

Ly = e2x + cos x.

In this case we find u that solves Lu = e2x and v that solves Lv = cos x (that is, do each term
separately). Then note that if y = u + v, then Ly = e2x + cos x. This is because L is linear; we have
Ly = L(u + v) = Lu + Lv = e2x + cos x.

2.5.3 Variation of parameters
The method of undetermined coefficients will work for many basic problems that crop up. But it
does not work all the time. It only works when the right hand side of the equation Ly = f (x) has
only finitely many linearly independent derivatives, so that we can write a guess that consists of
them all. Some equations are a bit tougher. Consider

y′′ + y = tan x.

Note that each new derivative of tan x looks completely different and cannot be written as a linear
combination of the previous derivatives. We get sec2 x, 2 sec2 x tan x, etc. . . .

This equation calls for a different method. We present the method of variation of parameters,
which will handle any equation of the form Ly = f (x), provided we can solve certain integrals.
For simplicity, we will restrict ourselves to second order constant coefficient equations, but the
method will work for higher order equations just as well (the computations will be more tedious).
The method also works for equations with nonconstant coefficients, provided we can solve the
associated homogeneous equation.

Perhaps it is best to explain this method by example. Let us try to solve the equation

Ly = y′′ + y = tan x.

First we find the complementary solution (solution to Lyc = 0). We get yc = C1y1 + C2y2, where
y1 = cos x and y2 = sin x. Now to try to find a solution to the nonhomogeneous equation we try

yp = y = u1y1 + u2y2,
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where u1 and u2 are functions and not constants. We are trying to satisfy Ly = tan x. That gives us
one condition on the functions u1 and u2. Compute (note the product rule!)

y′ = (u′1y1 + u′2y2) + (u1y′1 + u2y′2).

We can still impose one more condition at our discretion to simplify computations (we have two
unknown functions, so we should be allowed two conditions). We require that (u′1y1 + u′2y2) = 0.
This makes computing the second derivative easier.

y′ = u1y′1 + u2y′2,
y′′ = (u′1y′1 + u′2y′2) + (u1y′′1 + u2y′′2 ).

Since y1 and y2 are solutions to y′′ + y = 0, we know that y′′1 = −y1 and y′′2 = −y2. (Note: If the
equation was instead y′′ + p(x)y′ + q(x)y = 0 we would have y′′i = −p(x)y′i − q(x)yi.) So

y′′ = (u′1y′1 + u′2y′2) − (u1y1 + u2y2).

We have (u1y1 + u2y2) = y and so

y′′ = (u′1y′1 + u′2y′2) − y,

and hence
y′′ + y = Ly = u′1y′1 + u′2y′2.

For y to satisfy Ly = f (x) we must have f (x) = u′1y′1 + u′2y′2.
So what we need to solve are the two equations (conditions) we imposed on u1 and u2

u′1y1 + u′2y2 = 0,
u′1y′1 + u′2y′2 = f (x).

We can now solve for u′1 and u′2 in terms of f (x), y1 and y2. We will always get these formulas for
any Ly = f (x), where Ly = y′′ + p(x)y′ + q(x)y. There is a general formula for the solution we can
just plug into, but it is better to just repeat what we do below. In our case the two equations become

u′1 cos(x) + u′2 sin(x) = 0,
−u′1 sin(x) + u′2 cos(x) = tan(x).

Hence

u′1 cos(x) sin(x) + u′2 sin2(x) = 0,

−u′1 sin(x) cos(x) + u′2 cos2(x) = tan(x) cos(x) = sin(x).
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And thus

u′2
(
sin2(x) + cos2(x)

)
= sin(x),

u′2 = sin(x),

u′1 =
− sin2(x)

cos(x)
= − tan(x) sin(x).

Now we need to integrate u′1 and u′2 to get u1 and u2.

u1 =

∫
u′1 dx =

∫
− tan(x) sin(x) dx =

1
2

ln
∣∣∣∣∣sin(x) − 1
sin(x) + 1

∣∣∣∣∣ + sin(x),

u2 =

∫
u′2 dx =

∫
sin(x) dx = − cos(x).

So our particular solution is

yp = u1y1 + u2y2 =
1
2

cos(x) ln
∣∣∣∣∣sin(x) − 1
sin(x) + 1

∣∣∣∣∣ + cos(x) sin(x) − cos(x) sin(x) =

=
1
2

cos(x) ln
∣∣∣∣∣sin(x) − 1
sin(x) + 1

∣∣∣∣∣ .
The general solution to y′′ + y = tan x is, therefore,

y = C1 cos(x) + C2 sin(x) +
1
2

cos(x) ln
∣∣∣∣∣sin(x) − 1
sin(x) + 1

∣∣∣∣∣ .
2.5.4 Exercises
Exercise 2.5.2: Find a particular solution of y′′ − y′ − 6y = e2x.

Exercise 2.5.3: Find a particular solution of y′′ − 4y′ + 4y = e2x.

Exercise 2.5.4: Solve the initial value problem y′′ + 9y = cos(3x) + sin(3x) for y(0) = 2, y′(0) = 1.

Exercise 2.5.5: Setup the form of the particular solution but do not solve for the coefficients for
y(4) − 2y′′′ + y′′ = ex.

Exercise 2.5.6: Setup the form of the particular solution but do not solve for the coefficients for
y(4) − 2y′′′ + y′′ = ex + x + sin x.

Exercise 2.5.7: a) Using variation of parameters find a particular solution of y′′ − 2y′ + y = ex. b)
Find a particular solution using undetermined coefficients. c) Are the two solutions you found the
same? What is going on?
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Exercise 2.5.8: Find a particular solution of y′′ − 2y′ + y = sin(x2). It is OK to leave the answer as
a definite integral.

Exercise 2.5.101: Find a particular solution to y′′ − y′ + y = 2 sin(3x)

Exercise 2.5.102: a) Find a particular solution to y′′ + 2y = ex + x3. b) Find the general solution.

Exercise 2.5.103: Solve y′′ + 2y′ + y = x2, y(0) = 1, y′(0) = 2.

Exercise 2.5.104: Use variation of parameters to find a particular solution of y′′ − y = 1
ex+e−x .
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2.6 Forced oscillations and resonance
Note: 2 lectures, §3.6 in [EP], §3.8 in [BD]

Let us return back to the mass on a spring example. We will

damping c

m
k F(t)

now consider the case of forced oscillations. That is, we will
consider the equation

mx′′ + cx′ + kx = F(t)

for some nonzero F(t). The setup is again: m is mass, c is friction, k is the spring constant and F(t)
is an external force acting on the mass.

What we are interested in is periodic forcing, such as noncentered rotating parts, or perhaps
loud sounds, or other sources of periodic force. Once we learn about Fourier series in chapter 4
we will see that we cover all periodic functions by simply considering F(t) = F0 cos(ωt) (or sine
instead of cosine, the calculations will be essentially the same).

2.6.1 Undamped forced motion and resonance
First let us consider undamped (c = 0) motion for simplicity. We have the equation

mx′′ + kx = F0 cos(ωt).

This equation has the complementary solution (solution to the associated homogeneous equation)

xc = C1 cos(ω0t) + C2 sin(ω0t),

where ω0 =
√

k/m is the natural frequency (angular). It is the frequency at which the system “wants
to oscillate” without external interference.

Let us suppose that ω0 , ω. We try the solution xp = A cos(ωt) and solve for A. Note that we
need not have sine in our trial solution as on the left hand side we will only get cosines anyway. If
you include a sine it is fine; you will find that its coefficient will be zero (I could not find a rhyme).

We solve using the method of undetermined coefficients. We find that

xp =
F0

m(ω2
0 − ω

2)
cos(ωt).

We leave it as an exercise to do the algebra required.
The general solution is

x = C1 cos(ω0t) + C2 sin(ω0t) +
F0

m(ω2
0 − ω

2)
cos(ωt).
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or written another way

x = C cos(ω0t − γ) +
F0

m(ω2
0 − ω

2)
cos(ωt).

Hence it is a superposition of two cosine waves at different frequencies.

Example 2.6.1: Take

0.5x′′ + 8x = 10 cos(πt), x(0) = 0, x′(0) = 0.

Let us compute. First we read off the parameters: ω = π, ω0 =
√

8/0.5 = 4, F0 = 10, m = 0.5.
The general solution is

x = C1 cos(4t) + C2 sin(4t) +
20

16 − π2 cos(πt).

Solve for C1 and C2 using the initial conditions. It is easy to see that C1 = −20
16−π2 and C2 = 0.

Hence
x =

20
16 − π2

(
cos(πt) − cos(4t)

)
.

Notice the “beating” behavior in Figure 2.5.
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Figure 2.5: Graph of 20
16−π2

(
cos(πt) − cos(4t)

)
.

First use the trigonometric identity

2 sin
(A − B

2

)
sin

(A + B
2

)
= cos B − cos A

to get that

x =
20

16 − π2

(
2 sin

(
4 − π

2
t
)

sin
(
4 + π

2
t
))
.

Notice that x is a high frequency wave modulated
by a low frequency wave.

Now suppose that ω0 = ω. Obviously, we
cannot try the solution A cos(ωt) and then use the
method of undetermined coefficients. We notice

that cos(ωt) solves the associated homogeneous equation. Therefore, we need to try xp = At cos(ωt)+
Bt sin(ωt). This time we do need the sine term since the second derivative of t cos(ωt) does contain
sines. We write the equation

x′′ + ω2x =
F0

m
cos(ωt).

Plugging into the left hand side we get

2Bω cos(ωt) − 2Aω sin(ωt) =
F0

m
cos(ωt).
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Hence A = 0 and B = F0
2mω . Our particular solution is F0

2mω t sin(ωt) and our general solution is

x = C1 cos(ωt) + C2 sin(ωt) +
F0

2mω
t sin(ωt).

The important term is the last one (the particular solution we found). We can see that this term
grows without bound as t → ∞. In fact it oscillates between F0t

2mω and −F0t
2mω . The first two terms only

oscillate between ±
√

C2
1 + C2

2, which becomes smaller and smaller in proportion to the oscillations
of the last term as t gets larger. In Figure 2.6 we see the graph with C1 = C2 = 0, F0 = 2, m = 1,
ω = π.

By forcing the system in just the right fre-
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Figure 2.6: Graph of 1
π
t sin(πt).

quency we produce very wild oscillations. This
kind of behavior is called resonance or sometimes
pure resonance. Sometimes resonance is desired.
For example, remember when as a kid you could
start swinging by just moving back and forth on
the swing seat in the correct “frequency”? You
were trying to achieve resonance. The force of
each one of your moves was small, but after a
while it produced large swings.

On the other hand resonance can be destruc-
tive. In an earthquake some buildings collapse
while others may be relatively undamaged. This
is due to different buildings having different reso-
nance frequencies. So figuring out the resonance

frequency can be very important.
A common (but wrong) example of destructive force of resonance is the Tacoma Narrows bridge

failure. It turns out there was a different phenomenon at play there∗.

2.6.2 Damped forced motion and practical resonance
In real life things are not as simple as they were above. There is, of course, some damping. Our
equation becomes

mx′′ + cx′ + kx = F0 cos(ωt), (2.8)

for some c > 0. We have solved the homogeneous problem before. We let

p =
c

2m
ω0 =

√
k
m
.

∗K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,
American Journal of Physics, 59(2), 1991, 118–124, http://www.ketchum.org/billah/Billah-Scanlan.pdf

http://www.ketchum.org/billah/Billah-Scanlan.pdf
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We replace equation (2.8) with

x′′ + 2px′ + ω2
0x =

F0

m
cos(ωt).

We find the roots of the characteristic equation of the associated homogeneous problem are r1, r2 =

−p ±
√

p2 − ω2
0. The form of the general solution of the associated homogeneous equation depends

on the sign of p2 − ω2
0, or equivalently on the sign of c2 − 4km, as we have seen before. That is

xc =


C1er1t + C2er2t if c2 > 4km,
C1e−pt + C2te−pt if c2 = 4km,
e−pt(C1 cos(ω1t) + C2 sin(ω1t)

)
if c2 < 4km ,

where ω1 =

√
ω2

0 − p2. In any case, we can see that xc(t) → 0 as t → ∞. Furthermore, there can
be no conflicts when trying to solve for the undetermined coefficients by trying xp = A cos(ωt) +

B sin(ωt). Let us plug in and solve for A and B. We get (the tedious details are left to reader)

(
(ω2

0 − ω
2)B − 2ωpA

)
sin(ωt) +

(
(ω2

0 − ω
2)A + 2ωpB

)
cos(ωt) =

F0

m
cos(ωt).

We get that

A =
(ω2

0 − ω
2)F0

m(2ωp)2 + m(ω2
0 − ω

2)2 ,

B =
2ωpF0

m(2ωp)2 + m(ω2
0 − ω

2)2 .

We also compute C =
√

A2 + B2 to be

C =
F0

m
√

(2ωp)2 + (ω2
0 − ω

2)2
.

Thus our particular solution is

xp =
(ω2

0 − ω
2)F0

m(2ωp)2 + m(ω2
0 − ω

2)2 cos(ωt) +
2ωpF0

m(2ωp)2 + m(ω2
0 − ω

2)2 sin(ωt).

Or in the alternative notation we have amplitude C and phase shift γ where (if ω , ω0)

tan γ =
B
A

=
2ωp

ω2
0 − ω

2
.
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Hence we have

xp =
F0

m
√

(2ωp)2 + (ω2
0 − ω

2)2
cos(ωt − γ).

If ω = ω0 we see that A = 0, B = C = F0
2mωp , and γ = π/2.

The exact formula is not as important as the idea. You should not memorize the above formula,
you should remember the ideas involved. For different forcing function F, you will get a different
formula for xp. So there is no point in memorizing this specific formula. You can always recompute
it later or look it up if you really need it.

For reasons we will explain in a moment, we will call xc the transient solution and denote it
by xtr. We will call the xp we found above the steady periodic solution and denote it by xsp. The
general solution to our problem is

x = xc + xp = xtr + xsp.

We note that xc = xtr goes to zero as t → ∞,
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Figure 2.7: Solutions with different initial con-
ditions for parameters k = 1, m = 1, F0 = 1,
c = 0.7, and ω = 1.1.

as all the terms involve an exponential with a
negative exponent. Hence for large t, the effect
of xtr is negligible and we will essentially only
see xsp. Hence the name transient. Notice that
xsp involves no arbitrary constants, and the initial
conditions will only affect xtr. This means that
the effect of the initial conditions will be negli-
gible after some period of time. Because of this
behavior, we might as well focus on the steady
periodic solution and ignore the transient solu-
tion. See Figure 2.7 for a graph of different initial
conditions.

Notice that the speed at which xtr goes to zero
depends on p (and hence c). The bigger p is (the
bigger c is), the “faster” xtr becomes negligible.
So the smaller the damping, the longer the “tran-
sient region.” This agrees with the observation
that when c = 0, the initial conditions affect the behavior for all time (i.e. an infinite “transient
region”).

Let us describe what we mean by resonance when damping is present. Since there were no
conflicts when solving with undetermined coefficient, there is no term that goes to infinity. What we
will look at however is the maximum value of the amplitude of the steady periodic solution. Let C
be the amplitude of xsp. If we plot C as a function of ω (with all other parameters fixed) we can find
its maximum. We call the ω that achieves this maximum the practical resonance frequency. We call
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the maximal amplitude C(ω) the practical resonance amplitude. Thus when damping is present we
talk of practical resonance rather than pure resonance. A sample plot for three different values of c
is given in Figure 2.8. As you can see the practical resonance amplitude grows as damping gets
smaller, and any practical resonance can disappear when damping is large.
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Figure 2.8: Graph of C(ω) showing practical resonance with parameters k = 1, m = 1, F0 = 1. The
top line is with c = 0.4, the middle line with c = 0.8, and the bottom line with c = 1.6.

To find the maximum we need to find the derivative C′(ω). Computation shows

C′(ω) =
−4ω(2p2 + ω2 − ω2

0)F0

m
(
(2ωp)2 + (ω2

0 − ω
2)2)3/2 .

This is zero either when ω = 0 or when 2p2 + ω2 − ω2
0 = 0. In other words, C′(ω) = 0 when

ω =

√
ω2

0 − 2p2 or ω = 0.

It can be shown that if ω2
0 − 2p2 is positive, then

√
ω2

0 − 2p2 is the practical resonance frequency
(that is the point where C(ω) is maximal, note that in this case C′(ω) > 0 for small ω). If ω = 0 is
the maximum, then essentially there is no practical resonance since we assume that ω > 0 in our
system. In this case the amplitude gets larger as the forcing frequency gets smaller.

If practical resonance occurs, the frequency is smaller than ω0. As the damping c (and hence p)
becomes smaller, the practical resonance frequency goes to ω0. So when damping is very small, ω0

is a good estimate of the resonance frequency. This behavior agrees with the observation that when
c = 0, then ω0 is the resonance frequency.

The behavior will be more complicated if the forcing function is not an exact cosine wave, but
for example a square wave. It will be good to come back to this section once we have learned about
the Fourier series.
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2.6.3 Exercises
Exercise 2.6.1: Derive a formula for xsp if the equation is mx′′ + cx′ + kx = F0 sin(ωt). Assume
c > 0.

Exercise 2.6.2: Derive a formula for xsp if the equation is mx′′+cx′+kx = F0 cos(ωt)+F1 cos(3ωt).
Assume c > 0.

Exercise 2.6.3: Take mx′′ + cx′ + kx = F0 cos(ωt). Fix m > 0 and k > 0. Now think of the function
C(ω). For what values of c (solve in terms of m, k, and F0) will there be no practical resonance
(that is, for what values of c is there no maximum of C(ω) for ω > 0).

Exercise 2.6.4: Take mx′′ + cx′ + kx = F0 cos(ωt). Fix c > 0 and k > 0. Now think of the function
C(ω). For what values of m (solve in terms of c, k, and F0) will there be no practical resonance
(that is, for what values of m is there no maximum of C(ω) for ω > 0).

Exercise 2.6.5: Suppose a water tower in an earthquake acts as a mass-spring system. Assume
that the container on top is full and the water does not move around. The container then acts as a
mass and the support acts as the spring, where the induced vibrations are horizontal. Suppose that
the container with water has a mass of m = 10, 000 kg. It takes a force of 1000 newtons to displace
the container 1 meter. For simplicity assume no friction. When the earthquake hits the water tower
is at rest (it is not moving).

Suppose that an earthquake induces an external force F(t) = mAω2 cos(ωt).
a) What is the natural frequency of the water tower.
b) If ω is not the natural frequency, find a formula for the maximal amplitude of the resulting

oscillations of the water container (the maximal deviation from the rest position). The motion will
be a high frequency wave modulated by a low frequency wave, so simply find the constant in front
of the sines.

c) Suppose A = 1 and an earthquake with frequency 0.5 cycles per second comes. What is the
amplitude of the oscillations. Suppose that if the water tower moves more than 1.5 meter, the tower
collapses. Will the tower collapse?

Exercise 2.6.101: A mass of 4 kg on a spring with k = 4 and a damping constant c = 1. Suppose
that F0 = 2. Using forcing of F0 cos(ωt). Find the ω that causes practical resonance and find the
amplitude.

Exercise 2.6.102: Derive a formula for xsp for mx′′ + cx′ + kx = F0 cos(ωt) + A where A is some
constant. Assume c > 0.

Exercise 2.6.103: Suppose there is no damping in a mass and spring system with m = 5, k = 20,
and F0 = 5. Suppose that ω is chosen to be precisely the resonance frequency. a) Find ω. b) Find
the aplitude of the oscillations at time t = 100.
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Chapter 3

Systems of ODEs

3.1 Introduction to systems of ODEs
Note: 1 lecture, §4.1 in [EP], §7.1 in [BD]

Often we do not have just one dependent variable and one equation. And as we will see, we
may end up with systems of several equations and several dependent variables even if we start with
a single equation.

If we have several dependent variables, suppose y1, y2, . . . , yn, then we can have a differential
equation involving all of them and their derivatives. For example, y′′1 = f (y′1, y

′
2, y1, y2, x). Usually,

when we have two dependent variables we would have two equations such as

y′′1 = f1(y′1, y
′
2, y1, y2, x),

y′′2 = f2(y′1, y
′
2, y1, y2, x),

for some functions f1 and f2. We call the above a system of differential equations. More precisely,
the above is a second order system of ODEs.

Example 3.1.1: Sometimes a system is easy to solve by solving for one variable and then for the
second variable. Take the first order system

y′1 = y1,

y′2 = y1 − y2,

with initial conditions of the form y1(0) = 1, y2(0) = 2.
We note that y1 = C1ex is the general solution of the first equation. We can then plug this y1 into

the second equation and get the equation y′2 = C1ex − y2, which is a linear first order equation that is
easily solved for y2. By the method of integrating factor we get

exy2 =
C1

2
e2x + C2,

85



86 CHAPTER 3. SYSTEMS OF ODES

or y2 = C1
2 ex + C2e−x. The general solution to the system is, therefore,

y1 = C1ex,

y2 =
C1

2
ex + C2e−x.

We can now solve for C1 and C2 given the initial conditions. We substitute x = 0 and find that
C1 = 1 and C2 = 3/2. Thus the solution is y1 = ex, and y2 = (1/2)ex + (3/2)e−x.

Generally, we will not be so lucky to be able to solve for each variable separately as in the
example above, and we will have to solve for all variables at once.

As an example application, let us think of mass and springk
m2m1

x1 x2

systems again. Suppose we have one spring with constant k, but
two masses m1 and m2. We can think of the masses as carts, and we
will suppose that they ride along a straight track with no friction. Let
x1 be the displacement of the first cart and x2 be the displacement

of the second cart. That is, we put the two carts somewhere with no tension on the spring, and we
mark the position of the first and second cart and call those the zero positions. Then x1 measures
how far the first cart is from its zero position, and x2 measures how far the second cart is from its
zero position. The force exerted by the spring on the first cart is k(x2 − x1), since x2 − x1 is how
far the string is stretched (or compressed) from the rest position. The force exerted on the second
cart is the opposite, thus the same thing with a negative sign. Newton’s second law states that force
equals mass times acceleration. So the system of equations governing the setup is

m1x′′1 = k(x2 − x1),
m2x′′2 = −k(x2 − x1).

In this system we cannot solve for the x1 or x2 variable separately. That we must solve for both
x1 and x2 at once is intuitively clear, since where the first cart goes depends exactly on where the
second cart goes and vice-versa.

Before we talk about how to handle systems, let us note that in some sense we need only consider
first order systems. Let us take an nth order differential equation

y(n) = F(y(n−1), . . . , y′, y, x).

We define new variables u1, . . . , un and write the system

u′1 = u2,

u′2 = u3,

...

u′n−1 = un,

u′n = F(un, un−1, . . . , u2, u1, x).
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We solve this system for u1, u2, . . . , un. Once we have solved for the u’s, we can discard u2 through
un and let y = u1. We note that this y solves the original equation.

A similar process can be followed for a system of higher order differential equations. For
example, a system of k differential equations in k unknowns, all of order n, can be transformed into
a first order system of n × k equations and n × k unknowns.

Example 3.1.2: Sometimes we can use this idea in reverse as well. Let us take the system

x′ = 2y − x, y′ = x,

where the independent variable is t. We wish to solve for the initial conditions x(0) = 1, y(0) = 0.
If we differentiate the second equation we get y′′ = x′. We know what x′ is in terms of x and y,

and we know that x = y′.
y′′ = x′ = 2y − x = 2y − y′.

So we now have an equation y′′ + y′ − 2y = 0. We know how to solve this equation and we find that
y = C1e−2t + C2et. Once we have y we can plug in to get x.

x = y′ = −2C1e−2t + C2et.

We solve for the initial conditions 1 = x(0) = −2C1 + C2 and 0 = y(0) = C1 + C2. Hence, C1 = −C2

and 1 = 3C2. So C1 = −1/3 and C2 = 1/3. Our solution is

x =
2e−2t + et

3
, y =

−e−2t + et

3
.

Exercise 3.1.1: Plug in and check that this really is the solution.

It is useful to go back and forth between systems and higher order equations for other reasons.
For example, the ODE approximation methods are generally only given as solutions for first order
systems. It is not very hard to adapt the code for the Euler method for a first order equation to first
order systems. We essentially just treat the dependent variable not as a number but as a vector. In
many mathematical computer languages there is almost no distinction in syntax.

In fact, this is what IODE was doing when you had it solve a second order equation numerically
in the IODE Project III if you have done that project.

The above example was what we will call a linear first order system, as none of the dependent
variables appear in any functions or with any higher powers than one. It is also autonomous as the
equations do not depend on the independent variable t.

For autonomous systems we can easily draw the so-called direction field or vector field. That is,
a plot similar to a slope field, but instead of giving a slope at each point, we give a direction (and a
magnitude). The previous example x′ = 2y − x, y′ = x says that at the point (x, y) the direction in
which we should travel to satisfy the equations should be the direction of the vector (2y − x, x) with
the speed equal to the magnitude of this vector. So we draw the vector (2y − x, x) based at the point
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(x, y) and we do this for many points on the xy-plane. We may want to scale down the size of our
vectors to fit many of them on the same direction field. See Figure 3.1.

We can now draw a path of the solution in the plane. That is, suppose the solution is given by
x = f (t), y = g(t), then we can pick an interval of t (say 0 ≤ t ≤ 2 for our example) and plot all
the points

(
f (t), g(t)

)
for t in the selected range. The resulting picture is usually called the phase

portrait (or phase plane portrait). The particular curve obtained we call the trajectory or solution
curve. An example plot is given in Figure 3.2. In this figure the line starts at (1, 0) and travels along
the vector field for a distance of 2 units of t. Since we solved this system precisely we can compute
x(2) and y(2). We get that x(2) ≈ 2.475 and y(2) ≈ 2.457. This point corresponds to the top right
end of the plotted solution curve in the figure.
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Figure 3.1: The direction field for x′ = 2y − x,
y′ = x.
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Figure 3.2: The direction field for x′ = 2y − x,
y′ = x with the trajectory of the solution starting
at (1, 0) for 0 ≤ t ≤ 2.

Notice the similarity to the diagrams we drew for autonomous systems in one dimension. But
now note how much more complicated things become if we allow just one more dimension.

Also note that we can draw phase portraits and trajectories in the xy-plane even if the system is
not autonomous. In this case however we cannot draw the direction field, since the field changes as
t changes. For each t we would get a different direction field.

3.1.1 Exercises
Exercise 3.1.2: Find the general solution of x′1 = x2 − x1 + t, x′2 = x2.

Exercise 3.1.3: Find the general solution of x′1 = 3x1 − x2 + et, x′2 = x1.

Exercise 3.1.4: Write ay′′ + by′ + cy = f (x) as a first order system of ODEs.
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Exercise 3.1.5: Write x′′ + y2y′ − x3 = sin(t), y′′ + (x′ + y′)2
− x = 0 as a first order system of ODEs.

Exercise 3.1.101: Find the general solution to y′1 = 3y1, y′2 = y1 + y2, y′3 = y1 + y3.

Exercise 3.1.102: Solve y′ = 2x, x′ = x + y, x(0) = 1, y(0) = 3.

Exercise 3.1.103: Write x′′′ = x + t as a first order system.

Exercise 3.1.104: Write y′′1 + y1 + y2 = t, y′′2 + y1 − y2 = t2 as a first order system.
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3.2 Matrices and linear systems

Note: 1 and a half lectures, first part of §5.1 in [EP], §7.2 and §7.3 in [BD]

3.2.1 Matrices and vectors

Before we can start talking about linear systems of ODEs, we will need to talk about matrices, so
let us review these briefly. A matrix is an m × n array of numbers (m rows and n columns). For
example, we denote a 3 × 5 matrix as follows

A =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

 .
By a vector we will usually mean a column vector, that is an m × 1 matrix. If we mean a row

vector we will explicitly say so (a row vector is a 1 × n matrix). We will usually denote matrices by
upper case letters and vectors by lower case letters with an arrow such as ~x or ~b. By ~0 we will mean
the vector of all zeros.

It is easy to define some operations on matrices. Note that we will want 1 × 1 matrices to really
act like numbers, so our operations will have to be compatible with this viewpoint.

First, we can multiply by a scalar (a number). This means just multiplying each entry by the
same number. For example,

2
[
1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]
.

Matrix addition is also easy. We add matrices element by element. For example,[
1 2 3
4 5 6

]
+

[
1 1 −1
0 2 4

]
=

[
2 3 2
4 7 10

]
.

If the sizes do not match, then addition is not defined.
If we denote by 0 the matrix of with all zero entries, by c, d some scalars, and by A, B, C some

matrices, we have the following familiar rules.

A + 0 = A = 0 + A,
A + B = B + A,

(A + B) + C = A + (B + C),
c(A + B) = cA + cB,
(c + d)A = cA + dA.
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Another useful operation for matrices is the so-called transpose. This operation just swaps rows
and columns of a matrix. The transpose of A is denoted by AT . Example:

[
1 2 3
4 5 6

]T

=

1 4
2 5
3 6


3.2.2 Matrix multiplication
Let us now define matrix multiplication. First we define the so-called dot product (or inner product)
of two vectors. Usually this will be a row vector multiplied with a column vector of the same size.
For the dot product we multiply each pair of entries from the first and the second vector and we sum
these products. The result is a single number. For example,

[
a1 a2 a3

]
·

b1

b2

b3

 = a1b1 + a2b2 + a3b3.

And similarly for larger (or smaller) vectors.
Armed with the dot product we can define the product of matrices. First let us denote by rowi(A)

the ith row of A and by column j(A) the jth column of A. For an m × n matrix A and an n × p matrix
B we can define the product AB. We let AB be an m × p matrix whose i jth entry is

rowi(A) · column j(B).

Do note how the sizes match up. Example:

[
1 2 3
4 5 6

] 1 0 −1
1 1 1
1 0 0

 =

=

[
1 · 1 + 2 · 1 + 3 · 1 1 · 0 + 2 · 1 + 3 · 0 1 · (−1) + 2 · 1 + 3 · 0
4 · 1 + 5 · 1 + 6 · 1 4 · 0 + 5 · 1 + 6 · 0 4 · (−1) + 5 · 1 + 6 · 0

]
=

[
6 2 1

15 5 1

]

For multiplication we will want an analogue of a 1. This is the so-called identity matrix. The
identity matrix is a square matrix with 1s on the main diagonal and zeros everywhere else. It is
usually denoted by I. For each size we have a different identity matrix and so sometimes we may
denote the size as a subscript. For example, the I3 would be the 3 × 3 identity matrix

I = I3 =

1 0 0
0 1 0
0 0 1

 .
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We have the following rules for matrix multiplication. Suppose that A, B, C are matrices of the
correct sizes so that the following make sense. Let α denote a scalar (number).

A(BC) = (AB)C,
A(B + C) = AB + AC,
(B + C)A = BA + CA,
α(AB) = (αA)B = A(αB),

IA = A = AI.

A few warnings are in order.

(i) AB , BA in general (it may be true by fluke sometimes). That is, matrices do not commute.
For example take A =

[ 1 1
1 1

]
and B =

[ 1 0
0 2

]
.

(ii) AB = AC does not necessarily imply B = C, even if A is not 0.

(iii) AB = 0 does not necessarily mean that A = 0 or B = 0. For example take A = B =
[ 0 1

0 0
]
.

For the last two items to hold we would need to “divide” by a matrix. This is where the matrix
inverse comes in. Suppose that A and B are n × n matrices such that

AB = I = BA.

Then we call B the inverse of A and we denote B by A−1. If the inverse of A exists, then we call A
invertible. If A is not invertible we sometimes say A is singular.

If A is invertible, then AB = AC does imply that B = C (in particular the inverse of A is unique).
We just multiply both sides by A−1 to get A−1AB = A−1AC or IB = IC or B = C. It is also not hard
to see that (A−1)−1

= A.

3.2.3 The determinant
We can now talk about determinants of square matrices. We define the determinant of a 1× 1 matrix
as the value of its only entry. For a 2 × 2 matrix we define

det
([

a b
c d

])
def
= ad − bc.

Before trying to compute the determinant for larger matrices, let us first note the meaning of the
determinant. Consider an n × n matrix as a mapping of the n dimensional euclidean space Rn to Rn.
In particular, a 2 × 2 matrix A is a mapping of the plane to itself, where ~x gets sent to A~x. Then the
determinant of A is the factor by which the area of objects gets changed. If we take the unit square
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(square of side 1) in the plane, then A takes the square to a parallelogram of area |det(A)|. The sign
of det(A) denotes changing of orientation (if the axes got flipped). For example, let

A =

[
1 1
−1 1

]
.

Then det(A) = 1 + 1 = 2. Let us see where the square with vertices (0, 0), (1, 0), (0, 1), and (1, 1)
gets sent. Clearly (0, 0) gets sent to (0, 0).[

1 1
−1 1

] [
1
0

]
=

[
1
−1

]
,

[
1 1
−1 1

] [
0
1

]
=

[
1
1

]
,

[
1 1
−1 1

] [
1
1

]
=

[
2
0

]
.

So the image of the square is another square. The image square has a side of length
√

2 and is
therefore of area 2.

If you think back to high school geometry, you may have seen a formula for computing the area
of a parallelogram with vertices (0, 0), (a, c), (b, d) and (a + b, c + d). And it is precisely∣∣∣∣∣∣ det

([
a b
c d

]) ∣∣∣∣∣∣ .
The vertical lines above mean absolute value. The matrix

[ a b
c d

]
carries the unit square to the given

parallelogram.

Now we can define the determinant for larger matrices. We define Ai j as the matrix A with the
ith row and the jth column deleted. To compute the determinant of a matrix, pick one row, say the ith

row and compute.

det(A) =

n∑
j=1

(−1)i+ jai j det(Ai j).

For the first row we get

det(A) = a11 det(A11) − a12 det(A12) + a13 det(A13) − · · ·

+a1n det(A1n) if n is odd,
−a1n det(A1n) if n even.

We alternately add and subtract the determinants of the submatrices Ai j for a fixed i and all j. For a
3 × 3 matrix, picking the first row, we would get det(A) = a11 det(A11) − a12 det(A12) + a13 det(A13).
For example,

det


1 2 3
4 5 6
7 8 9


 = 1 · det

([
5 6
8 9

])
− 2 · det

([
4 6
7 9

])
+ 3 · det

([
4 5
7 8

])
= 1(5 · 9 − 6 · 8) − 2(4 · 9 − 6 · 7) + 3(4 · 8 − 5 · 7) = 0.



94 CHAPTER 3. SYSTEMS OF ODES

The numbers (−1)i+ j det(Ai j) are called cofactors of the matrix and this way of computing the
determinant is called the cofactor expansion. It is also possible to compute the determinant by
expanding along columns (picking a column instead of a row above).

Note that a common notation for the determinant is a pair of vertical lines:∣∣∣∣∣∣a b
c d

∣∣∣∣∣∣ = det
([

a b
c d

])
.

I personally find this notation confusing as vertical lines usually mean a positive quantity, while
determinants can be negative. I will not use this notation in this book.

One of the most important properties of determinants (in the context of this course) is the
following theorem.

Theorem 3.2.1. An n × n matrix A is invertible if and only if det(A) , 0.

In fact, there is a formula for the inverse of a 2 × 2 matrix[
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
.

Notice the determinant of the matrix in the denominator of the fraction. The formula only works if
the determinant is nonzero, otherwise we are dividing by zero.

3.2.4 Solving linear systems

One application of matrices we will need is to solve systems of linear equations. This may be best
shown by example. Suppose that we have the following system of linear equations

2x1 + 2x2 + 2x3 = 2,
x1 + x2 + 3x3 = 5,
x1 + 4x2 + x3 = 10.

Without changing the solution, we could swap equations in this system, we could multiply any
of the equations by a nonzero number, and we could add a multiple of one equation to another
equation. It turns out these operations always suffice to find a solution.

It is easier to write the system as a matrix equation. Note that the system can be written as2 2 2
1 1 3
1 4 1


x1

x2

x3

 =

 2
5
10

 .
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To solve the system we put the coefficient matrix (the matrix on the left hand side of the equation)
together with the vector on the right and side and get the so-called augmented matrix 2 2 2 2

1 1 3 5
1 4 1 10

 .
We apply the following three elementary operations.

(i) Swap two rows.

(ii) Multiply a row by a nonzero number.

(iii) Add a multiple of one row to another row.

We will keep doing these operations until we get into a state where it is easy to read off the answer,
or until we get into a contradiction indicating no solution, for example if we come up with an
equation such as 0 = 1.

Let us work through the example. First multiply the first row by 1/2 to obtain 1 1 1 1
1 1 3 5
1 4 1 10

 .
Now subtract the first row from the second and third row. 1 1 1 1

0 0 2 4
0 3 0 9


Multiply the last row by 1/3 and the second row by 1/2. 1 1 1 1

0 0 1 2
0 1 0 3


Swap rows 2 and 3.  1 1 1 1

0 1 0 3
0 0 1 2


Subtract the last row from the first, then subtract the second row from the first. 1 0 0 −4

0 1 0 3
0 0 1 2


If we think about what equations this augmented matrix represents, we see that x1 = −4, x2 = 3,
and x3 = 2. We try this solution in the original system and, voilà, it works!
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Exercise 3.2.1: Check that the solution above really solves the given equations.

If we write this equation in matrix notation as

A~x = ~b,

where A is the matrix
[

2 2 2
1 1 3
1 4 1

]
and ~b is the vector

[
2
5
10

]
. The solution can be also computed via the

inverse,
~x = A−1A~x = A−1~b.

One last note to make about linear systems of equations is that it is possible that the solution is
not unique (or that no solution exists). It is easy to tell if a solution does not exist. If during the
row reduction you come up with a row where all the entries except the last one are zero (the last
entry in a row corresponds to the right hand side of the equation) the system is inconsistent and
has no solution. For example if for a system of 3 equations and 3 unknowns you find a row such as
[ 0 0 0 | 1 ] in the augmented matrix, you know the system is inconsistent.

You generally try to use row operations until the following conditions are satisfied. The first
nonzero entry in each row is called the leading entry.

(i) There is only one leading entry in each column.

(ii) All the entries above and below a leading entry are zero.

(iii) All leading entries are 1.

Such a matrix is said to be in reduced row echelon form. The variables corresponding to columns
with no leading entries are said to be free variables. Free variables mean that we can pick those
variables to be anything we want and then solve for the rest of the unknowns.

Example 3.2.1: The following augmented matrix is in reduced row echelon form. 1 2 0 3
0 0 1 1
0 0 0 0


Suppose the variables are x1, x2, and x3. Then x2 is the free variable, x1 = 3 − 2x2, and x3 = 1.

On the other hand if during the row reduction process you come up with the matrix 1 2 13 3
0 0 1 1
0 0 0 3

 ,
there is no need to go further. The last row corresponds to the equation 0x1 + 0x2 + 0x3 = 3, which
is preposterous. Hence, no solution exists.
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3.2.5 Computing the inverse

If the coefficient matrix is square and there exists a unique solution ~x to A~x = ~b for any ~b, then A
is invertible. In fact by multiplying both sides by A−1 you can see that ~x = A−1~b. So it is useful to
compute the inverse if you want to solve the equation for many different right hand sides ~b.

The 2 × 2 inverse can be given by a formula, but it is also not hard to compute inverses of larger
matrices. While we will not have too much occasion to compute inverses for larger matrices than
2 × 2 by hand, let us touch on how to do it. Finding the inverse of A is actually just solving a bunch
of linear equations. If we can solve A~xk = ~ek where ~ek is the vector with all zeros except a 1 at the
kth position, then the inverse is the matrix with the columns ~xk for k = 1, . . . , n (exercise: why?).
Therefore, to find the inverse we can write a larger n × 2n augmented matrix [ A | I ], where I is the
identity. We then perform row reduction. The reduced row echelon form of [ A | I ] will be of the
form [ I | A−1 ] if and only if A is invertible. We can then just read off the inverse A−1.

3.2.6 Exercises
Exercise 3.2.2: Solve

[ 1 2
3 4

]
~x =

[ 5
6
]

by using matrix inverse.

Exercise 3.2.3: Compute determinant of
[

9 −2 −6
−8 3 6
10 −2 −6

]
.

Exercise 3.2.4: Compute determinant of
[

1 2 3 1
4 0 5 0
6 0 7 0
8 0 10 1

]
. Hint: Expand along the proper row or column

to make the calculations simpler.

Exercise 3.2.5: Compute inverse of
[

1 2 3
1 1 1
0 1 0

]
.

Exercise 3.2.6: For which h is
[

1 2 3
4 5 6
7 8 h

]
not invertible? Is there only one such h? Are there several?

Infinitely many?

Exercise 3.2.7: For which h is
[

h 1 1
0 h 0
1 1 h

]
not invertible? Find all such h.

Exercise 3.2.8: Solve
[

9 −2 −6
−8 3 6
10 −2 −6

]
~x =

[
1
2
3

]
.

Exercise 3.2.9: Solve
[

5 3 7
8 4 4
6 3 3

]
~x =

[
2
0
0

]
.

Exercise 3.2.10: Solve
[

3 2 3 0
3 3 3 3
0 2 4 2
2 3 4 3

]
~x =

[
2
0
4
1

]
.

Exercise 3.2.11: Find 3 nonzero 2 × 2 matrices A, B, and C such that AB = AC but B , C.

Exercise 3.2.101: Compute determinant of
[

1 1 1
2 3 −5
1 −1 0

]



98 CHAPTER 3. SYSTEMS OF ODES

Exercise 3.2.102: Find t such that
[ 1 t
−1 2

]
is not invertible.

Exercise 3.2.103: Solve
[ 1 1

1 −1
]
~x =

[ 10
20

]
.

Exercise 3.2.104: Suppose a, b, c are nonzero numbers. Let M =
[ a 0

0 b
]
, N =

[
a 0 0
0 b 0
0 0 c

]
. a) Compute

M−1. b) Compute N−1.
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3.3 Linear systems of ODEs
Note: less than 1 lecture, second part of §5.1 in [EP], §7.4 in [BD]

First let us talk about matrix or vector valued functions. Such a function is just a matrix whose
entries depend on some variable. Let us say the independent variable is t. Then we write a vector
valued function ~x(t) as

~x(t) =


x1(t)
x2(t)
...

xn(t)

 .
Similarly a matrix valued function A(t) is

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
...

...
. . .

...
an1(t) an2(t) · · · ann(t)

 .
We can talk about the derivative A′(t) or dA

dt . This is just the matrix valued function whose i jth entry
is a′i j(t).

Rules of differentiation of matrix valued functions are similar to rules for normal functions. Let
A(t) and B(t) be matrix valued functions. Let c a scalar and let C be a constant matrix. Then(

A(t) + B(t)
)′

= A′(t) + B′(t),(
A(t)B(t)

)′
= A′(t)B(t) + A(t)B′(t),(

cA(t)
)′

= cA′(t),(
CA(t)

)′
= CA′(t),(

A(t)C
)′

= A′(t)C.

Note the order of the multiplication in the last two expressions.
A first order linear system of ODEs is a system that can be written as the vector equation

~x ′(t) = P(t)~x(t) + ~f (t),

where P(t) is a matrix valued function, and ~x(t) and ~f (t) are vector valued functions. We will often
suppress the dependence on t and only write ~x ′ = P~x + ~f . A solution of the system is a vector
valued function ~x satisfying the vector equation.

For example, the equations

x′1 = 2tx1 + etx2 + t2,

x′2 =
x1

t
− x2 + et,
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can be written as

~x ′ =

[
2t et

1/t −1

]
~x +

[
t2

et

]
.

We will mostly concentrate on equations that are not just linear, but are in fact constant coefficient
equations. That is, the matrix P will be constant; it will not depend on t.

When ~f = ~0 (the zero vector), then we say the system is homogeneous. For homogeneous linear
systems we have the principle of superposition, just like for single homogeneous equations.

Theorem 3.3.1 (Superposition). Let ~x ′ = P~x be a linear homogeneous system of ODEs. Suppose
that ~x1, . . . , ~xn are n solutions of the equation, then

~x = c1~x1 + c2~x2 + · · · + cn~xn, (3.1)

is also a solution. Furthermore, if this is a system of n equations (P is n × n), and ~x1, . . . , ~xn are
linearly independent, then every solution can be written as (3.1).

Linear independence for vector valued functions is the same idea as for normal functions. The
vector valued functions ~x1, ~x2, . . . , ~xn are linearly independent when

c1~x1 + c2~x2 + · · · + cn~xn = ~0

has only the solution c1 = c2 = · · · = cn = 0, where the equation must hold for all t.

Example 3.3.1: ~x1 =
[

t2
t

]
, ~x2 =

[
0

1+t

]
, ~x3 =

[
−t2
1

]
are linearly depdendent because ~x1 + ~x3 = ~x2, and

this holds for all t. So c1 = 1, c2 = −1, and c3 = 1 above will work.
On the other hand if we change the example just slightly ~x1 =

[
t2
t

]
, ~x2 =

[
0
t

]
, ~x3 =

[
−t2
1

]
, then

the functions are linearly independent. First write c1~x1 + c2~x2 + c3~x3 = ~0 and note that it has to hold
for all t. We get that

c1~x1 + c2~x2 + c3~x3 =

[
c1t2 − c3t3

c1t + c2t + c3

]
=

[
0
0

]
.

In other words c1t2 − c3t3 = 0 and c1t + c2t + c3 = 0. If we set t = 0, then the second equation
becomes c3 = 0. But then the first equation becomes c1t2 = 0 for all t and so c1 = 0. Thus the
second equation is just c2t = 0, which means c2 = 0. So c1 = c2 = c3 = 0 is the only solution and
and ~x1, ~x2, and ~x3 are linearly independent.

The linear combination c1~x1 + c2~x2 + · · · + cn~xn could always be written as

X(t)~c,

where X(t) is the matrix with columns ~x1, . . . , ~xn, and ~c is the column vector with entries c1, . . . , cn.
The matrix valued function X(t) is called the fundamental matrix, or the fundamental matrix solution.

To solve nonhomogeneous first order linear systems, we use the same technique as we applied
to solve single linear nonhomogeneous equations.
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Theorem 3.3.2. Let ~x ′ = P~x + ~f be a linear system of ODEs. Suppose ~xp is one particular solution.
Then every solution can be written as

~x = ~xc + ~xp,

where ~xc is a solution to the associated homogeneous equation (~x ′ = P~x).

So the procedure will be the same as for single equations. We find a particular solution to
the nonhomogeneous equation, then we find the general solution to the associated homogeneous
equation, and finally we add the two together.

Alright, suppose you have found the general solution ~x ′ = P~x + ~f . Now you are given an initial
condition of the form ~x(t0) = ~b for some constant vector ~b. Suppose that X(t) is the fundamental
matrix solution of the associated homogeneous equation (i.e. columns of X(t) are solutions). The
general solution can be written as

~x(t) = X(t)~c + ~xp(t).

We are seeking a vector ~c such that

~b = ~x(t0) = X(t0)~c + ~xp(t0).

In other words, we are solving for ~c the nonhomogeneous system of linear equations

X(t0)~c = ~b − ~xp(t0).

Example 3.3.2: In § 3.1 we solved the system

x′1 = x1,

x′2 = x1 − x2,

with initial conditions x1(0) = 1, x2(0) = 2.
This is a homogeneous system, so ~f (t) = ~0. We write the system and the initial conditions as

~x ′ =

[
1 0
1 −1

]
~x, ~x(0) =

[
1
2

]
.

We found the general solution was x1 = c1et and x2 = c1
2 et + c2e−t. Letting c1 = 1 and c2 = 0,

we obtain the solution
[

et

(1/2)et

]
. Letting c1 = 0 and c2 = 1, we obtain

[
0

e−t

]
. These two solutions are

linearly independent, as can be seen by setting t = 0, and noting that the resulting constant vectors
are linearly independent. In matrix notation, the fundamental matrix solution is, therefore,

X(t) =

[
et 0

1
2et e−t

]
.

Hence to solve the initial problem we solve the equation

X(0)~c = ~b,
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or in other words, [
1 0
1
2 1

]
~c =

[
1
2

]
.

After a single elementary row operation we find that ~c =
[

1
3/2

]
. Hence our solution is

~x(t) = X(t)~c =

[
et 0
1
2et e−t

] [
1
3
2

]
=

[
et

1
2et + 3

2e−t

]
.

This agrees with our previous solution.

3.3.1 Exercises
Exercise 3.3.1: Write the system x′1 = 2x1 − 3tx2 + sin t, x′2 = etx1 + 3x2 + cos t in the form
~x ′ = P(t)~x + ~f (t).

Exercise 3.3.2: a) Verify that the system ~x ′ =
[ 1 3

3 1
]
~x has the two solutions

[ 1
1
]
e4t and

[ 1
−1

]
e−2t. b)

Write down the general solution. c) Write down the general solution in the form x1 =?, x2 =? (i.e.
write down a formula for each element of the solution).

Exercise 3.3.3: Verify that
[ 1

1
]
et and

[ 1
−1

]
et are linearly independent. Hint: Just plug in t = 0.

Exercise 3.3.4: Verify that
[

1
1
0

]
et and

[
1
−1
1

]
et and

[
1
−1
1

]
e2t are linearly independent. Hint: You must

be a bit more tricky than in the previous exercise.

Exercise 3.3.5: Verify that
[

t
t2
]

and
[

t3
t4

]
are linearly independent.

Exercise 3.3.101: Are
[

e2t

et

]
and

[
et

e2t

]
linearly independent? Justify.

Exercise 3.3.102: Are
[

cosh(t)
1

]
,
[

et

1

]
and

[
e−t

1

]
linearly independent? Justify.

Exercise 3.3.103: Write x′ = 3x − y + et, y′ = tx in matrix notation.

Exercise 3.3.104: a) Write x′1 = 2tx2, x′2 = 2tx2 in matrix notation. b) Solve and write the solution
in matrix notation.
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3.4 Eigenvalue method
Note: 2 lectures, §5.2 in [EP], part of §7.3, §7.5, and §7.6 in [BD]

In this section we will learn how to solve linear homogeneous constant coefficient systems
of ODEs by the eigenvalue method. Suppose we have a linear constant coefficient homogeneous
system

~x ′ = P~x,

where P is a constant square matrix. Suppose we try to adapt the method for the single constant
coefficient equation by trying the function eλt. However, ~x is a vector. So we try ~x = ~veλt, where ~v is
an arbitrary constant vector. We plug this ~x into the equation to get

λ~veλt = P~veλt.

We divide by eλt and notice that we are looking for a scalar λ and a vector ~v that satisfy the equation

λ~v = P~v.

To solve this equation we need a little bit more linear algebra, which we now review.

3.4.1 Eigenvalues and eigenvectors of a matrix
Let A be a constant square matrix. Suppose there is a scalar λ and a nonzero vector ~v such that

A~v = λ~v.

We then call λ an eigenvalue of A and ~v is said to be a corresponding eigenvector.

Example 3.4.1: The matrix
[ 2 1

0 1
]

has an eigenvalue of λ = 2 with a corresponding eigenvector
[ 1

0
]

because [
2 1
0 1

] [
1
0

]
=

[
2
0

]
= 2

[
1
0

]
.

Let us see how to compute the eigenvalues for any matrix. We rewrite the equation for an
eigenvalue as

(A − λI)~v = ~0.

We notice that this equation has a nonzero solution ~v only if A − λI is not invertible. Were it
invertible, we could write (A − λI)−1(A − λI)~v = (A − λI)−1~0, which implies ~v = ~0. Therefore, A
has the eigenvalue λ if and only if λ solves the equation

det(A − λI) = 0.

Consequently, we will be able to find an eigenvalue of A without finding a corresponding
eigenvector. An eigenvector will have to be found later, once λ is known.
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Example 3.4.2: Find all eigenvalues of
[

2 1 1
1 2 0
0 0 2

]
.

We write

det


2 1 1
1 2 0
0 0 2

 − λ
1 0 0
0 1 0
0 0 1


 = det


2 − λ 1 1

1 2 − λ 0
0 0 2 − λ


 =

= (2 − λ)
(
(2 − λ)2 − 1

)
= −(λ − 1)(λ − 2)(λ − 3).

and so the eigenvalues are λ = 1, λ = 2, and λ = 3.

Note that for an n × n matrix, the polynomial we get by computing det(A − λI) will be of degree
n, and hence we will in general have n eigenvalues. Some may be repeated, some may be complex.

To find an eigenvector corresponding to an eigenvalue λ, we write

(A − λI)~v = ~0,

and solve for a nontrivial (nonzero) vector ~v. If λ is an eigenvalue, this will always be possible.

Example 3.4.3: Find an eigenvector of
[

2 1 1
1 2 0
0 0 2

]
corresponding to the eigenvalue λ = 3.

We write

(A − λI)~v =


2 1 1
1 2 0
0 0 2

 − 3

1 0 0
0 1 0
0 0 1



v1

v2

v3

 =

−1 1 1
1 −1 0
0 0 −1


v1

v2

v3

 = ~0.

It is easy to solve this system of linear equations. We write down the augmented matrix −1 1 1 0
1 −1 0 0
0 0 −1 0

 ,
and perform row operations (exercise: which ones?) until we get 1 −1 0 0

0 0 1 0
0 0 0 0

 .
The equations the entries of ~v have to satisfy are, therefore, v1 − v2 = 0, v3 = 0, and v2 is a free
variable. We can pick v2 to be arbitrary (but nonzero) and let v1 = v2 and of course v3 = 0. For

example, ~v =

[
1
1
0

]
. Let us verify that we really have an eigenvector corresponding to λ = 3:2 1 1

1 2 0
0 0 2


110

 =

330
 = 3

110
 .

Yay! It worked.
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Exercise 3.4.1 (easy): Are eigenvectors unique? Can you find a different eigenvector for λ = 3 in
the example above? How are the two eigenvectors related?

Exercise 3.4.2: Note that when the matrix is 2 × 2 you do not need to write down the augmented
matrix and do row operations when computing eigenvectors (if you have computed the eigenvalues
correctly). Can you see why? Try it for the matrix

[ 2 1
1 2

]
.

3.4.2 The eigenvalue method with distinct real eigenvalues
OK. We have the system of equations

~x ′ = P~x.

We find the eigenvalues λ1, λ2, . . . , λn of the matrix P, and corresponding eigenvectors ~v1, ~v2, . . . , ~vn.
Now we notice that the functions ~v1eλ1t, ~v2eλ2t, . . . , ~vneλnt are solutions of the system of equations
and hence ~x = c1~v1eλ1t + c2~v2eλ2t + · · · + cn~vneλnt is a solution.

Theorem 3.4.1. Take ~x ′ = P~x. If P is an n × n constant matrix that has n distinct real eigenvalues
λ1, λ2, . . . , λn, then there exist n linearly independent corresponding eigenvectors ~v1, ~v2, . . . , ~vn, and
the general solution to ~x ′ = P~x can be written as

~x = c1~v1eλ1t + c2~v2eλ2t + · · · + cn~vneλnt.

The corresponding fundamental matrix solution is X(t) = [~v1eλ1t ~v2eλ2t · · · ~vneλnt ]. That
is, X(t) is the matrix whose jth column is ~v jeλ jt.

Example 3.4.4: Suppose we take the system

~x ′ =

2 1 1
1 2 0
0 0 2

 ~x.
Find the general solution.

We have found the eigenvalues 1, 2, 3 earlier. We have found the eigenvector
[

1
1
0

]
for the

eigenvalue 3. Similarly we find the eigenvector
[

1
−1
0

]
for the eigenvalue 1, and

[
0
1
−1

]
for the eigenvalue

2 (exercise: check). Hence our general solution is

~x = c1

 1
−1
0

 et + c2

 0
1
−1

 e2t + c3

110
 e3t =

 c1et + c3e3t

−c1et + c2e2t + c3e3t

−c2e2t

 .
In terms of a fundamental matrix solution

~x = X(t)~c =

 et 0 e3t

−et e2t e3t

0 −e2t 0


c1

c2

c3

 .
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Exercise 3.4.3: Check that this really solves the system.

Note: If we write a homogeneous linear constant coefficient nth order equation as a first order
system (as we did in § 3.1), then the eigenvalue equation

det(P − λI) = 0

is essentially the same as the characteristic equation we got in § 2.2 and § 2.3.

3.4.3 Complex eigenvalues
A matrix might very well have complex eigenvalues even if all the entries are real. For example,
suppose that we have the system

~x ′ =

[
1 1
−1 1

]
~x.

Let us compute the eigenvalues of the matrix P =
[ 1 1
−1 1

]
.

det(P − λI) = det
([

1 − λ 1
−1 1 − λ

])
= (1 − λ)2 + 1 = λ2 − 2λ + 2 = 0.

Thus λ = 1 ± i. The corresponding eigenvectors will also be complex. First take λ = 1 − i,

(P − (1 − i)I)~v = ~0,[
i 1
−1 i

]
~v = ~0.

The equations iv1 +v2 = 0 and −v1 + iv2 = 0 are multiples of each other. So we only need to consider
one of them. After picking v2 = 1, for example, we have an eigenvector ~v =

[ i
1
]
. In similar fashion

we find that
[
−i
1
]

is an eigenvector corresponding to the eigenvalue 1 + i.
We could write the solution as

~x = c1

[
i
1

]
e(1−i)t + c2

[
−i
1

]
e(1+i)t =

[
c1ie(1−i)t − c2ie(1+i)t

c1e(1−i)t + c2e(1+i)t

]
.

We would then need to look for complex values c1 and c2 to solve any initial conditions. It is perhaps
not completely clear that we get a real solution. We could use Euler’s formula and do the whole
song and dance we did before, but we will not. We will do something a bit smarter first.

We claim that we did not have to look for a second eigenvector (nor for the second eigenvalue).
All complex eigenvalues come in pairs (because the matrix P is real).

First a small side note. The real part of a complex number z can be computed as z+z̄
2 , where the

bar above z means a + ib = a − ib. This operation is called the complex conjugate. Note that if a is
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a real number, then ā = a. Similarly we can bar whole vectors or matrices. If a matrix P is real,
then P = P. We note that P~x = P ~x = P~x. Therefore,

(P − λI)~v = (P − λ̄I)~v.

So if ~v is an eigenvector corresponding to the eigenvalue λ = a + ib, then ~v is an eigenvector
corresponding to the eigenvalue λ̄ = a − ib.

Suppose that a + ib is a complex eigenvalue of P, and ~v is a corresponding eigenvector. Then

~x1 = ~ve(a+ib)t

is a solution (complex valued) of ~x ′ = P~x. Then note that ea+ib = ea−ib, and so

~x2 = ~x1 = ~ve(a−ib)t

is also a solution. The function

~x3 = Re ~x1 = Re~ve(a+ib)t =
~x1 + ~x1

2
=
~x1 + ~x2

2

is also a solution. And ~x3 is real-valued! Similarly as Im z = z−z̄
2i is the imaginary part, we find that

~x4 = Im ~x1 =
~x1 − ~x2

2i
.

is also a real-valued solution. It turns out that ~x3 and ~x4 are linearly independent. We will use
Euler’s formula to separate out the real and imaginary part.

Returning to our problem,

~x1 =

[
i
1

]
e(1−i)t =

[
i
1

] (
et cos t − iet sin t

)
=

[
iet cos t + et sin t
et cos t − iet sin t

]
.

Then

Re ~x1 =

[
et sin t
et cos t

]
,

Im ~x1 =

[
et cos t
−et sin t

]
,

are the two real-valued linearly independent solutions we seek.

Exercise 3.4.4: Check that these really are solutions.
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The general solution is

~x = c1

[
et sin t
et cos t

]
+ c2

[
et cos t
−et sin t

]
=

[
c1et sin t + c2et cos t
c1et cos t − c2et sin t

]
.

This solution is real-valued for real c1 and c2. Now we can solve for any initial conditions that we
may have.

Let us summarize as a theorem.

Theorem 3.4.2. Let P be a real-valued constant matrix. If P has a complex eigenvalue a + ib and a
corresponding eigenvector ~v, then P also has a complex eigenvalue a − ib with a corresponding
eigenvector ~̄v. Furthermore , ~x ′ = P~x has two linearly independent real-valued solutions

~x1 = Re~ve(a+ib)t, and ~x2 = Im~ve(a+ib)t.

So for each pair of complex eigenvalues we get two real-valued linearly independent solutions.
We then go on to the next eigenvalue, which is either a real eigenvalue or another complex eigenvalue
pair. If we had n distinct eigenvalues (real or complex), then we will end up with n linearly
independent solutions.

We can now find a real-valued general solution to any homogeneous system where the matrix
has distinct eigenvalues. When we have repeated eigenvalues, matters get a bit more complicated
and we will look at that situation in § 3.7.

3.4.4 Exercises
Exercise 3.4.5 (easy): Let A be a 3 × 3 matrix with an eigenvalue of 3 and a corresponding

eigenvector ~v =

[
1
−1
3

]
. Find A~v.

Exercise 3.4.6: a) Find the general solution of x′1 = 2x1, x′2 = 3x2 using the eigenvalue method
(first write the system in the form ~x ′ = A~x). b) Solve the system by solving each equation separately
and verify you get the same general solution.

Exercise 3.4.7: Find the general solution of x′1 = 3x1 + x2, x′2 = 2x1 + 4x2 using the eigenvalue
method.

Exercise 3.4.8: Find the general solution of x′1 = x1 − 2x2, x′2 = 2x1 + x2 using the eigenvalue
method. Do not use complex exponentials in your solution.

Exercise 3.4.9: a) Compute eigenvalues and eigenvectors of A =

[
9 −2 −6
−8 3 6
10 −2 −6

]
. b) Find the general

solution of ~x ′ = A~x.

Exercise 3.4.10: Compute eigenvalues and eigenvectors of
[
−2 −1 −1
3 2 1
−3 −1 0

]
.
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Exercise 3.4.11: Let a, b, c, d, e, f be numbers. Find the eigenvalues of
[

a b c
0 d e
0 0 f

]
.

Exercise 3.4.101: a) Compute eigenvalues and eigenvectors of A =

[
1 0 3
−1 0 1
2 0 2

]
. b) Solve the system

~x ′ = A~x.

Exercise 3.4.102: a) Compute eigenvalues and eigenvectors of A =
[ 1 1
−1 0

]
. b) Solve the system

~x ′ = A~x.

Exercise 3.4.103: Solve x′1 = x2, x′2 = x1 using the eigenvalue method.

Exercise 3.4.104: Solve x′1 = x2, x′2 = −x1 using the eigenvalue method.
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3.5 Two dimensional systems and their vector fields
Note: 1 lecture, should really be in [EP] §5.2, but is in [EP] §6.2, parts of §7.5 and §7.6 in [BD]

Let us take a moment to talk about constant coefficient linear homogeneous systems in the plane.
Much intuition can be obtained by studying this simple case. Suppose we have a 2 × 2 matrix P and
the system [

x
y

]′
= P

[
x
y

]
. (3.2)

The system is autonomous (compare this section to § 1.6) and so we will be able to draw a vector
field. We will be able to visually tell what the vector field looks like and how the solutions behave,
once we find the eigenvalues and eigenvectors of the matrix P.

Case 1. Suppose that the eigenvalues of P

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3
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1
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1
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Figure 3.3: Eigenvectors of P.

are real and positive. We find two corresponding
eigenvectors and plot them in the plane. For ex-
ample, take the matrix

[ 1 1
0 2

]
. The eigenvalues are

1 and 2 and corresponding eigenvectors are
[ 1

0
]

and
[ 1

1
]
. See Figure 3.3.

Now suppose that x and y are on the line de-
termined by an eigenvector ~v for an eigenvalue λ.
That is,

[ x
y
]

= a~v for some scalar a. Then[
x
y

]′
= P

[
x
y

]
= P(a~v) = a(P~v) = aλ~v.

The derivative is a multiple of ~v and hence points
along the line determined by ~v. As λ > 0, the
derivative points in the direction of ~v when a is
positive and in the opposite direction when a is

negative. Let us draw the lines determined by the eigenvectors, and let us draw arrows on the lines
to indicate the directions. See Figure 3.4 on the facing page.

We fill in the rest of the arrows and we also draw a few solutions. See Figure 3.5 on the next
page. Notice that the picture looks like a source with arrows coming out from the origin. Hence we
call this type of picture a source or sometimes an unstable node.

Case 2. Suppose both eigenvalues were negative. For example, take the negation of the matrix
in case 1,

[
−1 −1
0 −2

]
. The eigenvalues are −1 and −2 and corresponding eigenvectors are the same,[ 1

0
]

and
[ 1

1
]
. The calculation and the picture are almost the same. The only difference is that the

eigenvalues are negative and hence all arrows are reversed. We get the picture in Figure 3.6 on the
facing page. We call this kind of picture a sink or sometimes a stable node.

Case 3. Suppose one eigenvalue is positive and one is negative. For example the matrix
[ 1 1

0 −2
]
.

The eigenvalues are 1 and −2 and corresponding eigenvectors are the same,
[ 1

0
]

and
[ 1
−3

]
. We
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Figure 3.4: Eigenvectors of P with directions.
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Figure 3.5: Example source vector field with
eigenvectors and solutions.
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Figure 3.6: Example sink vector field with
eigenvectors and solutions.
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Figure 3.7: Example saddle vector field with
eigenvectors and solutions.

reverse the arrows on one line (corresponding to the negative eigenvalue) and we obtain the picture
in Figure 3.7. We call this picture a saddle point.

The next three cases we will assume the eigenvalues are complex. In this case the eigenvectors
are also complex and we cannot just plot them on the plane.

Case 4. Suppose the eigenvalues are purely imaginary. That is, suppose the eigenvalues are ±ib.
For example, let P =

[ 0 1
−4 0

]
. The eigenvalues turn out to be ±2i and eigenvectors are

[ 1
2i
]

and
[ 1
−2i

]
.

We take the eigenvalue 2i and its eigenvector
[ 1

2i
]

and note that the real and imaginary parts of ~vei2t
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are

Re
[

1
2i

]
ei2t =

[
cos(2t)
−2 sin(2t)

]
,

Im
[

1
2i

]
ei2t =

[
sin(2t)

2 cos(2t)

]
.

We can take any linear combination of them, and which one we take depends on the initial conditions.
For example, the real part is a parametric equation for an ellipse. Same with the imaginary part and
in fact any linear combination of them. It is not difficult to see that this is what happens in general
when the eigenvalues are purely imaginary. So when the eigenvalues are purely imaginary, we get
ellipses for the solutions. This type of picture is sometimes called a center. See Figure 3.8.
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Figure 3.8: Example center vector field.
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Figure 3.9: Example spiral source vector field.

Case 5. Now suppose the complex eigenvalues have a positive real part. That is, suppose the
eigenvalues are a ± ib for some a > 0. For example, let P =

[ 1 1
−4 1

]
. The eigenvalues turn out to be

1 ± 2i and eigenvectors are
[ 1

2i
]

and
[ 1
−2i

]
. We take 1 + 2i and its eigenvector

[ 1
2i
]

and find the real
and imaginary of ~ve(1+2i)t are

Re
[

1
2i

]
e(1+2i)t = et

[
cos(2t)
−2 sin(2t)

]
,

Im
[

1
2i

]
e(1+2i)t = et

[
sin(2t)

2 cos(2t)

]
.

Now note the et in front of the solutions. This means that the solutions grow in magnitude while
spinning around the origin. Hence we get a spiral source. See Figure 3.9.

Case 6. Finally suppose the complex eigenvalues have a negative real part. That is, suppose the
eigenvalues are −a ± ib for some a > 0. For example, let P =

[
−1 −1
4 −1

]
. The eigenvalues turn out to
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be −1 ± 2i and eigenvectors are
[ 1
−2i

]
and

[ 1
2i
]
. We take −1 − 2i and its eigenvector

[ 1
2i
]

and find the
real and imaginary of ~ve(−1−2i)t are

Re
[

1
2i

]
e(−1−2i)t = e−t

[
cos(2t)

2 sin(2t)

]
,

Im
[

1
2i

]
e(−1−2i)t = e−t

[
− sin(2t)
2 cos(2t)

]
.

Now note the e−t in front of the solutions. This means that the solutions shrink in magnitude while
spinning around the origin. Hence we get a spiral sink. See Figure 3.10.
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Figure 3.10: Example spiral sink vector field.

We summarize the behavior of linear homogeneous two dimensional systems in Table 3.1.

Eigenvalues Behavior

real and both positive source / unstable node
real and both negative sink / stable node
real and opposite signs saddle
purely imaginary center point / ellipses
complex with positive real part spiral source
complex with negative real part spiral sink

Table 3.1: Summary of behavior of linear homogeneous two dimensional systems.
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3.5.1 Exercises
Exercise 3.5.1: Take the equation mx′′ + cx′ + kx = 0, with m > 0, c ≥ 0, k > 0 for the mass-spring
system. a) Convert this to a system of first order equations. b) Classify for what m, c, k do you get
which behavior. c) Can you explain from physical intuition why you do not get all the different kinds
of behavior here?

Exercise 3.5.2: Can you find what happens in the case when P =
[ 1 1

0 1
]
? In this case the eigenvalue

is repeated and there is only one eigenvector. What picture does this look like?

Exercise 3.5.3: Can you find what happens in the case when P =
[ 1 1

1 1
]
? Does this look like any of

the pictures we have drawn?

Exercise 3.5.101: Describe the behavior of the following systems without solving:
a) x′ = x + y, y′ = x − y.
b) x′1 = x1 + x2, x′2 = 2x2.
c) x′1 = −2x2, x′2 = 2x1.
d) x′ = x + 3y, y′ = −2x − 4y.
e) x′ = x − 4y, y′ = −4x + y.

Exercise 3.5.102: Suppose that ~x ′ = A~x where A is a 2 by 2 matrix with eigenvalues 2± i. Describe
the behavior.

Exercise 3.5.103: Take
[ x

y
]′

=
[ 0 1

0 0
] [ x

y
]
. Draw the vector field and describe the behavior. Is it one

of the behaviours that we have seen before?
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3.6 Second order systems and applications
Note: more than 2 lectures, §5.3 in [EP], not in [BD]

3.6.1 Undamped mass-spring systems
While we did say that we will usually only look at first order systems, it is sometimes more
convenient to study the system in the way it arises naturally. For example, suppose we have 3
masses connected by springs between two walls. We could pick any higher number, and the math
would be essentially the same, but for simplicity we pick 3 right now. Let us also assume no friction,
that is, the system is undamped. The masses are m1, m2, and m3 and the spring constants are k1,
k2, k3, and k4. Let x1 be the displacement from rest position of the first mass, and x2 and x3 the
displacement of the second and third mass. We will make, as usual, positive values go right (as x1

grows the first mass is moving right). See Figure 3.11.

k1
m1

k2
m2

k3
m3

k4

Figure 3.11: System of masses and springs.

This simple system turns up in unexpected places. For example, our world really consists of
many small particles of matter interacting together. When we try the above system with many more
masses, we obtain a good approximation to how an elastic material will behave. By somehow taking
a limit of the number of masses going to infinity, we obtain the continuous one dimensional wave
equation (that we study in § 4.7). But we digress.

Let us set up the equations for the three mass system. By Hooke’s law we have that the force
acting on the mass equals the spring compression times the spring constant. By Newton’s second
law we have that force is mass times acceleration. So if we sum the forces acting on each mass and
put the right sign in front of each term, depending on the direction in which it is acting, we end up
with the desired system of equations.

m1x′′1 = −k1x1 + k2(x2 − x1) = −(k1 + k2)x1 + k2x2,

m2x′′2 = −k2(x2 − x1) + k3(x3 − x2) = k2x1 − (k2 + k3)x2 + k3x3,

m3x′′3 = −k3(x3 − x2) − k4x3 = k3x2 − (k3 + k4)x3.

We define the matrices

M =

m1 0 0
0 m2 0
0 0 m3

 and K =

−(k1 + k2) k2 0
k2 −(k2 + k3) k3

0 k3 −(k3 + k4)

 .
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We write the equation simply as
M~x ′′ = K~x.

At this point we could introduce 3 new variables and write out a system of 6 equations. We claim
this simple setup is easier to handle as a second order system. We will call ~x the displacement
vector, M the mass matrix, and K the stiffness matrix.

Exercise 3.6.1: Repeat this setup for 4 masses (find the matrices M and K). Do it for 5 masses.
Can you find a prescription to do it for n masses?

As with a single equation we will want to “divide by M.” This means computing the inverse of
M. The masses are all nonzero and M is a diagonal matrix, so comping the inverse is easy.

M−1 =


1

m1
0 0

0 1
m2

0
0 0 1

m3

 .
This fact follows readily by how we multiply diagonal matrices. You should verify that MM−1 =

M−1M = I as an exercise.

Let A = M−1K. We look at the system ~x ′′ = M−1K~x, or

~x ′′ = A~x.

Many real world systems can be modeled by this equation. For simplicity, we will only talk about
the given masses-and-springs problem. We try a solution of the form

~x = ~veαt.

We compute that for this guess, ~x ′′ = α2~veαt. We plug our guess into the equation and get

α2~veαt = A~veαt.

We can divide by eαt to get that α2~v = A~v. Hence if α2 is an eigenvalue of A and ~v is a corresponding
eigenvector, we have found a solution.

In our example, and in other common applications, it turns out that A has only real negative
eigenvalues (and possibly a zero eigenvalue). So we will study only this case. When an eigenvalue λ
is negative, it means that α2 = λ is negative. Hence there is some real number ω such that −ω2 = λ.
Then α = ±iω. The solution we guessed was

~x = ~v
(
cos(ωt) + i sin(ωt)

)
.

By taking real and imaginary parts (note that ~v is real), we find that ~v cos(ωt) and ~v sin(ωt) are
linearly independent solutions.

If an eigenvalue is zero, it turns out that both ~v and ~vt are solutions, where ~v is a corresponding
eigenvector.
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Exercise 3.6.2: Show that if A has a zero eigenvalue and ~v is a corresponding eigenvector, then
~x = ~v(a + bt) is a solution of ~x ′′ = A~x for arbitrary constants a and b.

Theorem 3.6.1. Let A be an n × n matrix with n distinct real negative eigenvalues we denote by
−ω2

1 > −ω
2
2 > · · · > −ω

2
n, and corresponding eigenvectors by ~v1, ~v2, . . . , ~vn. If A is invertible (that

is, if ω1 > 0), then

~x(t) =

n∑
i=1

~vi
(
ai cos(ωit) + bi sin(ωit)

)
,

is the general solution of
~x ′′ = A~x,

for some arbitrary constants ai and bi. If A has a zero eigenvalue, that is ω1 = 0, and all other
eigenvalues are distinct and negative, then the general solution can be written as

~x(t) = ~v1(a1 + b1t) +

n∑
i=2

~vi
(
ai cos(ωit) + bi sin(ωit)

)
.

Note that we can use this solution and the setup from the introduction of this section even when
some of the masses and springs are missing. For example, when there are say 2 masses and only 2
springs, simply take only the equations for the two masses and set all the spring constants for the
springs that are missing to zero.

3.6.2 Examples
Example 3.6.1: Suppose we have the system in Figure 3.12, with m1 = 2, m2 = 1, k1 = 4, and
k2 = 2.

k1
m1

k2
m2

Figure 3.12: System of masses and springs.

The equations we write down are[
2 0
0 1

]
~x ′′ =

[
−(4 + 2) 2

2 −2

]
~x,

or

~x ′′ =

[
−3 1
2 −2

]
~x.
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We find the eigenvalues of A to be λ = −1,−4 (exercise). Now we find corresponding eigenvec-
tors to be

[ 1
2
]

and
[ 1
−1

]
respectively (exercise).

We check the theorem and note that ω1 = 1 and ω2 = 2. Hence the general solution is

~x =

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
.

The two terms in the solution represent the two so-called natural or normal modes of oscillation.
And the two (angular) frequencies are the natural frequencies. The two modes are plotted in
Figure 3.13.
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Figure 3.13: The two modes of the mass-spring system. In the left plot the masses are moving in
unison and the right plot are masses moving in the opposite direction.

Let us write the solution as

~x =

[
1
2

]
c1 cos(t − α1) +

[
1
−1

]
c2 cos(2t − α2).

The first term, [
1
2

]
c1 cos(t − α1) =

[
c1 cos(t − α1)

2c1 cos(t − α1)

]
,

corresponds to the mode where the masses move synchronously in the same direction.
The second term, [

1
−1

]
c2 cos(2t − α2) =

[
c2 cos(2t − α2)
−c2 cos(2t − α2)

]
,

corresponds to the mode where the masses move synchronously but in opposite directions.
The general solution is a combination of the two modes. That is, the initial conditions determine

the amplitude and phase shift of each mode.
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Example 3.6.2: We have two toy rail cars. Car 1 of mass 2 kg is traveling at 3 m/s towards the
second rail car of mass 1 kg. There is a bumper on the second rail car that engages at the moment
the cars hit (it connects to two cars) and does not let go. The bumper acts like a spring of spring
constant k = 2 N/m. The second car is 10 meters from a wall. See Figure 3.14.

m1

k
m2

10 meters

Figure 3.14: The crash of two rail cars.

We want to ask several question. At what time after the cars link does impact with the wall
happen? What is the speed of car 2 when it hits the wall?

OK, let us first set the system up. Let t = 0 be the time when the two cars link up. Let x1 be the
displacement of the first car from the position at t = 0, and let x2 be the displacement of the second
car from its original location. Then the time when x2(t) = 10 is exactly the time when impact with
wall occurs. For this t, x′2(t) is the speed at impact. This system acts just like the system of the
previous example but without k1. Hence the equation is[

2 0
0 1

]
~x ′′ =

[
−2 2
2 −2

]
~x.

or

~x ′′ =

[
−1 1
2 −2

]
~x.

We compute the eigenvalues of A. It is not hard to see that the eigenvalues are 0 and −3 (exercise).
Furthermore, eigenvectors are

[ 1
1
]

and
[ 1
−2

]
respectively (exercise). We note that ω2 =

√
3 and we

use the second part of the theorem to find our general solution to be

~x =

[
1
1

]
(a1 + b1t) +

[
1
−2

] (
a2 cos(

√
3 t) + b2 sin(

√
3 t)

)
=

[
a1 + b1t + a2 cos(

√
3 t) + b2 sin(

√
3 t)

a1 + b1t − 2a2 cos(
√

3 t) − 2b2 sin(
√

3 t)

]
We now apply the initial conditions. First the cars start at position 0 so x1(0) = 0 and x2(0) = 0.

The first car is traveling at 3 m/s, so x′1(0) = 3 and the second car starts at rest, so x′2(0) = 0. The first
conditions says

~0 = ~x(0) =

[
a1 + a2

a1 − 2a2

]
.
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It is not hard to see that this implies that a1 = a2 = 0. We plug a1 and a2 and differentiate to get

~x ′(t) =

[
b1 +

√
3 b2 cos(

√
3 t)

b1 − 2
√

3 b2 cos(
√

3 t)

]
.

So [
3
0

]
= ~x ′(0) =

[
b1 +

√
3 b2

b1 − 2
√

3 b2

]
.

It is not hard to solve these two equations to find b1 = 2 and b2 = 1
√

3
. Hence the position of our cars

is (until the impact with the wall)

~x =

2t + 1
√

3
sin(
√

3 t)
2t − 2

√
3

sin(
√

3 t)

 .
Note how the presence of the zero eigenvalue resulted in a term containing t. This means that the
carts will be traveling in the positive direction as time grows, which is what we expect.

What we are really interested in is the second expression, the one for x2. We have x2(t) =

2t − 2
√

3
sin(
√

3 t). See Figure 3.15 for the plot of x2 versus time.
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Figure 3.15: Position of the second car in time (ignoring the wall).

Just from the graph we can see that time of impact will be a little more than 5 seconds from
time zero. For this we have to solve the equation 10 = x2(t) = 2t − 2

√
3

sin(
√

3 t). Using a computer
(or even a graphing calculator) we find that timpact ≈ 5.22 seconds.

As for the speed we note that x′2 = 2 − 2 cos(
√

3 t). At time of impact (5.22 seconds from t = 0)
we get that x′2(timpact) ≈ 3.85.

The maximum speed is the maximum of 2 − 2 cos(
√

3 t), which is 4. We are traveling at almost
the maximum speed when we hit the wall.
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Now suppose that Bob is a tiny person sitting on car 2. Bob has a Martini in his hand and would
like to not spill it. Let us suppose Bob would not spill his Martini when the first car links up with
car 2, but if car 2 hits the wall at any speed greater than zero, Bob will spill his drink. Suppose Bob
can move car 2 a few meters towards or away from the wall (he cannot go all the way to the wall,
nor can he get out of the way of the first car). Is there a “safe” distance for him to be in? A distance
such that the impact with the wall is at zero speed?

The answer is yes. Looking at Figure 3.15 on the facing page, we note the “plateau” between
t = 3 and t = 4. There is a point where the speed is zero. To find it we need to solve x′2(t) = 0. This
is when cos(

√
3 t) = 1 or in other words when t = 2π

√
3
, 4π
√

3
, . . . and so on. We plug in the first value to

obtain x2

(
2π
√

3

)
= 4π
√

3
≈ 7.26. So a “safe” distance is about 7 and a quarter meters from the wall.

Alternatively Bob could move away from the wall towards the incoming car 2 where another
safe distance is 8π

√
3
≈ 14.51 and so on, using all the different t such that x′2(t) = 0. Of course t = 0 is

always a solution here, corresponding to x2 = 0, but that means standing right at the wall.

3.6.3 Forced oscillations
Finally we move to forced oscillations. Suppose that now our system is

~x ′′ = A~x + ~F cos(ωt). (3.3)

That is, we are adding periodic forcing to the system in the direction of the vector ~F.
Just like before this system just requires us to find one particular solution ~xp, add it to the general

solution of the associated homogeneous system ~xc and we will have the general solution to (3.3).
Let us suppose that ω is not one of the natural frequencies of ~x ′′ = A~x, then we can guess

~xp = ~c cos(ωt),

where ~c is an unknown constant vector. Note that we do not need to use sine since there are only
second derivatives. We solve for ~c to find ~xp. This is really just the method of undetermined
coefficients for systems. Let us differentiate ~xp twice to get

~xp
′′

= −ω2~c cos(ωt).

Now plug into the equation

−ω2~c cos(ωt) = A~c cos(ωt) + ~F cos(ωt)

We can cancel out the cosine and rearrange the equation to obtain

(A + ω2I)~c = − ~F.

So
~c = (A + ω2I)−1(− ~F).
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Of course this this is possible only if (A +ω2I) = (A− (−ω2)I) is invertible. That matrix is invertible
if and only if −ω2 is not an eigenvalue of A. That is true if and only if ω is not a natural frequency
of the system.

Example 3.6.3: Let us take the example in Figure 3.12 on page 117 with the same parameters as
before: m1 = 2, m2 = 1, k1 = 4, and k2 = 2. Now suppose that there is a force 2 cos(3t) acting on
the second cart.

The equation is

~x ′′ =

[
−3 1
2 −2

]
~x +

[
0
2

]
cos(3t).

We have solved the associated homogeneous equation before and found the complementary solution
to be

~xc =

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
.

We note that the natural frequencies were 1 and 2. Hence 3 is not a natural frequency, we can
try ~c cos(3t). We can invert (A + 32I)

([
−3 1
2 −2

]
+ 32I

)−1

=

[
6 1
2 7

]−1

=

[ 7
40

−1
40

−1
20

3
20

]
.

Hence,

~c = (A + ω2I)−1(− ~F) =

[ 7
40

−1
40

−1
20

3
20

] [
0
−2

]
=

[ 1
20
−3
10

]
.

Combining with what we know the general solution of the associated homogeneous problem to
be we get that the general solution to ~x ′′ = A~x + ~F cos(ωt) is

~x = ~xc + ~xp =

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
+

[ 1
20
−3
10

]
cos(3t).

The constants a1, a2, b1, and b2 must then be solved for given any initial conditions.

Ifω is a natural frequency of the system resonance occurs because we will have to try a particular
solution of the form

~xp = ~c t sin(ωt) + ~d cos(ωt).

That is assuming that all eigenvalues of the coefficient matrix are distinct. Note that the amplitude
of this solution grows without bound as t grows.
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3.6.4 Exercises
Exercise 3.6.3: Find a particular solution to

~x ′′ =

[
−3 1
2 −2

]
~x +

[
0
2

]
cos(2t).

Exercise 3.6.4 (challenging): Let us take the example in Figure 3.12 on page 117 with the same
parameters as before: m1 = 2, k1 = 4, and k2 = 2, except for m2, which is unknown. Suppose
that there is a force cos(5t) acting on the first mass. Find an m2 such that there exists a particular
solution where the first mass does not move.

Note: This idea is called dynamic damping. In practice there will be a small amount of damping
and so any transient solution will disappear and after long enough time, the first mass will always
come to a stop.

Exercise 3.6.5: Let us take the Example 3.6.2 on page 119, but that at time of impact, cart 2 is
moving to the left at the speed of 3 m/s. a) Find the behavior of the system after linkup. b) Will the
second car hit the wall, or will it be moving away from the wall as time goes on. c) at what speed
would the first car have to be traveling for the system to essentially stay in place after linkup.

Exercise 3.6.6: Let us take the example in Figure 3.12 on page 117 with parameters m1 = m2 = 1,
k1 = k2 = 1. Does there exist a set of initial conditions for which the first cart moves but the second
cart does not? If so, find those conditions. If not, argue why not.

Exercise 3.6.101: Find the general solution to
[

1 0 0
0 2 0
0 0 3

]
~x ′′ =

[
−3 0 0
2 −4 0
0 6 −3

]
~x +

[
cos(2t)

0
0

]
.

Exercise 3.6.102: Suppose there are three carts of equal mass m and connected by two springs of
constant k (and no connections to walls). Set up the system and find its general solution.

Exercise 3.6.103: Suppose a cart of mass 2 kg is attached by a spring of constant k = 1 to a cart of
mass 3 kg, which is attached to the wall by a spring also of constant k = 1. Suppose that the initial
position of the first cart is 1 meter in the positive direction from the rest position, and the second
mass starts at the rest position. The masses are not moving and are let go. Find the position of the
second mass as a function of time.
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3.7 Multiple eigenvalues
Note: 1 or 1.5 lectures , §5.4 in [EP], §7.8 in [BD]

It may very well happen that a matrix has some “repeated” eigenvalues. That is, the characteristic
equation det(A − λI) = 0 may have repeated roots. As we have said before, this is actually unlikely
to happen for a random matrix. If we take a small perturbation of A (we change the entries of A
slightly), then we will get a matrix with distinct eigenvalues. As any system we will want to solve
in practice is an approximation to reality anyway, it is not indispensable to know how to solve these
corner cases. It may happen on occasion that it is easier or desirable to solve such a system directly.

3.7.1 Geometric multiplicity

Take the diagonal matrix

A =

[
3 0
0 3

]
.

A has an eigenvalue 3 of multiplicity 2. We call the multiplicity of the eigenvalue in the characteristic
equation the algebraic multiplicity. In this case, there also exist 2 linearly independent eigenvectors,[ 1

0
]

and
[ 0

1
]

corresponding to the eigenvalue 3. This means that the so-called geometric multiplicity
of this eigenvalue is also 2.

In all the theorems where we required a matrix to have n distinct eigenvalues, we only really
needed to have n linearly independent eigenvectors. For example, ~x ′ = A~x has the general solution

~x = c1

[
1
0

]
e3t + c2

[
0
1

]
e3t.

Let us restate the theorem about real eigenvalues. In the following theorem we will repeat eigen-
values according to (algebraic) multiplicity. So for the above matrix A, we would say that it has
eigenvalues 3 and 3.

Theorem 3.7.1. Take ~x ′ = P~x. Suppose the matrix P is n×n, has n real eigenvalues (not necessarily
distinct), λ1, . . . , λn, and there are n linearly independent corresponding eigenvectors ~v1, . . . , ~vn.
Then the general solution to the ODE can be written as

~x = c1~v1eλ1t + c2~v2eλ2t + · · · + cn~vneλnt.

The geometric multiplicity of an eigenvalue of algebraic multiplicity n is equal to the number of
corresponding linearly independent eigenvectors. The geometric multiplicity is always less than
or equal to the algebraic multiplicity. We have handled the case when these two multiplicities are
equal. If the geometric multiplicity is equal to the algebraic multiplicity, then we say the eigenvalue
is complete.
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In other words, the hypothesis of the theorem could be stated as saying that if all the eigenvalues
of P are complete, then there are n linearly independent eigenvectors and thus we have the given
general solution.

Note that if the geometric multiplicity of an eigenvalue is 2 or greater, then the set of linearly
independent eigenvectors is not unique up to multiples as it was before. For example, for the
diagonal matrix A above we could also pick eigenvectors

[ 1
1
]

and
[ 1
−1

]
, or in fact any pair of two

linearly independent vectors. The number of linearly independent eigenvectors corresponding to λ
is the number of free variables we obtain when solving A~v = λ~v. We then pick values for those free
variables to obtain the eigenvectors. If you pick different values, you may get different eigenvectors.

3.7.2 Defective eigenvalues
If an n × n matrix has less than n linearly independent eigenvectors, it is said to be deficient. Then
there is at least one eigenvalue with an algebraic multiplicity that is higher than its geometric
multiplicity. We call this eigenvalue defective and the difference between the two multiplicities we
call the defect.

Example 3.7.1: The matrix [
3 1
0 3

]
has an eigenvalue 3 of algebraic multiplicity 2. Let us try to compute eigenvectors.[

0 1
0 0

] [
v1

v2

]
= ~0.

We must have that v2 = 0. Hence any eigenvector is of the form
[ v1

0
]
. Any two such vectors are

linearly dependent, and hence the geometric multiplicity of the eigenvalue is 1. Therefore, the
defect is 1, and we can no longer apply the eigenvalue method directly to a system of ODEs with
such a coefficient matrix.

The key observation we will use here is that if λ is an eigenvalue of A of algebraic multiplicity
m, then we will be able to find m linearly independent vectors solving the equation (A − λI)m~v = ~0.
We will call these generalized eigenvectors.

Let us continue with the example A =
[ 3 1

0 3
]

and the equation ~x ′ = A~x. We have an eigenvalue
λ = 3 of (algebraic) multiplicity 2 and defect 1. We have found one eigenvector ~v1 =

[ 1
0
]
. We have

the solution
~x1 = ~v1e3t.

In this case, let us try (in the spirit of repeated roots of the characteristic equation for a single
equation) another solution of the form

~x2 = (~v2 + ~v1t) e3t.
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We differentiate to get

~x2
′
= ~v1e3t + 3(~v2 + ~v1t) e3t = (3~v2 + ~v1) e3t + 3~v1te3t.

As we are assuming that ~x2 is a solution, ~x2
′ must equal A~x2, and

A~x2 = A(~v2 + ~v1t) e3t = A~v2e3t + A~v1te3t.

By looking at the coefficients of e3t and te3t we see 3~v2 + ~v1 = A~v2 and 3~v1 = A~v1. This means that

(A − 3I)~v2 = ~v1, and (A − 3I)~v1 = ~0.

Therefore, ~x2 is a solution if these two equations are satisfied. We know the second of these two
equations is satisfied as ~v1 is an eigenvector. If we plug the first equation into the second we obtain

(A − 3I)(A − 3I)~v2 = ~0, or (A − 3I)2~v2 = ~0.

If we can, therefore, find a ~v2 that solves (A − 3I)2~v2 = ~0 and such that (A − 3I)~v2 = ~v1, then we are
done. This is just a bunch of linear equations to solve and we are by now very good at that.

We notice that in this simple case (A − 3I)2 is just the zero matrix (exercise). Hence, any vector
~v2 solves (A − 3I)2~v2 = ~0. We just have to make sure that (A − 3I)~v2 = ~v1. Write[

0 1
0 0

] [
a
b

]
=

[
1
0

]
.

By inspection we see that letting a = 0 (a could be anything in fact) and b = 1 does the job. Hence
we can take ~v2 =

[ 0
1
]
. Our general solution to ~x ′ = A~x is

~x = c1

[
1
0

]
e3t + c2

([
0
1

]
+

[
1
0

]
t
)

e3t =

[
c1e3t + c2te3t

c2e3t

]
.

Let us check that we really do have the solution. First x′1 = c13e3t + c2e3t + 3c2te3t = 3x1 + x2. Good.
Now x′2 = 3c2e3t = 3x2. Good.

Note that the system ~x ′ = A~x has a simpler solution since A is a so-called upper triangular
matrix, that is every entry below the diagonal is zero. In particular, the equation for x2 does not
depend on x1. Mind you, not every defective matrix is triangular.

Exercise 3.7.1: Solve ~x ′ =
[ 3 1

0 3
]
~x by first solving for x2 and then for x1 independently. Now check

that you got the same solution as we did above.

Let us describe the general algorithm. First for λ of multiplicity 2, defect 1. First find an
eigenvector ~v1 of λ. Now find a vector ~v2 such that

(A − λI)2~v2 = ~0,
(A − λI)~v2 = ~v1.
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This gives us two linearly independent solutions

~x1 = ~v1eλt,

~x2 =
(
~v2 + ~v1t

)
eλt.

This machinery can also be generalized to larger matrices and higher defects. We will not go
over this method in detail, but let us just sketch the ideas. Suppose that A has a multiplicity m
eigenvalue λ. We find vectors such that

(A − λI)k~v = ~0, but (A − λI)k−1~v , ~0.

Such vectors are called generalized eigenvectors. For every eigenvector ~v1 we find a chain of
generalized eigenvectors ~v2 through ~vk such that:

(A − λI)~v1 = ~0,
(A − λI)~v2 = ~v1,

...

(A − λI)~vk = ~vk−1.

We form the linearly independent solutions

~x1 = ~v1eλt,

~x2 = (~v2 + ~v1t) eλt,

...

~xk =

(
~vk + ~vk−1t + ~vk−2

t2

2
+ · · · + ~v2

tk−2

(k − 2)!
+ ~v1

tk−1

(k − 1)!

)
eλt.

Recall that k! = 1 · 2 · 3 · · · (k − 1) · k is the factorial. We proceed to find chains until we form m
linearly independent solutions (m is the multiplicity). You may need to find several chains for every
eigenvalue.

3.7.3 Exercises
Exercise 3.7.2: Let A =

[ 5 −3
3 −1

]
. Find the general solution of ~x ′ = A~x.

Exercise 3.7.3: Let A =

[
5 −4 4
0 3 0
−2 4 −1

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.4: Let A =

[
2 1 0
0 2 0
0 0 2

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x in two different ways and verify you get the
same answer.
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Exercise 3.7.5: Let A =

[
0 1 2
−1 −2 −2
−4 4 7

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.6: Let A =

[
0 4 −2
−1 −4 1
0 0 −2

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.7: Let A =

[
2 1 −1
−1 0 2
−1 −2 4

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.8: Suppose that A is a 2 × 2 matrix with a repeated eigenvalue λ. Suppose that there
are two linearly independent eigenvectors. Show that A = λI.

Exercise 3.7.101: Let A =

[
1 1 1
1 1 1
1 1 1

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.102: Let A =

[
1 3 3
1 1 0
−1 1 2

]
. a) What are the eigenvalues? b) What is/are the defect(s) of the

eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.103: Let A =

[
2 0 0
−1 −1 9
0 −1 5

]
. a) What are the eigenvalues? b) What is/are the defect(s) of

the eigenvalue(s)? c) Find the general solution of ~x ′ = A~x.

Exercise 3.7.104: Let A = [ a a
b c ], where a, b, and c are unknowns. Suppose that 5 is a doubled

eigenvalue of defect 1, and suppose that
[ 1

0
]

is the eigenvector. Find A and show that there is only
one solution.
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3.8 Matrix exponentials
Note: 2 lectures, §5.5 in [EP], §7.7 in [BD]

3.8.1 Definition
In this section we present a different way of finding the fundamental matrix solution of a system.
Suppose that we have the constant coefficient equation

~x ′ = P~x,

as usual. Now suppose that this was one equation (P is a number or a 1 × 1 matrix). Then the
solution to this would be

~x = ePt.

It turns out the same computation works for matrices when we define ePt properly. First let us write
down the Taylor series for eat for some number a.

eat = 1 + at +
(at)2

2
+

(at)3

6
+

(at)4

24
+ · · · =

∞∑
k=0

(at)k

k!
.

Recall k! = 1 · 2 · 3 · · · k is the factorial, and 0! = 1. We differentiate this series term by term

d
dt

(
eat) = a + a2t +

a3t2

2
+

a4t3

6
+ · · · = a

(
1 + at +

(at)2

2
+

(at)3

6
+ · · ·

)
= aeat.

Maybe we can write try the same trick here. Suppose that for an n× n matrix A we define the matrix
exponential as

eA def
= I + A +

1
2

A2 +
1
6

A3 + · · · +
1
k!

Ak + · · ·

Let us not worry about convergence. The series really does always converge. We usually write Pt
as tP by convention when P is a matrix. With this small change and by the exact same calculation
as above we have that

d
dt

(
etP

)
= PetP.

Now P and hence etP is an n × n matrix. What we are looking for is a vector. We note that in the
1 × 1 case we would at this point multiply by an arbitrary constant to get the general solution. In the
matrix case we multiply by a column vector ~c.

Theorem 3.8.1. Let P be an n × n matrix. Then the general solution to ~x ′ = P~x is

~x = etP~c,

where ~c is an arbitrary constant vector. In fact ~x(0) = ~c.
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Let us check.
d
dt
~x =

d
dt

(
etP~c

)
= PetP~c = P~x.

Hence etP is the fundamental matrix solution of the homogeneous system. If we find a way
to compute the matrix exponential, we will have another method of solving constant coefficient
homogeneous systems. It also makes it easy to solve for initial conditions. To solve ~x ′ = A~x,
~x(0) = ~b, we take the solution

~x = etA~b.

This equation follows because e0A = I, so ~x(0) = e0A~b = ~b.

We mention a drawback of matrix exponentials. In general eA+B , eAeB. The trouble is that
matrices do not commute, that is, in general AB , BA. If you try to prove eA+B , eAeB using the
Taylor series, you will see why the lack of commutativity becomes a problem. However, it is still
true that if AB = BA, that is, if A and B commute, then eA+B = eAeB. We will find this fact useful.
Let us restate this as a theorem to make a point.

Theorem 3.8.2. If AB = BA, then eA+B = eAeB. Otherwise eA+B , eAeB in general.

3.8.2 Simple cases
In some instances it may work to just plug into the series definition. Suppose the matrix is diagonal.
For example, D =

[ a 0
0 b

]
. Then

Dk =

[
ak 0
0 bk

]
,

and

eD = I + D +
1
2

D2 +
1
6

D3 + · · · =

[
1 0
0 1

]
+

[
a 0
0 b

]
+

1
2

[
a2 0
0 b2

]
+

1
6

[
a3 0
0 b3

]
+ · · · =

[
ea 0
0 eb

]
.

So by this rationale we have that

eI =

[
e 0
0 e

]
and eaI =

[
ea 0
0 ea

]
.

This makes exponentials of certain other matrices easy to compute. Notice for example that the
matrix A =

[ 5 4
−1 1

]
can be written as 3I + B where B =

[ 2 4
−1 −2

]
. Notice that B2 =

[ 0 0
0 0

]
. So Bk = 0

for all k ≥ 2. Therefore, eB = I + B. Suppose we actually want to compute etA. The matrices 3tI
and tB commute (exercise: check this) and etB = I + tB, since (tB)2 = t2B2 = 0. We write

etA = e3tI+tB = e3tIetB =

[
e3t 0
0 e3t

]
(I + tB) =

=

[
e3t 0
0 e3t

] [
1 + 2t 4t
−t 1 − 2t

]
=

[
(1 + 2t) e3t 4te3t

−te3t (1 − 2t) e3t

]
.
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So we have found the fundamental matrix solution for the system ~x ′ = A~x. Note that this matrix has
a repeated eigenvalue with a defect; there is only one eigenvector for the eigenvalue 3. So we have
found a perhaps easier way to handle this case. In fact, if a matrix A is 2 × 2 and has an eigenvalue
λ of multiplicity 2, then either A is diagonal, or A = λI + B where B2 = 0. This is a good exercise.

Exercise 3.8.1: Suppose that A is 2 × 2 and λ is the only eigenvalue. Then show that (A − λI)2 = 0.
Then we can write A = λI + B, where B2 = 0. Hint: First write down what does it mean for the
eigenvalue to be of multiplicity 2. You will get an equation for the entries. Now compute the square
of B.

Matrices B such that Bk = 0 for some k are called nilpotent. Computation of the matrix
exponential for nilpotent matrices is easy by just writing down the first k terms of the Taylor series.

3.8.3 General matrices
In general, the exponential is not as easy to compute as above. We cannot usually write any matrix
as a sum of commuting matrices where the exponential is simple for each one. But fear not, it is still
not too difficult provided we can find enough eigenvectors. First we need the following interesting
result about matrix exponentials. For any two square matrices A and B, we have

eBAB−1
= BeAB−1.

This can be seen by writing down the Taylor series. First note that

(BAB−1)2
= BAB−1BAB−1 = BAIAB−1 = BA2B−1.

And hence by the same reasoning (BAB−1)k
= BAkB−1. Now write down the Taylor series for eBAB−1

.

eBAB−1
= I + BAB−1 +

1
2

(BAB−1)2
+

1
6

(BAB−1)3
+ · · ·

= BB−1 + BAB−1 +
1
2

BA2B−1 +
1
6

BA3B−1 + · · ·

= B
(
I + A +

1
2

A2 +
1
6

A3 + · · ·
)
B−1

= BeAB−1.

Sometimes we can write a matrix A as EDE−1, where D is diagonal. This procedure is called
diagonalization. If we can do that, you can see that the computation of the exponential becomes
easy. Adding t into the mix we see that

etA = EetDE−1.

Now to do this we will need n linearly independent eigenvectors of A. Otherwise this method
does not work and we need to be trickier, but we will not get into such details in this course. We
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let E be the matrix with the eigenvectors as columns. Let λ1, . . . , λn be the eigenvalues and let ~v1,
. . . , ~vn be the eigenvectors, then E = [~v1 ~v2 · · · ~vn ]. Let D be the diagonal matrix with the
eigenvalues on the main diagonal. That is

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
We compute

AE = A[~v1 ~v2 · · · ~vn ]
= [ A~v1 A~v2 · · · A~vn ]
= [ λ1~v1 λ2~v2 · · · λn~vn ]
= [~v1 ~v2 · · · ~vn ]D
= ED.

The columns of E are linearly independent as these are linearly independent eigenvectors of A.
Hence E is invertible. Since AE = ED, we right multiply by E−1 and we get

A = EDE−1.

This means that eA = EeDE−1. Multiplying the matrix by t we obtain

etA = EetDE−1 = E


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 E−1. (3.4)

The formula (3.4), therefore, gives the formula for computing the fundamental matrix solution etA

for the system ~x ′ = A~x, in the case where we have n linearly independent eigenvectors.
Notice that this computation still works when the eigenvalues and eigenvectors are complex,

though then you will have to compute with complex numbers. Note that it is clear from the definition
that if A is real, then etA is real. So you will only need complex numbers in the computation and
you may need to apply Euler’s formula to simplify the result. If simplified properly the final matrix
will not have any complex numbers in it.

Example 3.8.1: Compute the fundamental matrix solution using the matrix exponentials for the
system [

x
y

]′
=

[
1 2
2 1

] [
x
y

]
.
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Then compute the particular solution for the initial conditions x(0) = 4 and y(0) = 2.
Let A be the coefficient matrix

[ 1 2
2 1

]
. We first compute (exercise) that the eigenvalues are 3 and

−1 and corresponding eigenvectors are
[ 1

1
]

and
[ 1
−1

]
. Hence we write

etA =

[
1 1
1 −1

] [
e3t 0
0 e−t

] [
1 1
1 −1

]−1

=

[
1 1
1 −1

] [
e3t 0
0 e−t

]
−1
2

[
−1 −1
−1 1

]
=
−1
2

[
e3t e−t

e3t −e−t

] [
−1 −1
−1 1

]
=
−1
2

[
−e3t − e−t −e3t + e−t

−e3t + e−t −e3t − e−t

]
=

[ e3t+e−t

2
e3t−e−t

2
e3t−e−t

2
e3t+e−t

2

]
.

The initial conditions are x(0) = 4 and y(0) = 2. Hence, by the property that e0A = I we find that
the particular solution we are looking for is etA~b where ~b is

[ 4
2
]
. Then the particular solution we are

looking for is [
x
y

]
=

[ e3t+e−t

2
e3t−e−t

2
e3t−e−t

2
e3t+e−t

2

] [
4
2

]
=

[
2e3t + 2e−t + e3t − e−t

2e3t − 2e−t + e3t + e−t

]
=

[
3e3t + e−t

3e3t − e−t

]
.

3.8.4 Fundamental matrix solutions
We note that if you can compute the fundamental matrix solution in a different way, you can use
this to find the matrix exponential etA. The fundamental matrix solution of a system of ODEs is
not unique. The exponential is the fundamental matrix solution with the property that for t = 0
we get the identity matrix. So we must find the right fundamental matrix solution. Let X be any
fundamental matrix solution to ~x ′ = A~x. Then we claim

etA = X(t) [X(0)]−1 .

Clearly, if we plug t = 0 into X(t) [X(0)]−1 we get the identity. We can multiply a fundamental
matrix solution on the right by any constant invertible matrix and we still get a fundamental matrix
solution. All we are doing is changing what the arbitrary constants are in the general solution
~x(t) = X(t)~c.

3.8.5 Approximations
If you think about it, the computation of any fundamental matrix solution X using the eigenvalue
method is just as difficult as the computation of etA. So perhaps we did not gain much by this
new tool. However, the Taylor series expansion actually gives us a very easy way to approximate
solutions, which the eigenvalue method did not.



134 CHAPTER 3. SYSTEMS OF ODES

The simplest thing we can do is to just compute the series up to a certain number of terms. There
are better ways to approximate the exponential∗. In many cases however, few terms of the Taylor
series give a reasonable approximation for the exponential and may suffice for the application. For
example, let us compute the first 4 terms of the series for the matrix A =

[ 1 2
2 1

]
.

etA ≈ I + tA +
t2

2
A2 +

t3

6
A3 = I + t

[
1 2
2 1

]
+ t2

[5
2 2
2 5

2

]
+ t3

[13
6

7
3

7
3

13
6

]
=

=

[
1 + t + 5

2 t2 + 13
6 t3 2 t + 2 t2 + 7

3 t3

2 t + 2 t2 + 7
3 t3 1 + t + 5

2 t2 + 13
6 t3

]
.

Just like the scalar version of the Taylor series approximation, the approximation will be better for
small t and worse for larger t. For larger t, we will generally have to compute more terms. Let us see
how we stack up against the real solution with t = 0.1. The approximate solution is approximately
(rounded to 8 decimal places)

e0.1 A ≈ I + 0.1 A +
0.12

2
A2 +

0.13

6
A3 =

[
1.12716667 0.22233333
0.22233333 1.12716667

]
.

And plugging t = 0.1 into the real solution (rounded to 8 decimal places) we get

e0.1 A =

[
1.12734811 0.22251069
0.22251069 1.12734811

]
.

This is not bad at all. Although if we take the same approximation for t = 1 we get (using the Taylor
series) [

6.66666667 6.33333333
6.33333333 6.66666667

]
,

while the real value is (again rounded to 8 decimal places)[
10.22670818 9.85882874
9.85882874 10.22670818

]
.

So the approximation is not very good once we get up to t = 1. To get a good approximation at
t = 1 (say up to 2 decimal places) we would need to go up to the 11th power (exercise).

3.8.6 Exercises
Exercise 3.8.2: Using the matrix exponential, find a fundamental matrix solution for the system
x′ = 3x + y, y′ = x + 3y.

∗C. Moler and C.F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years
Later, SIAM Review 45 (1), 2003, 3–49
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Exercise 3.8.3: Find etA for the matrix A =
[ 2 3

0 2
]
.

Exercise 3.8.4: Find a fundamental matrix solution for the system x′1 = 7x1 + 4x2 + 12x3, x′2 =

x1 + 2x2 + x3, x′3 = −3x1 − 2x2 − 5x3. Then find the solution that satisfies ~x =

[
0
1
−2

]
.

Exercise 3.8.5: Compute the matrix exponential eA for A =
[ 1 2

0 1
]
.

Exercise 3.8.6 (challenging): Suppose AB = BA. Show that under this assumption, eA+B = eAeB.

Exercise 3.8.7: Use Exercise 3.8.6 to show that (eA)−1
= e−A. In particular this means that eA is

invertible even if A is not.

Exercise 3.8.8: Suppose A is a matrix with eigenvalues −1, 1, and corresponding eigenvectors
[ 1

1
]
,[ 0

1
]
. a) Find matrix A with these properties. b) Find the fundamental matrix solution to ~x ′ = A~x. c)

Solve the system in with initial conditions ~x(0) =
[ 2

3
]

.

Exercise 3.8.9: Suppose that A is an n × n matrix with a repeated eigenvalue λ of multiplicity n.
Suppose that there are n linearly independent eigenvectors. Show that the matrix is diagonal, in
particular A = λI. Hint: Use diagonalization and the fact that the identity matrix commutes with
every other matrix.

Exercise 3.8.10: Let A =
[
−1 −1
1 −3

]
. a) Find etA. b) Solve ~x ′ = A~x, ~x(0) =

[ 1
−2

]
.

Exercise 3.8.11: Let A =
[ 1 2

3 4
]
. Approximate etA by expanding the power series up to the third

order.

Exercise 3.8.101: Compute etA where A =
[ 1 −2
−2 1

]
.

Exercise 3.8.102: Compute etA where A =

[
1 −3 2
−2 1 2
−1 −3 4

]
.

Exercise 3.8.103: a) Compute etA where A =
[ 3 −1

1 1
]
. b) Solve ~x ′ = A~x for ~x(0) =

[ 1
2
]
.

Exercise 3.8.104: Compute the first 3 terms (up to the second degree) of the Taylor expansion of
etA where A =

[ 2 3
2 2

]
(Write as a single matrix). Then use it to approximate e0.1A.
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3.9 Nonhomogeneous systems
Note: 3 lectures (may have to skip a little), somewhat different from §5.6 in [EP], §7.9 in [BD]

3.9.1 First order constant coefficient
Integrating factor

Let us first focus on the nonhomogeneous first order equation

~x ′(t) = A~x(t) + ~f (t),

where A is a constant matrix. The first method we will look at is the integrating factor method. For
simplicity we rewrite the equation as

~x ′(t) + P~x(t) = ~f (t),

where P = −A. We multiply both sides of the equation by etP (being mindful that we are dealing
with matrices that may not commute) to obtain

etP~x ′(t) + etPP~x(t) = etP ~f (t).

We notice that PetP = etPP. This fact follows by writing down the series definition of etP,

PetP = P
(
I + I + tP +

1
2

(tP)2 + · · ·

)
= P + tP2 +

1
2

t2P3 + · · · =

=

(
I + I + tP +

1
2

(tP)2 + · · ·

)
P = PetP.

We have already seen that d
dt

(
etP

)
= PetP. Hence,

d
dt

(
etP~x(t)

)
= etP ~f (t).

We can now integrate. That is, we integrate each component of the vector separately

etP~x(t) =

∫
etP ~f (t) dt + ~c.

Recall from Exercise 3.8.7 that (etP)−1
= e−tP. Therefore, we obtain

~x(t) = e−tP
∫

etP ~f (t) dt + e−tP~c.
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Perhaps it is better understood as a definite integral. In this case it will be easy to also solve for
the initial conditions as well. Suppose we have the equation with initial conditions

~x ′(t) + P~x(t) = ~f (t), ~x(0) = ~b.

The solution can then be written as

~x(t) = e−tP
∫ t

0
esP ~f (s) ds + e−tP~b. (3.5)

Again, the integration means that each component of the vector esP ~f (s) is integrated separately. It is
not hard to see that (3.5) really does satisfy the initial condition ~x(0) = ~b.

~x(0) = e−0P
∫ 0

0
esP ~f (s) ds + e−0P~b = I~b = ~b.

Example 3.9.1: Suppose that we have the system

x′1 + 5x1 − 3x2 = et,

x′2 + 3x1 − x2 = 0,

with initial conditions x1(0) = 1, x2(0) = 0.
Let us write the system as

~x ′ +
[
5 −3
3 −1

]
~x =

[
et

0

]
, ~x(0) =

[
1
0

]
.

We have previously computed etP for P =
[ 5 −3

3 −1
]
. We immediately have e−tP, simply by negating t.

etP =

[
(1 + 3t) e2t −3te2t

3te2t (1 − 3t) e2t

]
, e−tP =

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

]
.

Instead of computing the whole formula at once. Let us do it in stages. First∫ t

0
esP ~f (s) ds =

∫ t

0

[
(1 + 3s) e2s −3se2s

3se2s (1 − 3s) e2s

] [
es

0

]
ds

=

∫ t

0

[
(1 + 3s) e3s

3se3s

]
ds

=

[
te3t

(3t−1) e3t+1
3

]
.
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Then

~x(t) = e−tP
∫ t

0
esP ~f (s) ds + e−tP~b

=

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

] [
te3t

(3t−1) e3t+1
3

]
+

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

] [
1
0

]
=

[
te−2t

− et

3 +
(

1
3 + t

)
e−2t

]
+

[
(1 − 3t) e−2t

−3te−2t

]
=

[
(1 − 2t) e−2t

− et

3 +
(

1
3 − 2t

)
e−2t

]
.

Phew!
Let us check that this really works.

x′1 + 5x1 − 3x2 = (4te−2t − 4e−2t) + 5(1 − 2t) e−2t + et − (1 − 6t) e−2t = et.

Similarly (exercise) x′2 + 3x1 − x2 = 0. The initial conditions are also satisfied as well (exercise).

For systems, the integrating factor method only works if P does not depend on t, that is, P is
constant. The problem is that in general

d
dt

e
∫

P(t) dt , P(t) e
∫

P(t) dt,

because matrix multiplication is not commutative.

Eigenvector decomposition

For the next method, we note that eigenvectors of a matrix give the directions in which the matrix
acts like a scalar. If we solve our system along these directions these solutions would be simpler as
we can treat the matrix as a scalar. We can put those solutions together to get the general solution.

Take the equation
~x ′(t) = A~x(t) + ~f (t). (3.6)

Assume that A has n linearly independent eigenvectors ~v1, . . . ,~vn. Let us write

~x(t) = ~v1 ξ1(t) + ~v2 ξ2(t) + · · · + ~vn ξn(t). (3.7)

That is, we wish to write our solution as a linear combination of eigenvectors of A. If we can solve
for the scalar functions ξ1 through ξn we have our solution ~x. Let us decompose ~f in terms of the
eigenvectors as well. Write

~f (t) = ~v1 g1(t) + ~v2 g2(t) + · · · + ~vn gn(t). (3.8)
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That is, we wish to find g1 through gn that satisfy (3.8). We note that since all the eigenvectors are
independent, the matrix E = [~v1 ~v2 · · · ~vn ] is invertible. We see that (3.8) can be written as
~f = E~g, where the components of ~g are the functions g1 through gn. Then ~g = E−1 ~f . Hence it is
always possible to find ~g when there are n linearly independent eigenvectors.

We plug (3.7) into (3.6), and note that A~vk = λk~vk.

~x ′ = ~v1 ξ
′
1 + ~v2 ξ

′
2 + · · · + ~vn ξ

′
n

= A
(
~v1 ξ1 + ~v2 ξ2 + · · · + ~vn ξn

)
+ ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= A~v1 ξ1 + A~v2 ξ2 + · · · + A~vn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= ~v1 λ1 ξ1 + ~v2 λ2 ξ2 + · · · + ~vn λn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= ~v1 (λ1 ξ1 + g1) + ~v2 (λ2 ξ2 + g2) + · · · + ~vn (λn ξn + gn).

If we identify the coefficients of the vectors ~v1 through ~vn we get the equations

ξ′1 = λ1 ξ1 + g1,

ξ′2 = λ2 ξ2 + g2,

...

ξ′n = λn ξn + gn.

Each one of these equations is independent of the others. They are all linear first order equations
and can easily be solved by the standard integrating factor method for single equations. That is, for
example for the kth equation we write

ξ′k(t) − λk ξk(t) = gk(t).

We use the integrating factor e−λkt to find that

d
dx

[
ξk(t) e−λkt

]
= e−λktgk(t).

Now we integrate and solve for ξk to get

ξk(t) = eλkt
∫

e−λktgk(t) dt + Ckeλkt.

Note that if we are looking for just any particular solution, we could set Ck to be zero. If we leave
these constants in, we will get the general solution. Write ~x(t) = ~v1 ξ1(t) + ~v2 ξ2(t) + · · · + ~vn ξn(t),
and we are done.

Again, as always, it is perhaps better to write these integrals as definite integrals. Suppose that
we have an initial condition ~x(0) = ~b. We take ~c = E−1~b and note ~b = ~v1 a1 + · · · + ~vn an, just like
before. Then if we write

ξk(t) = eλkt
∫ t

0
e−λk sgk(s) dt + akeλkt,
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we will actually get the particular solution ~x(t) = ~v1ξ1(t) + ~v2ξ2(t) + · · · + ~vnξn(t) satisfying ~x(0) = ~b,
because ξk(0) = ak.

Example 3.9.2: Let A =
[ 1 3

3 1
]
. Solve ~x ′ = A~x + ~f where ~f (t) =

[
2et

2t

]
for ~x(0) =

[
3/16
−5/16

]
.

The eigenvalues of A are −2 and 4 and corresponding eigenvectors are
[ 1
−1

]
and

[ 1
1
]

respectively.
This calculation is left as an exercise. We write down the matrix E of the eigenvectors and compute
its inverse (using the inverse formula for 2 × 2 matrices)

E =

[
1 1
−1 1

]
, E−1 =

1
2

[
1 −1
1 1

]
.

We are looking for a solution of the form ~x =
[ 1
−1

]
ξ1 +

[ 1
1
]
ξ2. We also wish to write ~f in terms

of the eigenvectors. That is we wish to write ~f =
[

2et

2t

]
=

[ 1
−1

]
g1 +

[ 1
1
]
g2. Thus[

g1

g2

]
= E−1

[
2et

2t

]
=

1
2

[
1 −1
1 1

] [
2et

2t

]
=

[
et − t
et + t

]
.

So g1 = et − t and g2 = et + t.
We further want to write ~x(0) in terms of the eigenvectors. That is, we wish to write ~x(0) =[

3/16
−5/16

]
=

[ 1
−1

]
a1 +

[ 1
1
]
a2. Hence [

a1

a2

]
= E−1

[
3/16

−5/16

]
=

[
1/4

−1/16

]
.

So a1 = 1/4 and a2 = −1/16. We plug our ~x into the equation and get that[
1
−1

]
ξ′1 +

[
1
1

]
ξ′2 = A

[
1
−1

]
ξ1 + A

[
1
1

]
ξ2 +

[
1
−1

]
g1 +

[
1
1

]
g2

=

[
1
−1

]
(−2ξ1) +

[
1
1

]
4ξ2 +

[
1
−1

]
(et − t) +

[
1
1

]
(et − t).

We get the two equations

ξ′1 = −2ξ1 + et − t, where ξ1(0) = a1 =
1
4
,

ξ′2 = 4ξ2 + et + t, where ξ2(0) = a2 =
−1
16
.

We solve with integrating factor. Computation of the integral is left as an exercise to the student.
Note that we will need integration by parts.

ξ1 = e−2t
∫

e2t (et − t) dt + C1e−2t =
et

3
−

t
2

+
1
4

+ C1e−2t.



3.9. NONHOMOGENEOUS SYSTEMS 141

C1 is the constant of integration. As ξ1(0) = 1/4, then 1/4 = 1/3 + 1/4 + C1 and hence C1 = −1/3.
Similarly

ξ2 = e4t
∫

e−4t (et + t) dt + C2e4t = −
et

3
−

t
4
−

1
16

+ C2e4t.

As ξ2(0) = 1/16 we have that −1/16 = −1/3 − 1/16 + C2 and hence C2 = 1/3. The solution is

~x(t) =

[
1
−1

] (
et − e−2t

3
+

1 − 2t
4

)
+

[
1
1

] (
e4t − et

3
−

4t + 1
16

)
=

[ e4t−e−2t

3 + 3−12t
16

e−2t+e4t+2et

3 + 4t−5
16

]
.

That is, x1 = e4t−e−2t

3 + 3−12t
16 and x2 = e−2t+e4t+2et

3 + 4t−5
16 .

Exercise 3.9.1: Check that x1 and x2 solve the problem. Check both that they satisfy the differential
equation and that they satisfy the initial conditions.

Undetermined coefficients

We also have the method of undetermined coefficients for systems. The only difference here is that
we will have to take unknown vectors rather than just numbers. Same caveats apply to undetermined
coefficients for systems as for single equations. This method does not always work. Furthermore if
the right hand side is complicated, we will have to solve for lots of variables. Each element of an
unknown vector is an unknown number. So in system of 3 equations if we have say 4 unknown
vectors (this would not be uncommon), then we already have 12 unknown numbers that we need to
solve for. The method can turn into a lot of tedious work. As this method is essentially the same as
it is for single equations, let us just do an example.

Example 3.9.3: Let A =
[
−1 0
−2 1

]
. Find a particular solution of ~x ′ = A~x + ~f where ~f (t) =

[
et

t

]
.

Note that we can solve this system in an easier way (can you see how?), but for the purposes of
the example, let us use the eigenvalue method plus undetermined coefficients.

The eigenvalues of A are −1 and 1 and corresponding eigenvectors are
[ 1

1
]

and
[ 0

1
]

respectively.
Hence our complementary solution is

~xc = α1

[
1
1

]
e−t + α2

[
0
1

]
et,

for some arbitrary constants α1 and α2.
We would want to guess a particular solution of

~x = ~aet + ~bt + ~c.

However, something of the form ~aet appears in the complementary solution. Because we do not
yet know if the vector ~a is a multiple of

[ 0
1
]

we do not know if a conflict arises. It is possible that



142 CHAPTER 3. SYSTEMS OF ODES

there is no conflict, but to be safe we should also try ~btet. Here we find the crux of the difference for
systems. We try both terms ~aet and ~btet in the solution, not just the term ~btet. Therefore, we try

~x = ~aet + ~btet + ~ct + ~d.

Thus we have 8 unknowns. We write ~a =
[

a1
a2

]
, ~b =

[
b1
b2

]
, ~c =

[
c1
c2

]
, and ~d =

[
d1
d2

]
. We plug ~x into the

equation. First let us compute ~x ′.

~x ′ =
(
~a + ~b

)
et + ~btet + ~c =

[
a1 + b1

a2 + b2

]
et +

[
b1

b2

]
tet +

[
c1

c2

]
.

Now ~x ′ must equal A~x + ~f , which is

A~x + ~f = A~aet + A~btet + A~ct + A~d + ~f =

=

[
−a1

−2a1 + a2

]
et +

[
−b1

−2b1 + b2

]
tet +

[
−c1

−2c1 + c2

]
t +

[
−d1

−2d1 + d2

]
+

[
1
0

]
et +

[
0
1

]
t.

We identify the coefficients of et, tet, t and any constant vectors.

a1 + b1 = −a1 + 1,
a2 + b2 = −2a1 + a2,

b1 = −b1,

b2 = −2b1 + b2,

0 = −c1,

0 = −2c1 + c2 + 1,
c1 = −d1,

c2 = −2d1 + d2.

We could write the 8 × 9 augmented matrix and start row reduction, but it is easier to just solve the
equations in an ad hoc manner. Immediately we see that b1 = 0, c1 = 0, d1 = 0. Plugging these
back in, we get that c2 = −1 and d2 = −1. The remaining equations that tell us something are

a1 = −a1 + 1,
a2 + b2 = −2a1 + a2.

So a1 = 1/2 and b2 = −1. Finally, a2 can be arbitrary and still satisfy the equations. We are looking
for just a single solution so presumably the simplest one is when a2 = 0. Therefore,

~x = ~aet + ~btet + ~ct + ~d =

[
1/2

0

]
et +

[
0
−1

]
tet +

[
0
−1

]
t +

[
0
−1

]
=

[ 1
2 et

−tet − t − 1

]
.

That is, x1 = 1
2 et, x2 = −tet − t − 1. We would add this to the complementary solution to get the

general solution of the problem. Notice also that both ~aet and ~btet were really needed.
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Exercise 3.9.2: Check that x1 and x2 solve the problem. Also try setting a2 = 1 and again check
these solutions. What is the difference between the two solutions we can obtain in this way?

As you can see, other than the handling of conflicts, undetermined coefficients works exactly the
same as it did for single equations. However, the computations can get out of hand pretty quickly
for systems. The equation we had done was very simple.

3.9.2 First order variable coefficient
Just as for a single equation, there is the method of variation of parameters. In fact for constant
coefficient systems, this is essentially the same thing as the integrating factor method we discussed
earlier. However, this method will work for any linear system, even if it is not constant coefficient,
provided we can somehow solve the associated homogeneous problem.

Suppose we have the equation
~x ′ = A(t) ~x + ~f (t). (3.9)

Further, suppose that we have solved the associated homogeneous equation ~x ′ = A(t) ~x and found
the fundamental matrix solution X(t). The general solution to the associated homogeneous equation
is X(t)~c for a constant vector ~c. Just like for variation of parameters for single equation we try the
solution to the nonhomogeneous equation of the form

~xp = X(t)~u(t),

where ~u(t) is a vector valued function instead of a constant. Now we substitute into (3.9) to obtain

~xp
′(t) = X′(t)~u(t) + X(t)~u ′(t) = A(t) X(t)~u(t) + ~f (t).

But X(t) is the fundamental matrix solution to the homogeneous problem, so X′(t) = A(t)X(t), and

X′(t)~u(t) + X(t)~u ′(t) = X′(t)~u(t) + ~f (t).

Hence X(t)~u ′(t) = ~f (t). If we compute [X(t)]−1, then ~u ′(t) = [X(t)]−1 ~f (t). We integrate to obtain ~u
and we have the particular solution ~xp = X(t)~u(t). Let us write this as a formula

~xp = X(t)
∫

[X(t)]−1 ~f (t) dt.

Note that if A is constant and we let X(t) = etA, then [X(t)]−1 = e−tA and hence we get a solution
~xp = etA

∫
e−tA ~f (t) dt, which is precisely what we got using the integrating factor method.

Example 3.9.4: Find a particular solution to

~x ′ =
1

t2 + 1

[
t −1
1 t

]
~x +

[
t
1

]
(t2 + 1). (3.10)



144 CHAPTER 3. SYSTEMS OF ODES

Here A = 1
t2+1

[ t −1
1 t

]
is most definitely not constant. Perhaps by a lucky guess, we find that

X =
[ 1 −t

t 1
]

solves X′(t) = A(t)X(t). Once we know the complementary solution we can easily find a
solution to (3.10). First we find

[X(t)]−1 =
1

t2 + 1

[
1 t
−t 1

]
.

Next we know a particular solution to (3.10) is

~xp = X(t)
∫

[X(t)]−1 ~f (t) dt

=

[
1 −t
t 1

] ∫
1

t2 + 1

[
1 t
−t 1

] [
t
1

]
(t2 + 1) dt

=

[
1 −t
t 1

] ∫ [
2t

−t2 + 1

]
dt

=

[
1 −t
t 1

] [
t2

−1
3 t3 + t

]
=

[ 1
3 t4

2
3 t3 + t

]
.

Adding the complementary solution we have that the general solution to (3.10).

~x =

[
1 −t
t 1

] [
c1

c2

]
+

[ 1
3 t4

2
3 t3 + t

]
=

[
c1 − c2t + 1

3 t4

c2 + (c1 + 1) t + 2
3 t3

]
.

Exercise 3.9.3: Check that x1 = 1
3 t4 and x2 = 2

3 t3 + t really solve (3.10).

In the variation of parameters, just like in the integrating factor method we can obtain the general
solution by adding in constants of integration. That is, we will add X(t)~c for a vector of arbitrary
constants. But that is precisely the complementary solution.

3.9.3 Second order constant coefficients
Undetermined coefficients

We have already previously did a simple example of the method of undetermined coefficients for
second order systems in § 3.6. This method is essentially the same as undetermined coefficients for
first order systems. There are some simplifications that we can make, as we did in § 3.6. Let the
equation be

~x ′′ = A~x + ~F(t),

where A is a constant matrix. If ~F(t) is of the form ~F0 cos(ωt), then we can try a solution of the form

~xp = ~c cos(ωt),
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and we do not need to introduce sines.
If the ~F is a sum of cosines, note that we still have the superposition principle. If ~F(t) =

~F0 cos(ω0t) + ~F1 cos(ω1t), then we would try ~a cos(ω0t) for the problem ~x ′′ = A~x + ~F0 cos(ω0t),
and we would try ~b cos(ω1t) for the problem ~x ′′ = A~x + ~F0 cos(ω1t). Then we sum the solutions.

However, if there is duplication with the complementary solution, or the equation is of the form
~x ′′ = A~x ′ + B~x + ~F(t), then we need to do the same thing as we do for first order systems.

You will never go wrong with putting in more terms than needed into your guess. You will find
that the extra coefficients will turn out to be zero. But it is useful to save some time and effort.

Eigenvector decomposition

If we have the system
~x ′′ = A~x + ~F(t),

we can do eigenvector decomposition, just like for first order systems.
Let λ1, . . . , λn be the eigenvalues and ~v1, . . . , ~vn be eigenvectors. Again form the matrix

E = [~v1 · · ·~vn ]. We write

~x(t) = ~v1 ξ1(t) + ~v2 ξ2(t) + · · · + ~vn ξn(t).

We decompose ~F in terms of the eigenvectors

~F(t) = ~v1 g1(t) + ~v2 g2(t) + · · · + ~vn gn(t).

And again ~g = E−1 ~F.
Now we plug in and doing the same thing as before we obtain

~x ′′ = ~v1 ξ
′′
1 + ~v2 ξ

′′
2 + · · · + ~vn ξ

′′
n

= A
(
~v1 ξ1 + ~v2 ξ2 + · · · + ~vn ξn

)
+ ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= A~v1 ξ1 + A~v2 ξ2 + · · · + A~vn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= ~v1 λ1 ξ1 + ~v2 λ2 ξ2 + · · · + ~vn λn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn

= ~v1 (λ1 ξ1 + g1) + ~v2 (λ2 ξ2 + g2) + · · · + ~vn (λn ξn + gn).

We identify the coefficients of the eigenvectors to get the equations

ξ′′1 = λ1 ξ1 + g1,

ξ′′2 = λ2 ξ2 + g2,

...

ξ′′n = λn ξn + gn.

Each one of these equations is independent of the others. We solve each one of these using
the methods of chapter 2. We write ~x(t) = ~v1 ξ1(t) + · · · + ~vn ξn(t), and we are done; we have a
particular solution. If we have found the general solution for ξ1 through ξn, then again ~x(t) =

~v1 ξ1(t) + · · · + ~vn ξn(t) is the general solution (and not just a particular solution).
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Example 3.9.5: Let us do the example from § 3.6 using this method. The equation is

~x ′′ =

[
−3 1
2 −2

]
~x +

[
0
2

]
cos(3t).

The eigenvalues were −1 and −4, with eigenvectors
[ 1

2
]

and
[ 1
−1

]
. Therefore E =

[ 1 1
2 −1

]
and

E−1 = 1
3

[ 1 1
2 −1

]
. Therefore,[

g1

g2

]
= E−1 ~F(t) =

1
3

[
1 1
2 −1

] [
0

2 cos(3t)

]
=

[ 2
3 cos(3t)
−2
3 cos(3t)

]
.

So after the whole song and dance of plugging in, the equations we get are

ξ′′1 = −ξ1 +
2
3

cos(3t),

ξ′′2 = −4 ξ2 −
2
3

cos(3t).

For each we can try the method of undetermined coefficients and try C1 cos(3t) for the first equation
and C2 cos(3t) for the second equation. We plug in to get

−9C1 cos(3t) = −C1 cos(3t) +
2
3

cos(3t),

−9C2 cos(3t) = −4C2 cos(3t) −
2
3

cos(3t).

Each of these equations we solve separately. We get −9C1 = −C1 + 2/3 and −9C2 = −4C2 − 2/3. And
hence C1 = −1/12 and C2 = 2/15. So our particular solution is

~x =

[
1
2

] (
−1
12

cos(3t)
)

+

[
1
−1

] (
2

15
cos(3t)

)
=

[
1/20
−3/10

]
cos(3t).

This solution matches what we got previously in § 3.6.

3.9.4 Exercises
Exercise 3.9.4: Find a particular solution to x′ = x + 2y + 2t, y′ = 3x + 2y− 4, a) using integrating
factor method, b) using eigenvector decomposition, c) using undetermined coefficients.

Exercise 3.9.5: Find the general solution to x′ = 4x + y − 1, y′ = x + 4y − et, a) using integrating
factor method, b) using eigenvector decomposition, c) using undetermined coefficients.

Exercise 3.9.6: Find the general solution to x′′1 = −6x1 + 3x2 + cos(t), x′′2 = 2x1 − 7x2 + 3 cos(t), a)
using eigenvector decomposition, b) using undetermined coefficients.
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Exercise 3.9.7: Find the general solution to x′′1 = −6x1 + 3x2 + cos(2t), x′′2 = 2x1 − 7x2 + 3 cos(2t),
a) using eigenvector decomposition, b) using undetermined coefficients.

Exercise 3.9.8: Take the equation

~x ′ =

[1
t −1
1 1

t

]
~x +

[
t2

−t

]
.

a) Check that

~xc = c1

[
t sin t
−t cos t

]
+ c2

[
t cos t
t sin t

]
is the complementary solution. b) Use variation of parameters to find a particular solution.

Exercise 3.9.101: Find a particular solution to x′ = 5x + 4y + t, y′ = x + 8y− t, a) using integrating
factor method, b) using eigenvector decomposition, c) using undetermined coefficients.

Exercise 3.9.102: Find a particular solution to x′ = y + et, y′ = x + et, a) using integrating factor
method, b) using eigenvector decomposition, c) using undetermined coefficients.

Exercise 3.9.103: Solve x′1 = x2 + t, x′2 = x1 + t with initial conditions x1(0) = 1, x2(0) = 2, using
eigenvector decomposition.

Exercise 3.9.104: Solve x′′1 = −3x1 + x2 + t, x′′2 = 9x1 +5x2 +cos(t) with initial conditions x1(0) = 0,
x2(0) = 0, x′1(0) = 0, x′2(0) = 0, using eigenvector decomposition.
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Chapter 4

Fourier series and PDEs

4.1 Boundary value problems
Note: 2 lectures, similar to §3.8 in [EP], §10.1 and §11.1 in [BD]

4.1.1 Boundary value problems

Before we tackle the Fourier series, we need to study the so-called boundary value problems (or
endpoint problems). For example, suppose we have

x′′ + λx = 0, x(a) = 0, x(b) = 0,

for some constant λ, where x(t) is defined for t in the interval [a, b]. Unlike before, when we
specified the value of the solution and its derivative at a single point, we now specify the value of
the solution at two different points. Note that x = 0 is a solution to this equation, so existence of
solutions is not an issue here. Uniqueness of solutions is another issue. The general solution to
x′′ + λx = 0 will have two arbitrary constants present. It is, therefore, natural (but wrong) to believe
that requiring two conditions will guarantee a unique solution.

Example 4.1.1: Take λ = 1, a = 0, b = π. That is,

x′′ + x = 0, x(0) = 0, x(π) = 0.

Then x = sin t is another solution (besides x = 0) satisfying both boundary conditions. There are
more. Write down the general solution of the differential equation, which is x = A cos t + B sin t.
The condition x(0) = 0 forces A = 0. Letting x(π) = 0 does not give us any more information as
x = B sin t already satisfies both boundary conditions. Hence, there are infinitely many solutions of
the form x = B sin t, where B is an arbitrary constant.

149
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Example 4.1.2: On the other hand, change to λ = 2.

x′′ + 2x = 0, x(0) = 0, x(π) = 0.

Then the general solution is x = A cos(
√

2 t) + B sin(
√

2 t). Letting x(0) = 0 still forces A = 0. We
apply the second condition to find 0 = x(π) = B sin(

√
2 π). As sin(

√
2 π) , 0 we obtain B = 0.

Therefore x = 0 is the unique solution to this problem.

What is going on? We will be interested in finding which constants λ allow a nonzero solution,
and we will be interested in finding those solutions. This problem is an analogue of finding
eigenvalues and eigenvectors of matrices.

4.1.2 Eigenvalue problems
For basic Fourier series theory we will need the following three eigenvalue problems. We will
consider more general equations, but we will postpone this until chapter 5.

x′′ + λx = 0, x(a) = 0, x(b) = 0, (4.1)

x′′ + λx = 0, x′(a) = 0, x′(b) = 0, (4.2)

and
x′′ + λx = 0, x(a) = x(b), x′(a) = x′(b), (4.3)

A number λ is called an eigenvalue of (4.1) (resp. (4.2) or (4.3)) if and only if there exists a nonzero
(not identically zero) solution to (4.1) (resp. (4.2) or (4.3)) given that specific λ. The nonzero
solution we found is called the corresponding eigenfunction.

Note the similarity to eigenvalues and eigenvectors of matrices. The similarity is not just
coincidental. If we think of the equations as differential operators, then we are doing the same exact
thing. For example, let L = − d2

dt2
. We are looking for nonzero functions f satisfying certain endpoint

conditions that solve (L − λ) f = 0. A lot of the formalism from linear algebra can still apply here,
though we will not pursue this line of reasoning too far.

Example 4.1.3: Let us find the eigenvalues and eigenfunctions of

x′′ + λx = 0, x(0) = 0, x(π) = 0.

For reasons that will be clear from the computations, we will have to handle the cases λ > 0,
λ = 0, λ < 0 separately. First suppose that λ > 0, then the general solution to x′′ + λx = 0 is

x = A cos(
√
λ t) + B sin(

√
λ t).

The condition x(0) = 0 implies immediately A = 0. Next

0 = x(π) = B sin(
√
λ π).
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If B is zero, then x is not a nonzero solution. So to get a nonzero solution we must have that
sin(
√
λ π) = 0. Hence,

√
λ π must be an integer multiple of π. In other words,

√
λ = k for a

positive integer k. Hence the positive eigenvalues are k2 for all integers k ≥ 1. The corresponding
eigenfunctions can be taken as x = sin(kt). Just like for eigenvectors, we get all the multiples of an
eigenfunction, so we only need to pick one.

Now suppose that λ = 0. In this case the equation is x′′ = 0 and the general solution is x = At+B.
The condition x(0) = 0 implies that B = 0, and x(π) = 0 implies that A = 0. This means that λ = 0
is not an eigenvalue.

Finally, suppose that λ < 0. In this case we have the general solution

x = A cosh(
√
−λ t) + B sinh(

√
−λ t).

Letting x(0) = 0 implies that A = 0 (recall cosh 0 = 1 and sinh 0 = 0). So our solution must be
x = B sinh(

√
−λ t) and satisfy x(π) = 0. This is only possible if B is zero. Why? Because sinh ξ is

only zero for ξ = 0, you should plot sinh to see this. We can also see this from the definition of sinh.
We get 0 = sinh t = et−e−t

2 . Hence et = e−t, which implies t = −t and that is only true if t = 0. So
there are no negative eigenvalues.

In summary, the eigenvalues and corresponding eigenfunctions are

λk = k2 with an eigenfunction xk = sin(kt) for all integers k ≥ 1.

Example 4.1.4: Let us compute the eigenvalues and eigenfunctions of

x′′ + λx = 0, x′(0) = 0, x′(π) = 0.

Again we will have to handle the cases λ > 0, λ = 0, λ < 0 separately. First suppose that λ > 0.
The general solution to x′′ + λx = 0 is x = A cos(

√
λ t) + B sin(

√
λ t). So

x′ = −A
√
λ sin(

√
λ t) + B

√
λ cos(

√
λ t).

The condition x′(0) = 0 implies immediately B = 0. Next

0 = x′(π) = −A
√
λ sin(

√
λ π).

Again A cannot be zero if λ is to be an eigenvalue, and sin(
√
λ π) is only zero if

√
λ = k for a positive

integer k. Hence the positive eigenvalues are again k2 for all integers k ≥ 1. And the corresponding
eigenfunctions can be taken as x = cos(kt).

Now suppose that λ = 0. In this case the equation is x′′ = 0 and the general solution is x = At+ B
so x′ = A. The condition x′(0) = 0 implies that A = 0. Now x′(π) = 0 also simply implies A = 0.
This means that B could be anything (let us take it to be 1). So λ = 0 is an eigenvalue and x = 1 is a
corresponding eigenfunction.

Finally, let λ < 0. In this case we have the general solution x = A cosh(
√
−λ t) + B sinh(

√
−λ t)

and hence
x′ = A

√
−λ sinh(

√
−λ t) + B

√
−λ cosh(

√
−λ t).
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We have already seen (with roles of A and B switched) that for this to be zero at t = 0 and t = π it
implies that A = B = 0. Hence there are no negative eigenvalues.

In summary, the eigenvalues and corresponding eigenfunctions are

λk = k2 with an eigenfunction xk = cos(kt) for all integers k ≥ 1,

and there is another eigenvalue

λ0 = 0 with an eigenfunction x0 = 1.

The following problem is the one that leads to the general Fourier series.

Example 4.1.5: Let us compute the eigenvalues and eigenfunctions of

x′′ + λx = 0, x(−π) = x(π), x′(−π) = x′(π).

Notice that we have not specified the values or the derivatives at the endpoints, but rather that they
are the same at the beginning and at the end of the interval.

Let us skip λ < 0. The computations are the same as before, and again we find that there are no
negative eigenvalues.

For λ = 0, the general solution is x = At + B. The condition x(−π) = x(π) implies that A = 0
(Aπ + B = −Aπ + B implies A = 0). The second condition x′(−π) = x′(π) says nothing about B and
hence λ = 0 is an eigenvalue with a corresponding eigenfunction x = 1.

For λ > 0 we get that x = A cos(
√
λ t) + B sin(

√
λ t). Now

A cos(−
√
λ π) + B sin(−

√
λ π) = A cos(

√
λ π) + B sin(

√
λ π).

We remember that cos(−θ) = cos(θ) and sin(−θ) = − sin(θ). Therefore,

A cos(
√
λ π) − B sin(

√
λ π) = A cos(

√
λ π) + B sin(

√
λ π).

Hence either B = 0 or sin(
√
λ π) = 0. Similarly (exercise) if we differentiate x and plug in the

second condition we find that A = 0 or sin(
√
λ π) = 0. Therefore, unless we want A and B to both be

zero (which we do not) we must have sin(
√
λ π) = 0. Hence,

√
λ is an integer and the eigenvalues

are yet again λ = k2 for an integer k ≥ 1. In this case, however, x = A cos(kt) + B sin(kt) is an
eigenfunction for any A and any B. So we have two linearly independent eigenfunctions sin(kt) and
cos(kt). Remember that for a matrix we could also have had two eigenvectors corresponding to a
single eigenvalue if the eigenvalue was repeated.

In summary, the eigenvalues and corresponding eigenfunctions are

λk = k2 with the eigenfunctions cos(kt) and sin(kt) for all integers k ≥ 1,
λ0 = 0 with an eigenfunction x0 = 1.
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4.1.3 Orthogonality of eigenfunctions
Something that will be very useful in the next section is the orthogonality property of the eigen-
functions. This is an analogue of the following fact about eigenvectors of a matrix. A matrix is
called symmetric if A = AT . Eigenvectors for two distinct eigenvalues of a symmetric matrix are
orthogonal. That symmetry is required. We will not prove this fact here. The differential operators
we are dealing with act much like a symmetric matrix. We, therefore, get the following theorem.

Theorem 4.1.1. Suppose that x1(t) and x2(t) are two eigenfunctions of the problem (4.1), (4.2) or
(4.3) for two different eigenvalues λ1 and λ2. Then they are orthogonal in the sense that∫ b

a
x1(t)x2(t) dt = 0.

Note that the terminology comes from the fact that the integral is a type of inner product. We
will expand on this in the next section. The theorem has a very short, elegant, and illuminating
proof so let us give it here. First note that we have the following two equations.

x′′1 + λ1x1 = 0 and x′′2 + λ2x2 = 0.

Multiply the first by x2 and the second by x1 and subtract to get

(λ1 − λ2)x1x2 = x′′2 x1 − x2x′′1 .

Now integrate both sides of the equation.

(λ1 − λ2)
∫ b

a
x1x2 dt =

∫ b

a
x′′2 x1 − x2x′′1 dt

=

∫ b

a

d
dt

(
x′2x1 − x2x′1

)
dt

=
[
x′2x1 − x2x′1

]b

t=a
= 0.

The last equality holds because of the boundary conditions. For example, if we consider (4.1) we
have x1(a) = x1(b) = x2(a) = x2(b) = 0 and so x′2x1 − x2x′1 is zero at both a and b. As λ1 , λ2, the
theorem follows.

Exercise 4.1.1 (easy): Finish the theorem (check the last equality in the proof) for the cases (4.2)
and (4.3).

We have seen previously that sin(nt) was an eigenfunction for the problem x′′+λx = 0, x(0) = 0,
x(π) = 0. Hence we have the integral∫ π

0
sin(mt) sin(nt) dt = 0, when m , n.
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Similarly ∫ π

0
cos(mt) cos(nt) dt = 0, when m , n.

And finally we also get ∫ π

−π

sin(mt) sin(nt) dt = 0, when m , n,

∫ π

−π

cos(mt) cos(nt) dt = 0, when m , n,

and ∫ π

−π

cos(mt) sin(nt) dt = 0.

4.1.4 Fredholm alternative
We now touch on a very useful theorem in the theory of differential equations. The theorem holds
in a more general setting than we are going to state it, but for our purposes the following statement
is sufficient. We will give a slightly more general version in chapter 5.

Theorem 4.1.2 (Fredholm alternative∗). Exactly one of the following statements holds. Either

x′′ + λx = 0, x(a) = 0, x(b) = 0 (4.4)

has a nonzero solution, or

x′′ + λx = f (t), x(a) = 0, x(b) = 0 (4.5)

has a unique solution for every function f continuous on [a, b].

The theorem is also true for the other types of boundary conditions we considered. The theorem
means that if λ is not an eigenvalue, the nonhomogeneous equation (4.5) has a unique solution for
every right hand side. On the other hand if λ is an eigenvalue, then (4.5) need not have a solution
for every f , and furthermore, even if it happens to have a solution, the solution is not unique.

We also want to reinforce the idea here that linear differential operators have much in common
with matrices. So it is no surprise that there is a finite dimensional version of Fredholm alternative
for matrices as well. Let A be an n × n matrix. The Fredholm alternative then states that either
(A − λI)~x = ~0 has a nontrivial solution, or (A − λI)~x = ~b has a solution for every ~b.

A lot of intuition from linear algebra can be applied for linear differential operators, but one
must be careful of course. For example, one difference we have already seen is that in general a
differential operator will have infinitely many eigenvalues, while a matrix has only finitely many.

∗Named after the Swedish mathematician Erik Ivar Fredholm (1866 – 1927).

http://en.wikipedia.org/wiki/Fredholm


4.1. BOUNDARY VALUE PROBLEMS 155

4.1.5 Application
Let us consider a physical application of an endpoint problem. Suppose we have a tightly stretched
quickly spinning elastic string or rope of uniform linear density ρ. Let us put this problem into the
xy-plane. The x axis represents the position on the string. The string rotates at angular velocity ω,
so we will assume that the whole xy-plane rotates at angular velocity ω. We will assume that the
string stays in this xy-plane and y will measure its deflection from the equilibrium position, y = 0,
on the x axis. Hence, we will find a graph giving the shape of the string. We will idealize the string
to have no volume to just be a mathematical curve. If we take a small segment and we look at the
tension at the endpoints, we see that this force is tangential and we will assume that the magnitude
is the same at both end points. Hence the magnitude is constant everywhere and we will call its
magnitude T . If we assume that the deflection is small, then we can use Newton’s second law to get
an equation

Ty′′ + ρω2y = 0.

Let L be the length of the string and the string is fixed at the beginning and end points. Hence,
y(0) = 0 and y(L) = 0. See Figure 4.1.

L x

y

y

0

Figure 4.1: Whirling string.

We rewrite the equation as y′′ + ρω2

T y = 0. The setup is similar to Example 4.1.3 on page 150,
except for the interval length being L instead of π. We are looking for eigenvalues of y′′ + λy =

0, y(0) = 0, y(L) = 0 where λ =
ρω2

T . As before there are no nonpositive eigenvalues. With λ > 0, the
general solution to the equation is y = A cos(

√
λ x) + B sin(

√
λ x). The condition y(0) = 0 implies

that A = 0 as before. The condition y(L) = 0 implies that sin(
√
λ L) = 0 and hence

√
λ L = kπ for

some integer k > 0, so
ρω2

T
= λ =

k2π2

L2 .

What does this say about the shape of the string? It says that for all parameters ρ, ω, T not
satisfying the above equation, the string is in the equilibrium position, y = 0. When ρω2

T = k2π2

L2 ,
then the string will “pop out” some distance B at the midpoint. We cannot compute B with the
information we have.

Let us assume that ρ and T are fixed and we are changing ω. For most values of ω the string is
in the equilibrium state. When the angular velocity ω hits a value ω = kπ

√
T

L
√
ρ

, then the string will pop
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out and will have the shape of a sin wave crossing the x axis k times. When ω changes again, the
string returns to the equilibrium position. You can see that the higher the angular velocity the more
times it crosses the x axis when it is popped out.

4.1.6 Exercises
Hint for the following exercises: Note that when λ > 0, then cos

(√
λ (t − a)

)
and sin

(√
λ (t − a)

)
are

also solutions of the homogeneous equation.

Exercise 4.1.2: Compute all eigenvalues and eigenfunctions of x′′ + λx = 0, x(a) = 0, x(b) = 0
(assume a < b).

Exercise 4.1.3: Compute all eigenvalues and eigenfunctions of x′′ + λx = 0, x′(a) = 0, x′(b) = 0
(assume a < b).

Exercise 4.1.4: Compute all eigenvalues and eigenfunctions of x′′ + λx = 0, x′(a) = 0, x(b) = 0
(assume a < b).

Exercise 4.1.5: Compute all eigenvalues and eigenfunctions of x′′ + λx = 0, x(a) = x(b), x′(a) =

x′(b) (assume a < b).

Exercise 4.1.6: We have skipped the case of λ < 0 for the boundary value problem x′′ + λx =

0, x(−π) = x(π), x′(−π) = x′(π). Finish the calculation and show that there are no negative
eigenvalues.

Exercise 4.1.101: Consider a spinning string of length 2 and linear density 0.1 and tension 3. Find
smallest angular velocity when the string pops out.

Exercise 4.1.102: Suppose x′′ + λx = 0 and x(0) = 1, x(1) = 1. Find all λ for which there is more
than one solution. Also find the corresponding solutions (only for the eigenvalues).

Exercise 4.1.103: Suppose x′′ + x = 0 and x(0) = 0, x′(π) = 1. Find all the solution(s) if any exist.

Exercise 4.1.104: Consider x′ + λx = 0 and x(0) = 0, x(1) = 0. Why does it not have any
eigenvalues? Why does any first order equation with two endpoint conditions such as above have
no eigenvalues?

Exercise 4.1.105 (challenging): Suppose x′′′ + λx = 0 and x(0) = 0, x′(0) = 0, x(1) = 0. Suppose
that λ > 0. Find an equation that all such eigenvalues must satisfy. Hint: Note that − 3√

λ is a root of
r3 + λ = 0.
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4.2 The trigonometric series
Note: 2 lectures, §9.1 in [EP], §10.2 in [BD]

4.2.1 Periodic functions and motivation
As motivation for studying Fourier series, suppose we have the problem

x′′ + ω2
0x = f (t), (4.6)

for some periodic function f (t). We have already solved

x′′ + ω2
0x = F0 cos(ωt). (4.7)

One way to solve (4.6) is to decompose f (t) as a sum of cosines (and sines) and then solve many
problems of the form (4.7). We then use the principle of superposition, to sum up all the solutions
we got to get a solution to (4.6).

Before we proceed, let us talk a little bit more in detail about periodic functions. A function
is said to be periodic with period P if f (t) = f (t + P) for all t. For brevity we will say f (t) is
P-periodic. Note that a P-periodic function is also 2P-periodic, 3P-periodic and so on. For example,
cos(t) and sin(t) are 2π-periodic. So are cos(kt) and sin(kt) for all integers k. The constant functions
are an extreme example. They are periodic for any period (exercise).

Normally we will start with a function f (t) defined on some interval [−L, L] and we will want
to extend periodically to make it a 2L-periodic function. We do this extension by defining a new
function F(t) such that for t in [−L, L], F(t) = f (t). For t in [L, 3L], we define F(t) = f (t − 2L), for
t in [−3L,−L], F(t) = f (t + 2L), and so on. We assumed that f (−L) = f (L). We could have also
started with f defined only on the half-open interval (−L, L] and then define f (−L) = f (L).

Example 4.2.1: Define f (t) = 1 − t2 on [−1, 1]. Now extend periodically to a 2-periodic function.
See Figure 4.2 on the following page.

You should be careful to distinguish between f (t) and its extension. A common mistake is to
assume that a formula for f (t) holds for its extension. It can be confusing when the formula for f (t)
is periodic, but with perhaps a different period.

Exercise 4.2.1: Define f (t) = cos t on [−π/2, π/2]. Now take the π-periodic extension and sketch its
graph. How does it compare to the graph of cos t.

4.2.2 Inner product and eigenvector decomposition
Suppose we have a symmetric matrix, that is AT = A. We have said before that the eigenvectors of
A are then orthogonal. Here the word orthogonal means that if ~v and ~w are two distinct (and not
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Figure 4.2: Periodic extension of the function 1 − t2.

multiples of each other) eigenvectors of A, then 〈~v, ~w〉 = 0. In this case the inner product 〈~v, ~w〉 is
the dot product, which can be computed as ~vT ~w.

To decompose a vector ~v in terms of mutually orthogonal vectors ~w1 and ~w2 we write

~v = a1~w1 + a2~w2.

Let us find the formula for a1 and a2. First let us compute

〈~v, ~w1〉 = 〈a1~w1 + a2~w2, ~w1〉 = a1〈~w1, ~w1〉 + a2〈~w2, ~w1〉 = a1〈~w1, ~w1〉.

Therefore,

a1 =
〈~v, ~w1〉

〈~w1, ~w1〉
.

Similarly

a2 =
〈~v, ~w2〉

〈~w2, ~w2〉
.

You probably remember this formula from vector calculus.

Example 4.2.2: Write ~v =
[ 2

3
]

as a linear combination of ~w1 =
[ 1
−1

]
and ~w2 =

[ 1
1
]
.

First note that ~w1 and ~w2 are orthogonal as 〈~w1, ~w2〉 = 1(1) + (−1)1 = 0. Then

a1 =
〈~v, ~w1〉

〈~w1, ~w1〉
=

2(1) + 3(−1)
1(1) + (−1)(−1)

=
−1
2
,

a2 =
〈~v, ~w2〉

〈~w2, ~w2〉
=

2 + 3
1 + 1

=
5
2
.

Hence [
2
3

]
=
−1
2

[
1
−1

]
+

5
2

[
1
1

]
.
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4.2.3 The trigonometric series
Instead of decomposing a vector in terms of eigenvectors of a matrix, we will decompose a function
in terms of eigenfunctions of a certain eigenvalue problem. The eigenvalue problem we will use for
the Fourier series is

x′′ + λx = 0, x(−π) = x(π), x′(−π) = x′(π).

We have previously computed that the eigenfunctions are 1, cos(kt), sin(kt). That is, we will want to
find a representation of a 2π-periodic function f (t) as

f (t) =
a0

2
+

∞∑
n=1

an cos(nt) + bn sin(nt).

This series is called the Fourier series† or the trigonometric series for f (t). We write the coefficient
of the eigenfunction 1 as a0

2 for convenience. We could also think of 1 = cos(0t), so that we only
need to look at cos(kt) and sin(kt).

As for matrices we will want to find a projection of f (t) onto the subspace generated by the
eigenfunctions. So we will want to define an inner product of functions. For example, to find an we
want to compute 〈 f (t) , cos(nt) 〉. We define the inner product as

〈 f (t) , g(t) 〉 def
=

∫ π

−π

f (t) g(t) dt.

With this definition of the inner product, we have seen in the previous section that the eigenfunctions
cos(kt) (including the constant eigenfunction), and sin(kt) are orthogonal in the sense that

〈 cos(mt) , cos(nt) 〉 = 0 for m , n,
〈 sin(mt) , sin(nt) 〉 = 0 for m , n,
〈 sin(mt) , cos(nt) 〉 = 0 for all m and n.

By elementary calculus for n = 1, 2, 3, . . . we have 〈 cos(nt) , cos(nt) 〉 = π and 〈 sin(nt) , sin(nt) 〉 =

π. For the constant we get that 〈 1 , 1 〉 = 2π. The coefficients are given by

an =
〈 f (t) , cos(nt) 〉
〈 cos(nt) , cos(nt) 〉

=
1
π

∫ π

−π

f (t) cos(nt) dt,

bn =
〈 f (t) , sin(nt) 〉
〈 sin(nt) , sin(nt) 〉

=
1
π

∫ π

−π

f (t) sin(nt) dt.

Compare these expressions with the finite-dimensional example. For a0 we get a similar formula

a0 = 2
〈 f (t) , 1 〉
〈 1 , 1 〉

=
1
π

∫ π

−π

f (t) dt.

†Named after the French mathematician Jean Baptiste Joseph Fourier (1768 – 1830).

http://en.wikipedia.org/wiki/Joseph_Fourier
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Let us check the formulas using the orthogonality properties. Suppose for a moment that

f (t) =
a0

2
+

∞∑
n=1

an cos(nt) + bn sin(nt).

Then for m ≥ 1 we have

〈 f (t) , cos(mt) 〉 =
〈 a0

2
+

∞∑
n=1

an cos(nt) + bn sin(nt) , cos(mt)
〉

=
a0

2
〈 1 , cos(mt) 〉 +

∞∑
n=1

an〈 cos(nt) , cos(mt) 〉 + bn〈 sin(nt) , cos(mt) 〉

= am〈 cos(mt) , cos(mt) 〉.

And hence am =
〈 f (t) , cos(mt) 〉
〈 cos(mt) , cos(mt) 〉 .

Exercise 4.2.2: Carry out the calculation for a0 and bm.

Example 4.2.3: Take the function
f (t) = t

for t in (−π, π]. Extend f (t) periodically and write it as a Fourier series. This function is called the
sawtooth.
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Figure 4.3: The graph of the sawtooth function.

The plot of the extended periodic function is given in Figure 4.3. Let us compute the coefficients.
We start with a0,

a0 =
1
π

∫ π

−π

t dt = 0.
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We will often use the result from calculus that says that the integral of an odd function over a
symmetric interval is zero. Recall that an odd function is a function ϕ(t) such that ϕ(−t) = −ϕ(t).
For example the functions t, sin t, or (importantly for us) t cos(nt) are all odd functions. Thus

an =
1
π

∫ π

−π

t cos(nt) dt = 0.

Let us move to bn. Another useful fact from calculus is that the integral of an even function over a
symmetric interval is twice the integral of the same function over half the interval. Recall an even
function is a function ϕ(t) such that ϕ(−t) = ϕ(t). For example t sin(nt) is even.

bn =
1
π

∫ π

−π

t sin(nt) dt

=
2
π

∫ π

0
t sin(nt) dt

=
2
π

( [
−t cos(nt)

n

]π
t=0

+
1
n

∫ π

0
cos(nt) dt

)
=

2
π

(
−π cos(nπ)

n
+ 0

)
=
−2 cos(nπ)

n
=

2 (−1)n+1

n
.

We have used the fact that

cos(nπ) = (−1)n =

1 if n even,
−1 if n odd.

The series, therefore, is
∞∑

n=1

2 (−1)n+1

n
sin(nt).

Let us write out the first 3 harmonics of the series for f (t).

2 sin(t) − sin(2t) +
2
3

sin(3t) + · · ·

The plot of these first three terms of the series, along with a plot of the first 20 terms is given in
Figure 4.4 on the following page.

Example 4.2.4: Take the function

f (t) =

0 if −π < t ≤ 0,
π if 0 < t ≤ π.
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Figure 4.4: First 3 (left graph) and 20 (right graph) harmonics of the sawtooth function.
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Figure 4.5: The graph of the square wave function.

Extend f (t) periodically and write it as a Fourier series. This function or its variants appear often in
applications and the function is called the square wave.

The plot of the extended periodic function is given in Figure 4.5. Now we compute the
coefficients. Let us start with a0

a0 =
1
π

∫ π

−π

f (t) dt =
1
π

∫ π

0
π dt = π.

Next,

an =
1
π

∫ π

−π

f (t) cos(nt) dt =
1
π

∫ π

0
π cos(nt) dt = 0.



4.2. THE TRIGONOMETRIC SERIES 163

And finally

bn =
1
π

∫ π

−π

f (t) sin(nt) dt

=
1
π

∫ π

0
π sin(nt) dt

=

[
− cos(nt)

n

]π
t=0

=
1 − cos(πn)

n
=

1 − (−1)n

n
=

2
n if n is odd,
0 if n is even.

The Fourier series is

π

2
+

∞∑
n=1

n odd

2
n

sin(nt) =
π

2
+

∞∑
k=1

2
2k − 1

sin
(
(2k − 1) t

)
.

Let us write out the first 3 harmonics of the series for f (t).

π

2
+ 2 sin(t) +

2
3

sin(3t) + · · ·

The plot of these first three and also of the first 20 terms of the series is given in Figure 4.6.
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Figure 4.6: First 3 (left graph) and 20 (right graph) harmonics of the square wave function.

We have so far skirted the issue of convergence. For example, if f (t) is the square wave function,
the equation

f (t) =
π

2
+

∞∑
k=1

2
2k − 1

sin
(
(2k − 1) t

)
.
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is only an equality for such t where f (t) is continuous. That is, we do not get an equality for
t = −π, 0, π and all the other discontinuities of f (t). It is not hard to see that when t is an integer
multiple of π (which includes all the discontinuities), then

π

2
+

∞∑
k=1

2
2k − 1

sin
(
(2k − 1) t

)
=
π

2
.

We redefine f (t) on [−π, π] as

f (t) =


0 if −π < t < 0,
π if 0 < t < π,
π/2 if t = −π, t = 0, or t = π,

and extend periodically. The series equals this extended f (t) everywhere, including the disconti-
nuities. We will generally not worry about changing the function values at several (finitely many)
points.

We will say more about convergence in the next section. Let us however mention briefly an
effect of the discontinuity. Let us zoom in near the discontinuity in the square wave. Further, let
us plot the first 100 harmonics, see Figure 4.7. You will notice that while the series is a very good
approximation away from the discontinuities, the error (the overshoot) near the discontinuity at
t = π does not seem to be getting any smaller. This behavior is known as the Gibbs phenomenon.
The region where the error is large does get smaller, however, the more terms in the series we take.
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Figure 4.7: Gibbs phenomenon in action.

We can think of a periodic function as a “signal” being a superposition of many signals of pure
frequency. For example, we could think of the square wave as a tone of certain base frequency. It
will be, in fact, a superposition of many different pure tones of frequencies that are multiples of the
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base frequency. On the other hand a simple sine wave is only the pure tone. The simplest way to
make sound using a computer is the square wave, and the sound will be a very different from nice
pure tones. If you have played video games from the 1980s or so, then you have heard what square
waves sound like.

4.2.4 Exercises
Exercise 4.2.3: Suppose f (t) is defined on [−π, π] as sin(5t) + cos(3t). Extend periodically and
compute the Fourier series of f (t).

Exercise 4.2.4: Suppose f (t) is defined on [−π, π] as |t|. Extend periodically and compute the
Fourier series of f (t).

Exercise 4.2.5: Suppose f (t) is defined on [−π, π] as |t|3. Extend periodically and compute the
Fourier series of f (t).

Exercise 4.2.6: Suppose f (t) is defined on (−π, π] as

f (t) =

−1 if −π < t ≤ 0,
1 if 0 < t ≤ π.

Extend periodically and compute the Fourier series of f (t).

Exercise 4.2.7: Suppose f (t) is defined on (−π, π] as t3. Extend periodically and compute the
Fourier series of f (t).

Exercise 4.2.8: Suppose f (t) is defined on [−π, π] as t2. Extend periodically and compute the
Fourier series of f (t).

There is another form of the Fourier series using complex exponentials that is sometimes easier
to work with.

Exercise 4.2.9: Let

f (t) =
a0

2
+

∞∑
n=1

an cos(nt) + bn sin(nt).

Use Euler’s formula eiθ = cos(θ) + i sin(θ) to show that there exist complex numbers cm such that

f (t) =

∞∑
m=−∞

cmeimt.

Note that the sum now ranges over all the integers including negative ones. Do not worry about
convergence in this calculation. Hint: It may be better to start from the complex exponential form
and write the series as

c0 +

∞∑
m=1

cmeimt + c−me−imt.
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Exercise 4.2.101: Suppose f (t) is defined on [−π, π] as f (t) = sin(t). Extend periodically and
compute the Fourier series.

Exercise 4.2.102: Suppose f (t) is defined on (−π, π] as f (t) = sin(πt). Extend periodically and
compute the Fourier series.

Exercise 4.2.103: Suppose f (t) is defined on (−π, π] as f (t) = sin2(t). Extend periodically and
compute the Fourier series.

Exercise 4.2.104: Suppose f (t) is defined on (−π, π] as f (t) = t4. Extend periodically and compute
the Fourier series.
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4.3 More on the Fourier series
Note: 2 lectures, §9.2 – §9.3 in [EP], §10.3 in [BD]

Before reading the lecture, it may be good to first try Project IV (Fourier series) from the
IODE website: http://www.math.uiuc.edu/iode/. After reading the lecture it may be good to
continue with Project V (Fourier series again).

4.3.1 2L-periodic functions
We have computed the Fourier series for a 2π-periodic function, but what about functions of different
periods. Well, fear not, the computation is a simple case of change of variables. We can just rescale
the independent axis. Suppose that you have the 2L-periodic function f (t) (L is called the half
period). Let s = π

L t. Then the function

g(s) = f
(L
π

s
)

is 2π-periodic. We want to also rescale all our sines and cosines. We want to write

f (t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)
.

If we change variables to s we see that

g(s) =
a0

2
+

∞∑
n=1

an cos(ns) + bn sin(ns).

We can compute an and bn as before. After we write down the integrals we change variables from s
back to t.

a0 =
1
π

∫ π

−π

g(s) ds =
1
L

∫ L

−L
f (t) dt,

an =
1
π

∫ π

−π

g(s) cos(ns) ds =
1
L

∫ L

−L
f (t) cos

(nπ
L

t
)

dt,

bn =
1
π

∫ π

−π

g(s) sin(ns) ds =
1
L

∫ L

−L
f (t) sin

(nπ
L

t
)

dt.

The two most common half periods that show up in examples are π and 1 because of the
simplicity. We should stress that we have done no new mathematics, we have only changed
variables. If you understand the Fourier series for 2π-periodic functions, you understand it for 2L-
periodic functions. All that we are doing is moving some constants around, but all the mathematics
is the same.

http://www.math.uiuc.edu/iode/
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Example 4.3.1: Let
f (t) = |t| for −1 < t ≤ 1,

extended periodically. The plot of the periodic extension is given in Figure 4.8. Compute the Fourier
series of f (t).
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Figure 4.8: Periodic extension of the function f (t).

We want to write f (t) = a0
2 +

∑∞
n=1 an cos(nπt) + bn sin(nπt). For n ≥ 1 we note that |t| cos(nπt)

is even and hence

an =

∫ 1

−1
f (t) cos(nπt) dt

= 2
∫ 1

0
t cos(nπt) dt

= 2
[ t
nπ

sin(nπt)
]1

t=0
− 2

∫ 1

0

1
nπ

sin(nπt) dt

= 0 +
1

n2π2

[
cos(nπt)

]1

t=0
=

2
(
(−1)n − 1

)
n2π2 =

0 if n is even,
−4

n2π2 if n is odd.

Next we find a0

a0 =

∫ 1

−1
|t| dt = 1.

You should be able to find this integral by thinking about the integral as the area under the graph
without doing any computation at all. Finally we can find bn. Here, we notice that |t| sin(nπt) is odd
and, therefore,

bn =

∫ 1

−1
f (t) sin(nπt) dt = 0.
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Hence, the series is
1
2

+

∞∑
n=1

n odd

−4
n2π2 cos(nπt).

Let us explicitly write down the first few terms of the series up to the 3rd harmonic.

1
2
−

4
π2 cos(πt) −

4
9π2 cos(3πt) − · · ·

The plot of these few terms and also a plot up to the 20th harmonic is given in Figure 4.9. You
should notice how close the graph is to the real function. You should also notice that there is no
“Gibbs phenomenon” present as there are no discontinuities.
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Figure 4.9: Fourier series of f (t) up to the 3rd harmonic (left graph) and up to the 20th harmonic
(right graph).

4.3.2 Convergence
We will need the one sided limits of functions. We will use the following notation

f (c−) = lim
t↑c

f (t), and f (c+) = lim
t↓c

f (t).

If you are unfamiliar with this notation, limt↑c f (t) means we are taking a limit of f (t) as t approaches
c from below (i.e. t < c) and limt↓c f (t) means we are taking a limit of f (t) as t approaches c from
above (i.e. t > c). For example, for the square wave function

f (t) =

0 if −π < t ≤ 0,
π if 0 < t ≤ π,

(4.8)
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we have f (0−) = 0 and f (0+) = π.
Let f (t) be a function defined on an interval [a, b]. Suppose that we find finitely many points

a = t0, t1, t2, . . . , tk = b in the interval, such that f (t) is continuous on the intervals (t0, t1), (t1, t2),
. . . , (tk−1, tk). Also suppose that all the one sided limits exist, that is, all of f (t0+), f (t1−), f (t1+),
f (t2−), f (t2+), . . . , f (tk−) exist and are finite. Then we say f (t) is piecewise continuous.

If moreover, f (t) is differentiable at all but finitely many points, and f ′(t) is piecewise continuous,
then f (t) is said to be piecewise smooth.

Example 4.3.2: The square wave function (4.8) is piecewise smooth on [−π, π] or any other interval.
In such a case we simply say that the function is piecewise smooth.

Example 4.3.3: The function f (t) = |t| is piecewise smooth.

Example 4.3.4: The function f (t) = 1
t is not piecewise smooth on [−1, 1] (or any other interval

containing zero). In fact, it is not even piecewise continuous.

Example 4.3.5: The function f (t) =
3√t is not piecewise smooth on [−1, 1] (or any other interval

containing zero). f (t) is continuous, but the derivative of f (t) is unbounded near zero and hence not
piecewise continuous.

Piecewise smooth functions have an easy answer on the convergence of the Fourier series.

Theorem 4.3.1. Suppose f (t) is a 2L-periodic piecewise smooth function. Let

a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)

be the Fourier series for f (t). Then the series converges for all t. If f (t) is continuous near t, then

f (t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)
.

Otherwise
f (t−) + f (t+)

2
=

a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)
.

If we happen to have that f (t) =
f (t−)+ f (t+)

2 at all the discontinuities, the Fourier series converges
to f (t) everywhere. We can always just redefine f (t) by changing the value at each discontinuity
appropriately. Then we can write an equals sign between f (t) and the series without any worry. We
mentioned this fact briefly at the end last section.

Note that the theorem does not say how fast the series converges. Think back the discussion of
the Gibbs phenomenon in last section. The closer you get to the discontinuity, the more terms you
need to take to get an accurate approximation to the function.
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4.3.3 Differentiation and integration of Fourier series
Not only does Fourier series converge nicely, but it is easy to differentiate and integrate the series.
We can do this just by differentiating or integrating term by term.

Theorem 4.3.2. Suppose

f (t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)

is a piecewise smooth continuous function and the derivative f ′(t) is piecewise smooth. Then the
derivative can be obtained by differentiating term by term,

f ′(t) =

∞∑
n=1

−annπ
L

sin
(nπ

L
t
)

+
bnnπ

L
cos

(nπ
L

t
)
.

It is important that the function is continuous. It can have corners, but no jumps. Otherwise the
differentiated series will fail to converge. For an exercise, take the series obtained for the square
wave and try to differentiate the series. Similarly, we can also integrate a Fourier series.

Theorem 4.3.3. Suppose

f (t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)

is a piecewise smooth function. Then the antiderivative is obtained by antidifferentiating term by
term and so

F(t) =
a0t
2

+ C +

∞∑
n=1

anL
nπ

sin
(nπ

L
t
)

+
−bnL

nπ
cos

(nπ
L

t
)
,

where F′(t) = f (t) and C is an arbitrary constant.

Note that the series for F(t) is no longer a Fourier series as it contains the a0t
2 term. The

antiderivative of a periodic function need no longer be periodic and so we should not expect a
Fourier series.

4.3.4 Rates of convergence and smoothness
Let us do an example of a periodic function with one derivative everywhere.

Example 4.3.6: Take the function

f (t) =

(t + 1) t if −1 < t ≤ 0,
(1 − t) t if 0 < t ≤ 1,

and extend to a 2-periodic function. The plot is given in Figure 4.10 on the following page.
Note that this function has one derivative everywhere, but it does not have a second derivative

derivative whenever t is an integer.
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Figure 4.10: Smooth 2-periodic function.

Exercise 4.3.1: Compute f ′′(0+) and f ′′(0−).

Let us compute the Fourier series coefficients. The actual computation involves several integra-
tion by parts and is left to student.

a0 =

∫ 1

−1
f (t) dt =

∫ 0

−1
(t + 1) t dt +

∫ 1

0
(1 − t) t dt = 0,

an =

∫ 1

−1
f (t) cos(nπt) dt =

∫ 0

−1
(t + 1) t cos(nπt) dt +

∫ 1

0
(1 − t) t cos(nπt) dt = 0

bn =

∫ 1

−1
f (t) sin(nπt) dt =

∫ 0

−1
(t + 1) t sin(nπt) dt +

∫ 1

0
(1 − t) t sin(nπt) dt

=
4(1 − (−1)n)

π3n3 =

 8
π3n3 if n is odd,
0 if n is even.

That is, the series is
∞∑

n=1
n odd

8
π3n3 sin(nπt).

This series converges very fast. If you plot up to the third harmonic, that is the function

8
π3 sin(πt) +

8
27π3 sin(3πt),

it is almost indistinguishable from the plot of f (t) in Figure 4.10. In fact, the coefficient 8
27π3 is

already just 0.0096 (approximately). The reason for this behavior is the n3 term in the denominator.
The coefficients bn in this case go to zero as fast as 1

n3 goes to zero.
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It is a general fact that if you have one derivative, the Fourier coefficients will go to zero
approximately like 1

n3 . If you have only a continuous function, then the Fourier coefficients will go
to zero as 1

n2 . If you have discontinuities, then the Fourier coefficients will go to zero approximately
as 1

n . Therefore, we can tell a lot about the smoothness of a function by looking at its Fourier
coefficients.

To justify this behavior take for example the function defined by the Fourier series

f (t) =

∞∑
n=1

1
n3 sin(nt).

When we differentiate term by term we notice

f ′(t) =

∞∑
n=1

1
n2 cos(nt).

Therefore, the coefficients now go down like 1
n2 , which we said means that we have a continuous

function. The derivative of f ′(t) is defined at most points, but there are points where f ′(t) is not
differentiable. It has corners, but no jumps. If we differentiate again (where we can) we find that the
function f ′′(t), now fails to be continuous (has jumps)

f ′′(t) =

∞∑
n=1

−1
n

sin(nt).

This function is similar to the sawtooth. If we tried to differentiate again we would obtain

∞∑
n=1

− cos(nt),

which does not converge!

Exercise 4.3.2: Use a computer to plot f (t), f ′(t) and f ′′(t). That is, plot say the first 5 harmonics
of the functions. At what points does f ′′(t) have the discontinuities.

4.3.5 Exercises
Exercise 4.3.3: Let

f (t) =

0 if −1 < t ≤ 0,
t if 0 < t ≤ 1,

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic.
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Exercise 4.3.4: Let

f (t) =

−t if −1 < t ≤ 0,
t2 if 0 < t ≤ 1,

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic.

Exercise 4.3.5: Let

f (t) =

−t
10 if −10 < t ≤ 0,
t

10 if 0 < t ≤ 10,

extended periodically (period is 20). a) Compute the Fourier series for f (t). b) Write out the series
explicitly up to the 3rd harmonic.

Exercise 4.3.6: Let f (t) =
∑∞

n=1
1
n3 cos(nt). Is f (t) continuous and differentiable everywhere? Find

the derivative (if it exists everywhere) or justify why f (t) is not differentiable everywhere.

Exercise 4.3.7: Let f (t) =
∑∞

n=1
(−1)n

n sin(nt). Is f (t) differentiable everywhere? Find the derivative
(if it exists everywhere) or justify why f (t) is not differentiable everywhere.

Exercise 4.3.8: Let

f (t) =


0 if −2 < t ≤ 0,
t if 0 < t ≤ 1,
−t + 2 if 1 < t ≤ 2,

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic.

Exercise 4.3.9: Let
f (t) = et for −1 < t < 1

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic. c) What does the series converge to at t = 1.

Exercise 4.3.101: Let
f (t) = t2 for −2 < t ≤ 2

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic.

Exercise 4.3.102: Let
f (t) = t for λ < t ≤ λ (for some λ)

extended periodically. a) Compute the Fourier series for f (t). b) Write out the series explicitly up to
the 3rd harmonic.
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Exercise 4.3.103: Let

f (t) =
1
2

+

∞∑
n=1

1
n(n + 1)

sin(nπt).

Compute f ′(t).

Exercise 4.3.104: Let

f (t) =
1
2

+

∞∑
n=1

1
n3 cos(nt).

a) Find the antiderivative. b) Is the antiderivative periodic?
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4.4 Sine and cosine series
Note: 2 lectures, §9.3 in [EP], §10.4 in [BD]

4.4.1 Odd and even periodic functions
You may have noticed by now that an odd function has no cosine terms in the Fourier series and an
even function has no sine terms in the Fourier series. This observation is not a coincidence. Let us
look at even and odd periodic function in more detail.

Recall that a function f (t) is odd if f (−t) = − f (t). A function f (t) is even if f (−t) = f (t). For
example, cos(nt) is even and sin(nt) is odd. Similarly the function tk is even if k is even and odd
when k is odd.

Exercise 4.4.1: Take two functions f (t) and g(t) and define their product h(t) = f (t)g(t). a) Suppose
both are odd, is h(t) odd or even? b) Suppose one is even and one is odd, is h(t) odd or even? c)
Suppose both are even, is h(t) odd or even?

If f (t) and g(t) are both odd, then f (t) + g(t) is odd. Similarly for even functions. On the other
hand, if f (t) is odd and g(t) even, then we cannot say anything about the sum f (t) + g(t). In fact, the
Fourier series of any function is a sum of an odd (the sine terms) and an even (the cosine terms)
function.

In this section we are interested in odd and even periodic functions. We have previously defined
the 2L-periodic extension of a function defined on the interval [−L, L]. Sometimes we are only
interested in the function on the range [0, L] and it would be convenient to have an odd (resp. even)
function. If the function is odd (resp. even), all the cosine (resp. sine) terms will disappear. What
we will do is take the odd (resp. even) extension of the function to [−L, L] and then we extend
periodically to a 2L-periodic function.

Take a function f (t) defined on [0, L]. On (−L, L] define the functions

Fodd(t) def
=

 f (t) if 0 ≤ t ≤ L,
− f (−t) if −L < t < 0,

Feven(t) def
=

 f (t) if 0 ≤ t ≤ L,
f (−t) if −L < t < 0.

Extend Fodd(t) and Feven(t) to be 2L-periodic. Then Fodd(t) is called the odd periodic extension of
f (t), and Feven(t) is called the even periodic extension of f (t).

Exercise 4.4.2: Check that Fodd(t) is odd and that Feven(t) is even.

Example 4.4.1: Take the function f (t) = t (1 − t) defined on [0, 1]. Figure 4.11 on the facing page
shows the plots of the odd and even extensions of f (t).
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Figure 4.11: Odd and even 2-periodic extension of f (t) = t (1 − t), 0 ≤ t ≤ 1.

4.4.2 Sine and cosine series

Let f (t) be an odd 2L-periodic function. We write the Fourier series for f (t). We compute the
coefficients an (including n = 0) and get

an =
1
L

∫ L

−L
f (t) cos

(nπ
L

t
)

dt = 0.

That is, there are no cosine terms in the Fourier series of an odd function. The integral is zero
because f (t) cos (nπL t) is an odd function (product of an odd and an even function is odd) and the
integral of an odd function over a symmetric interval is always zero. Furthermore, the integral of an
even function over a symmetric interval [−L, L] is twice the integral of the function over the interval
[0, L]. The function f (t) sin

(
nπ
L t

)
is the product of two odd functions and hence even.

bn =
1
L

∫ L

−L
f (t) sin

(nπ
L

t
)

dt =
2
L

∫ L

0
f (t) sin

(nπ
L

t
)

dt.

We can now write the Fourier series of f (t) as

∞∑
n=1

bn sin
(nπ

L
t
)
.

Similarly, if f (t) is an even 2L-periodic function. For the same exact reasons as above, we find
that bn = 0 and

an =
2
L

∫ L

0
f (t) cos

(nπ
L

t
)

dt.
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The formula still works for n = 0 in which case it becomes

a0 =
2
L

∫ L

0
f (t) dt.

The Fourier series is then
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)
.

An interesting consequence is that the coefficients of the Fourier series of an odd (or even)
function can be computed by just integrating over the half interval [0, L]. Therefore, we can compute
the Fourier series of the odd (or even) extension of a function by computing certain integrals over
the interval where the original function is defined.

Theorem 4.4.1. Let f (t) be a piecewise smooth function defined on [0, L]. Then the odd extension
of f (t) has the Fourier series

Fodd(t) =

∞∑
n=1

bn sin
(nπ

L
t
)
,

where

bn =
2
L

∫ L

0
f (t) sin

(nπ
L

t
)

dt.

The even extension of f (t) has the Fourier series

Feven(t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)
,

where

an =
2
L

∫ L

0
f (t) cos

(nπ
L

t
)

dt.

The series
∑∞

n=1 bn sin
(

nπ
L t

)
is called the sine series of f (t) and the series a0

2 +
∑∞

n=1 an cos
(

nπ
L t

)
is called the cosine series of f (t). It is often the case that we do not actually care what happens
outside of [0, L]. In this case, we can pick whichever series fits our problem better.

It is not necessary to start with the full Fourier series to obtain the sine and cosine series. The
sine series is really the eigenfunction expansion of f (t) using the eigenfunctions of the eigenvalue
problem x′′ + λx = 0, x(0) = 0, x(L) = L. The cosine series is the eigenfunction expansion of f (t)
using the eigenfunctions of the eigenvalue problem x′′ + λx = 0, x′(0) = 0, x′(L) = L. We could
have, therefore, have gotten the same formulas by defining the inner product

〈 f (t), g(t)〉 =

∫ L

0
f (t)g(t) dt,
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and following the procedure of § 4.2. This point of view is useful because many times we use a
specific series because our underlying question will lead to a certain eigenvalue problem. If the
eigenvalue value problem is not one of the three we covered so far, you can still do an eigenfunction
expansion, generalizing the results of this chapter. We will deal with such a generalization in
chapter 5.

Example 4.4.2: Find the Fourier series of the even periodic extension of the function f (t) = t2 for
0 ≤ t ≤ π.

We want to write

f (t) =
a0

2
+

∞∑
n=1

an cos(nt),

where

a0 =
2
π

∫ π

0
t2 dt =

2π2

3
,

and

an =
2
π

∫ π

0
t2 cos(nt) dt =

2
π

[
t2 1

n
sin(nt)

]π
0
−

4
nπ

∫ π

0
t sin(nt) dt

=
4

n2π

[
t cos(nt)

]π
0

+
4

n2π

∫ π

0
cos(nt) dt =

4(−1)n

n2 .

Note that we have detected the “continuity” of the extension since the coefficients decay as 1
n2 . That

is, the even extension of t2 has no jump discontinuities. It will have corners, since the derivative
(which will be an odd function and a sine series) will have a series whose coefficients decay only as
1
n so the derivative will have jumps.

Explicitly, the first few terms of the series are

π2

3
− 4 cos(t) + cos(2t) −

4
9

cos(3t) + · · ·

Exercise 4.4.3: a) Compute the derivative of the even extension of f (t) above and verify it has jump
discontinuities. Use the actual definition of f (t), not its cosine series! b) Why is it that the derivative
of the even extension of f (t) is the odd extension of f ′(t).

4.4.3 Application
We said that Fourier series ties in to the boundary value problems we studied earlier. Let us see this
connection in more detail.

Suppose we have the boundary value problem for 0 < t < L,

x′′(t) + λ x(t) = f (t),
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for the Dirichlet boundary conditions x(0) = 0, x(L) = 0. By using the Fredholm alternative
(Theorem 4.1.2 on page 154) we note that as long as λ is not an eigenvalue of the underlying
homogeneous problem, there will exist a unique solution. Note that the eigenfunctions of this
eigenvalue problem were the functions sin

(
nπ
L t

)
. Therefore, to find the solution, we first find the

Fourier sine series for f (t). We write x also as a sine series, but with unknown coefficients. We
substitute the series for x into the equation and solve for the unknown coefficients.

If we have the Neumann boundary conditions x′(0) = 0, x′(L) = 0, we do the same procedure
using the cosine series. These methods are best seen by examples.

Example 4.4.3: Take the boundary value problem for 0 < t < 1,

x′′(t) + 2x(t) = f (t),

where f (t) = t on 0 < t < 1, and satisfying the Dirichlet boundary conditions x(0) = 0, x(1) = 0.
We write f (t) as a sine series

f (t) =

∞∑
n=1

cn sin(nπt),

where

cn = 2
∫ 1

0
t sin(nπt) dt =

2 (−1)n+1

nπ
.

We write x(t) as

x(t) =

∞∑
n=1

bn sin(nπt).

We plug in to obtain

x′′(t) + 2x(t) =

∞∑
n=1

−bnn2π2 sin(nπt) + 2
∞∑

n=1

bn sin(nπt)

=

∞∑
n=1

bn(2 − n2π2) sin(nπt)

= f (t) =

∞∑
n=1

2 (−1)n+1

nπ
sin(nπt).

Therefore,

bn(2 − n2π2) =
2 (−1)n+1

nπ
or

bn =
2 (−1)n+1

nπ(2 − n2π2)
.
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We have thus obtained a Fourier series for the solution

x(t) =

∞∑
n=1

2 (−1)n+1

nπ (2 − n2π2)
sin(nπt).

Example 4.4.4: Similarly we handle the Neumann conditions. Take the boundary value problem
for 0 < t < 1,

x′′(t) + 2x(t) = f (t),

where again f (t) = t on 0 < t < 1, but now satisfying the Neumann boundary conditions x′(0) = 0,
x′(1) = 0. We write f (t) as a cosine series

f (t) =
c0

2
+

∞∑
n=1

cn cos(nπt),

where

c0 = 2
∫ 1

0
t dt = 1,

and

cn = 2
∫ 1

0
t cos(nπt) dt =

2
(
(−1)n − 1

)
π2n2 =

 −4
π2n2 if n odd,
0 if n even.

We write x(t) as a cosine series

x(t) =
a0

2
+

∞∑
n=1

an cos(nπt).

We plug in to obtain

x′′(t) + 2x(t) =

∞∑
n=1

[
−ann2π2 cos(nπt)

]
+ a0 + 2

∞∑
n=1

[
an cos(nπt)

]
= a0 +

∞∑
n=1

an(2 − n2π2) cos(nπt)

= f (t) =
1
2

+

∞∑
n=1

n odd

−4
π2n2 cos(nπt).

Therefore, a0 = 1
2 , an = 0 for n even (n ≥ 2) and for n odd we have

an(2 − n2π2) =
−4
π2n2 ,
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or
an =

−4
n2π2(2 − n2π2)

.

We have thus obtained a Fourier series for the solution

x(t) =
1
4

+

∞∑
n=1

n odd

−4
n2π2(2 − n2π2)

cos(nπt).

4.4.4 Exercises
Exercise 4.4.4: Take f (t) = (t − 1)2 defined on 0 ≤ t ≤ 1. a) Sketch the plot of the even periodic
extension of f . b) Sketch the plot of the odd periodic extension of f .

Exercise 4.4.5: Find the Fourier series of both the odd and even periodic extension of the function
f (t) = (t − 1)2 for 0 ≤ t ≤ 1. Can you tell which extension is continuous from the Fourier series
coefficients?

Exercise 4.4.6: Find the Fourier series of both the odd and even periodic extension of the function
f (t) = t for 0 ≤ t ≤ π.

Exercise 4.4.7: Find the Fourier series of the even periodic extension of the function f (t) = sin t
for 0 ≤ t ≤ π.

Exercise 4.4.8: Let
x′′(t) + 4x(t) = f (t),

where f (t) = 1 on 0 < t < 1. a) Solve for the Dirichlet conditions x(0) = 0, x(1) = 0. b) Solve for
the Neumann conditions x′(0) = 0, x′(1) = 0.

Exercise 4.4.9: Let
x′′(t) + 9x(t) = f (t),

for f (t) = sin(2πt) on 0 < t < 1. a) Solve for the Dirichlet conditions x(0) = 0, x(1) = 0. b) Solve
for the Neumann conditions x′(0) = 0, x′(1) = 0.

Exercise 4.4.10: Let
x′′(t) + 3x(t) = f (t), x(0) = 0, x(1) = 0,

where f (t) =
∑∞

n=1 bn sin(nπt). Write the solution x(t) as a Fourier series, where the coefficients are
given in terms of bn.

Exercise 4.4.11: Let f (t) = t2(2− t) for 0 ≤ t ≤ 2. Let F(t) be the odd periodic extension. Compute
F(1), F(2), F(3), F(−1), F(9/2), F(101), F(103). Note: Do not compute using the sine series.
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Exercise 4.4.101: Let f (t) = t/3 on 0 ≤ t < 3. a) Find the Fourier series of the even periodic
extension. b) Find the Fourier series of the odd periodic extension.

Exercise 4.4.102: Let f (t) = cos(2t) on 0 ≤ t < π. a) Find the Fourier series of the even periodic
extension. b) Find the Fourier series of the odd periodic extension.

Exercise 4.4.103: Let f (t) be defined on 0 ≤ t < 1. Now take the average of the two extensions
g(t) =

Fodd(t)+Feven(t)
2 . a) What is g(t) if 0 ≤ t < 1 (Justify!) b) What is g(t) if −1 < t < 0 (Justify!)

Exercise 4.4.104: Let f (t) =
∑∞

n=1
1
n2 sin(nt). Solve x′′ − x = f (t) for the Dirichlet conditions

x(0) = 0 and x(π) = 0.

Exercise 4.4.105 (challenging): Let f (t) = t +
∑∞

n=1
1
2n sin(nt). Solve x′′+πx = f (t) for the Dirichlet

conditions x(0) = 0 and x(π) = 1. Hint: Note that t
π

satisfies the given Dirichlet conditions.
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4.5 Applications of Fourier series
Note: 2 lectures, §9.4 in [EP], not in [BD]

4.5.1 Periodically forced oscillation
Let us return to the forced oscillations. We have a mass-spring

damping c

m
k F(t)

system as before, where we have a mass m on a spring with spring
constant k, with damping c, and a force F(t) applied to the mass.
Suppose that the forcing function F(t) is 2L-periodic for some
L > 0. We have already seen this problem in chapter 2 with a

simple F(t). The equation that governs this particular setup is

mx′′(t) + cx′(t) + kx(t) = F(t). (4.9)

We know that the general solution will consist of xc, which solves the associated homogeneous
equation mx′′ + cx′ + kx = 0, and a particular solution of (4.9) we will call xp. For c > 0, the
complementary solution xc will decay as time goes on. Therefore, we are mostly interested in
particular solution xp that does not decay and is periodic with the same period as F(t). We call
this particular solution the steady periodic solution and we write it as xsp as before. The difference
in what we will do now is that we consider an arbitrary forcing function F(t) instead of a simple
cosine.

For simplicity, let us suppose that c = 0. The problem with c > 0 is very similar. The equation

mx′′ + kx = 0

has the general solution
x(t) = A cos(ω0t) + B sin(ω0t),

where ω0 =

√
k
m . Any solution to mx′′(t) + kx(t) = F(t) will be of the form A cos(ω0t) + B sin(ω0t) +

xsp. The steady periodic solution xsp has the same period as F(t).
In the spirit of the last section and the idea of undetermined coefficients we will first write

F(t) =
c0

2
+

∞∑
n=1

cn cos
(nπ

L
t
)

+ dn sin
(nπ

L
t
)
.

Then we write a proposed steady periodic solution x as

x(t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)
,

where an and bn are unknowns. We plug x into the differential equation and solve for an and bn in
terms of cn and dn. This process is perhaps best understood by example.
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Example 4.5.1: Suppose that k = 2, and m = 1. The units are the mks units (meters-kilograms-
seconds) again. There is a jetpack strapped to the mass, which fires with a force of 1 newton for 1
second and then is off for 1 second, and so on. We want to find the steady periodic solution.

The equation is, therefore,
x′′ + 2x = F(t),

where F(t) is the step function

F(t) =

0 if −1 < t < 0,
1 if 0 < t < 1,

extended periodically. We write

F(t) =
c0

2
+

∞∑
n=1

cn cos(nπt) + dn sin(nπt).

We compute

cn =

∫ 1

−1
F(t) cos(nπt) dt =

∫ 1

0
cos(nπt) dt = 0 for n ≥ 1,

c0 =

∫ 1

−1
F(t) dt =

∫ 1

0
dt = 1,

dn =

∫ 1

−1
F(t) sin(nπt) dt

=

∫ 1

0
sin(nπt) dt

=

[
− cos(nπt)

nπ

]1

t=0

=
1 − (−1)n

πn
=

 2
πn if n odd,
0 if n even.

So

F(t) =
1
2

+

∞∑
n=1

n odd

2
πn

sin(nπt).

We want to try

x(t) =
a0

2
+

∞∑
n=1

an cos(nπt) + bn sin(nπt).

Once we plug x into the differential equation x′′ + 2x = F(t), it is clear that an = 0 for n ≥ 1 as there
are no corresponding terms in the series for F(t). Similarly bn = 0 for n even. Hence we try

x(t) =
a0

2
+

∞∑
n=1

n odd

bn sin(nπt).
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We plug into the differential equation and obtain

x′′ + 2x =

∞∑
n=1

n odd

[
−bnn2π2 sin(nπt)

]
+ a0 + 2

∞∑
n=1

n odd

[
bn sin(nπt)

]

= a0 +

∞∑
n=1

n odd

bn(2 − n2π2) sin(nπt)

= F(t) =
1
2

+

∞∑
n=1

n odd

2
πn

sin(nπt).

So a0 = 1
2 , bn = 0 for even n, and for odd n we get

bn =
2

πn(2 − n2π2)
.

The steady periodic solution has the Fourier series

xsp(t) =
1
4

+

∞∑
n=1

n odd

2
πn(2 − n2π2)

sin(nπt).

We know this is the steady periodic solution as it contains no terms of the complementary solution
and it is periodic with the same period as F(t) itself. See Figure 4.12 for the plot of this solution.
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Figure 4.12: Plot of the steady periodic solution xsp of Example 4.5.1.
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4.5.2 Resonance
Just like when the forcing function was a simple cosine, resonance could still happen. Let us assume
c = 0 and we will discuss only pure resonance. Again, take the equation

mx′′(t) + kx(t) = F(t).

When we expand F(t) and find that some of its terms coincide with the complementary solution to
mx′′ + kx = 0, we cannot use those terms in the guess. Just like before, they will disappear when
we plug into the left hand side and we will get a contradictory equation (such as 0 = 1). That is,
suppose

xc = A cos(ω0t) + B sin(ω0t),

where ω0 = Nπ
L for some positive integer N. In this case we have to modify our guess and try

x(t) =
a0

2
+ t

(
aN cos

(Nπ
L

t
)

+ bN sin
(Nπ

L
t
))

+

∞∑
n=1
n,N

an cos
(nπ

L
t
)

+ bn sin
(nπ

L
t
)
.

In other words, we multiply the offending term by t. From then on, we proceed as before.
Of course, the solution will not be a Fourier series (it will not even be periodic) since it con-

tains these terms multiplied by t. Further, the terms t
(
aN cos

(
Nπ
L t

)
+ bN sin

(
Nπ
L t

))
will eventually

dominate and lead to wild oscillations. As before, this behavior is called pure resonance or just
resonance.

Note that there now may be infinitely many resonance frequencies to hit. That is, as we change
the frequency of F (we change L), different terms from the Fourier series of F may interfere with the
complementary solution and will cause resonance. However, we should note that since everything
is an approximation and in particular c is never actually zero but something very close to zero, only
the first few resonance frequencies will matter.

Example 4.5.2: Find the steady periodic solution to the equation

2x′′ + 18π2x = F(t),

where

F(t) =

−1 if −1 < t < 0,
1 if 0 < t < 1,

extended periodically. We note that

F(t) =

∞∑
n=1

n odd

4
πn

sin(nπt).

Exercise 4.5.1: Compute the Fourier series of F to verify the above equation.
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The solution must look like

x(t) = c1 cos(3πt) + c2 sin(3πt) + xp(t)

for some particular solution xp.
We note that if we just tried a Fourier series with sin(nπt) as usual, we would get duplication

when n = 3. Therefore, we pull out that term and multiply by t. We also have to add a cosine term
to get everything right. That is, we must try

xp(t) = a3t cos(3πt) + b3t sin(3πt) +

∞∑
n=1

n odd
n,3

bn sin(nπt).

Let us compute the second derivative.

x′′p (t) = −6a3π sin(3πt) − 9π2a3 t cos(3πt) + 6b3π cos(3πt) − 9π2b3 t sin(3πt)+

+

∞∑
n=1

n odd
n,3

(−n2π2bn) sin(nπt).

We now plug into the left hand side of the differential equation.

2x′′p + 18π2x = − 12a3π sin(3πt) − 18π2a3t cos(3πt) + 12b3π cos(3πt) − 18π2b3t sin(3πt)+

+ 18π2a3t cos(3πt) + 18π2b3t sin(3πt)+

+

∞∑
n=1

n odd
n,3

(−2n2π2bn + 18π2bn) sin(nπt).

If we simplify we obtain

2x′′p + 18π2x = −12a3π sin(3πt) + 12b3π cos(3πt) +

∞∑
n=1

n odd
n,3

(−2n2π2bn + 18π2bn) sin(nπt).

This series has to equal to the series for F(t). We equate the coefficients and solve for a3 and bn.

a3 =
4/(3π)
−12π

=
−1
9π2 ,

b3 = 0,

bn =
4

nπ(18π2 − 2n2π2)
=

2
π3n(9 − n2)

for n odd and n , 3.
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That is,

xp(t) =
−1
9π2 t cos(3πt) +

∞∑
n=1

n odd
n,3

2
π3n(9 − n2)

sin(nπt).

When c > 0, you will not have to worry about pure resonance. That is, there will never be
any conflicts and you do not need to multiply any terms by t. There is a corresponding concept of
practical resonance and it is very similar to the ideas we already explored in chapter 2. We will not
go into details here.

4.5.3 Exercises
Exercise 4.5.2: Let F(t) = 1

2 +
∑∞

n=1
1
n2 cos(nπt). Find the steady periodic solution to x′′ + 2x = F(t).

Express your solution as a Fourier series.

Exercise 4.5.3: Let F(t) =
∑∞

n=1
1
n3 sin(nπt). Find the steady periodic solution to x′′ + x′ + x = F(t).

Express your solution as a Fourier series.

Exercise 4.5.4: Let F(t) =
∑∞

n=1
1
n2 cos(nπt). Find the steady periodic solution to x′′ + 4x = F(t).

Express your solution as a Fourier series.

Exercise 4.5.5: Let F(t) = t for −1 < t < 1 and extended periodically. Find the steady periodic
solution to x′′ + x = F(t). Express your solution as a series.

Exercise 4.5.6: Let F(t) = t for −1 < t < 1 and extended periodically. Find the steady periodic
solution to x′′ + π2x = F(t). Express your solution as a series.

Exercise 4.5.101: Let F(t) = sin(2πt) + 0.1 cos(10πt). Find the steady periodic solution to x′′ +√
2 x = F(t). Express your solution as a Fourier series.

Exercise 4.5.102: Let F(t) =
∑∞

n=1 e−n cos(2nt). Find the steady periodic solution to x′′ + 3x = F(t).
Express your solution as a Fourier series.

Exercise 4.5.103: Let F(t) = |t| for −1 ≤ t ≤ 1 extended periodically. Find the steady periodic
solution to x′′ +

√
3 x = F(t). Express your solution as a series.

Exercise 4.5.104: Let F(t) = |t| for −1 ≤ t ≤ 1 extended periodically. Find the steady periodic
solution to x′′ + π2x = F(t). Express your solution as a series.
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4.6 PDEs, separation of variables, and the heat equation
Note: 2 lectures, §9.5 in [EP], §10.5 in [BD]

Let us recall that a partial differential equation or PDE is an equation containing the partial
derivatives with respect to several independent variables. Solving PDEs will be our main application
of Fourier series.

A PDE is said to be linear if the dependent variable and its derivatives appear at most to the
first power and in no functions. We will only talk about linear PDEs. Together with a PDE, we
usually have specified some boundary conditions, where the value of the solution or its derivatives
is specified along the boundary of a region, and/or some initial conditions where the value of the
solution or its derivatives is specified for some initial time. Sometimes such conditions are mixed
together and we will refer to them simply as side conditions.

We will study three specific partial differential equations, each one representing a more general
class of equations. First, we will study the heat equation, which is an example of a parabolic PDE.
Next, we will study the wave equation, which is an example of a hyperbolic PDE. Finally, we will
study the Laplace equation, which is an example of an elliptic PDE. Each of our examples will
illustrate behavior that is typical for the whole class.

4.6.1 Heat on an insulated wire
Let us first study the heat equation. Suppose that we have a wire (or a thin metal rod) of length L
that is insulated except at the endpoints. Let x denote the position along the wire and let t denote
time. See Figure 4.13.

0 L x
insulation

temperature u

Figure 4.13: Insulated wire.

Let u(x, t) denote the temperature at point x at time t. The equation governing this setup is the
so-called one-dimensional heat equation:

∂u
∂t

= k
∂2u
∂x2 ,

where k > 0 is a constant (the thermal conductivity of the material). That is, the change in heat at a
specific point is proportional to the second derivative of the heat along the wire. This makes sense;
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if at a fixed t the graph of the heat distribution has a maximum (the graph is concave down), then
heat flows away from the maximum. And vice-versa.

We will generally use a more convenient notation for partial derivatives. We will write ut instead
of ∂u

∂t , and we will write uxx instead of ∂2u
∂x2 . With this notation the heat equation becomes

ut = kuxx.

For the heat equation, we must also have some boundary conditions. We assume that the ends
of the wire are either exposed and touching some body of constant heat, or the ends are insulated.
For example, if the ends of the wire are kept at temperature 0, then we must have the conditions

u(0, t) = 0 and u(L, t) = 0.

If, on the other hand, the ends are also insulated we get the conditions

ux(0, t) = 0 and ux(L, t) = 0.

In other words, heat is not flowing in nor out of the wire at the ends. We always have two conditions
along the x axis as there are two derivatives in the x direction. These side conditions are called
homogeneous (that is, u or a derivative of u is set to zero).

Furthermore, suppose that we know the initial temperature distribution at time t = 0. That is,

u(x, 0) = f (x),

for some known function f (x). This initial condition is not a homogeneous side condition.

4.6.2 Separation of variables
The heat equation is linear as u and its derivatives do not appear to any powers or in any functions.
Thus the principle of superposition still applies for the heat equation (without side conditions). If u1

and u2 are solutions and c1, c2 are constants, then u = c1u1 + c2u2 is also a solution.

Exercise 4.6.1: Verify the principle of superposition for the heat equation.

Superposition also preserves some of the side conditions. In particular, if u1 and u2 are solutions
that satisfy u(0, t) = 0 and u(L, t) = 0, and c1, c2 are constants, then u = c1u1 + c2u2 is still a solution
that satisfies u(0, t) = 0 and u(L, t) = 0. Similarly for the side conditions ux(0, t) = 0 and ux(L, t) = 0.
In general, superposition preserves all homogeneous side conditions.

The method of separation of variables is to try to find solutions that are sums or products of
functions of one variable. For example, for the heat equation, we try to find solutions of the form

u(x, t) = X(x)T (t).
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That the desired solution we are looking for is of this form is too much to hope for. What is perfectly
reasonable to ask, however, is to find enough “building-block” solutions of the form u(x, t) =

X(x)T (t) using this procedure so that the desired solution to the PDE is somehow constructed from
these building blocks by the use of superposition.

Let us try to solve the heat equation

ut = kuxx with u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

Let us guess u(x, t) = X(x)T (t). We plug into the heat equation to obtain

X(x)T ′(t) = kX′′(x)T (t).

We rewrite as
T ′(t)
kT (t)

=
X′′(x)
X(x)

.

This equation must hold for all x and all t. But the left hand side does not depend on x and the right
hand side does not depend on t. Hence, each side must be a constant. Let us call this constant −λ
(the minus sign is for convenience later). We obtain the two equations

T ′(t)
kT (t)

= −λ =
X′′(x)
X(x)

.

In other words

X′′(x) + λX(x) = 0,
T ′(t) + λkT (t) = 0.

The boundary condition u(0, t) = 0 implies X(0)T (t) = 0. We are looking for a nontrivial solution
and so we can assume that T (t) is not identically zero. Hence X(0) = 0. Similarly, u(L, t) = 0
implies X(L) = 0. We are looking for nontrivial solutions X of the eigenvalue problem X′′ + λX = 0,
X(0) = 0, X(L) = 0. We have previously found that the only eigenvalues are λn = n2π2

L2 , for integers
n ≥ 1, where eigenfunctions are sin

(
nπ
L x

)
. Hence, let us pick the solutions

Xn(x) = sin
(nπ

L
x
)
.

The corresponding Tn must satisfy the equation

T ′n(t) +
n2π2

L2 kTn(t) = 0.

By the method of integrating factor, the solution of this problem is

Tn(t) = e
−n2π2

L2 kt.
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It will be useful to note that Tn(0) = 1. Our building-block solutions are

un(x, t) = Xn(x)Tn(t) = sin
(nπ

L
x
)

e
−n2π2

L2 kt.

We note that un(x, 0) = sin
(

nπ
L x

)
. Let us write f (x) as the sine series

f (x) =

∞∑
n=1

bn sin
(nπ

L
x
)
.

That is, we find the Fourier series of the odd periodic extension of f (x). We used the sine series as
it corresponds to the eigenvalue problem for X(x) above. Finally, we use superposition to write the
solution as

u(x, t) =

∞∑
n=1

bnun(x, t) =

∞∑
n=1

bn sin
(nπ

L
x
)

e
−n2π2

L2 kt.

Why does this solution work? First note that it is a solution to the heat equation by superposition.
It satisfies u(0, t) = 0 and u(L, t) = 0, because x = 0 or x = L makes all the sines vanish. Finally,
plugging in t = 0, we notice that Tn(0) = 1 and so

u(x, 0) =

∞∑
n=1

bnun(x, 0) =

∞∑
n=1

bn sin
(nπ

L
x
)

= f (x).

Example 4.6.1: Suppose that we have an insulated wire of length 1, such that the ends of the wire
are embedded in ice (temperature 0). Let k = 0.003. Then suppose that initial heat distribution is
u(x, 0) = 50 x (1 − x). See Figure 4.14.
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Figure 4.14: Initial distribution of temperature in the wire.
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We want to find the temperature function u(x, t). Let us suppose we also want to find when (at
what t) does the maximum temperature in the wire drop to one half of the initial maximum of 12.5.

We are solving the following PDE problem:

ut = 0.003 uxx,

u(0, t) = u(1, t) = 0,
u(x, 0) = 50 x (1 − x) for 0 < x < 1.

We write f (x) = 50 x (1 − x) for 0 < x < 1 as a sine series. That is, f (x) =
∑∞

n=1 bn sin(nπx), where

bn = 2
∫ 1

0
50 x (1 − x) sin(nπx) dx =

200
π3n3 −

200 (−1)n

π3n3 =

0 if n even,
400
π3n3 if n odd.
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Figure 4.15: Plot of the temperature of the wire at position x at time t.

The solution u(x, t), plotted in Figure 4.15 for 0 ≤ t ≤ 100, is given by the series:

u(x, t) =

∞∑
n=1

n odd

400
π3n3 sin(nπx) e−n2π2 0.003 t.
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Finally, let us answer the question about the maximum temperature. It is relatively easy to see
that the maximum temperature will always be at x = 0.5, in the middle of the wire. The plot of
u(x, t) confirms this intuition.

If we plug in x = 0.5 we get

u(0.5, t) =

∞∑
n=1

n odd

400
π3n3 sin(nπ 0.5) e−n2π2 0.003 t.

For n = 3 and higher (remember n is only odd), the terms of the series are insignificant compared
to the first term. The first term in the series is already a very good approximation of the function.
Hence

u(0.5, t) ≈
400
π3 e−π

2 0.003 t.

The approximation gets better and better as t gets larger as the other terms decay much faster. Let
us plot the function u(0.5, t), the temperature at the midpoint of the wire at time t, in Figure 4.16.
The figure also plots the approximation by the first term.
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Figure 4.16: Temperature at the midpoint of the wire (the bottom curve), and the approximation of
this temperature by using only the first term in the series (top curve).

After t = 5 or so it would be hard to tell the difference between the first term of the series for
u(x, t) and the real solution u(x, t). This behavior is a general feature of solving the heat equation. If
you are interested in behavior for large enough t, only the first one or two terms may be necessary.

Let us get back to the question of when is the maximum temperature one half of the initial
maximum temperature. That is, when is the temperature at the midpoint 12.5/2 = 6.25. We notice on
the graph that if we use the approximation by the first term we will be close enough. We solve

6.25 =
400
π3 e−π

2 0.003 t.
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That is,

t =
ln 6.25 π3

400

−π20.003
≈ 24.5.

So the maximum temperature drops to half at about t = 24.5.

We mention an interesting behavior of the solution to the heat equation. The heat equation
“smoothes” out the function f (x) as t grows. For a fixed t, the solution is a Fourier series with

coefficients bne
−n2π2

L2 kt. If t > 0, then these coefficients go to zero faster than any 1
np for any power

p. In other words, the Fourier series has infinitely many derivatives everywhere. Thus even if the
function f (x) has jumps and corners, the solution u(x, t) as a function of x for a fixed t > 0 is as
smooth as we want it.

4.6.3 Insulated ends
Now suppose the ends of the wire are insulated. In this case, we are solving the equation

ut = kuxx with ux(0, t) = 0, ux(L, t) = 0, and u(x, 0) = f (x).

Yet again we try a solution of the form u(x, t) = X(x)T (t). By the same procedure as before we plug
into the heat equation and arrive at the following two equations

X′′(x) + λX(x) = 0,
T ′(t) + λkT (t) = 0.

At this point the story changes slightly. The boundary condition ux(0, t) = 0 implies X′(0)T (t) = 0.
Hence X′(0) = 0. Similarly, ux(L, t) = 0 implies X′(L) = 0. We are looking for nontrivial solutions
X of the eigenvalue problem X′′ + λX = 0, X′(0) = 0, X′(L) = 0. We have previously found that the
only eigenvalues are λn = n2π2

L2 , for integers n ≥ 0, where eigenfunctions are cos
(

nπ
L x

)
(we include

the constant eigenfunction). Hence, let us pick solutions

Xn(x) = cos
(nπ

L
x
)

and X0(x) = 1.

The corresponding Tn must satisfy the equation

T ′n(t) +
n2π2

L2 kTn(t) = 0.

For n ≥ 1, as before,
Tn(t) = e

−n2π2

L2 kt.

For n = 0, we have T ′0(t) = 0 and hence T0(t) = 1. Our building-block solutions will be

un(x, t) = Xn(x)Tn(t) = cos
(nπ

L
x
)

e
−n2π2

L2 kt,
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and
u0(x, t) = 1.

We note that un(x, 0) = cos
(

nπ
L x

)
. Let us write f using the cosine series

f (x) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
x
)
.

That is, we find the Fourier series of the even periodic extension of f (x).
We use superposition to write the solution as

u(x, t) =
a0

2
+

∞∑
n=1

anun(x, t) =
a0

2
+

∞∑
n=1

an cos
(nπ

L
x
)

e
−n2π2

L2 kt.

Example 4.6.2: Let us try the same equation as before, but for insulated ends. We are solving the
following PDE problem

ut = 0.003 uxx,

ux(0, t) = ux(1, t) = 0,
u(x, 0) = 50 x (1 − x) for 0 < x < 1.

For this problem, we must find the cosine series of u(x, 0). For 0 < x < 1 we have

50 x (1 − x) =
25
3

+

∞∑
n=2

n even

(
−200
π2n2

)
cos(nπx).

The calculation is left to the reader. Hence, the solution to the PDE problem, plotted in Figure 4.17
on the next page, is given by the series

u(x, t) =
25
3

+

∞∑
n=2

n even

(
−200
π2n2

)
cos(nπx) e−n2π2 0.003 t.

Note in the graph that the temperature evens out across the wire. Eventually, all the terms except
the constant die out, and you will be left with a uniform temperature of 25

3 ≈ 8.33 along the entire
length of the wire.

4.6.4 Exercises
Exercise 4.6.2: Suppose you have a wire of length 2, with k = 0.001 and an initial temperature
distribution of u(x, 0) = 50x. Suppose that both the ends are embedded in ice (temperature 0). Find
the solution as a series.
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Figure 4.17: Plot of the temperature of the insulated wire at position x at time t.

Exercise 4.6.3: Find a series solution of

ut = uxx,

u(0, t) = u(1, t) = 0,
u(x, 0) = 100 for 0 < x < 1.

Exercise 4.6.4: Find a series solution of

ut = uxx,

ux(0, t) = ux(π, t) = 0,
u(x, 0) = 3 cos(x) + cos(3x) for 0 < x < π.
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Exercise 4.6.5: Find a series solution of

ut =
1
3

uxx,

ux(0, t) = ux(π, t) = 0,

u(x, 0) =
10x
π

for 0 < x < π.

Exercise 4.6.6: Find a series solution of

ut = uxx,

u(0, t) = 0, u(1, t) = 100,
u(x, 0) = sin(πx) for 0 < x < 1.

Hint: Use the fact that u(x, t) = 100x is a solution satisfying ut = uxx, u(0, t) = 0, u(1, t) = 100.
Then use superposition.

Exercise 4.6.7: Find the steady state temperature solution as a function of x alone, by letting t → ∞
in the solution from exercises 4.6.5 and 4.6.6. Verify that it satisfies the equation uxx = 0.

Exercise 4.6.8: Use separation variables to find a nontrivial solution to uxx + uyy = 0, where
u(x, 0) = 0 and u(0, y) = 0. Hint: Try u(x, y) = X(x)Y(y).

Exercise 4.6.9 (challenging): Suppose that one end of the wire is insulated (say at x = 0) and the
other end is kept at zero temperature. That is, find a series solution of

ut = kuxx,

ux(0, t) = u(L, t) = 0,
u(x, 0) = f (x) for 0 < x < L.

Express any coefficients in the series by integrals of f (x).

Exercise 4.6.10 (challenging): Suppose that the wire is circular and insulated, so there are no ends.
You can think of this as simply connecting the two ends and making sure the solution matches up at
the ends. That is, find a series solution of

ut = kuxx,

u(0, t) = u(L, t), ux(0, t) = ux(L, t),
u(x, 0) = f (x) for 0 < x < L.

Express any coefficients in the series by integrals of f (x).
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Exercise 4.6.101: Find a series solution of

ut = 3uxx,

u(0, t) = u(π, t) = 0,
u(x, 0) = 5 sin(x) + 2 sin(5x) for 0 < x < π.

Exercise 4.6.102: Find a series solution of

ut = 0.1uxx,

ux(0, t) = ux(π, t) = 0,
u(x, 0) = 1 + 2 cos(x) for 0 < x < π.

Exercise 4.6.103: Use separation of variables to find a nontrivial solution to uxt = uxx.

Exercise 4.6.104: Use separation of variables (Hint: try u(x, t) = X(x) + T (t)) to find a nontrivial
solution to ux + ut = u.
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4.7 One dimensional wave equation
Note: 1 lecture, §9.6 in [EP], §10.7 in [BD]

Suppose we have a string such as on a guitar of length L. Suppose we only consider vibrations
in one direction. That is let x denote the position along the string, let t denote time and let y denote
the displacement of the string from the rest position. See Figure 4.18.

L x

y

y

0

Figure 4.18: Vibrating string.

The equation that governs this setup is the so-called one-dimensional wave equation:

ytt = a2yxx,

for some a > 0. We will assume that the ends of the string are fixed and hence we get

y(0, t) = 0 and y(L, t) = 0.

Note that we always have two conditions along the x axis as there are two derivatives in the x
direction.

There are also two derivatives along the t direction and hence we will need two further conditions
here. We will need to know the initial position and the initial velocity of the string.

y(x, 0) = f (x) and yt(x, 0) = g(x),

for some known functions f (x) and g(x).
As the equation is again linear, superposition works just as it did for the heat equation. And

again we will use separation of variables to find enough building-block solutions to get the overall
solution. There is one change however. It will be easier to solve two separate problems and add
their solutions.

The two problems we will solve are

wtt = a2wxx,
w(0, t) = w(L, t) = 0,
w(x, 0) = 0 for 0 < x < L,
wt(x, 0) = g(x) for 0 < x < L.

(4.10)
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and
ztt = a2zxx,
z(0, t) = z(L, t) = 0,
z(x, 0) = f (x) for 0 < x < L,
zt(x, 0) = 0 for 0 < x < L.

(4.11)

The principle of superposition will then imply that y = w + z solves the wave equation and
furthermore y(x, 0) = w(x, 0) + z(x, 0) = f (x) and yt(x, 0) = wt(x, 0) + zt(x, 0) = g(x). Hence, y is a
solution to

ytt = a2yxx,
y(0, t) = y(L, t) = 0,
y(x, 0) = f (x) for 0 < x < L,
yt(x, 0) = g(x) for 0 < x < L.

(4.12)

The reason for all this complexity is that superposition only works for homogeneous conditions
such as y(0, t) = y(L, t) = 0, y(x, 0) = 0, or yt(x, 0) = 0. Therefore, we will be able to use the
idea of separation of variables to find many building-block solutions solving all the homogeneous
conditions. We can then use them to construct a solution solving the remaining nonhomogeneous
condition.

Let us start with (4.10). We try a solution of the form w(x, t) = X(x)T (t) again. We plug into the
wave equation to obtain

X(x)T ′′(t) = a2X′′(x)T (t).

Rewriting we get
T ′′(t)
a2T (t)

=
X′′(x)
X(x)

.

Again, left hand side depends only on t and the right hand side depends only on x. Therefore, both
equal a constant, which we will denote by −λ.

T ′′(t)
a2T (t)

= −λ =
X′′(x)
X(x)

.

We solve to get two ordinary differential equations

X′′(x) + λX(x) = 0,

T ′′(t) + λa2T (t) = 0.

The conditions 0 = w(0, t) = X(0)T (t) implies X(0) = 0 and w(L, t) = 0 implies that X(L) = 0.
Therefore, the only nontrivial solutions for the first equation are when λ = λn = n2π2

L2 and they are

Xn(x) = sin
(nπ

L
x
)
.

The general solution for T for this particular λn is

Tn(t) = A cos
(nπa

L
t
)

+ B sin
(nπa

L
t
)
.
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We also have the condition that w(x, 0) = 0 or X(x)T (0) = 0. This implies that T (0) = 0, which in
turn forces A = 0. It will be convenient to pick B = L

nπa (you will see why in a moment) and hence

Tn(t) =
L

nπa
sin

(nπa
L

t
)
.

Our building-block solution will be

wn(x, t) =
L

nπa
sin

(nπ
L

x
)

sin
(nπa

L
t
)
.

We differentiate in t, that is

(wn)t(x, t) = sin
(nπ

L
x
)

cos
(nπa

L
t
)
.

Hence,
(wn)t(x, 0) = sin

(nπ
L

x
)
.

We expand g(x) in terms of these sines as

g(x) =

∞∑
n=1

bn sin
(nπ

L
x
)
.

Using superposition we can just write down the solution to (4.10) as a series

w(x, t) =

∞∑
n=1

bnwn(x, t) =

∞∑
n=1

bn
L

nπa
sin

(nπ
L

x
)

sin
(nπa

L
t
)
.

Exercise 4.7.1: Check that w(x, 0) = 0 and wt(x, 0) = g(x).

Similarly we proceed to solve (4.11). We again try z(x, y) = X(x)T (t). The procedure works
exactly the same at first. We obtain

X′′(x) + λX(x) = 0,

T ′′(t) + λa2T (t) = 0.

and the conditions X(0) = 0, X(L) = 0. So again λ = λn = n2π2

L2 and

Xn(x) = sin
(nπ

L
x
)
.

This time the condition on T is T ′(0) = 0. Thus we get that B = 0 and we take

Tn(t) = cos
(nπa

L
t
)
.
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Our building-block solution will be

zn(x, t) = sin
(nπ

L
x
)

cos
(nπa

L
t
)
.

We expand f (x) in terms of these sines as

f (x) =

∞∑
n=1

cn sin
(nπ

L
x
)
.

And we write down the solution to (4.11) as a series

z(x, t) =

∞∑
n=1

cnzn(x, t) =

∞∑
n=1

cn sin
(nπ

L
x
)

cos
(nπa

L
t
)
.

Exercise 4.7.2: Fill in the details in the derivation of the solution of (4.11). Check that the solution
satisfies all the side conditions.

Putting these two solutions together we will state the result as a theorem.

Theorem 4.7.1. Take the equation

ytt = a2yxx,
y(0, t) = y(L, t) = 0,
y(x, 0) = f (x) for 0 < x < L,
yt(x, 0) = g(x) for 0 < x < L,

(4.13)

where

f (x) =

∞∑
n=1

cn sin
(nπ

L
x
)
.

and

g(x) =

∞∑
n=1

bn sin
(nπ

L
x
)
.

Then the solution y(x, t) can be written as a sum of the solutions of (4.10) and (4.11). In other
words,

y(x, t) =

∞∑
n=1

bn
L

nπa
sin

(nπ
L

x
)

sin
(nπa

L
t
)

+ cn sin
(nπ

L
x
)

cos
(nπa

L
t
)

=

∞∑
n=1

sin
(nπ

L
x
) [

bn
L

nπa
sin

(nπa
L

t
)

+ cn cos
(nπa

L
t
)]
.
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Figure 4.19: Plucked string.

Example 4.7.1: Let us try a simple example of a plucked string. Suppose that a string of length 2
is plucked in the middle such that it has the initial shape given in Figure 4.19. That is

f (x) =

0.1 x if 0 ≤ x ≤ 1,
0.1 (2 − x) if 1 < x ≤ 2.

The string starts at rest (g(x) = 0). Suppose that a = 1 in the wave equation for simplicity.
We leave it to the reader to compute the sine series of f (x). The series will be

f (x) =

∞∑
n=1

0.8
n2π2 sin

(nπ
2

)
sin

(nπ
2

x
)
.

Note that sin
(

nπ
2

)
is the sequence 1, 0,−1, 0, 1, 0,−1, . . . for n = 1, 2, 3, 4, . . .. Therefore,

f (x) =
0.8
π2 sin

(
π

2
x
)
−

0.8
9π2 sin

(
3π
2

x
)

+
0.8

25π2 sin
(
5π
2

x
)
− · · ·

The solution y(x, t) is given by

y(x, t) =

∞∑
n=1

0.8
n2π2 sin

(nπ
2

)
sin

(nπ
2

x
)

cos
(nπ

2
t
)

=

∞∑
m=1

0.8(−1)m+1

(2m − 1)2π2
sin

(
(2m − 1)π

2
x
)

cos
(
(2m − 1)π

2
t
)

=
0.8
π2 sin

(
π

2
x
)

cos
(
π

2
t
)
−

0.8
9π2 sin

(
3π
2

x
)

cos
(
3π
2

t
)

+
0.8

25π2 sin
(
5π
2

x
)

cos
(
5π
2

t
)
− · · ·

A plot for 0 < t < 3 is given in Figure 4.20 on the following page. Notice that unlike the heat
equation, the solution does not become “smoother,” the “sharp edges” remain. We will see the
reason for this behavior in the next section where we derive the solution to the wave equation in a
different way.

Make sure you understand what the plot such as the one in the figure is telling you. For each
fixed t, you can think of the function y(x, t) as just a function of x. This function gives you the shape
of the string at time t.
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Figure 4.20: Shape of the plucked string for 0 < t < 3.

4.7.1 Exercises
Exercise 4.7.3: Solve

ytt = 9yxx,
y(0, t) = y(1, t) = 0,
y(x, 0) = sin(3πx) + 1

4 sin(6πx) for 0 < x < 1,
yt(x, 0) = 0 for 0 < x < 1.

Exercise 4.7.4: Solve

ytt = 4yxx,
y(0, t) = y(1, t) = 0,
y(x, 0) = sin(3πx) + 1

4 sin(6πx) for 0 < x < 1,
yt(x, 0) = sin(9πx) for 0 < x < 1.

Exercise 4.7.5: Derive the solution for a general plucked string of length L, where we raise the
string some distance b at the midpoint and let go, and for any constant a (in the equation ytt = a2yxx).
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Exercise 4.7.6: Suppose that a stringed musical instrument falls on the floor. Suppose that the
length of the string is 1 and a = 1. When the musical instrument hits the ground the string was in
rest position and hence y(x, 0) = 0. However, the string was moving at some velocity at impact
(t = 0), say yt(x, 0) = −1. Find the solution y(x, t) for the shape of the string at time t.

Exercise 4.7.7 (challenging): Suppose that you have a vibrating string and that there is air resis-
tance proportional to the velocity. That is, you have

ytt = a2yxx − kyt,
y(0, t) = y(1, t) = 0,
y(x, 0) = f (x) for 0 < x < 1,
yt(x, 0) = 0 for 0 < x < 1.

Suppose that 0 < k < 2πa. Derive a series solution to the problem. Any coefficients in the series
should be expressed as integrals of f (x).

Exercise 4.7.101: Solve

ytt = yxx,
y(0, t) = y(π, t) = 0,
y(x, 0) = sin(x) for 0 < x < π,
yt(x, 0) = sin(x) for 0 < x < π.

Exercise 4.7.102: Solve

ytt = 25yxx,
y(0, t) = y(2, t) = 0,
y(x, 0) = 0 for 0 < x < 2,
yt(x, 0) = sin(πt) + 0.1 sin(2πt) for 0 < x < 2.

Exercise 4.7.103: Solve

ytt = 2yxx,
y(0, t) = y(π, t) = 0,
y(x, 0) = x for 0 < x < π,
yt(x, 0) = 0 for 0 < x < π.

Exercise 4.7.104: let’s see what happens when a = 0. find a solution to ytt = 0, y(0, t) = y(π, t) = 0,
y(x, 0) = sin(2x), yt(x, 0) = sin(x).
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4.8 D’Alembert solution of the wave equation
Note: 1 lecture, different from §9.6 in [EP], part of §10.7 in [BD]

We have solved the wave equation by using Fourier series. But it is often more convenient to
use the so-called d’Alembert solution to the wave equation‡. This solution can be derived using
Fourier series as well, but it is really an awkward use of those concepts. It is much easier to derive
this solution by making a correct change of variables to get an equation that can be solved by simple
integration.

Suppose we have the wave equation

ytt = a2yxx. (4.14)

And we wish to solve the equation (4.14) given the conditions

y(0, t) = y(L, t) = 0 for all t,
y(x, 0) = f (x) 0 < x < L,
yt(x, 0) = g(x) 0 < x < L.

(4.15)

4.8.1 Change of variables
We will transform the equation into a simpler form where it can be solved by simple integration.
We change variables to ξ = x − at, η = x + at and we use the chain rule:

∂

∂x
=
∂ξ

∂x
∂

∂ξ
+
∂η

∂x
∂

∂η
=

∂

∂ξ
+
∂

∂η
,

∂

∂t
=
∂ξ

∂t
∂

∂ξ
+
∂η

∂t
∂

∂η
= −a

∂

∂ξ
+ a

∂

∂η
.

We compute

yxx =
∂2y
∂x2 =

(
∂

∂ξ
+
∂

∂η

) (
∂y
∂ξ

+
∂y
∂η

)
=
∂2y
∂ξ2 + 2

∂2y
∂ξ∂η

+
∂2y
∂η2 ,

ytt =
∂2y
∂t2 =

(
−a

∂

∂ξ
+ a

∂

∂η

) (
−a

∂y
∂ξ

+ a
∂y
∂η

)
= a2∂

2y
∂ξ2 − 2a2 ∂

2y
∂ξ∂η

+ a2 ∂
2y
∂η2 .

In the above computations, we have used the fact from calculus that ∂2y
∂ξ∂η

=
∂2y
∂η∂ξ

. Then we plug into
the wave equation,

0 = a2yxx − ytt = 4a2 ∂
2y

∂ξ∂η
= 4a2yξη.

‡Named after the French mathematician Jean le Rond d’Alembert (1717 – 1783).

http://en.wikipedia.org/wiki/D%27Alembert
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Therefore, the wave equation (4.14) transforms into yξη = 0. It is easy to find the general solution
to this equation by integrating twice. Let us integrate with respect to η first§ and notice that the
constant of integration depends on ξ. We get yξ = C(ξ). Next, we integrate with respect to ξ and
notice that the constant of integration must depend on η. Thus, y =

∫
C(ξ) dξ + B(η). The solution

must, therefore, be of the following form for some functions A(ξ) and B(η):

y = A(ξ) + B(η) = A(x − at) + B(x + at).

4.8.2 The formula

We know what any solution must look like, but we need to solve for the given side conditions. We
will just give the formula and see that it works. First let F(x) denote the odd extension of f (x), and
let G(x) denote the odd extension of g(x). Now define

A(x) =
1
2

F(x) −
1

2a

∫ x

0
G(s) ds, B(x) =

1
2

F(x) +
1
2a

∫ x

0
G(s) ds.

We claim this A(x) and B(x) give the solution. Explicitly, the solution is y(x, t) = A(x−at)+ B(x+at)
or in other words:

y(x, t) =
1
2

F(x − at) −
1
2a

∫ x−at

0
G(s) ds +

1
2

F(x + at) +
1

2a

∫ x+at

0
G(s) ds

=
F(x − at) + F(x + at)

2
+

1
2a

∫ x+at

x−at
G(s) ds.

(4.16)

Let us check that the d’Alembert formula really works.

y(x, 0) =
1
2

F(x) −
1
2a

∫ x

0
G(s) ds +

1
2

F(x) +
1

2a

∫ x

0
G(s) ds = F(x).

So far so good. Assume for simplicity F is differentiable. By the fundamental theorem of calculus
we have

yt(x, t) =
−a
2

F′(x − at) +
1
2

G(x − at) +
a
2

F′(x + at) +
1
2

G(x + at).

So

yt(x, 0) =
−a
2

F′(x) +
1
2

G(x) +
a
2

F′(x) +
1
2

G(x) = G(x).

Yay! We’re smoking now. OK, now the boundary conditions. Note that F(x) and G(x) are odd.
Also

∫ x

0
G(s) ds is an even function of x because G(x) is odd (to see this fact, do the substitution

§We can just as well integrate with ξ first, if we wish.
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s = −v). So

y(0, t) =
1
2

F(−at) −
1

2a

∫ −at

0
G(s) ds +

1
2

F(at) +
1

2a

∫ at

0
G(s) ds

=
−1
2

F(at) −
1

2a

∫ at

0
G(s) ds +

1
2

F(at) +
1

2a

∫ at

0
G(s) ds = 0.

Note that F(x) and G(x) are 2L periodic. We compute

y(L, t) =
1
2

F(L − at) −
1

2a

∫ L−at

0
G(s) ds +

1
2

F(L + at) +
1

2a

∫ L+at

0
G(s) ds

=
1
2

F(−L − at) −
1

2a

∫ L

0
G(s) ds −

1
2a

∫ −at

0
G(s) ds +

+
1
2

F(L + at) +
1

2a

∫ L

0
G(s) ds +

1
2a

∫ at

0
G(s) ds

=
−1
2

F(L + at) −
1

2a

∫ at

0
G(s) ds +

1
2

F(L + at) +
1

2a

∫ at

0
G(s) ds = 0.

And voilà, it works.

Example 4.8.1: What the d’Alembert solution says is that the solution is a superposition of two
functions (waves) moving in the opposite direction at “speed” a. To get an idea of how it works, let
us do an example. Suppose that we have the simpler setup

ytt = yxx,

y(0, t) = y(1, t) = 0,
y(x, 0) = f (x),
yt(x, 0) = 0.

Here f (x) is an impulse of height 1 centered at x = 0.5:

f (x) =


0 if 0 ≤ x < 0.45,
20 (x − 0.45) if 0 ≤ x < 0.45,
20 (0.55 − x) if 0.45 ≤ x < 0.55,
0 if 0.55 ≤ x ≤ 1.

The graph of this pulse is the top left plot in Figure 4.21 on the next page.
Let F(x) be the odd periodic extension of f (x). Then from (4.16) we know that the solution is

given as

y(x, t) =
F(x − t) + F(x + t)

2
.
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It is not hard to compute specific values of y(x, t). For example, to compute y(0.1, 0.6) we notice
x − t = −0.5 and x + t = 0.7. Now F(−0.5) = − f (0.5) = −20 (0.55 − 0.5) = −1 and F(0.7) =

f (0.7) = 0. Hence y(0.1, 0.6) = −1+0
2 = −0.5. As you can see the d’Alembert solution is much easier

to actually compute and to plot than the Fourier series solution. See Figure 4.21 for plots of the
solution y for several different t.
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Figure 4.21: Plot of the d’Alembert solution for t = 0, t = 0.2, t = 0.4, and t = 0.6.

4.8.3 Notes

It is perhaps easier and more useful to memorize the procedure rather than the formula itself. The
important thing to remember is that a solution to the wave equation is a superposition of two waves
traveling in opposite directions. That is,

y(x, t) = A(x − at) + B(x + at).
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If you think about it, the exact formulas for A and B are not hard to guess once you realize what
kind of side conditions y(x, t) is supposed to satisfy. Let us give the formula again, but slightly
differently. Best approach is to do this in stages. When g(x) = 0 (and hence G(x) = 0) we have the
solution

F(x − at) + F(x + at)
2

.

On the other hand, when f (x) = 0 (and hence F(x) = 0), we let

H(x) =

∫ x

0
G(s) ds.

The solution in this case is

1
2a

∫ x+at

x−at
G(s) ds =

−H(x − at) + H(x + at)
2a

.

By superposition we get a solution for the general side conditions (4.15) (when neither f (x) nor
g(x) are identically zero).

y(x, t) =
F(x − at) + F(x + at)

2
+
−H(x − at) + H(x + at)

2a
. (4.17)

Do note the minus sign before the H, and the a in the second denominator.

Exercise 4.8.1: Check that the new formula (4.17) satisfies the side conditions (4.15).

Warning: Make sure you use the odd extensions F(x) and G(x), when you have formulas for
f (x) and g(x). The thing is, those formulas in general hold only for 0 < x < L, and are not usually
equal to F(x) and G(x) for other x.

4.8.4 Exercises
Exercise 4.8.2: Using the d’Alembert solution solve ytt = 4yxx, 0 < x < π, t > 0, y(0, t) = y(π, t) = 0,
y(x, 0) = sin x, and yt(x, 0) = sin x. Hint: Note that sin x is the odd extension of y(x, 0) and yt(x, 0).

Exercise 4.8.3: Using the d’Alembert solution solve ytt = 2yxx, 0 < x < 1, t > 0, y(0, t) = y(1, t) = 0,
y(x, 0) = sin5(πx), and yt(x, 0) = sin3(πx).

Exercise 4.8.4: Take ytt = 4yxx, 0 < x < π, t > 0, y(0, t) = y(π, t) = 0, y(x, 0) = x(π − x), and
yt(x, 0) = 0. a) Solve using the d’Alembert formula (Hint: You can use the sine series for y(x, 0).) b)
Find the solution as a function of x for a fixed t = 0.5, t = 1, and t = 2. Do not use the sine series
here.

Exercise 4.8.5: Derive the d’Alembert solution for ytt = a2yxx, 0 < x < π, t > 0, y(0, t) = y(π, t) = 0,
y(x, 0) = f (x), and yt(x, 0) = 0, using the Fourier series solution of the wave equation, by applying
an appropriate trigonometric identity.
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Exercise 4.8.6: The d’Alembert solution still works if there are no boundary conditions and the
initial condition is defined on the whole real line. Suppose that ytt = yxx (for all x on the real line
and t ≥ 0), y(x, 0) = f (x), and yt(x, 0) = 0, where

f (x) =


0 if x < −1,
x + 1 if −1 ≤ x < 0,
−x + 1 if 0 ≤ x < 1,
0 if x > 1.

Solve using the d’Alembert solution. That is, write down a piecewise definition for the solution.
Then sketch the solution for t = 0, t = 1/2, t = 1, and t = 2.

Exercise 4.8.101: Using the d’Alembert solution solve ytt = 9yxx, 0 < x < 1, t > 0, y(0, t) =

y(1, t) = 0, y(x, 0) = sin(2πx), and yt(x, 0) = sin(3πx).

Exercise 4.8.102: Take ytt = 4yxx, 0 < x < 1, t > 0, y(0, t) = y(1, t) = 0, y(x, 0) = x − x2, and
yt(x, 0) = 0. Using the D’Alembert solution find the solution at a) t = 0.1, b) t = 1/2, c) t = 1. (You
may have to split up your answer by cases)

Exercise 4.8.103: Take ytt = 100yxx, 0 < x < 4, t > 0, y(0, t) = y(4, t) = 0, y(x, 0) = F(x), and
yt(x, 0) = 0. Suppose that F(0) = 0, F(1) = 2, F(2) = 3, F(3) = 1. Using the D’Alembert solution
find a) y(1, 1), b) y(4, 3), c) y(3, 9).
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4.9 Steady state temperature and the Laplacian
Note: 1 lecture, §9.7 in [EP], §10.8 in [BD]

Suppose we have an insulated wire, a plate, or a 3-dimensional object. We apply certain fixed
temperatures on the ends of the wire, the edges of the plate or on all sides of the 3-dimensional
object. We wish to find out what is the steady state temperature distribution. That is, we wish to
know what will be the temperature after long enough period of time.

We are really looking for a solution to the heat equation that is not dependent on time. Let us
first do this in one space variable. We are looking for a function u that satisfies

ut = kuxx,

but such that ut = 0 for all x and t. Hence, we are looking for a function of x alone that satisfies
uxx = 0. It is easy to solve this equation by integration and we see that u = Ax + B for some
constants A and B.

Suppose we have an insulated wire, and we apply constant temperature T1 at one end (say where
x = 0) and T2 on the other end (at x = L where L is the length of the wire). Then our steady state
solution is

u(x) =
T2 − T1

L
x + T1.

This solution agrees with our common sense intuition with how the heat should be distributed in the
wire. So in one dimension, the steady state solutions are basically just straight lines.

Things are more complicated in two or more space dimensions. Let us restrict to two space
dimensions for simplicity. The heat equation in two variables is

ut = k(uxx + uyy), (4.18)

or more commonly written as ut = k∆u or ut = k∇2u. Here the ∆ and ∇2 symbols mean ∂2

∂x2 + ∂2

∂y2 .
We will use ∆ from now on. The reason for that notation is that you can define ∆ to be the right
thing for any number of space dimensions and then the heat equation is always ut = k∆u. The ∆ is
called the Laplacian.

OK, now that we have notation out of the way, let us see what does an equation for the steady
state solution look like. We are looking for a solution to (4.18) that does not depend on t. Hence we
are looking for a function u(x, y) such that

∆u = uxx + uyy = 0.

This equation is called the Laplace equation¶. Solutions to the Laplace equation are called harmonic
functions and have many nice properties and applications far beyond the steady state heat problem.

¶Named after the French mathematician Pierre-Simon, marquis de Laplace (1749 – 1827).

http://en.wikipedia.org/wiki/Laplace
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Harmonic functions in two variables are no longer just linear (plane graphs). For example,
you can check that the functions x2 − y2 and xy are harmonic. However, if you remember your
multi-variable calculus we note that if uxx is positive, u is concave up in the x direction, then uyy

must be negative and u must be concave down in the y direction. Therefore, a harmonic function can
never have any “hilltop” or “valley” on the graph. This observation is consistent with our intuitive
idea of steady state heat distribution.

Commonly the Laplace equation is part of a so-called Dirichlet problem‖. That is, we have some
region in the xy-plane and we specify certain values along the boundaries of the region. We then try
to find a solution u defined on this region such that u agrees with the values we specified on the
boundary.

For simplicity, we will consider a rectangular region. Also for simplicity we will specify
boundary values to be zero at 3 of the four edges and only specify an arbitrary function at one
edge. As we still have the principle of superposition, you can use this simpler solution to derive the
general solution for arbitrary boundary values by solving 4 different problems, one for each edge,
and adding those solutions together. This setup is left as an exercise.

We wish to solve the following problem. Let h and w be the height and width of our rectangle,
with one corner at the origin and lying in the first quadrant.

∆u = 0, (4.19)
u(0, y) = 0 for 0 < y < h, (4.20)
u(x, h) = 0 for 0 < x < w, (4.21)
u(w, y) = 0 for 0 < y < h, (4.22)
u(x, 0) = f (x) for 0 < x < w. (4.23)

(0, 0)

(0, h)

u = 0 u = 0

u = f (x) (w, 0)

u = 0 (w, h)

The method we will apply is separation of variables. Again, we will come up with enough
building-block solutions satisfying all the homogeneous boundary conditions (all conditions except
(4.23)). We notice that superposition still works for the equation and all the homogeneous conditions.
Therefore, we can use the Fourier series for f (x) to solve the problem as before.

We try u(x, y) = X(x)Y(y). We plug u into the equation to get

X′′Y + XY ′′ = 0.

We put the Xs on one side and the Ys on the other to get

−
X′′

X
=

Y ′′

Y
.

‖Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805 – 1859).

http://en.wikipedia.org/wiki/Dirichlet
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The left hand side only depends on x and the right hand side only depends on y. Therefore, there is
some constant λ such that λ = −X′′

X = Y′′
Y . And we get two equations

X′′ + λX = 0,
Y ′′ − λY = 0.

Furthermore, the homogeneous boundary conditions imply that X(0) = X(w) = 0 and Y(h) = 0.
Taking the equation for X we have already seen that we have a nontrivial solution if and only if
λ = λn = n2π2

w2 and the solution is a multiple of

Xn(x) = sin
(nπ

w
x
)
.

For these given λn, the general solution for Y (one for each n) is

Yn(y) = An cosh
(nπ

w
y
)

+ Bn sinh
(nπ

w
y
)
. (4.24)

We only have one condition on Yn and hence we can pick one of An or Bn to be something convenient.
It will be useful to have Yn(0) = 1, so we let An = 1. Setting Yn(h) = 0 and solving for Bn we get that

Bn =
− cosh

(
nπh
w

)
sinh

(
nπh
w

) .

After we plug the An and Bn we into (4.24) and simplify, we find

Yn(y) =
sinh

(
nπ(h−y)

w

)
sinh

(
nπh
w

) .

We define un(x, y) = Xn(x)Yn(y). And note that un satisfies (4.19)–(4.22).
Observe that

un(x, 0) = Xn(x)Yn(0) = sin
(nπ

w
x
)
.

Suppose

f (x) =

∞∑
n=1

bn sin
(nπx

w

)
.

Then we get a solution of (4.19)–(4.23) of the following form.

u(x, y) =

∞∑
n=1

bnun(x, y) =

∞∑
n=1

bn sin
(nπ

w
x
) sinh

(
nπ(h−y)

w

)
sinh

(
nπh
w

)  .
As un satisfies (4.19)–(4.22) and any linear combination (finite or infinite) of un must also satisfy
(4.19)–(4.22), we see that u must satisfy (4.19)–(4.22). By plugging in y = 0 it is easy to see that u
satisfies (4.23) as well.
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Example 4.9.1: Suppose that we take w = h = π and we let f (x) = π. We compute the sine series
for the function π (we will get the square wave). We find that for 0 < x < π we have

f (x) =

∞∑
n=1

n odd

4
n

sin(nx).

Therefore the solution u(x, y), see Figure 4.22, to the corresponding Dirichlet problem is given as

u(x, y) =

∞∑
n=1

n odd

4
n

sin(nx)
(
sinh

(
n(π − y)

)
sinh(nπ)

)
.
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Figure 4.22: Steady state temperature of a square plate with three sides held at zero and one side
held at π.

This scenario corresponds to the steady state temperature on a square plate of width π with 3
sides held at 0 degrees and one side held at π degrees. If we have arbitrary initial data on all sides,
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then we solve four problems, each using one piece of nonhomogeneous data. Then we use the
principle of superposition to add up all four solutions to have a solution to the original problem.

There is another way to visualize the solutions of the Laplace equation. Take a wire and bend it
in just the right way so that it corresponds to the graph of the temperature above the boundary of
your region. Then dip the wire in soapy water and let it form a soapy film stretched between the
edges of the wire. It turns out that this soap film is precisely the graph of the solution to the Laplace
equation. Harmonic functions come up frequently in problems when we are trying to minimize area
of some surface or minimize energy in some system.

4.9.1 Exercises
Exercise 4.9.1: Let R be the region described by 0 < x < π and 0 < y < π. Solve the problem

∆u = 0, u(x, 0) = sin x, u(x, π) = 0, u(0, y) = 0, u(π, y) = 0.

Exercise 4.9.2: Let R be the region described by 0 < x < 1 and 0 < y < 1. Solve the problem

uxx + uyy = 0,
u(x, 0) = sin(πx) − sin(2πx), u(x, 1) = 0,
u(0, y) = 0, u(1, y) = 0.

Exercise 4.9.3: Let R be the region described by 0 < x < 1 and 0 < y < 1. Solve the problem

uxx + uyy = 0,
u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = C.

for some constant C. Hint: Guess, then check your intuition.

Exercise 4.9.4: Let R be the region described by 0 < x < π and 0 < y < π. Solve

∆u = 0, u(x, 0) = 0, u(x, π) = π, u(0, y) = y, u(π, y) = y.

Hint: Try a solution of the form u(x, y) = X(x) + Y(y) (different separation of variables).

Exercise 4.9.5: Use the solution of Exercise 4.9.4 to solve

∆u = 0, u(x, 0) = sin x, u(x, π) = π, u(0, y) = y, u(π, y) = y.

Hint: Use superposition.

Exercise 4.9.6: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

uxx + uyy = 0,
u(x, 0) = 0, u(x, h) = f (x),
u(0, y) = 0, u(w, y) = 0.

The solution should be in series form using the Fourier series coefficients of f (x).
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Exercise 4.9.7: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

uxx + uyy = 0,
u(x, 0) = 0, u(x, h) = 0,
u(0, y) = f (y), u(w, y) = 0.

The solution should be in series form using the Fourier series coefficients of f (y).

Exercise 4.9.8: Let R be the region described by 0 < x < w and 0 < y < h. Solve the problem

uxx + uyy = 0,
u(x, 0) = 0, u(x, h) = 0,
u(0, y) = 0, u(w, y) = f (y).

The solution should be in series form using the Fourier series coefficients of f (y).

Exercise 4.9.9: Let R be the region described by 0 < x < 1 and 0 < y < 1. Solve the problem

uxx + uyy = 0,
u(x, 0) = sin(9πx), u(x, 1) = sin(2πx),
u(0, y) = 0, u(1, y) = 0.

Hint: Use superposition.

Exercise 4.9.10: Let R be the region described by 0 < x < 1 and 0 < y < 1. Solve the problem

uxx + uyy = 0,
u(x, 0) = sin(πx), u(x, 1) = sin(πx),
u(0, y) = sin(πy), u(1, y) = sin(πy).

Hint: Use superposition.

Exercise 4.9.101: Let R be the region described by 0 < x < 1 and 0 < y < 1. Solve the problem

∆u = 0, u(x, 0) =

∞∑
n=1

1
n2 sin(nπx), u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0.

Exercise 4.9.102: Let R be the region described by 0 < x < 1 and 0 < y < 2. Solve the problem

∆u = 0, u(x, 0) = 0.1 sin(πx), u(x, 2) = 0, u(0, y) = 0, u(1, y) = 0.
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Chapter 5

Eigenvalue problems

5.1 Sturm-Liouville problems
Note: 2 lectures, §10.1 in [EP], §11.2 in [BD]

5.1.1 Boundary value problems
We have encountered several different eigenvalue problems such as:

X′′(x) + λX(x) = 0

with different boundary conditions

X(0) = 0 X(L) = 0 (Dirichlet) or,
X′(0) = 0 X′(L) = 0 (Neumann) or,
X′(0) = 0 X(L) = 0 (Mixed) or,
X(0) = 0 X′(L) = 0 (Mixed), . . .

For example for the insulated wire, Dirichlet conditions correspond to applying a zero temperature
at the ends, Neumann means insulating the ends, etc. . . . Other types of endpoint conditions also
arise naturally, such as

hX(0) − X′(0) = 0 hX(L) + X′(L) = 0,

for some constant h.
These problems came up, for example, in the study of the heat equation ut = kuxx when we

were trying to solve the equation by the method of separation of variables. In the computation we
encountered a certain eigenvalue problem and found the eigenfunctions Xn(x). We then found the
eigenfunction decomposition of the initial temperature f (x) = u(x, 0) in terms of the eigenfunctions

f (x) =

∞∑
n=1

cnXn(x).

221



222 CHAPTER 5. EIGENVALUE PROBLEMS

Once we had this decomposition and once we found suitable Tn(t) such that Tn(0) = 1, we noted
that a solution to the original problem could be written as

u(x, t) =

∞∑
n=1

cnTn(t)Xn(x).

We will try to solve more general problems using this method. First, we will study second order
linear equations of the form

d
dx

(
p(x)

dy
dx

)
− q(x)y + λr(x)y = 0. (5.1)

Essentially any second order linear equation of the form a(x)y′′ + b(x)y′ + c(x)y + λd(x)y = 0 can
be written as (5.1) after multiplying by a proper factor.

Example 5.1.1 (Bessel): Put the following equation into the form (5.1):

x2y′′ + xy′ +
(
λx2 − n2

)
y = 0.

Multiply both sides by 1
x to obtain

1
x

(
x2y′′ + xy′ +

(
λx2 − n2

)
y
)

= xy′′ + y′ +
(
λx −

n2

x

)
y =

d
dx

(
x

dy
dx

)
−

n2

x
y + λxy = 0.

We can state the general Sturm-Liouville problem∗. We seek nontrivial solutions to

d
dx

(
p(x)

dy
dx

)
− q(x)y + λr(x)y = 0, a < x < b,

α1y(a) − α2y′(a) = 0,
β1y(b) + β2y′(b) = 0.

(5.2)

In particular, we seek λs that allow for nontrivial solutions. The λs for which there are non-
trivial solutions are called the eigenvalues and the corresponding nontrivial solutions are called
eigenfunctions. The constants α1 and α2 should not be both zero, same for β1 and β2.

Theorem 5.1.1. Suppose p(x), p′(x), q(x) and r(x) are continuous on [a, b] and suppose p(x) > 0
and r(x) > 0 for all x in [a, b]. Then the Sturm-Liouville problem (5.2) has an increasing sequence
of eigenvalues

λ1 < λ2 < λ3 < · · ·

such that
lim
n→∞

λn = +∞

and such that to each λn there is (up to a constant multiple) a single eigenfunction yn(x).
Moreover, if q(x) ≥ 0 and α1, α2, β1, β2 ≥ 0, then λn ≥ 0 for all n.
∗Named after the French mathematicians Jacques Charles François Sturm (1803 – 1855) and Joseph Liouville (1809

– 1882).

http://en.wikipedia.org/wiki/Jacques_Charles_Fran%C3%A7ois_Sturm
http://en.wikipedia.org/wiki/Liouville
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Note: Be careful about the signs. Also be careful about the inequalities for r and p, they must be
strict for all x! Problems satisfying the hypothesis of the theorem are called regular Sturm-Liouville
problems and we will only consider such problems here. That is, a regular problem is one where
p(x), p′(x), q(x) and r(x) are continuous, p(x) > 0, r(x) > 0, q(x) ≥ 0, and α1, α2, β1, β2 ≥ 0.

When zero is an eigenvalue, we will usually start labeling the eigenvalues at 0 rather than 1 for
convenience.

Example 5.1.2: The problem y′′ + λy, 0 < x < L, y(0) = 0, and y(L) = 0 is a regular Sturm-
Liouville problem. p(x) = 1, q(x) = 0, r(x) = 1, and we have p(x) = 1 > 0 and r(x) = 1 > 0. The
eigenvalues are λn = n2π2

L2 and eigenfunctions are yn(x) = sin(nπ
L x). All eigenvalues are nonnegative

as predicted by the theorem.

Exercise 5.1.1: Find eigenvalues and eigenfunctions for

y′′ + λy = 0, y′(0) = 0, y′(1) = 0.

Identify the p, q, r, α j, β j. Can you use the theorem to make the search for eigenvalues easier? (Hint:
Consider the condition −y′(0) = 0)

Example 5.1.3: Find eigenvalues and eigenfunctions of the problem

y′′ + λy = 0, 0 < x < 1,
hy(0) − y′(0) = 0, y′(1) = 0, h > 0.

These equations give a regular Sturm-Liouville problem.

Exercise 5.1.2: Identify p, q, r, α j, β j in the example above.

First note that λ ≥ 0 by Theorem 5.1.1. Therefore, the general solution (without boundary
conditions) is

y(x) = A cos(
√
λ x) + B sin(

√
λ x) if λ > 0,

y(x) = Ax + B if λ = 0.

Let us see if λ = 0 is an eigenvalue: We must satisfy 0 = hB − A and A = 0, hence B = 0 (as
h > 0), therefore, 0 is not an eigenvalue (no eigenfunction).

Now let us try λ > 0. We plug in the boundary conditions.

0 = hA −
√
λ B,

0 = −A
√
λ sin(

√
λ) + B

√
λ cos(

√
λ).

Note that if A = 0, then B = 0 and vice-versa, hence both are nonzero. So B = hA
√
λ
, and

0 = −A
√
λ sin(

√
λ) + hA

√
λ

√
λ cos(

√
λ). As A , 0 we get

0 = −
√
λ sin(

√
λ) + h cos(

√
λ),
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or
h
√
λ

= tan
√
λ.

Now use a computer to find λn. There are tables available, though using a computer or a graphing
calculator will probably be far more convenient nowadays. Easiest method is to plot the functions
h/x and tan x and see for which x they intersect. There will be an infinite number of intersections. So
denote by

√
λ1 the first intersection, by

√
λ2 the second intersection, etc. . . . For example, when

h = 1, we get that λ1 ≈ 0.86, and λ2 ≈ 3.43. A plot for h = 1 is given in Figure 5.1. The appropriate
eigenfunction (let A = 1 for convenience, then B = h/

√
λ) is

yn(x) = cos(
√
λn x) +

h
√
λn

sin(
√
λn x).

0 2 4 6

0 2 4 6

-4

-2

0

2

4

-4

-2

0

2

4

Figure 5.1: Plot of 1
x and tan x.

5.1.2 Orthogonality

We have seen the notion of orthogonality before. For example, we have shown that sin(nx) are
orthogonal for distinct n on [0, π]. For general Sturm-Liouville problems we will need a more
general setup. Let r(x) be a weight function (any function, though generally we will assume it
is positive) on [a, b]. Then two functions f (x), g(x) are said to be orthogonal with respect to the
weight function r(x) when ∫ b

a
f (x) g(x) r(x) dx = 0.
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In this setting, we define the inner product as

〈 f , g〉 def
=

∫ b

a
f (x) g(x) r(x) dx,

and then say f and g are orthogonal whenever 〈 f , g〉 = 0. The results and concepts are again
analogous to finite dimensional linear algebra.

The idea of the given inner product is that those x where r(x) is greater have more weight.
Nontrivial (nonconstant) r(x) arise naturally, for example from a change of variables. Hence, you
could think of a change of variables such that dξ = r(x) dx.

We have the following orthogonality property of eigenfunctions of a regular Sturm-Liouville
problem.

Theorem 5.1.2. Suppose we have a regular Sturm-Liouville problem

d
dx

(
p(x)

dy
dx

)
− q(x)y + λr(x)y = 0,

α1y(a) − α2y′(a) = 0,
β1y(b) + β2y′(b) = 0.

Let y j and yk be two distinct eigenfunctions for two distinct eigenvalues λ j and λk. Then∫ b

a
y j(x) yk(x) r(x) dx = 0,

that is, y j and yk are orthogonal with respect to the weight function r.

Proof is very similar to the analogous theorem from § 4.1. It can also be found in many books
including, for example, Edwards and Penney [EP].

5.1.3 Fredholm alternative
We also have the Fredholm alternative theorem we talked about before for all regular Sturm-
Liouville problems. We state it here for completeness.

Theorem 5.1.3 (Fredholm alternative). Suppose that we have a regular Sturm-Liouville problem.
Then either

d
dx

(
p(x)

dy
dx

)
− q(x)y + λr(x)y = 0,

α1y(a) − α2y′(a) = 0,
β1y(b) + β2y′(b) = 0,
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has a nonzero solution, or

d
dx

(
p(x)

dy
dx

)
− q(x)y + λr(x)y = f (x),

α1y(a) − α2y′(a) = 0,
β1y(b) + β2y′(b) = 0,

has a unique solution for any f (x) continuous on [a, b].

This theorem is used in much the same way as we did before in § 4.4. It is used when solving
more general nonhomogeneous boundary value problems. The theorem does not help us solve the
problem, but it tells us when a solution exists and when it exists if it is unique, so that we know
when to spend time looking for a solution. To solve the problem we decompose f (x) and y(x) in
terms of the eigenfunctions of the homogeneous problem, and then solve for the coefficients of the
series for y(x).

5.1.4 Eigenfunction series
What we want to do with the eigenfunctions once we have them is to compute the eigenfunction
decomposition of an arbitrary function f (x). That is, we wish to write

f (x) =

∞∑
n=1

cnyn(x), (5.3)

where yn(x) the eigenfunctions. We wish to find out if we can represent any function f (x) in this way,
and if so, we wish to calculate cn (and of course we would want to know if the sum converges). OK,
so imagine we could write f (x) as (5.3). We will assume convergence and the ability to integrate
the series term by term. Because of orthogonality we have

〈 f , ym〉 =

∫ b

a
f (x) ym(x) r(x) dx

=

∞∑
n=1

cn

∫ b

a
yn(x) ym(x) r(x) dx

= cm

∫ b

a
ym(x) ym(x) r(x) dx = cm〈ym, ym〉.

Hence,

cm =
〈 f , ym〉

〈ym, ym〉
=

∫ b

a
f (x) ym(x) r(x) dx∫ b

a

(
ym(x)

)2 r(x) dx
. (5.4)
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Note that ym are known up to a constant multiple, so we could have picked a scalar multiple of an
eigenfunction such that 〈ym, ym〉 = 1 (if we had an arbitrary eigenfunction ỹm, divide it by

√
〈ỹm, ỹm〉).

In the case that 〈ym, ym〉 = 1 we would have the simpler form cm = 〈 f , ym〉 as we essentially did for
the Fourier series. The following theorem holds more generally, but the statement given is enough
for our purposes.

Theorem 5.1.4. Suppose f is a piecewise smooth continuous function on [a, b]. If y1, y2, . . . are the
eigenfunctions of a regular Sturm-Liouville problem, then there exist real constants c1, c2, . . . given
by (5.4) such that (5.3) converges and holds for a < x < b.

Example 5.1.4: Take the simple Sturm-Liouville problem

y′′ + λy = 0, 0 < x <
π

2
,

y(0) = 0, y′
(
π

2

)
= 0.

The above is a regular problem and furthermore we actually know by Theorem 5.1.1 on page 222
that λ ≥ 0.

Suppose λ = 0, then the general solution is y(x) = Ax + B, we plug in the initial conditions to
get 0 = y(0) = B, and 0 = y′(π2 ) = A, hence λ = 0 is not an eigenvalue.

The general solution, therefore, is

y(x) = A cos(
√
λ x) + B sin(

√
λ x).

Plugging in the boundary conditions we get 0 = y(0) = A and 0 = y′
(π

2

)
=
√
λ B cos

(√
λ π

2

)
. B

cannot be zero and hence cos
(√
λ π

2

)
= 0. This means that

√
λ π

2 must be an odd integral multiple of
π
2 , i.e. (2n − 1)π2 =

√
λn

π
2 . Hence

λn = (2n − 1)2.

We can take B = 1. And hence our eigenfunctions are

yn(x) = sin
(
(2n − 1)x

)
.

We finally compute ∫ π
2

0

(
sin

(
(2n − 1)x

))2
dx =

π

4
.

So any piecewise smooth function on [0, π2 ] can be written as

f (x) =

∞∑
n=1

cn sin
(
(2n − 1)x

)
,

where

cn =
〈 f , yn〉

〈yn, yn〉
=

∫ π
2

0
f (x) sin

(
(2n − 1)x

)
dx∫ π

2

0

(
sin

(
(2n − 1)x

))2
dx

=
4
π

∫ π
2

0
f (x) sin

(
(2n − 1)x

)
dx.

Note that the series converges to an odd 2π-periodic (not π-periodic!) extension of f (x).
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Exercise 5.1.3 (challenging): In the above example, the function is defined on 0 < x < π
2 , yet the

series converges to an odd 2π-periodic extension of f (x). Find out how is the extension defined for
π
2 < x < π.

5.1.5 Exercises
Exercise 5.1.4: Find eigenvalues and eigenfunctions of

y′′ + λy = 0, y(0) − y′(0) = 0, y(1) = 0.

Exercise 5.1.5: Expand the function f (x) = x on 0 ≤ x ≤ 1 using the eigenfunctions of the system

y′′ + λy = 0, y′(0) = 0, y(1) = 0.

Exercise 5.1.6: Suppose that you had a Sturm-Liouville problem on the interval [0, 1] and came up
with yn(x) = sin(γnx), where γ > 0 is some constant. Decompose f (x) = x, 0 < x < 1 in terms of
these eigenfunctions.

Exercise 5.1.7: Find eigenvalues and eigenfunctions of

y(4) + λy = 0, y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0.

This problem is not a Sturm-Liouville problem, but the idea is the same.

Exercise 5.1.8 (more challenging): Find eigenvalues and eigenfunctions for

d
dx

(exy′) + λexy = 0, y(0) = 0, y(1) = 0.

Hint: First write the system as a constant coefficient system to find general solutions. Do note that
Theorem 5.1.1 on page 222 guarantees λ ≥ 0.

Exercise 5.1.101: Find eigenvalues and eigenfunctions of

y′′ + λy = 0, y(−1) = 0, y(1) = 0.

Exercise 5.1.102: Put the following problems into the standard form for Sturm-Lioville problems,
that is, find p(x), q(x), r(x), α1, α2, β1, and β2, and decide if the problems are regular or not.
a) xy′′ + λy = 0 for 0 < x < 1, y(0) = 0, y(1) = 0,
b) (1 + x2)y′′ − 2xy′ + (λ − x2)y = 0 for −1 < x < 1, y(−1) = 0, y(1) + y′(1) = 0.
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5.2 Application of eigenfunction series
Note: 1 lecture, §10.2 in [EP], exercises in §11.2 in [BD]

The eigenfunction series can arise even from higher order equations. Suppose we have an elastic
beam (say made of steel). We will study the transversal vibrations of the beam. That is, assume the
beam lies along the x axis and let y(x, t) measure the displacement of the point x on the beam at
time t. See Figure 5.2.

y

y

x

Figure 5.2: Transversal vibrations of a beam.

The equation that governs this setup is

a4 ∂
4y
∂x4 +

∂2y
∂t2 = 0,

for some constant a > 0.
Suppose the beam is of length 1 simply supported (hinged) at the ends. Suppose the beam is

displaced by some function f (x) at time t = 0 and then let go (initial velocity is 0). Then y satisfies:

a4yxxxx + ytt = 0 (0 < x < 1, t > 0),
y(0, t) = yxx(0, t) = 0,
y(1, t) = yxx(1, t) = 0,
y(x, 0) = f (x), yt(x, 0) = 0.

(5.5)

Again we try y(x, t) = X(x)T (t) and plug in to get a4X(4)T + XT ′′ = 0 or

X(4)

X
=
−T ′′

a4T
= λ.

We note that we want T ′′ + λa4T = 0. Let us assume that λ > 0. We can argue that we expect
vibration and not exponential growth nor decay in the t direction (there is no friction in our model
for instance). Similarly λ = 0 will not occur.

Exercise 5.2.1: Try to justify λ > 0 just from the equations.
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Write ω4 = λ, so that we do not need to write the fourth root all the time. For X we get the
equation X(4) − ω4X = 0. The general solution is

X(x) = Aeωx + Be−ωx + C sin(ωx) + D cos(ωx).

Now 0 = X(0) = A + B + D, 0 = X′′(0) = ω2(A + B − D). Hence, D = 0 and A + B = 0, or B = −A.
So we have

X(x) = Aeωx − Ae−ωx + C sin(ωx).

Also 0 = X(1) = A(eω − e−ω) + C sinω, and 0 = X′′(1) = Aω2(eω − e−ω) −Cω2 sinω. This means
that C sinω = 0 and A(eω − e−ω) = 2A sinhω = 0. If ω > 0, then sinhω , 0 and so A = 0. This
means that C , 0 otherwise λ is not an eigenvalue. Also ω must be an integer multiple of π. Hence
ω = nπ and n ≥ 1 (as ω > 0). We can take C = 1. So the eigenvalues are λn = n4π4 and the
eigenfunctions are sin(nπx).

Now T ′′ + n4π4a4T = 0. The general solution is T (t) = A sin(n2π2a2t) + B cos(n2π2a2t). But
T ′(0) = 0 and hence we must have A = 0 and we can take B = 1 to make T (0) = 1 for convenience.
So our solutions are Tn(t) = cos(n2π2a2t).

As the eigenfunctions are just sines again, we can decompose the function f (x) on 0 < x < 1
using the sine series. We find numbers bn such that for 0 < x < 1 we have

f (x) =

∞∑
n=1

bn sin(nπx).

Then the solution to (5.5) is

y(x, t) =

∞∑
n=1

bnXn(x)Tn(t) =

∞∑
n=1

bn sin(nπx) cos(n2π2a2t).

The point is that XnTn is a solution that satisfies all the homogeneous conditions (that is, all
conditions except the initial position). And since and Tn(0) = 1, we have

y(x, 0) =

∞∑
n=1

bnXn(x)Tn(0) =

∞∑
n=1

bnXn(x) =

∞∑
n=1

bn sin(nπx) = f (x).

So y(x, t) solves (5.5).
Note that the natural (circular) frequency of the system is n2π2a2. These frequencies are all

integer multiples of the fundamental frequency π2a2, so we will get a nice musical note. The exact
frequencies and their amplitude are what we call the timbre of the note.

The timbre of a beam is different than for a vibrating string where we will get “more” of the
smaller frequencies since we will get all integer multiples, 1, 2, 3, 4, 5, . . . For a steel beam we will
get only the square multiples 1, 4, 9, 16, 25, . . . That is why when you hit a steel beam you hear a
very pure sound. The sound of a xylophone or vibraphone is, therefore, very different from a guitar
or piano.
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Example 5.2.1: Let us assume that f (x) =
x(x−1)

10 . On 0 < x < 1 we have (you know how to do this
by now)

f (x) =

∞∑
n=1

n odd

4
5π3n3 sin(nπx).

Hence, the solution to (5.5) with the given initial position f (x) is

y(x, t) =

∞∑
n=1

n odd

4
5π3n3 sin(nπx) cos(n2π2a2t).

5.2.1 Exercises
Exercise 5.2.2: Suppose you have a beam of length 5 with free ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 5). You know that the constants are such
that this satisfies the equation ytt + 4yxxxx = 0. Suppose you know that the initial shape of the beam
is the graph of x(5 − x), and the initial velocity is uniformly equal to 2 (same for each x) in the
positive y direction. Set up the equation together with the boundary and initial conditions. Just set
up, do not solve.

Exercise 5.2.3: Suppose you have a beam of length 5 with one end free and one end fixed (the
fixed end is at x = 5). Let u be the longitudinal deviation of the beam at position x on the beam
(0 < x < 5). You know that the constants are such that this satisfies the equation utt = 4uxx. Suppose
you know that the initial displacement of the beam is x−5

50 , and the initial velocity is −(x−5)
100 in the

positive u direction. Set up the equation together with the boundary and initial conditions. Just set
up, do not solve.

Exercise 5.2.4: Suppose the beam is L units long, everything else kept the same as in (5.5). What
is the equation and the series solution.

Exercise 5.2.5: Suppose you have

a4yxxxx + ytt = 0 (0 < x < 1, t > 0),
y(0, t) = yxx(0, t) = 0,
y(1, t) = yxx(1, t) = 0,
y(x, 0) = f (x), yt(x, 0) = g(x).

That is, you have also an initial velocity. Find a series solution. Hint: Use the same idea as we did
for the wave equation.

Exercise 5.2.101: Suppose you have a beam of length 1 with hinged ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 1). You know that the constants are such
that this satisfies the equation ytt + 4yxxxx = 0. Suppose you know that the initial shape of the beam
is the graph of sin(πx), and the initial velocity is 0. Solve for y.
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Exercise 5.2.102: Suppose you have a beam of length 10 with two fixed ends. Let y be the transverse
deviation of the beam at position x on the beam (0 < x < 10). You know that the constants are such
that this satisfies the equation ytt + 9yxxxx = 0. Suppose you know that the initial shape of the beam
is the graph of sin(πx), and the initial velocity is uniformly equal to x(10 − x). Set up the equation
together with the boundary and initial conditions. Just set up, do not solve.
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5.3 Steady periodic solutions
Note: 1–2 lectures, §10.3 in [EP], not in [BD]

5.3.1 Forced vibrating string.
Suppose that we have a guitar string of length L. We have studied the wave equation problem in this
case, where x was the position on the string, t was time and y was the displacement of the string.
See Figure 5.3.

L x

y

y

0

Figure 5.3: Vibrating string.

The problem is governed by the equations

ytt = a2yxx,

y(0, t) = 0, y(L, t) = 0,
y(x, 0) = f (x), yt(x, 0) = g(x).

(5.6)

We saw previously that the solution is of the form

y =

∞∑
n=1

(
An cos

(nπa
L

t
)

+ Bn sin
(nπa

L
t
))

sin
(nπ

L
x
)

where An and Bn were determined by the initial conditions. The natural frequencies of the system
are the (circular) frequencies nπa

L for integers n ≥ 1.
But these are free vibrations. What if there is an external force acting on the string. Let us

assume say air vibrations (noise), for example a second string. Or perhaps a jet engine. For
simplicity, assume nice pure sound and assume the force is uniform at every position on the string.
Let us say F(t) = F0 cos(ωt) as force per unit mass. Then our wave equation becomes (remember
force is mass times acceleration)

ytt = a2yxx + F0 cos(ωt), (5.7)

with the same boundary conditions of course.
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We will want to find the solution here that satisfies the above equation and

y(0, t) = 0, y(L, t) = 0, y(x, 0) = 0, yt(x, 0) = 0. (5.8)

That is, the string is initially at rest. First we find a particular solution yp of (5.7) that satisfies
y(0, t) = y(L, t) = 0. We define the functions f and g as

f (x) = −yp(x, 0), g(x) = −
∂yp

∂t
(x, 0).

We then find solution yc of (5.6). If we add the two solutions, we find that y = yc + yp solves (5.7)
with the initial conditions.

Exercise 5.3.1: Check that y = yc + yp solves (5.7) and the side conditions (5.8).

So the big issue here is to find the particular solution yp. We look at the equation and we make
an educated guess

yp(x, t) = X(x) cos(ωt).

We plug in to get
−ω2X cos(ωt) = a2X′′ cos(ωt) + F0 cos(ωt),

or −ω2X = a2X′′ + F0 after canceling the cosine. We know how to find a general solution to
this equation (it is an nonhomogeneous constant coefficient equation) and we get that the general
solution is

X(x) = A cos
(
ω

a
x
)

+ B sin
(
ω

a
x
)
−

F0

ω2 .

The endpoint conditions imply X(0) = X(L) = 0. So

0 = X(0) = A −
F0

ω2 ,

or A = F0
ω2 , and also

0 = X(L) =
F0

ω2 cos
(
ωL
a

)
+ B sin

(
ωL
a

)
−

F0

ω2 .

Assuming that sin(ωL
a ) is not zero we can solve for B to get

B =
−F0

(
cos

(
ωL
a

)
− 1

)
ω2 sin

(
ωL
a

) . (5.9)

Therefore,

X(x) =
F0

ω2

cos
(
ω

a
x
)
−

cos
(
ωL
a

)
− 1

sin
(
ωL
a

) sin
(
ω

a
x
)
− 1

 .
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The particular solution yp we are looking for is

yp(x, t) =
F0

ω2

cos
(
ω

a
x
)
−

cos
(
ωL
a

)
− 1

sin
(
ωL
a

) sin
(
ω

a
x
)
− 1

 cos(ωt).

Exercise 5.3.2: Check that yp works.

Now we get to the point that we skipped. Suppose that sin(ωL
a ) = 0. What this means is that ω is

equal to one of the natural frequencies of the system, i.e. a multiple of πa
L . We notice that if ω is not

equal to a multiple of the base frequency, but is very close, then the coefficient B in (5.9) seems
to become very large. But let us not jump to conclusions just yet. When ω = nπa

L for n even, then
cos(ωL

a ) = 1 and hence we really get that B = 0. So resonance occurs only when both cos(ωL
a ) = −1

and sin(ωL
a ) = 0. That is when ω = nπa

L for odd n.
We could again solve for the resonance solution if we wanted to, but it is, in the right sense, the

limit of the solutions as ω gets close to a resonance frequency. In real life, pure resonance never
occurs anyway.

The above calculation explains why a string will begin to vibrate if the identical string is plucked
close by. In the absence of friction this vibration would get louder and louder as time goes on. On
the other hand, you are unlikely to get large vibration if the forcing frequency is not close to a
resonance frequency even if you have a jet engine running close to the string. That is, the amplitude
will not keep increasing unless you tune to just the right frequency.

Similar resonance phenomena occur when you break a wine glass using human voice (yes this
is possible, but not easy†) if you happen to hit just the right frequency. Remember a glass has much
purer sound, i.e. it is more like a vibraphone, so there are far fewer resonance frequencies to hit.

When the forcing function is more complicated, you decompose it in terms of the Fourier series
and apply the above result. You may also need to solve the above problem if the forcing function is
a sine rather than a cosine, but if you think about it, the solution is almost the same.

Example 5.3.1: Let us do the computation for specific values. Suppose F0 = 1 and ω = 1 and
L = 1 and a = 1. Then

yp(x, t) =

(
cos(x) −

cos(1) − 1
sin(1)

sin(x) − 1
)

cos(t).

Write B =
cos(1)−1

sin(1) for simplicity.
Then plug in t = 0 to get

f (x) = −yp(x, 0) = − cos x + B sin x + 1,

and after differentiating in t we see that g(x) = −
∂yp

∂t (x, 0) = 0.

†Mythbusters, episode 31, Discovery Channel, originally aired may 18th 2005.
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Hence to find yc we need to solve the problem

ytt = yxx,

y(0, t) = 0, y(1, t) = 0,
y(x, 0) = − cos x + B sin x + 1,
yt(x, 0) = 0.

Note that the formula that we use to define y(x, 0) is not odd, hence it is not a simple matter of
plugging in to apply the D’Alembert formula directly! You must define F to be the odd, 2-periodic
extension of y(x, 0). Then our solution would look like

y(x, t) =
F(x + t) + F(x − t)

2
+

(
cos(x) −

cos(1) − 1
sin(1)

sin(x) − 1
)

cos(t). (5.10)
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Figure 5.4: Plot of y(x, t) =
F(x+t)+F(x−t)

2 +
(
cos(x) − cos(1)−1

sin(1) sin(x) − 1
)

cos(t).

It is not hard to compute specific values for an odd extension of a function and hence (5.10) is a
wonderful solution to the problem. For example it is very easy to have a computer do it, unlike a
series solution. A plot is given in Figure 5.4.
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5.3.2 Underground temperature oscillations

Let u(x, t) be the temperature at a certain location at depth x underground at time t. See Figure 5.5.

depth x

Figure 5.5: Underground temperature.

The temperature u satisfies the heat equation ut = kuxx, where k is the diffusivity of the soil. We
know the temperature at the surface u(0, t) from weather records. Let us assume for simplicity that

u(0, t) = T0 + A0 cos(ωt).

For some base temperature T0, then t = 0 is midsummer (could put negative sign above to make it
midwinter). A0 is picked properly to make this the typical variation for the year. That is, the hottest
temperature is T0 + A0 and the coldest is T0 − A0. For simplicity, we will assume that T0 = 0. ω is
picked depending on the units of t, such that when t = 1 year, then ωt = 2π.

It seems reasonable that the temperature at depth x will also oscillate with the same frequency.
And this in fact will be the steady periodic solution, independent of the initial conditions. So we are
looking for a solution of the form

u(x, t) = V(x) cos(ωt) + W(x) sin(ωt).

for the problem
ut = kuxx, u(0, t) = A0 cos(ωt). (5.11)

We will employ the complex exponential here to make calculations simpler. Suppose we have a
complex valued function

h(x, t) = X(x) eiωt.

We will look for an h such that Re h = u. To find an h, whose real part satisfies (5.11), we look for
an h such that

ht = khxx, h(0, t) = A0eiωt. (5.12)

Exercise 5.3.3: Suppose h satisfies (5.12). Use Euler’s formula for the complex exponential to
check that u = Re h satisfies (5.11).
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Substitute h into (5.12).
iωXeiωt = kX′′eiωt.

Hence,
kX′′ − iωX = 0,

or
X′′ − α2X = 0,

where α = ±

√
iω
k . Note that ±

√
i = ±1+i

√
2

so you could simplify to α = ±(1 + i)
√

ω
2k . Hence the

general solution is
X(x) = Ae−(1+i)

√
ω
2k x + Be(1+i)

√
ω
2k x.

We assume that an X(x) that solves the problem must be bounded as x → ∞ since u(x, t) should
be bounded (we are not worrying about the earth core!). If you use Euler’s formula to expand the
complex exponentials, you will note that the second term will be unbounded (if B , 0), while the
first term is always bounded. Hence B = 0.

Exercise 5.3.4: Use Euler’s formula to show that e(1+i)
√

ω
2k x will be unbounded as x → ∞, while

e−(1+i)
√

ω
2k x will be bounded as x→ ∞.

Furthermore, X(0) = A0 since h(0, t) = A0eiωt. Thus A = A0. This means that

h(x, t) = A0e−(1+i)
√

ω
2k xeiωt = A0e−(1+i)

√
ω
2k x+iωt = A0e−

√
ω
2k xei(ωt−

√
ω
2k x).

We will need to get the real part of h, so we apply Euler’s formula to get

h(x, t) = A0e−
√

ω
2k x

(
cos

(
ωt −

√
ω

2k
x
)

+ i sin
(
ωt −

√
ω

2k
x
))
.

Then finally

u(x, t) = Re h(x, t) = A0e−
√

ω
2k x cos

(
ωt −

√
ω

2k
x
)
,

Yay!
Notice the phase is different at different depths. At depth x the phase is delayed by x

√
ω
2k .

For example in cgs units (centimeters-grams-seconds) we have k = 0.005 (typical value for soil),
ω = 2π

seconds in a year = 2π
31,557,341 ≈ 1.99 × 10−7. Then if we compute where the phase shift x

√
ω
2k = π

we find the depth in centimeters where the seasons are reversed. That is, we get the depth at which
summer is the coldest and winter is the warmest. We get approximately 700 centimeters, which is
approximately 23 feet below ground.

Be careful not to jump to conclusions. The temperature swings decay rapidly as you dig deeper.
The amplitude of the temperature swings is A0e−

√
ω
2k x. This function decays very quickly as x (the

depth) grows. Let us again take typical parameters as above. We will also assume that our surface
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temperature swing is ±15◦ Celsius, that is, A0 = 15. Then the maximum temperature variation at
700 centimeters is only ±0.66◦ Celsius.

You need not dig very deep to get an effective “refrigerator,” with nearly constant temperature.
That is why wines are kept in a cellar; you need consistent temperature. The temperature differential
could also be used for energy. A home could be heated or cooled by taking advantage of the above
fact. Even without the earth core you could heat a home in the winter and cool it in the summer. The
earth core makes the temperature higher the deeper you dig, although you need to dig somewhat
deep to feel a difference. We did not take that into account above.

5.3.3 Exercises
Exercise 5.3.5: Suppose that the forcing function for the vibrating string is F0 sin(ωt). Derive the
particular solution yp.

Exercise 5.3.6: Take the forced vibrating string. Suppose that L = 1, a = 1. Suppose that the
forcing function is the square wave that is 1 on the interval 0 < x < 1 and −1 on the interval
−1 < x < 0. Find the particular solution. Hint: You may want to use result of Exercise 5.3.5.

Exercise 5.3.7: The units are cgs (centimeters-grams-seconds). For k = 0.005, ω = 1.991 × 10−7,
A0 = 20. Find the depth at which the temperature variation is half (±10 degrees) of what it is on the
surface.

Exercise 5.3.8: Derive the solution for underground temperature oscillation without assuming that
T0 = 0.

Exercise 5.3.101: Take the forced vibrating string. Suppose that L = 1, a = 1. Suppose that
the forcing function is a sawtooth, that is |x| − 1

2 on −1 < x < 1 extended periodically. Find the
particular solution.

Exercise 5.3.102: The units are cgs (centimeters-grams-seconds). For k = 0.01, ω = 1.991 × 10−7,
A0 = 25. Find the depth at which the summer is again the hottest point.
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Chapter 6

The Laplace transform

6.1 The Laplace transform
Note: 1.5 – 2 lectures, §10.1 in [EP], §6.1 and parts of §6.2 in [BD]

6.1.1 The transform
In this chapter we will discuss the Laplace transform∗. The Laplace transform turns out to be a very
efficient method to solve certain ODE problems. In particular, the transform can take a differential
equation and turn it into an algebraic equation. If the algebraic equation can be solved, applying
the inverse transform gives us our desired solution. The Laplace transform also has applications in
the analysis of electrical circuits, NMR spectroscopy, signal processing, and elsewhere. Finally,
understanding the Laplace transform will also help with understanding the related Fourier transform,
which, however, requires more understanding of complex numbers. We will not cover the Fourier
transform.

The Laplace transform also gives a lot of insight into the nature of the equations we are dealing
with. It can be seen as converting between the time and the frequency domain. For example, take
the standard equation

mx′′(t) + cx′(t) + kx(t) = f (t).

We can think of t as time and f (t) as incoming signal. The Laplace transform will convert the
equation from a differential equation in time to an algebraic (no derivatives) equation, where the
new independent variable s is the frequency.

We can think of the Laplace transform as a black box. It eats functions and spits out functions
in a new variable. We write L{ f (t)} = F(s) for the Laplace transform of f (t). It is common to
write lower case letters for functions in the time domain and upper case letters for functions in the

∗Just like the Laplace equation and the Laplacian, the Laplace transform is also named after Pierre-Simon, marquis
de Laplace (1749 – 1827).
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frequency domain. We use the same letter to denote that one function is the Laplace transform of
the other. For example F(s) is the Laplace transform of f (t). Let us define the transform.

L{ f (t)} = F(s) def
=

∫ ∞

0
e−st f (t) dt.

We note that we are only considering t ≥ 0 in the transform. Of course, if we think of t as time there
is no problem, we are generally interested in finding out what will happen in the future (Laplace
transform is one place where it is safe to ignore the past). Let us compute some simple transforms.

Example 6.1.1: Suppose f (t) = 1, then

L{1} =

∫ ∞

0
e−st dt =

[
e−st

−s

]∞
t=0

= lim
h→∞

[
e−st

−s

]h

t=0
= lim

h→∞

(
e−sh

−s
−

1
−s

)
=

1
s
.

The limit (the improper integral) only exists if s > 0. So L{1} is only defined for s > 0.

Example 6.1.2: Suppose f (t) = e−at, then

L{e−at} =

∫ ∞

0
e−ste−at dt =

∫ ∞

0
e−(s+a)t dt =

[
e−(s+a)t

−(s + a)

]∞
t=0

=
1

s + a
.

The limit only exists if s + a > 0. So L{e−at} is only defined for s + a > 0.

Example 6.1.3: Suppose f (t) = t, then using integration by parts

L{t} =

∫ ∞

0
e−stt dt

=

[
−te−st

s

]∞
t=0

+
1
s

∫ ∞

0
e−st dt

= 0 +
1
s

[
e−st

−s

]∞
t=0

=
1
s2 .

Again, the limit only exists if s > 0.

Example 6.1.4: A common function is the unit step function, which is sometimes called the
Heaviside function†. This function is generally given as

u(t) =

0 if t < 0,
1 if t ≥ 0.

†The function is named after the English mathematician, engineer, and physicist Oliver Heaviside (1850–1925).
Only by coincidence is the function “heavy” on “one side.”

http://en.wikipedia.org/wiki/Heaviside
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Let us find the Laplace transform of u(t − a), where a ≥ 0 is some constant. That is, the function
that is 0 for t < a and 1 for t ≥ a.

L{u(t − a)} =

∫ ∞

0
e−stu(t − a) dt =

∫ ∞

a
e−st dt =

[
e−st

−s

]∞
t=a

=
e−as

s
,

where of course s > 0 (and a ≥ 0 as we said before).

By applying similar procedures we can compute the transforms of many elementary functions.
Many basic transforms are listed in Table 6.1.

f (t) L{ f (t)}

C C
s

t 1
s2

t2 2
s3

t3 6
s4

tn n!
sn+1

e−at 1
s+a

sin(ωt) ω
s2+ω2

cos(ωt) s
s2+ω2

sinh(ωt) ω
s2−ω2

cosh(ωt) s
s2−ω2

u(t − a) e−as

s

Table 6.1: Some Laplace transforms (C, ω, and a are constants).

Exercise 6.1.1: Verify Table 6.1.

Since the transform is defined by an integral. We can use the linearity properties of the integral.
For example, suppose C is a constant, then

L{C f (t)} =

∫ ∞

0
e−stC f (t) dt = C

∫ ∞

0
e−st f (t) dt = CL{ f (t)}.

So we can “pull out” a constant out of the transform. Similarly we have linearity. Since linearity is
very important we state it as a theorem.

Theorem 6.1.1 (Linearity of the Laplace transform). Suppose that A, B, and C are constants, then

L{A f (t) + Bg(t)} = AL{ f (t)} + BL{g(t)},

and in particular
L{C f (t)} = CL{ f (t)}.
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Exercise 6.1.2: Verify the theorem. That is, show that L{A f (t) + Bg(t)} = AL{ f (t)} + BL{g(t)}.

These rules together with Table 6.1 on the previous page make it easy to find the Laplace
transform of a whole lot of functions already. But be careful. It is a common mistake to think that
the Laplace transform of a product is the product of the transforms. In general

L{ f (t)g(t)} , L{ f (t)}L{g(t)}.

It must also be noted that not all functions have a Laplace transform. For example, the function
1
t does not have a Laplace transform as the integral diverges for all s. Similarly, tan t or et2 do not
have Laplace transforms.

6.1.2 Existence and uniqueness
Let us consider when does the Laplace transform exist in more detail. First let us consider functions
of exponential order. The function f (t) is of exponential order as t goes to infinity if

| f (t)| ≤ Mect,

for some constants M and c, for sufficiently large t (say for all t > t0 for some t0). The simplest way
to check this condition is to try and compute

lim
t→∞

f (t)
ect .

If the limit exists and is finite (usually zero), then f (t) is of exponential order.

Exercise 6.1.3: Use L’Hopital’s rule from calculus to show that a polynomial is of exponential
order. Hint: Note that a sum of two exponential order functions is also of exponential order. Then
show that tn is of exponential order for any n.

For an exponential order function we have existence and uniqueness of the Laplace transform.

Theorem 6.1.2 (Existence). Let f (t) be continuous and of exponential order for a certain constant
c. Then F(s) = L{ f (t)} is defined for all s > c.

The transform also exists for some other functions that are not of exponential order, but that
will not be relevant to us. Before dealing with uniqueness, let us note that for exponential order
functions we obtain that their Laplace transform decays at infinity:

lim
s→∞

F(s) = 0.

Theorem 6.1.3 (Uniqueness). Let f (t) and g(t) be continuous and of exponential order. Suppose
that there exists a constant C, such that F(s) = G(s) for all s > C. Then f (t) = g(t) for all t ≥ 0.
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Both theorems hold for piecewise continuous functions as well. Recall that piecewise continuous
means that the function is continuous except perhaps at a discrete set of points where it has jump
discontinuities like the Heaviside function. Uniqueness however does not “see” values at the
discontinuities. So we can only conclude that f (t) = g(t) outside of discontinuities. For example,
the unit step function is sometimes defined using u(0) = 1/2. This new step function, however, has
the exact same Laplace transform as the one we defined earlier where u(0) = 1.

6.1.3 The inverse transform
As we said, the Laplace transform will allow us to convert a differential equation into an algebraic
equation. Once we solve the algebraic equation in the frequency domain we will want to get back to
the time domain, as that is what we are interested in. If we have a function F(s), to be able to find
f (t) such that L{ f (t)} = F(s), we need to first know if such a function is unique. It turns out we are
in luck by Theorem 6.1.3. So we can without fear make the following definition.

If F(s) = L{ f (t)} for some function f (t). We define the inverse Laplace transform as

L−1{F(s)} def
= f (t).

There is an integral formula for the inverse, but it is not as simple as the transform itself (requires
complex numbers). For us it will suffice to compute the inverse by using Table 6.1 on page 243.

Example 6.1.5: Take F(s) = 1
s+1 . Find the inverse Laplace transform.

We look at the table and we find

L−1
{

1
s + 1

}
= e−t.

As the Laplace transform is linear, the inverse Laplace transform is also linear. That is,

L−1{AF(s) + BG(s)} = AL−1{F(s)} + BL−1{G(s)}.

Of course, we also have L−1{AF(s)} = AL−1{F(s)}. Let us demonstrate how linearity can be used.

Example 6.1.6: Take F(s) = s2+s+1
s3+s . Find the inverse Laplace transform.

First we use the method of partial fractions to write F in a form where we can use Table 6.1 on
page 243. We factor the denominator as s(s2 + 1) and write

s2 + s + 1
s3 + s

=
A
s

+
Bs + C
s2 + 1

.

Putting the right hand side over a common denominator and equating the numerators we get
A(s2 + 1) + s(Bs + C) = s2 + s + 1. Expanding and equating coefficients we obtain A + B = 1, C = 1,
A = 1, and thus B = 0. In other words,

F(s) =
s2 + s + 1

s3 + s
=

1
s

+
1

s2 + 1
.
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By linearity of the inverse Laplace transform we get

L−1
{

s2 + s + 1
s3 + s

}
= L−1

{
1
s

}
+L−1

{
1

s2 + 1

}
= 1 + sin t.

Another useful property is the so-called shifting property or the first shifting property

L{e−at f (t)} = F(s + a),

where F(s) is the Laplace transform of f (t).

Exercise 6.1.4: Derive the first shifting property from the definition of the Laplace transform.

The shifting property can be used, for example, when the denominator is a more complicated
quadratic that may come up in the method of partial fractions. We will write such quadratics as
(s + a)2 + b by completing the square and then use the shifting property.

Example 6.1.7: Find L−1
{

1
s2+4s+8

}
.

First we complete the square to make the denominator (s + 2)2 + 4. Next we find

L−1
{

1
s2 + 4

}
=

1
2

sin(2t).

Putting it all together with the shifting property we find

L−1
{

1
s2 + 4s + 8

}
= L−1

{
1

(s + 2)2 + 4

}
=

1
2

e−2t sin(2t).

In general, we will want to be able to apply the Laplace transform to rational functions, that is
functions of the form

F(s)
G(s)

where F(s) and G(s) are polynomials. Since normally (for functions that we are considering) the
Laplace transform goes to zero as s→ ∞, it is not hard to see that the degree of F(s) will be smaller
than that of G(s). Such rational functions are called proper rational functions and we will always
be able to apply the method of partial fractions. Of course this means we will need to be able
to factor the denominator into linear and quadratic terms, which involves finding the roots of the
denominator.

6.1.4 Exercises
Exercise 6.1.5: Find the Laplace transform of 3 + t5 + sin(πt).

Exercise 6.1.6: Find the Laplace transform of a + bt + ct2 for some constants a, b, and c.
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Exercise 6.1.7: Find the Laplace transform of A cos(ωt) + B sin(ωt).

Exercise 6.1.8: Find the Laplace transform of cos2(ωt).

Exercise 6.1.9: Find the inverse Laplace transform of 4
s2−9 .

Exercise 6.1.10: Find the inverse Laplace transform of 2s
s2−1 .

Exercise 6.1.11: Find the inverse Laplace transform of 1
(s−1)2(s+1)

.

Exercise 6.1.12: Find the Laplace transform of f (t) =

t if t ≥ 1,
0 if t < 1.

Exercise 6.1.13: Find the inverse Laplace transform of s
(s2+s+2)(s+4) .

Exercise 6.1.14: Find the Laplace transform of sin
(
ω(t − a)

)
.

Exercise 6.1.15: Find the Laplace transform of t sin(ωt). Hint: several integrations by parts.

Exercise 6.1.101: Find the Laplace transform of 4(t + 1)2.

Exercise 6.1.102: Find the inverse Laplace transform of 8
s3(s+2) .

Exercise 6.1.103: Find the Laplace transform of te−t (Hint: integrate by parts).

Exercise 6.1.104: Find the Laplace transform of sin(t)e−t (Hint: integrate by parts).
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6.2 Transforms of derivatives and ODEs
Note: 2 lectures, §7.2 –7.3 in [EP], §6.2 and §6.3 in [BD]

6.2.1 Transforms of derivatives
Let us see how the Laplace transform is used for differential equations. First let us try to find
the Laplace transform of a function that is a derivative. That is, suppose g(t) is a continuous
differentiable function of exponential order. Then

L {g′(t)} =

∫ ∞

0
e−stg′(t) dt =

[
e−stg(t)

]∞
t=0
−

∫ ∞

0
(−s) e−stg(t) dt = −g(0) + sL{g(t)}.

We repeat this procedure for higher derivatives. The results are listed in Table 6.2. The procedure
also works for piecewise smooth functions, that is functions that are piecewise continuous with a
piecewise continuous derivative. The fact that the function is of exponential order is used to show
that the limits appearing above exist. We will not worry much about this fact.

f (t) L{ f (t)} = F(s)

g′(t) sG(s) − g(0)
g′′(t) s2G(s) − sg(0) − g′(0)
g′′′(t) s3G(s) − s2g(0) − sg′(0) − g′′(0)

Table 6.2: Laplace transforms of derivatives (G(s) = L{g(t)} as usual).

Exercise 6.2.1: Verify Table 6.2.

6.2.2 Solving ODEs with the Laplace transform
Notice that the Laplace transform turns differentiation into multiplication by s. Let us see how to
apply this fact to differential equations.

Example 6.2.1: Take the equation

x′′(t) + x(t) = cos(2t), x(0) = 0, x′(0) = 1.

We will take the Laplace transform of both sides. By X(s) we will, as usual, denote the Laplace
transform of x(t).

L{x′′(t) + x(t)} = L{cos(2t)},

s2X(s) − sx(0) − x′(0) + X(s) =
s

s2 + 4
.
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We can plug in the initial conditions now (this will make computations more streamlined) to obtain

s2X(s) − 1 + X(s) =
s

s2 + 4
.

We now solve for X(s),

X(s) =
s

(s2 + 1)(s2 + 4)
+

1
s2 + 1

.

We use partial fractions (exercise) to write

X(s) =
1
3

s
s2 + 1

−
1
3

s
s2 + 4

+
1

s2 + 1
.

Now take the inverse Laplace transform to obtain

x(t) =
1
3

cos(t) −
1
3

cos(2t) + sin(t).

The procedure for linear constant coefficient equations is as follows. We take an ordinary
differential equation in the time variable t. We apply the Laplace transform to transform the equation
into an algebraic (non differential) equation in the frequency domain. All the x(t), x′(t), x′′(t), and
so on, will be converted to X(s), sX(s) − x(0), s2X(s) − sx(0) − x′(0), and so on. We solve the
equation for X(s). Then taking the inverse transform, if possible, we find x(t).

It should be noted that since not every function has a Laplace transform, not every equation
can be solved in this manner. Also if the equation is not a linear constant coefficient ODE, then by
applying the Laplace transform we may not obtain an algebraic equation.

6.2.3 Using the Heaviside function
Before we move on to more general equations than those we could solve before, we want to consider
the Heaviside function. See Figure 6.1 on the following page for the graph.

u(t) =

0 if t < 0,
1 if t ≥ 0.

This function is useful for putting together functions, or cutting functions off. Most commonly
it is used as u(t − a) for some constant a. This just shifts the graph to the right by a. That is, it is a
function that is 0 when t < a and 1 when t ≥ a. Suppose for example that f (t) is a “signal” and you
started receiving the signal sin t at time t = π. The function f (t) should then be defined as

f (t) =

0 if t < π,
sin t if t ≥ π.
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Figure 6.1: Plot of the Heaviside (unit step) function u(t).

Using the Heaviside function, f (t) can be written as

f (t) = u(t − π) sin t.

Similarly the step function that is 1 on the interval [1, 2) and zero everywhere else can be written as

u(t − 1) − u(t − 2).

The Heaviside function is useful to define functions defined piecewise. If you want the function t on
when t is in [0, 1] and the function −t + 2 when t is in [1, 2] and zero otherwise, you can use the
expression

t
(
u(t) − u(t − 1)

)
+ (−t + 2)

(
u(t − 1) − u(t − 2)

)
.

Hence it is useful to know how the Heaviside function interacts with the Laplace transform. We
have already seen that

L{u(t − a)} =
e−as

s
.

This can be generalized into a shifting property or second shifting property.

L{ f (t − a) u(t − a)} = e−asL{ f (t)}. (6.1)

Example 6.2.2: Suppose that the forcing function is not periodic. For example, suppose that we
had a mass-spring system

x′′(t) + x(t) = f (t), x(0) = 0, x′(0) = 0,

where f (t) = 1 if 1 ≤ t < 5 and zero otherwise. We could imagine a mass-spring system, where a
rocket is fired for 4 seconds starting at t = 1. Or perhaps an RLC circuit, where the voltage is raised
at a constant rate for 4 seconds starting at t = 1, and then held steady again starting at t = 5.
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We can write f (t) = u(t − 1) − u(t − 5). We transform the equation and we plug in the initial
conditions as before to obtain

s2X(s) + X(s) =
e−s

s
−

e−5s

s
.

We solve for X(s) to obtain

X(s) =
e−s

s(s2 + 1)
−

e−5s

s(s2 + 1)
.

We leave it as an exercise to the reader to show that

L−1
{

1
s(s2 + 1)

}
= 1 − cos t.

In other words L{1 − cos t} = 1
s(s2+1) . So using (6.1) we find

L−1
{

e−s

s(s2 + 1)

}
= L−1 {

e−sL{1 − cos t}
}

=
(
1 − cos(t − 1)

)
u(t − 1).

Similarly

L−1
{

e−5s

s(s2 + 1)

}
= L−1

{
e−5sL{1 − cos t}

}
=

(
1 − cos(t − 5)

)
u(t − 5).

Hence, the solution is

x(t) =
(
1 − cos(t − 1)

)
u(t − 1) −

(
1 − cos(t − 5)

)
u(t − 5).

The plot of this solution is given in Figure 6.2.
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Figure 6.2: Plot of x(t).
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6.2.4 Transfer functions
Laplace transform leads to the following useful concept for studying the steady state behavior of a
linear system. Suppose we have an equation of the form

Lx = f (t),

where L is a linear constant coefficient differential operator. Then f (t) is usually thought of as input
of the system and x(t) is thought of as the output of the system. For example, for a mass-spring
system the input is the forcing function and output is the behaviour of the mass. We would like to
have an convenient way to study the behaviour of the system for different inputs.

Let us suppose that all the initial conditions are zero and take the Laplace transform of the
equation, we obtain the equation

A(s)X(s) = F(s).

Solving for the ratio X(s)/F(s) we obtain the so called transfer function H(s) = 1/A(s).

H(s) =
X(s)
F(s)

.

In other words, X(s) = H(s)F(s). We obtain an algebraic dependence of the output of the system
based on the input. We can now easily study the steady state behaviour of the system given different
inputs by simply multiplying by the transfer function.

Example 6.2.3: Given x′′ + ω2
0x = f (t), let us find the transfer function (assuming the initial

conditions are zero).
First, we take the Laplace transform of the equation.

s2X(s) + ω2
0X(s) = F(s).

Now we solve for the transfer function X(s)/F(s).

H(s) =
X(s)
F(s)

=
1

s2 + ω2
0

.

Let us see how to use the transfer function. Suppose we have the constant input f (t) = 1. Hence
F(s) = 1/s, and

X(s) = H(s)F(s) =
1

s2 + ω2
0

1
s
.

Taking the inverse Laplace transform of X(s) we obtain

x(t) =
1 − cos(ω0t)

ω2
0

.
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6.2.5 Transforms of integrals
A feature of Laplace transforms is that it is also able to easily deal with integral equations. That is,
equations in which integrals rather than derivatives of functions appear. The basic property, which
can be proved by applying the definition and doing integration by parts, is

L

{∫ t

0
f (τ) dτ

}
=

1
s

F(s).

It is sometimes useful (e.g. for computing the inverse transform) to write this as∫ t

0
f (τ) dτ = L−1

{
1
s

F(s)
}
.

Example 6.2.4: To compute L−1
{

1
s(s2+1)

}
we could proceed by applying this integration rule.

L−1
{

1
s

1
s2 + 1

}
=

∫ t

0
L−1

{
1

s2 + 1

}
dτ =

∫ t

0
sin τ dτ = 1 − cos t.

Example 6.2.5: An equation containing an integral of the unknown function is called an integral
equation. For example, take

t2 =

∫ t

0
eτx(τ) dτ,

where we wish to solve for x(t). We apply the Laplace transform and the shifting property to get

2
s3 =

1
s
L{etx(t)} =

1
s

X(s − 1),

where X(s) = L{x(t)}. Thus

X(s − 1) =
2
s2 or X(s) =

2
(s + 1)2 .

We use the shifting property again
x(t) = 2e−tt.

6.2.6 Exercises
Exercise 6.2.2: Using the Heaviside function write down the piecewise function that is 0 for t < 0,
t2 for t in [0, 1] and t for t > 1.

Exercise 6.2.3: Using the Laplace transform solve

mx′′ + cx′ + kx = 0, x(0) = a, x′(0) = b,

where m > 0, c > 0, k > 0, and c2 − 4km > 0 (system is overdamped).
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Exercise 6.2.4: Using the Laplace transform solve

mx′′ + cx′ + kx = 0, x(0) = a, x′(0) = b,

where m > 0, c > 0, k > 0, and c2 − 4km < 0 (system is underdamped).

Exercise 6.2.5: Using the Laplace transform solve

mx′′ + cx′ + kx = 0, x(0) = a, x′(0) = b,

where m > 0, c > 0, k > 0, and c2 = 4km (system is critically damped).

Exercise 6.2.6: Solve x′′ + x = u(t − 1) for initial conditions x(0) = 0 and x′(0) = 0.

Exercise 6.2.7: Show the differentiation of the transform property. Suppose L{ f (t)} = F(s), then
show

L{−t f (t)} = F′(s).

Hint: Differentiate under the integral sign.

Exercise 6.2.8: Solve x′′′ + x = t3u(t − 1) for initial conditions x(0) = 1 and x′(0) = 0, x′′(0) = 0.

Exercise 6.2.9: Show the second shifting property: L{ f (t − a) u(t − a)} = e−asL{ f (t)}.

Exercise 6.2.10: Let us think of the mass-spring system with a rocket from Example 6.2.2. We
noticed that the solution kept oscillating after the rocket stopped running. The amplitude of the
oscillation depends on the time that the rocket was fired (for 4 seconds in the example). a) Find
a formula for the amplitude of the resulting oscillation in terms of the amount of time the rocket
is fired. b) Is there a nonzero time (if so what is it?) for which the rocket fires and the resulting
oscillation has amplitude 0 (the mass is not moving)?

Exercise 6.2.11: Define

f (t) =


(t − 1)2 if 1 ≤ t < 2,
3 − t if 2 ≤ t < 3,
0 otherwise.

a) Sketch the graph of f (t). b) Write down f (t) using the Heaviside function. c) Solve x′′ + x = f (t),
x(0) = 0, x′(0) = 0 using Laplace transform.

Exercise 6.2.12: Find the transfer function for mx′′+cx′+kx = f (t) (assuming the initial conditions
are zero).

Exercise 6.2.101: Using the Heaviside function u(t), write down the function

f (x) =


0 if x < 1
t − 1 if 1 ≤ x < 2
1 if x ≥ 2

.
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Exercise 6.2.102: Solve x′′ − x = (t2 − 1)u(t − 1) for initial conditions x(0) = 1, x′(0) = 2 using the
Laplace transform.

Exercise 6.2.103: Find the transfer function for x′ + x = f (t) (assuming the initial conditions are
zero).
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6.3 Convolution
Note: 1 or 1.5 lectures, §7.2 in [EP], §6.6 in [BD]

6.3.1 The convolution
We said that the Laplace transformation of a product is not the product of the transforms. All hope
is not lost however. We simply have to use a different type of a “product.” Take two functions f (t)
and g(t) defined for t ≥ 0. Define the convolution‡ of f (t) and g(t) as

( f ∗ g)(t) def
=

∫ t

0
f (τ)g(t − τ) dτ. (6.2)

As you can see, the convolution of two functions of t is another function of t.

Example 6.3.1: Take f (t) = et and g(t) = t for t ≥ 0. Then

( f ∗ g)(t) =

∫ t

0
eτ(t − τ) dτ = et − t − 1.

To solve the integral we did one integration by parts.

Example 6.3.2: Take f (t) = sin(ωt) and g(t) = cos(ωt) for t ≥ 0. Then

( f ∗ g)(t) =

∫ t

0
sin(ωτ) cos

(
ω(t − τ)

)
dτ.

We will apply the identity

cos(θ) sin(ψ) =
1
2

(
sin(θ + ψ) − sin(θ − ψ)

)
.

Hence,

( f ∗ g)(t) =

∫ t

0

1
2

(
sin(ωt) − sin(ωt − 2ωτ)

)
dτ

=

[
1
2
τ sin(ωt) +

1
4ω

cos(2ωτ − ωt)
]t

τ=0

=
1
2

t sin(ωt).

The formula holds only for t ≥ 0. We assumed that f and g are zero (or simply not defined) for
negative t.

‡ For those that have seen convolution defined before, you may have seen it defined as ( f ∗g)(t) =
∫ ∞
−∞

f (τ)g(t−τ) dτ.
This definition agrees with (6.2) if you define f (t) and g(t) to be zero for t < 0. When discussing the Laplace transform
the definition we gave is sufficient. Convolution does occur in many other applications, however, where you may have
to use the more general definition with infinities.
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The convolution has many properties that make it behave like a product. Let c be a constant and
f , g, and h be functions then

f ∗ g = g ∗ f ,
(c f ) ∗ g = f ∗ (cg) = c( f ∗ g),
( f ∗ g) ∗ h = f ∗ (g ∗ h).

The most interesting property for us, and the main result of this section is the following theorem.

Theorem 6.3.1. Let f (t) and g(t) be of exponential type, then

L {( f ∗ g)(t)} = L

{∫ t

0
f (τ)g(t − τ) dτ

}
= L{ f (t)}L{g(t)}.

In other words, the Laplace transform of a convolution is the product of the Laplace transforms.
The simplest way to use this result is in reverse.

Example 6.3.3: Suppose we have the function of s defined by

1
(s + 1)s2 =

1
s + 1

1
s2 .

We recognize the two entries of Table 6.2. That is

L−1
{

1
s + 1

}
= e−t and L−1

{
1
s2

}
= t.

Therefore,

L−1
{

1
s + 1

1
s2

}
=

∫ t

0
τe−(t−τ) dτ = e−t + t − 1.

The calculation of the integral involved an integration by parts.

6.3.2 Solving ODEs
The next example will demonstrate the full power of the convolution and Laplace transform. We
will be able to give a solution to the forced oscillation problem for any forcing function as a definite
integral.

Example 6.3.4: Find the solution to

x′′ + ω2
0x = f (t), x(0) = 0, x′(0) = 0,

for an arbitrary function f (t).
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We first apply the Laplace transform to the equation. Denote the transform of x(t) by X(s) and
the transform of f (t) by F(s) as usual.

s2X(s) + ω2
0X(s) = F(s),

or in other words
X(s) = F(s)

1
s2 + ω2

0

.

We know

L−1
{

1
s2 + ω2

0

}
=

sin(ω0t)
ω0

.

Therefore,

x(t) =

∫ t

0
f (τ)

sin
(
ω0(t − τ)

)
ω0

dτ,

or if we reverse the order

x(t) =

∫ t

0

sin(ω0t)
ω0

f (t − τ) dτ.

Let us notice one more thing with this example. We can now see how Laplace transform handles
resonance. Suppose that f (t) = cos(ω0t). Then

x(t) =

∫ t

0

sin(ω0τ)
ω0

cos
(
ω0(t − τ)

)
dτ =

1
ω0

∫ t

0
cos(ω0τ) sin

(
ω0(t − τ)

)
dτ.

We have already computed the convolution of sine and cosine in Example 6.3.2. Hence

x(t) =

(
1
ω0

) (
1
2

t sin(ω0t)
)

=
1

2ω0
t sin(ω0t).

Note the t in front of the sine. This solution will, therefore, grow without bound as t gets large,
meaning we get resonance.

Similarly, we can solve any constant coefficient equation with an arbitrary forcing function f (t)
as a definite integral using convolution. A definite integral is usually enough for most practical
purposes. It is generally not hard to numerically evaluate a definite integral.

6.3.3 Volterra integral equation
A common integral equation is the Volterra integral equation§

x(t) = f (t) +

∫ t

0
g(t − τ)x(τ) dτ,

§Named for the Italian mathematician Vito Volterra (1860 – 1940).

http://en.wikipedia.org/wiki/Vito_Volterra
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where f (t) and g(t) are known functions and x(t) is an unknown we wish to solve for. To find x(t),
we apply the Laplace transform to the equation to obtain

X(s) = F(s) + G(s)X(s),

where X(s), F(s), and G(s) are the Laplace transforms of x(t), f (t), and g(t) respectively. We find

X(s) =
F(s)

1 −G(s)
.

To find x(t) we now need to find the inverse Laplace transform of X(s).

Example 6.3.5: Solve

x(t) = e−t +

∫ t

0
sinh(t − τ)x(τ) dτ.

We apply Laplace transform to obtain

X(s) =
1

s + 1
+

1
s2 − 1

X(s),

or

X(s) =

1
s+1

1 − 1
s2−1

=
s − 1
s2 − 2

=
s

s2 − 2
−

1
s2 − 2

.

It is not hard to apply Table 6.1 on page 243 to find

x(t) = cosh(
√

2 t) −
1
√

2
sinh(

√
2 t).

6.3.4 Exercises
Exercise 6.3.1: Let f (t) = t2 for t ≥ 0, and g(t) = u(t − 1). Compute f ∗ g.

Exercise 6.3.2: Let f (t) = t for t ≥ 0, and g(t) = sin t for t ≥ 0. Compute f ∗ g.

Exercise 6.3.3: Find the solution to

mx′′ + cx′ + kx = f (t), x(0) = 0, x′(0) = 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2 − 4km > 0 (system is overdamped).
Write the solution as a definite integral.

Exercise 6.3.4: Find the solution to

mx′′ + cx′ + kx = f (t), x(0) = 0, x′(0) = 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2−4km < 0 (system is underdamped).
Write the solution as a definite integral.
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Exercise 6.3.5: Find the solution to

mx′′ + cx′ + kx = f (t), x(0) = 0, x′(0) = 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2 = 4km (system is critically
damped). Write the solution as a definite integral.

Exercise 6.3.6: Solve

x(t) = e−t +

∫ t

0
cos(t − τ)x(τ) dτ.

Exercise 6.3.7: Solve

x(t) = cos t +

∫ t

0
cos(t − τ)x(τ) dτ.

Exercise 6.3.8: Compute L−1
{

s
(s2+4)2

}
using convolution.

Exercise 6.3.9: Write down the solution to x′′ − 2x = e−t2 , x(0) = 0, x′(0) = 0 as a definite integral.
Hint: Do not try to compute the Laplace transform of e−t2 .

Exercise 6.3.101: Let f (t) = cos t for t ≥ 0, and g(t) = e−t. Compute f ∗ g.

Exercise 6.3.102: Compute L−1
{

5
s4+s2

}
using convolution.

Exercise 6.3.103: Solve x′′ + x = sin t, x(0) = 0, x′(0) = 0 using convolution.

Exercise 6.3.104: Solve x′′ + x = sin t, x(0) = 0, x′(0) = 0 using convolution.



Chapter 7

Power series methods

7.1 Power series
Note: 1 or 1.5 lecture , §3.1 in [EP], §5.1 in [BD]

Many functions can be written in terms of a power series
∞∑

k=0

ak(x − x0)k.

If we assume that a solution of a differential equation is written as a power series, then perhaps we
can use a method reminiscent of undetermined coefficients. That is, we will try to solve for the
numbers ak. Before we can carry out this process, let us review some results and concepts about
power series.

7.1.1 Definition
As we said, a power series is an expression such as

∞∑
k=0

ak(x − x0)k = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · , (7.1)

where a0, a1, a2, . . . , ak, . . . and x0 are constants. Let

S n(x) =

n∑
k=0

ak(x − x0)k = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · + an(x − x0)n,

denote the so-called partial sum. If for some x, the limit

lim
n→∞

S n(x) = lim
n→∞

n∑
k=0

ak(x − x0)k

261
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exists, then we say that the series (7.1) converges at x. Note that for x = x0, the series always
converges to a0. When (7.1) converges at any other point x , x0, we say that (7.1) is a convergent
power series. In this case we write

∞∑
k=0

ak(x − x0)k = lim
n→∞

n∑
k=0

ak(x − x0)k.

If the series does not converge for any point x , x0, we say that the series is divergent.

Example 7.1.1: The series
∞∑

k=0

1
k!

xk = 1 + x +
x2

2
+

x3

6
+ · · ·

is convergent for any x. Recall that k! = 1 · 2 · 3 · · · k is the factorial. By convention we define 0! = 1.
In fact, you may recall that this series converges to ex.

We say that (7.1) converges absolutely at x whenever the limit

lim
n→∞

n∑
k=0

|ak| |x − x0|
k

exists. That is, if the series
∑∞

k=0|ak| |x − x0|
k is convergent. Note that if (7.1) converges absolutely

at x, then it converges at x. However, the opposite is not true.

Example 7.1.2: The series
∞∑

k=1

1
k

xk

converges absolutely at any x ∈ (−1, 1). It converges at x = −1, as
∑∞

k=1
(−1)k

k converges (condition-
ally) by the alternating series test. But the power series does not converge absolutely at x = −1,
because

∑∞
k=1

1
k does not converge. The series diverges at x = 1.

7.1.2 Radius of convergence
If a series converges absolutely at some x1, then for all x such that |x − x0| ≤ |x0 − x1| we have
that |ak(x − x0)k| ≤ |ak(x1 − x0)k| for all k. As the numbers |ak(x1 − x0)k| sum to some finite limit,
summing smaller positive numbers |ak(x − x0)k| must also have a finite limit. Therefore, the series
must converge absolutely at x. We have the following result.

Theorem 7.1.1. For a power series (7.1), there exists a number ρ (we allow ρ = ∞) called the
radius of convergence such that the series converges absolutely on the interval (x0 − ρ, x0 + ρ) and
diverges for x < x0 − ρ and x > x0 + ρ. We write ρ = ∞ if the series converges for all x.
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x0 x0 + ρx0 − ρ

diverges converges absolutely diverges

Figure 7.1: Convergence of a power series.

See Figure 7.1. In Example 7.1.1 the radius of convergence is ρ = ∞ as the series converges
everywhere. In Example 7.1.2 the radius of convergence is ρ = 1. We note that ρ = 0 is another
way of saying that the series is divergent.

A useful test for convergence of a series is the ratio test. Suppose that

∞∑
k=0

ck

is a series such that the limit
L = lim

n→∞

∣∣∣∣∣ck+1

ck

∣∣∣∣∣
exists. Then the series converges absolutely if L < 1 and diverges if L > 1.

Let us apply this test to the series (7.1). That is we let ck = ak(x − x0)k in the test. We let

L = lim
n→∞

∣∣∣∣∣ck+1

ck

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣ak+1(x − x0)k+1

ak(x − x0)k

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ |x − x0|.

Define A by

A = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ .
Then if 1 > L = A|x − x0| the series (7.1) converges absolutely. If A = 0, then the series always
converges. If A > 0, then the series converges absolutely if |x− x0| < 1/A, and diverges if |x− x0| > 1/A.
That is, the radius of convergence is 1/A. Let us summarize.

Theorem 7.1.2. Let
∞∑

k=0

ak(x − x0)k

be a power series such that

A = lim
n→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣
exists. If A = 0, then the radius of convergence of the series is ∞. Otherwise the radius of
convergence is 1/A.
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Example 7.1.3: Suppose we have the series

∞∑
k=0

2−k(x − 1)k.

First we compute,

A = lim
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣2−k−1

2−k

∣∣∣∣∣∣ = 2−1 = 1/2.

Therefore the radius of convergence is 2, and the series converges absolutely on the interval (−1, 3).

The ratio test does not always apply. That is the limit of
∣∣∣ak+1

ak

∣∣∣ might not exist. There exist more
sophisticated ways of finding the radius of convergence, but those would be beyond the scope of
this chapter.

7.1.3 Analytic functions
Functions represented by series are called analytic functions. Not every function is analytic, although
the majority of the functions you have seen in calculus are.

An analytic function f (x) is equal to its Taylor series∗ near a point x0. That is, for x near x0 we
have

f (x) =

∞∑
k=0

f (k)(x0)
k!

(x − x0)k, (7.2)

where f (k)(x0) denotes the kth derivative of f (x) at the point x0.
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Figure 7.2: The sine function and its Taylor approximations around x0 = 0 of 5th and 9th degree.

∗Named after the English mathematician Sir Brook Taylor (1685 – 1731).

http://en.wikipedia.org/wiki/Brook_Taylor
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For example, sine is an analytic function and its Taylor series around x0 = 0 is given by

sin(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

In Figure 7.2 on the facing page we plot sin(x) and the truncations of the series up to degree 5 and 9.
You can see that the approximation is very good for x near 0, but gets worse for larger x. This is
what will happen in general. To get good approximation far away from x0 you will need to take
more and more terms of the Taylor series.

7.1.4 Manipulating power series
One of the main properties of power series that we will use is that we can differentiate them term by
term. That is Suppose that

∑
ak(x − x0)k is a convergent power series. Then for x in the radius of

convergence we have
d
dx

 ∞∑
k=0

ak(x − x0)k

 =

∞∑
k=1

kak(x − x0)k−1.

Notice that the term corresponding to k = 0 disappeared as it was constant. The radius of conver-
gence of the differentiated series is the same as that of the original.

Example 7.1.4: Let us show that the exponential y = ex solves y′ = y. First write

y = ex =

∞∑
k=0

1
k!

xk.

Now differentiate

y′ =

∞∑
k=1

k
1
k!

xk−1 =

∞∑
k=1

1
(k − 1)!

xk−1.

For convenience we reindex the series by simply replacing k with k + 1. The series does not change,
what changes is simply how we write it. After reindexing the series starts at k = 0 again.

∞∑
k=1

1
(k − 1)!

xk−1 =

∞∑
k=0

1
k!

xk.

That was precisely the power series for ex that we started with, so we showed that d
dxex = ex.

Convergent power series can be added and multiplied together, and multiplied by constants
using the following rules. Firstly, we can add series by adding term by term, ∞∑

k=0

ak(x − x0)k

 +

 ∞∑
k=0

bk(x − x0)k

 =

∞∑
k=0

(ak + bk)(x − x0)k.
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We can multiply by constants,

α

 ∞∑
k=0

ak(x − x0)k

 =

∞∑
k=0

αak(x − x0)k.

We can also multiply series together, ∞∑
k=0

ak(x − x0)k

  ∞∑
k=0

bk(x − x0)k

 =

∞∑
k=0

ck(x − x0)k,

where ck = a0bk + a1bk−1 + · · · + akb0. The radius of convergence of the sum or the product is at
least the minimum of the radii of convergence of the two series involved.

7.1.5 Power series for rational functions

Polynomials are simply finite power series. That is, a polynomial is a power series where the ak

beyond a certain point are all zero. We can always expand a polynomial as a power series about any
point x0 by writing the polynomial as a polynomial of (x− x0). For example, let us write 2x2−3x + 4
as a power series around x0 = 1:

2x2 − 3x + 4 = 3 + (x − 1) + 2(x − 1)2.

In other words a0 = 3, a1 = 1, a2 = 2, and all other ak = 0. To do this, we know that ak = 0 for
all k ≥ 3. So we write a0 + a1(x − 1) + a2(x − 1)2, we expand, and we solve for a0, a1, and a2. We
could have also differentiated at x = 1 and used the Taylor series formula (7.2).

Now let us look at rational functions. Notice that a series for a function only defines the function
on an interval. For example, for −1 < x < 1 we have

1
1 − x

=

∞∑
k=0

xk = 1 + x + x2 + · · ·

This series is called the geometric series. The ratio test tells us that the radius of convergence is 1.
The series diverges for x ≤ −1 and x ≥ 1, even though 1

1−x is defined for all x , 1.
We can use the geometric series together with rules for addition and multiplication of power

series to expand rational functions around a point, as long as the denominator is not zero at x0. Note
that as for polynomials, we could equivalently use the Taylor series expansion (7.2).

Example 7.1.5: Expand x
1+2x+x2 as a power series around the origin and find the radius of conver-

gence.
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First, write 1 + 2x + x2 = (1 + x)2 =
(
1 − (−x)

)2. Now we compute

x
1 + 2x + x2 = x

(
1

1 − (−x)

)2

= x

 ∞∑
k=0

(−1)kxk


= x

 ∞∑
k=0

ckxk


=

∞∑
k=0

ckxk+1,

where using the formula for product of product of series we obtain, c0 = 1, c1 = −1 − 1 = −2,
c2 = 1 + 1 + 1 = 3, etc. . . . Therefore

x
1 + 2x + x2 =

∞∑
k=1

(−1)k+1kxk = x − 2x2 + 3x3 − 4x4 + · · ·

The radius of convergence is at least 1. We use the ratio test

lim
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣ (−1)k+2(k + 1)
(−1)k+1k

∣∣∣∣∣∣ = lim
k→∞

k + 1
k

= 1.

So the radius of convergence is actually equal to 1.

7.1.6 Exercises

Exercise 7.1.1: Is the power series
∞∑

k=0

ekxk convergent? If so, what is the radius of convergence?

Exercise 7.1.2: Is the power series
∞∑

k=0

kxk convergent? If so, what is the radius of convergence?

Exercise 7.1.3: Is the power series
∞∑

k=0

k!xk convergent? If so, what is the radius of convergence?

Exercise 7.1.4: Is the power series
∞∑

k=0

1
(2k)!

(x − 10)k convergent? If so, what is the radius of

convergence?

Exercise 7.1.5: Determine the Taylor series for sin x around the point x0 = π.
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Exercise 7.1.6: Determine the Taylor series for ln x around the point x0 = 1, and find the radius of
convergence.

Exercise 7.1.7: Determine the Taylor series and its radius of convergence of
1

1 + x
around x0 = 0.

Exercise 7.1.8: Determine the Taylor series and its radius of convergence of
x

4 − x2 around x0 = 0.
Hint: you will not be able to use the ratio test.

Exercise 7.1.9: Expand x5 + 5x + 1 as a power series around x0 = 5.

Exercise 7.1.10: Suppose that the ratio test applies to a series
∞∑

k=0

akxk. Show, using the ratio test,

that the radius of convergence of the differentiated series is the same as that of the original series.

Exercise 7.1.101: Is the power series
∞∑

n=1

(0.1)nxn convergent? If so, what is the radius of conver-

gence?

Exercise 7.1.102 (challenging): Is the power series
∞∑

n=1

n!
nn xn convergent? If so, what is the radius

of convergence?

Exercise 7.1.103: Using the geometric series, expand 1
1−x around x0 = 2. For what x does the

series converge?

Exercise 7.1.104 (challenging): Find the Taylor series for x7ex around x0 = 0.
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7.2 Series solutions of linear second order ODEs
Note: 1 or 1.5 lecture , §3.1 in [EP], §5.2 and §5.3 in [BD]

Suppose we have a linear second order homogeneous ODE of the form

p(x)y′′ + q(x)y′ + r(x)y = 0. (7.3)

Suppose that p(x), q(x), and r(x) are polynomials. We will try a solution of the form

y =

∞∑
k=0

ak(x − x0)k (7.4)

and solve for the ak to try to obtain a solution defined in some interval around x0.
The point x0 is called an ordinary point if p(x0) , 0. That is, the functions

q(x)
p(x)

and
r(x)
p(x)

(7.5)

are defined for x near x0. If p(x0) = 0, then we say x0 is a singular point. Handling singular points
is harder than ordinary points and so we will focus only on ordinary points.

Example 7.2.1: Let us start with a very simple example

y′′ − y = 0.

Let us try a power series solution near x0 = 0, which is an ordinary point. Every point is an ordinary
point in fact, as the equation is constant coefficient. We already know we should obtain exponentials
or the hyperbolic sine and cosine, but let us pretend we do not know this.

We try

y =

∞∑
k=0

akxk.

If we differentiate, the k = 0 term is a constant and hence disappears. We therefore get

y′ =

∞∑
k=1

kakxk−1.

We differentiate yet again to obtain (now the k = 1 term disappears)

y′′ =

∞∑
k=2

k(k − 1)akxk−2.
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We reindex the series (replace k with k + 2) to obtain

y′′ =

∞∑
k=0

(k + 2) (k + 1) ak+2xk.

Now we plug y and y′′ into the differential equation

0 = y′′ − y =

( ∞∑
k=0

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=0

akxk

)
=

∞∑
k=0

(
(k + 2) (k + 1) ak+2xk − akxk

)
=

∞∑
k=0

(
(k + 2) (k + 1) ak+2 − ak

)
xk.

As y′′ − y is supposed to be equal to 0, we know that the coefficients of the resulting series must be
equal to 0. Therefore,

(k + 2) (k + 1) ak+2 − ak = 0, or ak+2 =
ak

(k + 2)(k + 1)
.

The above equation is called a recurrence relation for the coefficients of the power series. It did
not matter what a0 or a1 was. They can be arbitrary. But once we pick a0 and a1, then all other
coefficients are determined by the recurrence relation.

So let us see what the coefficients must be. First, a0 and a1 are arbitrary

a2 =
a0

2
, a3 =

a1

(3)(2)
, a4 =

a2

(4)(3)
=

a0

(4)(3)(2)
, a5 =

a3

(5)(4)
=

a1

(5)(4)(3)(2)
, . . .

So we note that for even k, that is k = 2n we get

ak = a2n =
a0

(2n)!
, (7.6)

and for odd k, that is k = 2n + 1 we have

ak = a2n+1 =
a1

(2n + 1)!
. (7.7)

Let us write down the series

y =

∞∑
k=0

akxk =

∞∑
n=0

(
a0

(2n)!
x2n +

a1

(2n + 1)!
x2n+1

)
= a0

∞∑
n=0

1
(2n)!

x2n + a1

∞∑
n=0

1
(2n + 1)!

x2n+1.

Now we recognize the two series as the hyperbolic sine and cosine. Therefore,

y = a0 cosh x + a1 sinh x.
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Of course, in general we will not be able to recognize the series that appears, since usually there
will not be any elementary function that matches it. In that case we will be content with the series.

Example 7.2.2: Let us do a more complex example. Suppose we wish to solve Airy’s equation†,
that is

y′′ − xy = 0,

near the point x0 = 0. Note that x0 = 0 is an ordinary point.
We try

y =

∞∑
k=0

akxk.

We differentiate twice (as above) to obtain

y′′ =

∞∑
k=2

k (k − 1) akxk−2.

Now we plug into the equation

0 = y′′ − xy =

( ∞∑
k=2

k (k − 1) akxk−2
)
− x

( ∞∑
k=0

akxk

)
=

( ∞∑
k=2

k (k − 1) akxk−2
)
−

( ∞∑
k=0

akxk+1
)
.

Now we reindex to make things easier to sum

0 = y′′ − xy =

(
2a2 +

∞∑
k=1

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=1

ak−1xk

)
.

= 2a2 +

∞∑
k=1

(
(k + 2) (k + 1) ak+2 − ak−1

)
xk.

Again y′′ − xy is supposed to be 0 so first we notice that a2 = 0 and also

(k + 2) (k + 1) ak+2 − ak−1 = 0, or ak+2 =
ak−1

(k + 2)(k + 1)
.

Now we jump in steps of three. First we notice that since a2 = 0 we must have that, a5 = 0, a8 = 0,
a11 = 0, etc. . . . In general a3n+2 = 0.

The constants a0 and a1 are arbitrary and we obtain

a3 =
a0

(3)(2)
, a4 =

a1

(4)(3)
, a6 =

a3

(6)(5)
=

a0

(6)(5)(3)(2)
, a7 =

a4

(7)(6)
=

a1

(7)(6)(4)(3)
, . . .

†Named after the English mathematician Sir George Biddell Airy (1801 – 1892).

http://en.wikipedia.org/wiki/George_Biddell_Airy
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For ak where k is a multiple of 3, that is k = 3n we notice that

a3n =
a0

(2)(3)(5)(6) · · · (3n − 1)(3n)
.

For ak where k = 3n + 1, we notice

a3n+1 =
a1

(3)(4)(6)(7) · · · (3n)(3n + 1)
.

In other words, if we write down the series for y we notice that it has two parts

y =

(
a0 +

a0

6
x3 +

a0

180
x6 + · · · +

a0

(2)(3)(5)(6) · · · (3n − 1)(3n)
x3n + · · ·

)
+

(
a1x +

a1

12
x4 +

a1

504
x7 + · · · +

a1

(3)(4)(6)(7) · · · (3n)(3n + 1)
x3n+1 + · · ·

)
= a0

(
1 +

1
6

x3 +
1

180
x6 + · · · +

1
(2)(3)(5)(6) · · · (3n − 1)(3n)

x3n + · · ·

)
+ a1

(
x +

1
12

x4 +
1

504
x7 + · · · +

1
(3)(4)(6)(7) · · · (3n)(3n + 1)

x3n+1 + · · ·

)
.

We define

y1(x) = 1 +
1
6

x3 +
1

180
x6 + · · · +

1
(2)(3)(5)(6) · · · (3n − 1)(3n)

x3n + · · · ,

y2(x) = x +
1

12
x4 +

1
504

x7 + · · · +
1

(3)(4)(6)(7) · · · (3n)(3n + 1)
x3n+1 + · · · ,

and write the general solution to the equation as y(x) = a0y1(x) + a1y2(x). Notice from the power
series that y1(0) = 1 and y2(0) = 0. Also, y′1(0) = 0 and y′2(0) = 1. If we obtained a solution that
satisfies the initial conditions y(0) = a0 and y′(0) = a1.

The functions y1 and y2 cannot be written in terms of the elementary functions that you know.
See Figure 7.3 for the plot of the solutions y1 and y2. These functions have many intersting properties.
For example, they are oscillatory for negative x (like solutions to y′′ + y = 0) and for positive x they
grow without bound (like solutions to y′′ − y = 0).

Sometimes a solution may turn out to be a polynomial.

Example 7.2.3: Let us find a solution to the so-called Hermite’s equation of order n‡ is the equation

y′′ − 2xy′ + 2ny = 0.

‡Named after the French mathematician Charles Hermite (1822–1901).

http://en.wikipedia.org/wiki/Hermite
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Figure 7.3: The two solutions y1 and y2 to Airy’s equation.

Let us find a solution around the point x0 = 0. We try

y =

∞∑
k=0

akxk.

We differentiate (as above) to obtain

y′ =

∞∑
k=1

kakxk−1,

y′′ =

∞∑
k=2

k (k − 1) akxk−2.

Now we plug into the equation

0 = y′′ − 2xy′ + 2ny =

( ∞∑
k=2

k (k − 1) akxk−2
)
− 2x

( ∞∑
k=1

kakxk−1
)

+ 2n
( ∞∑

k=0

akxk

)
=

( ∞∑
k=2

k (k − 1) akxk−2
)
−

( ∞∑
k=1

2kakxk

)
+

( ∞∑
k=0

2nakxk

)
=

(
2a2 +

∞∑
k=1

(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k=1

2kakxk

)
+

(
2na0 +

∞∑
k=1

2nakxk

)
= 2a2 + 2na0 +

∞∑
k=1

(
(k + 2) (k + 1) ak+2 − 2kak + 2nak

)
xk.

As y′′ − 2xy′ + 2ny = 0 we have

(k + 2) (k + 1) ak+2 + (−2k + 2n)ak = 0, or ak+2 =
(2k − 2n)

(k + 2)(k + 1)
ak.
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This recurrence relation actually includes a2 = −na0 (which comes about from 2a2 + 2na0 = 0).
Again a0 and a1 are arbitrary.

a2 =
−2n

(2)(1)
a0, a3 =

2(1 − n)
(3)(2)

a1,

a4 =
2(2 − n)
(4)(3)

a2 =
22(2 − n)(−n)
(4)(3)(2)(1)

a0,

a5 =
2(3 − n)
(5)(4)

a3 =
22(3 − n)(1 − n)

(5)(4)(3)(2)
a1, . . .

Let us separate the even and odd coefficients. We find that

a2m =
2m(−n)(2 − n) · · · (2m − 2 − n)

(2m)!
,

a2m+1 =
2m(1 − n)(3 − n) · · · (2m − 1 − n)

(2m + 1)!
.

Let us write down the two series, one with the even powers and one with the odd.

y1(x) = 1 +
2(−n)

2!
x2 +

22(−n)(2 − n)
4!

x4 +
23(−n)(2 − n)(4 − n)

6!
x6 + · · · ,

y2(x) = x +
2(1 − n)

3!
x3 +

22(1 − n)(3 − n)
5!

x5 +
23(1 − n)(3 − n)(5 − n)

7!
x7 + · · · .

We then write
y(x) = a0y1(x) + a1y2(x). (7.8)

We also notice that if n is a positive even integer, then y1(x) is a polynomial as all the coefficients
in the series beyond a certain degree are zero. If n is a positive odd integer, then y2(x) is a polynomial.
For example if n = 4, then

y1(x) = 1 +
2(−4)

2!
x2 +

22(−4)(2 − 4)
4!

x4 = 1 − 4x2 +
4
3

x4. (7.9)

7.2.1 Exercises
In the following exercises, when asked to solve an equation using power series methods, you should
find the first few terms of the series, and if possible find a general formula for the kth coefficient.

Exercise 7.2.1: Use power series methods to solve y′′ + y = 0 at the point x0 = 1.

Exercise 7.2.2: Use power series methods to solve y′′ + 4xy = 0 at the point x0 = 0.

Exercise 7.2.3: Use power series methods to solve y′′ − xy = 0 at the point x0 = 1.
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Exercise 7.2.4: Use power series methods to solve y′′ + x2y = 0 at the point x0 = 0.

Exercise 7.2.5: The methods work for other orders than second order. Try the methods of this
section to solve the first order system y′ − xy = 0 at the point x0 = 0.

Exercise 7.2.6 (Chebyshev’s equation of order p): a) Solve (1 − x2)y′′ − xy′ + p2y = 0 using power
series methods at x0 = 0. b) For what p is there a polynomial solution?

Exercise 7.2.7: Find a polynomial solution to (x2 +1)y′′−2xy′+2y = 0 using power series methods.

Exercise 7.2.8: a) Use power series methods to solve (1 − x)y′′ + y = 0 at the point x0 = 0. b) Use
the solution to part a) to find a solution for xy′′ + y = 0 around the point x0 = 1.

Exercise 7.2.101: Use power series methods to solve y′′ + 2x3y = 0 at the point x0 = 0.

Exercise 7.2.102 (challenging): We can also use power series methods in nonhomogeneous equa-
tions. a) Use power series methods to solve y′′ − xy = 1

1−x at the point x0 = 0. Hint: recall the
geometric series. b) Now solve for the initial condition y(0) = 0, y′(0) = 0.

Exercise 7.2.103: Attempt to solve x2y′′ − y = 0 at x0 = 0 using the power series method of this
section (x0 is a singular point). Can you find at least one solution? Can you find more than one
solution?



276 CHAPTER 7. POWER SERIES METHODS



Further Reading

[BM] Paul W. Berg and James L. McGregor, Elementary Partial Differential Equations, Holden-
Day, San Francisco, CA, 1966.

[BD] William E. Boyce, Richard C. DiPrima, Elementary Differential Equations and Boundary
Value Problems, 9th edition, John Wiley & Sons Inc., New York, NY, 2008.

[EP] C.H. Edwards and D.E. Penney, Differential Equations and Boundary Value Problems:
Computing and Modeling, 4th edition, Prentice Hall, 2008.

[F] Stanley J. Farlow, An Introduction to Differential Equations and Their Applications, McGraw-
Hill, Inc., Princeton, NJ, 1994.

[I] E.L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New York, NY, 1956.

277

http://books.google.com/books?id=EfJQAAAAMAAJ
http://books.google.com/books?id=nYWcQgAACAAJ
http://books.google.com/books?id=nYWcQgAACAAJ
http://books.google.com/books?id=qi6ePwAACAAJ
http://books.google.com/books?id=qi6ePwAACAAJ
http://books.google.com/books?id=_ozWAAAAMAAJ
http://books.google.com/books?id=uYz-pqUD75gC


278 FURTHER READING



Solutions to Selected Exercises

0.2.101: Compute x′ = −2e−2t and x′′ = 4e−2t. Then (4e−2t) + 4(−2e−2t) + 4(e−2t) = 0.
0.2.102: Yes.
0.2.103: y = xr is a solution for r = 0 and r = 2.
0.2.104: C1 = 100, C2 = −90
0.2.105: ϕ = −9e8s

1.1.101: y = ex + x2

2 + 9

1.1.102: x = (3t − 2)1/3

1.1.103: x = sin−1(t + 1
)

1.1.104: 170
1.2.101:

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

y = 0 is a solution such that y(0) = 0.
1.2.102: Yes a solution exists. y′ = f (x, y) where f (x, y) = xy. The function f (x, y) is continuous
and ∂ f

∂y = x, which is also continuous near (0, 0). So a solution exists and is unique. (In fact y = 0 is
the solution).
1.2.103: No, the equation is not defined at (x, y) = (1, 0).

1.3.101: y = Cex2

1.3.102: y = et3 + 1

1.3.103: x3 + x = t + 2
1.3.104: y = 1

1−ln x

1.4.101: y = Ce−x3
+ 1/3

279
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1.4.102: y = 2ecos(2x) + 1
1.4.103: 2000 ln(10) − 2000 ln(5) − 1000 ≈ 386.29 grams

1.4.104: P(10) = 1000e2×10−0.05×102
= 1000e15 ≈ 3.27 × 109

1.5.101: y = 2
3x−2

1.5.102: y = 3−x2

2x

1.5.103: y =
(
7e3x + 3x + 1

)1/3

1.5.104: y =
√

x2 − ln(C − x)
1.6.101:
a) 0, 1, 2 are critical points.
b) x = 0 is unstable (semistable), x = 1 is stable, and x = 2 is unstable.
c) 1
1.6.102: a) There are no critical points. b)∞

1.6.103: a) dx
dt = kx(M − x) + A b) kM+

√
(kM)2+4Ak
2k

1.7.101: Approximately: 1.0000, 1.2397, 1.3829
1.7.102:
a) 0, 8, 12
b) x(4) = 16, so errors are: 16, 8, 4.
c) Factors are 0.5, 0.5, 0.5.
1.7.103: a) 0, 0, 0 b) x = 0 is a solution so errors are: 0, 0, 0.
2.1.101: Yes. To justify try to find a constant A such that sin(x) = Aex for all x.

2.1.102: No. ex+2 = e2ex.
2.1.103: y = 5
2.1.104: y = C1 ln(x) + C2

2.2.101: y = C1e(−2+
√

2)x + C2e(−2−
√

2)x

2.2.102: y = C1e3x + C2xe3x

2.2.103: y = e−x cos(x) − e−x sin(x)

2.2.104: y(x) =
2(a−b)

5 e−3x/2 + 3a+2b
5 ex

2.3.101: y = C1ex + C2x3 + C3x2 + C4x + C5

2.3.102: a) r3−3r2 +4r−12 = 0 b) y′′′−3y′′+4y′−12y = 0 c) y = C1e3x +C2 sin(2x)+C3 cos(2x)
2.3.103: y = 0.

2.3.104: No. e1ex − ex+1 = 0.
2.3.105: Yes. (Hint: First note that sin(x) is bounded. Then note that x and x sin(x) cannot be
multiples of each other.)
2.4.101: k = 8/9 (and larger)
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2.4.102:
a) 0.05I′′ + 0.1I′ + (1/5)I = 0
b) x(t) = Ce−t cos(

√
3 t − γ)

c) x(t) = 10e−t cos(
√

3 t) + 10
√

3
e−t sin(

√
3 t)

2.4.103: a) k = 500000 b) 1
5
√

2
≈ 0.141 c) 45000 kg d) 11250 kg

2.5.101: y =
−16 sin(3x)−6 cos(3x)

73

2.5.102: a) y = 2ex+3x3−9x
6 . b) y = C1 cos(

√
2x) + C2 sin(

√
2x) + 2ex+3x3−9x

6 .

2.5.103: y(x) = x2 − 4x + 6 + e−x(x − 5).

2.5.104: y =
2xex−(ex+e−x) log(e2x+1)

4

2.6.101: ω =
√

31
4
√

2
≈ 0.984 C(ω) = 16

3
√

7
≈ 2.016

2.6.102: xsp =
(ω2

0−ω
2)F0

m(2ωp)2+m(ω2
0−ω

2)2 cos(ωt)+
2ωpF0

m(2ωp)2+m(ω2
0−ω

2)2 sin(ωt)+ A
k , where p = c

2m and ω0 =

√
k
m .

2.6.103: a) ω = 2 b) 25
3.1.101: y1 = C1e3x, y2 = y(x) = C2ex + C1

2 e3x, y3 = y(x) = C3ex + C1
2 e3x

3.1.102: x = 5
3e2t − 2

3e−t, y = 5
3e2t + 4

3e−t

3.1.103: x′1 = x2, x′2 = x3, x′3 = x1 + t

3.1.104: y′3 + y1 + y2 = t, y′4 + y1 − y2 = t2, y′1 = y3, y′2 = y4

3.2.101: −15
3.2.102: −2
3.2.103: ~x =

[ 15
−5

]
3.2.104: a)

[
1/a 0
0 1/b

]
b)

[ 1/a 0 0
0 1/b 0
0 0 1/c

]
3.3.101: Yes.
3.3.102: No. 2

[
cosh(t)

1

]
−

[
et

1

]
−

[
e−t

1

]
= ~0

3.3.103:
[ x

y
]′

=
[ 3 −1

t 0
] [ x

y
]
+

[
et

0

]
3.3.104: a) ~x ′ =

[ 0 2t
0 2t

]
~x b) ~x =

[
C2et2 +C1

C2et2

]
3.4.101:
a) Eigenvalues: 4, 0,−1 Eigenvectors:

[
1
0
1

]
,
[

0
1
0

]
,
[

3
5
−2

]
b) ~x = C1

[
1
0
1

]
e4t + C2

[
0
1
0

]
+ C3

[
3
5
−2

]
e−t

3.4.102:
a) Eigenvalues: 1+

√
3i

2 , 1−
√

3i
2 , Eigenvectors:

[
−2

1−
√

3i

]
,
[
−2

1+
√

3i

]
b) ~x = C1et/2

[
−2 cos

( √
3t

2

)
cos

( √
3t

2

)
+
√

3 sin
( √

3t
2

) ] + C2et/2

[
−2 sin

( √
3t

2

)
sin

( √
3t

2

)
−
√

3 cos
( √

3t
2

) ]
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3.4.103: ~x = C1
[ 1

1
]
et + C2

[ 1
−1

]
e−t

3.4.104: ~x = C1

[
cos(t)
− sin(t)

]
+ C2

[
sin(t)
cos(t)

]
3.5.101: a) Two eigenvalues: ±

√
2 so the behavior is a saddle. b) Two eigenvalues: 1 and 2, so

the behavior is a source. c) Two eigenvalues: ±2i, so the behavior is a center (ellipses). d) Two
eigenvalues: −1 and −2, so the behavior is a sink. e) Two eigenvalues: 1 ± 4i, so the behavior is a
spiral source.

3.5.102: Spiral source.

3.5.103:

-10 -5 0 5 10

-10 -5 0 5 10

-10

-5

0

5

10

-10

-5

0

5

10

The solution will not move anywhere if y = 0. When y is positive, then the solution moves (with
constant speed) in the positive x direction. When y is negative, then the solution moves (with
constant speed) in the negative x direction. It is not one of the behaviors we have seen.
Note that the matrix has a double eigenvalue 0 and the general solution is x = C1t + C2 and y = C1,
which agrees with the above description.

3.6.101: ~x =

[
1
−1
1

] (
a1 cos(

√
3 t)+b1 sin(

√
3 t)

)
+

[
0
1
−2

] (
a2 cos(

√
2 t)+b2 sin(

√
2 t)

)
+

[
0
0
1

] (
a3 cos(t)+

b3 sin(t)
)

+

[
−1
1/2
2/3

]
cos(2t)

3.6.102:
[

m 0 0
0 m 0
0 0 m

]
~x ′′ =

[
−k k 0
k −2k k
0 k −k

]
~x. Solution: ~x =

[
1
−2
1

] (
a1 cos(

√
3k/m t) + b1 sin(

√
3k/m t)

)
+[

1
0
−1

] (
a2 cos(

√
k/m t) + b2 sin(

√
k/m t)

)
+

[
1
1
1

] (
a3t + b3

)
.

3.6.103: x2 = (2/5) cos(
√

1/6 t) − (2/5) cos(t)

3.7.101: a) 3, 0, 0 b) No defects. c) ~x = C1

[
1
1
1

]
e3t + C2

[
1
0
−1

]
+ C3

[
0
1
−1

]
3.7.102:
a) 1, 1, 2
b) Eigenvalue 1 has a defect of 1

c) ~x = C1

[
0
1
−1

]
et + C2

([
1
0
0

]
+ t

[
0
1
−1

])
et + C3

[
3
3
−2

]
e2t

3.7.103:
a) 2, 2, 2



SOLUTIONS TO SELECTED EXERCISES 283

b) Eigenvalue 2 has a defect of 2

c) ~x = C1

[
0
3
1

]
e2t + C2

([
0
−1
0

]
+ t

[
0
3
1

])
e2t + C3

([
1
0
0

]
+ t

[
0
−1
0

]
+ t2

2

[
0
3
1

])
e2t

3.7.104: A =
[ 5 5

0 5
]

3.8.101: etA =

[
e3t+e−t

2
e−t−e3t

2
e−t−e3t

2
e3t+e−t

2

]
3.8.102: etA =

 2e3t−4e2t+3et 3et
2 −

3e3t
2 −e3t+4e2t−3et

2et−2e2t et 2e2t−2et

2e3t−5e2t+3et 3et
2 −

3e3t
2 −e3t+5e2t−3et


3.8.103: a) etA =

[
(t+1) e2t −te2t

te2t (1−t) e2t

]
b) ~x =

[
(1−t) e2t

(2−t) e2t

]
3.8.104:

[
1+2t+5t2 3t+6t2

2t+4t2 1+2t+5t2

]
e0.1A ≈

[ 1.25 0.36
0.24 1.25

]
3.9.101: The general solution is (particular solutions should agree with one of these):
x(t) = 1

5C1(e9t + e4t) + 4
5C2(e9t − e4t) − 18t+5

54 y(t) = 1
5C1(e9t − e4t) + 1

5C2(4e5t + e4t) + t
6 + 7

216

3.9.102: The general solution is (particular solutions should agree with one of these):
x(t) = 1

2C1(et + e−t) + 1
2C2(et − e−t) + tet y(t) = 1

2C1(et − e−t) + 1
2C2(et + e−t) + tet

3.9.103: ~x =
[ 1

1
] ( 5

2et − t − 1
)

+
[ 1
−1

]
−1
2 e−t

3.9.104: ~x =
[ 1

9
] (( 1

140 + 1
120
√

6

)
e
√

6t +
(

1
140 + 1

120
√

6

)
e−
√

6t − t
60 −

cos(t)
70

)
+

[ 1
−1

] (
−9
80 sin(2t) + 1

30 cos(2t) + 9t
40 −

cos(t)
30

)
4.1.101: ω = π

√
15
2

4.1.102: λk = 4k2π2 for k = 1, 2, 3, . . . xk = cos(2kπt) + B sin(2kπt) (for any B)
4.1.103: x(t) = − sin(t)

4.1.104: x = Ce−λt and if x(0) = 0 then C = 0 and so x(t) = 0, so the solution is always identically
zero. Note that one condition is always enough to guarantee a unique solution for a first order
equation.

4.1.105:
√

3
3 e

−3
2

3√
λ −

√
3

3 cos
( √3 3√

λ
2

)
+ sin

( √3 3√
λ

2

)
= 0

4.2.101: sin(t)

4.2.102:
∞∑

n=1

(π−n) sin(πn+π2)+(π+n) sin(πn−π2)
πn2−π3 sin(nt)

4.2.103: 1
2 −

1
2 cos(2t)

4.2.104: π4

5 +
∞∑

n=1

(−1)n(8π2n2−48)
n4 cos(nt)

4.3.101: a) 8
6 +

∞∑
n=1

16(−1)n

π2n2 cos
(nπ

2 t
)

b) 8
6 −

16
π2 cos

(π
2 t
)

+ 4
π2 cos

(
πt

)
− 16

9π2 cos
(3π

2 t
)

+ · · ·



284 SOLUTIONS TO SELECTED EXERCISES

4.3.102: a)
∞∑

n=1

(−1)n+12λ
nπ sin

(nπ
λ

t
)

b) 2λ
π

sin
(π
λ
t
)
− λ

π
sin

(2π
λ

t
)

+ 2λ
3π sin

(3π
λ

t
)
− · · ·

4.3.103: f ′(t) =
∞∑

n=1

π
n+1 cos(nπt)

4.3.104: a) F(t) = t
2 + C +

∞∑
n=1

1
n4 sin(nt) b) no.

4.4.101: a) 1/2 +
∞∑

n=1
n odd

−4
π2n2 cos

(nπ
3 t

)
b)

∞∑
n=1

2(−1)n+1

πn sin
(nπ

3 t
)

4.4.102: a) cos(2t) b)
∞∑

n=1
n odd

−4n
πn2−4π sin(nt)

4.4.103: a) f (t) b) 0

4.4.104:
∞∑

n=1

−1
n2(1+n2) sin(nt)

4.4.105: t
π

+
∞∑

n=1

1
2n(π−n2) sin(nt)

4.5.101: x = 1
√

2−4π2 sin(2πt) + 0.1
√

2−100π2 cos(10πt)

4.5.102: x =
∞∑

n=1

e−n

3−2n cos(2nt)

4.5.103: x = 1
2
√

3
+

∞∑
n=1

n odd

−4
n2π2(

√
3−n2π2)

cos(nπt)

4.5.104: x = 1
2
√

3
− 2

π3 t sin(πt) +
∞∑

n=3
n odd

−4
n2π4(1−n2) cos(nπt)

4.6.101: u(x, t) = 5 sin(x) e−3t + 2 sin(5x) e−75t

4.6.102: u(x, t) = 1 + 2 cos(x) e−0.1t

4.6.103: u(x, t) = eλteλx for some λ

4.6.104: u(x, t) = Aex + Bet

4.7.101: y(x, t) = sin(x)
(
sin(t) + cos(t)

)
4.7.102: y(x, t) = 1

5π sin(πx) sin(5πt) + 1
100π sin(2πx) sin(10πt)

4.7.103: y(x, t) =
∞∑

n=1

2(−1)n+1

n sin(nx) cos(n
√

2 t)

4.7.104: y(x, t) = sin(2x) + t sin(x)

4.8.101: y(x, t) =
sin(2π(x−3t))+sin(2π(3t+x))

2 +
cos(3π(x−3t))−cos(3π(3t+x))

18π
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4.8.102: a) y(x, 0.1) =


x − x2 − 0.04 if 0.2 ≤ x ≤ 0.8
0.6x if x ≤ 0.2
0.6 − 0.6x if x ≥ 0.8

b) y(x, 1/2) = −x + x2 c) y(x, 1) = x − x2

4.8.103: a) y(1, 1) = −1/2 b) y(4, 3) = 0 c) y(3, 9) = 1/2

4.9.101: u(x, y) =
∞∑

n=1

1
n2 sin(nπx)

(
sinh(nπ(1−y))

sinh(nπ)

)
4.9.102: u(x, y) = 0.1 sin(πx)

(
sinh(π(2−y))

sinh(2π)

)
5.1.101: λn =

(2n−1)π
2 , n = 1, 2, 3, . . ., yn = cos

(
(2n−1)π

2 x
)

5.1.102: a) p(x) = 1, q(x) = 0, r(x) = 1
x , α1 = 1, α2 = 0, β1 = 1, β2 = 0. The problem is not

regular. b) p(x) = 1 + x2, q(x) = x2, r(x) = 1, α1 = 1, α2 = 0, β1 = 1, β2 = 1. The problem is
regular.

5.2.101: y(x, t) = sin(πx) cos(4π2t)
5.2.102: 9yxxxx + ytt = 0 (0 < x < 10, t > 0), y(0, t) = yx(0, t) = 0, y(10, t) = yx(10, t) = 0,
y(x, 0) = sin(πx), yt(x, 0) = x(10 − x).

5.3.101: yp(x, t) =
∞∑

n=1
n odd

−4
n4π4

(
cos(nπx) − cos(nπ)−1

sin(nπ) sin(nπx) − 1
)

cos(nπt).

5.3.102: Approximately 1991 centimeters

6.1.101: 8
s3 + 8

s2 + 4
s

6.1.102: 2t2 − 2t + 1 − e−2t

6.1.103: 1
(s+1)2

6.1.104: 1
s2+2s+2

6.2.101: f (t) = (t − 1)(u(t − 1) − u(t − 2)) + u(t − 2)

6.2.102: x(t) = (2et−1 − t2 − 1)u(t − 1) − e−t

2 + 3et

2

6.2.103: H(s) = 1
s+1

6.3.101: 1
2 (cos t + sin t − e−t)

6.3.102: 5t − 5 sin t
6.3.103: 1

2 (sin t − t cos t)

6.3.104: 1
2 (sin t − t cos t)

7.1.101: Yes. Radius of convergence is 10.
7.1.102: Yes. Radius of convergence is e.

7.1.103: 1
1−x = − 1

1−(2−x) so 1
1−x =

∞∑
n=0

(−1)n+1(x − 2)n, which converges for 1 < x < 3.
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7.1.104:
∞∑

n=7

1
(n−7)! xn

7.2.101: a2 = 0, a3 = 0, a4 = 0, recurrence relation (for k ≥ 5): ak = −2ak−5, so:
y(x) = a0 + a1x − 2a0x5 − 2a1x6 + 4a0x10 + 4a1x11 − 8a0x15 − 8a1x16 + · · ·

7.2.102: a) a2 = 1
2 , and for k ≥ 1 we have ak = ak−3 + 1, so

y(x) = a0+a1x+ 1
2 x2+(a0+1)x3+(a1+1)x4+ 3

2 x5+(a0+2)x6+(a1+2)x7+ 5
2 x8+(a0+3)x9+(a1+3)x10+· · ·

b) y(x) = 1
2 x2 + x3 + x4 + 3

2 x5 + 2x6 + 2x7 + 5
2 x8 + 3x9 + 3x10 + · · ·

7.2.103: Applying the method of this section directly we obtain ak = 0 for all k and so y(x) = 0 is
the only solution we find.
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absolute convergence, 262
acceleration, 16
addition of matrices, 90
Airy’s equation, 271
algebraic multiplicity, 124
amplitude, 65
analytic functions, 264
angular frequency, 65
antiderivative, 14
antidifferentiate, 14
associated homogeneous equation, 70, 101
atan2, 66
augmented matrix, 95
autonomous equation, 37
autonomous system, 87

beating, 78
Bernoulli equation, 33
boundary conditions for a PDE, 190
boundary value problem, 149

catenary, 11
Cauchy-Euler equation, 50
center, 112
cgs units, 238, 239
characteristic equation, 52
Chebyshev’s equation of order p, 275
Chebyshev’s equation of order 1, 50
cofactor, 94
cofactor expansion, 94
column vector, 90
commute, 92
complementary solution, 70
complete eigenvalue, 124

complex conjugate, 106
complex number, 53
complex roots, 54
constant coefficient, 51, 100
convergence of a power series, 262
convergent power series, 262
converges absolutely, 262
convolution, 256
corresponding eigenfunction, 150
cosine series, 178
critical point, 37
critically damped, 67

d’Alembert solution to the wave equation, 208
damped, 66
damped motion, 62
defect, 125
defective eigenvalue, 125
deficient matrix, 125
dependent variable, 7
determinant, 92
diagonal matrix, 116

matrix exponential of, 130
diagonalization, 131
differential equation, 7
direction field, 87
Dirichlet boundary conditions, 180, 221
Dirichlet problem, 215
displacement vector, 116
distance, 16
divergent power series, 262
dot product, 91, 158
dynamic damping, 123

287
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eigenfunction, 150, 222
eigenfunction decomposition, 221, 226
eigenvalue, 103, 222
eigenvalue of a boundary value problem, 150
eigenvector, 103
eigenvector decomposition, 138, 145
ellipses (vector field), 112
elliptic PDE, 190
endpoint problem, 149
envelope curves, 68
equilibrium solution, 37
Euler’s equation, 50
Euler’s equations, 56
Euler’s formula, 53
Euler’s method, 42
even function, 161, 176
even periodic extension, 176
existence and uniqueness, 20, 48, 57
exponential growth model, 9
exponential of a matrix, 129
exponential order, 244
extend periodically, 157

first order differential equation, 7
first order linear equation, 27
first order linear system of ODEs, 99
first order method, 43
first shifting property, 246
forced motion, 62

systems, 121
Fourier series, 159
fourth order method, 44
Fredholm alternative

simple case, 154
Sturm-Liouville problems, 225

free motion, 62
free variable, 96
fundamental matrix, 100
fundamental matrix solution, 100, 130

general solution, 10

generalized eigenvectors, 125, 127
Genius software, 5
geometric multiplicity, 124
geometric series, 266
Gibbs phenomenon, 164

half period, 167
harmonic function, 214
harvesting, 39
heat equation, 190
Heaviside function, 242
Hermite’s equation of order n, 272
Hermite’s equation of order 2, 50
homogeneous equation, 34
homogeneous linear equation, 47
homogeneous side conditions, 191
homogeneous system, 100
Hooke’s law, 62, 115
hyperbolic PDE, 190

identity matrix, 91
imaginary part, 54
implicit solution, 24
inconsistent system, 96
indefinite integral, 14
independent variable, 7
initial condition, 10
initial conditions for a PDE, 190
inner product, 91
inner product of functions, 159, 225
integral equation, 253, 258
integrate, 14
integrating factor, 27
integrating factor method, 27

for systems, 136
inverse Laplace transform, 245
invertible matrix, 92
IODE software, 5

Lab I, 18
Lab II, 42
Project I, 18
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Project II, 42
Project III, 57
Project IV, 167
Project V, 167

la vie, 72
Laplace equation, 190, 214
Laplace transform, 241
Laplacian, 214
leading entry, 96
Leibniz notation, 15, 22
linear combination, 48, 57
linear equation, 27, 47
linear first order system, 87
linear operator, 48, 70
linear PDE, 190
linearity of the Laplace transform, 243
linearly dependent, 57
linearly independent, 49, 57

for vector valued functions, 100
logistic equation, 38

with harvesting, 39

mass matrix, 116
mathematical model, 9
mathematical solution, 9
matrix, 90
matrix exponential, 129
matrix inverse, 92
matrix valued function, 99
method of partial fractions, 245
Mixed boundary conditions, 221
mks units, 65, 69, 185
multiplication of complex numbers, 53
multiplicity, 60
multiplicity of an eigenvalue, 124

natural (angular) frequency, 65
natural frequency, 77, 118
natural mode of oscillation, 118
Neumann boundary conditions, 180, 221

Newton’s law of cooling, 31, 37
Newton’s second law, 62, 63, 86, 115
nilpotent, 131
normal mode of oscillation, 118

odd function, 161, 176
odd periodic extension, 176
ODE, 8
one-dimensional heat equation, 190
one-dimensional wave equation, 201
operator, 48
ordinary differential equation, 8
ordinary point, 269
orthogonal

functions, 153, 159
vectors, 157
with respect to a weight, 224

orthogonality, 153
overdamped, 67

parabolic PDE, 190
parallelogram, 93
partial differential equation, 8, 190
partial sum, 261
particular solution, 10, 70
PDE, 8, 190
period, 65
periodic, 157
phase diagram, 38
phase portrait, 38, 88
phase shift, 65
Picard’s theorem, 20
piecewise continuous, 170
piecewise smooth, 170
power series, 261
practical resonance, 82, 189
practical resonance amplitude, 82
practical resonance frequency, 81
product of matrices, 91
projection, 159
proper rational function, 246
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pseudo-frequency, 68
pure resonance, 79, 187

quadratic formula, 52

radius of convergence, 262
ratio test for series, 263
real part, 54
real world problem, 8
recurrence relation, 270
reduced row echelon form, 96
reduction of order method, 50
regular Sturm-Liouville problem, 223
reindexing the series, 265
repeated roots, 59
resonance, 79, 122, 187, 258
RLC circuit, 62
row vector, 90
Runge-Kutta method, 46

saddle point, 111
sawtooth, 160
scalar, 90
scalar multiplication, 90
second order differential equation, 11
second order linear differential equation, 47
second order method, 43
second shifting property, 250
semistable critical point, 39
separable, 22
separation of variables, 191
shifting property, 246, 250
side conditions for a PDE, 190
simple harmonic motion, 65
sine series, 178
singular matrix, 92
singular point, 269
singular solution, 24
sink, 110
slope field, 18
solution, 7

solution curve, 88
source, 110
spiral sink, 113
spiral source, 112
square wave, 82, 162
stable critical point, 37
stable node, 110
steady periodic solution, 81, 184
steady state temperature, 199, 214
stiff problem, 45
stiffness matrix, 116
Sturm-Liouville problem, 222

regular, 223
superposition, 47, 57, 100, 191
symmetric matrix, 153, 157
system of differential equations, 85

Taylor series, 264
tedious, 72, 73, 80, 141
thermal conductivity, 190
three mass system, 115
timbre, 230
trajectory, 88
transfer function, 252
transient solution, 81
transpose, 91
trigonometric series, 159

undamped, 64
undamped motion, 62

systems, 115
underdamped, 68
undetermined coefficients, 71

for second order systems, 121, 144
for systems, 141

unforced motion, 62
unit step function, 242
unstable critical point, 37
unstable node, 110
upper triangular matrix, 126

variation of parameters, 73
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for systems, 143
vector, 90
vector field, 87
vector valued function, 99
velocity, 16
Volterra integral equation, 258

wave equation, 190, 201, 208
weight function, 224
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