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Example:
{(−1)n}∞n=1 is bounded but divergent.

But there are convergent subsequences converging to −1 and 1.
Let’s get at these limits.

If {xn}∞n=1 is bounded, then for every n ∈ ℕ, the set {xk : k ≥ n} is bounded.

Definition
Let {xn}∞n=1 be a bounded sequence.

Define an B sup{xk : k ≥ n} and bn B inf{xk : k ≥ n}.
Define, if the limits exist,

lim sup
n→∞

xn B lim
n→∞ an, lim inf

n→∞ xn B lim
n→∞ bn.

lim sup is called limit superior and lim inf is called limit inferior.
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Example: Consider {xn}∞n=1:

lim sup
=→∞

G=

lim inf
=→∞ G=

⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

xn are marked with dots (•),
an are marked with circles (◦),
bn are marked with diamonds (⋄).
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Proposition
Let {xn}∞n=1 be a bounded sequence. Let an and bn be as above.

(i) {an}∞n=1 is bounded monotone decreasing and {bn}∞n=1 is bounded monotone increasing. In
particular, lim inf

n→∞ xn and lim sup
n→∞

xn exist.

(ii) lim sup
n→∞

xn = inf{an : n ∈ ℕ} and lim inf
n→∞ xn = sup{bn : n ∈ ℕ}.

(iii) lim inf
n→∞ xn ≤ lim sup

n→∞
xn.

Proof: (i) an = sup{xk : k ≥ n} ⇒ an is an upper bound for {xk : k ≥ (n + 1)}
⇒ an+1 ≤ an for all n. Similarly for {bn}∞n=1 (exercise).

Exercise: {an}∞n=1 and {bn}∞n=1 bounded.

(ii) follows from (i).

(iii) bn ≤ an for all n (inf ≤ sup for a nonempty set)
bn → lim inf

n→∞ xn and an → lim sup
n→∞

xn ⇒ lim inf
n→∞ xn ≤ lim sup

n→∞
xn □
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lim sup
=→∞

G=

lim inf
=→∞ G= ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

Example: Consider {xn}∞n=1,

xn B

{
n+1

n if n is odd,
0 if n is even.

lim inf
n→∞ xn = lim

n→∞
(
inf{xk : k ≥ n})

= lim
n→∞ 0 = 0.

lim sup
n→∞

xn = lim
n→∞

(
sup{xk : k ≥ n})

sup{xk : k ≥ n} =
{

n+1
n if n is odd,

n+2
n+1 if n is even.

Exercise: lim sup
n→∞

xn = 1.
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Remark: {an}∞n=1 and {bn}∞n=1 are not subsequences of {xn}∞n=1.

Example: If xn = 1
n , then bn = 0 for all n.

Theorem
Suppose {xn}∞n=1 is a bounded sequence.
Then ∃ a subsequence {xnk}∞k=1 such that lim

k→∞
xnk = lim sup

n→∞
xn.

Also, ∃ a subsequence {xmk}∞k=1 such that lim
k→∞

xmk = lim inf
n→∞ xn.

Proof: If an B sup{xk : k ≥ n}, let x B lim sup
n→∞

xn = lim
n→∞ an.

Let n1 B 1 and suppose we defined n1 , . . . , nk−1.

∃ m ≥ nk−1 + 1 such that a(nk−1+1) − xm <
1
k

(a(nk−1+1) = sup{xℓ : ℓ ≥ nk−1 + 1}).
Let nk B m. The subsequence {xnk}∞k=1 is defined.

For k ≥ 2, a(nk−1+1) ≥ ank (why?) and ank ≥ xnk .

⇒ for k ≥ 2,
��ank − xnk

�� = ank − xnk ≤ a(nk−1+1) − xnk <
1
k

.

Next we show {xnk}∞k=1 converges to x.
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Note: {xnk}∞k=1 need not be monotone.

Let 𝜖 > 0 be given.

{an}∞n=1 converges to x ⇒ {ank}∞k=1 converges to x.

∃ M1 ∈ ℕ such that for all k ≥ M1,
��ank − x

�� < 𝜖
2 .

∃ M2 ∈ ℕ such that 1
M2

≤ 𝜖
2 .

Let M B max{M1 ,M2 , 2}.
∀ k ≥ M,

��x − xnk

�� = ��ank − xnk + x − ank

�� ≤ ��ank − xnk

�� + ��x − ank

��
<

1
k
+ 𝜖

2 ≤ 1
M2

+ 𝜖
2 ≤ 𝜖

2 + 𝜖
2 = 𝜖.

lim inf is an exercise. □
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Proposition
Let {xn}∞n=1 be a bounded sequence.

Then {xn}∞n=1 converges if and only if lim inf
n→∞ xn = lim sup

n→∞
xn.

Furthermore, if {xn}∞n=1 converges, then lim
n→∞ xn = lim inf

n→∞ xn = lim sup
n→∞

xn.

Proof: Let an B sup{xk : k ≥ n} and bn B inf{xk : k ≥ n}. ∀ n, bn ≤ xn ≤ an.

First suppose lim inf
n→∞ xn = lim sup

n→∞
xn. That is, lim

n→∞ bn = lim
n→∞ an.

By the squeeze lemma, {xn}∞n=1 converges and lim
n→∞ bn = lim

n→∞ xn = lim
n→∞ an.

For the other direction suppose {xn}∞n=1 converges to x.

By the theorem, ∃ a subsequence {xnk}∞k=1 converging to lim sup
n→∞

xn.

As {xn}∞b=1 converges to x, {xnk}∞k=1 converges to x
⇒ lim sup

n→∞
xn = lim

k→∞
xnk = x.

Similarly, lim inf
n→∞ xn = x. □
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Proposition
Suppose {xn}∞n=1 is a bounded sequence and {xnk}∞k=1 is a subsequence. Then

lim inf
n→∞ xn ≤ lim inf

k→∞
xnk ≤ lim sup

k→∞
xnk ≤ lim sup

n→∞
xn.

Proof: 2nd inequality proved already, we’ll prove the 3rd, the 1st is an exercise.

Let an B sup{xk : k ≥ n}.
Define cn B sup{xnk : k ≥ n}.
Remark: {cn}∞n=1 need not be a subsequence of {an}∞n=1.

nk ≥ k for all k ⇒ {xnk : k ≥ n} ⊂ {xk : k ≥ n}.
⇒ cn ≤ an for all n.

⇒ lim
n→∞ cn ≤ lim

n→∞ an. □

Remark: lim sup and lim inf are the largest and smallest subsequential limits.
If {xnk}∞k=1 converges, then lim inf

n→∞ xn ≤ lim
k→∞

xnk ≤ lim sup
n→∞

xn.
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Remark: lim sup and lim inf are the largest and smallest subsequential limits.
If {xnk}∞k=1 converges, then lim inf

n→∞ xn ≤ lim
k→∞

xnk ≤ lim sup
n→∞

xn.
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We get the following useful convergence test.

Proposition
A bounded sequence {xn}∞n=1 is convergent and converges to x if and only if every convergent
subsequence {xnk}∞k=1 converges to x.

Proof: Exercise.

There is another version of this result that we also leave as an exercise.

Exercise: Suppose {xn}∞n=1 is such that every subsequence {xni}∞i=1 has a subsequence
{xnmi

}∞i=1 that converges to x. Prove that {xn}∞n=1 converges to x.
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Theorem (Bolzano–Weierstrass)
Suppose a sequence {xn}∞n=1 of real numbers is bounded. Then there exists a convergent
subsequence {xni}∞i=1.

Proof: There exists a subsequence whose limit is lim sup
n→∞

xn. □

Why call this a theorem?

1) It is a very useful result.

2) It generalizes to contexts other than ℝ, where lim sup/lim inf may not make sense.
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Definition
If for every K ∈ ℝ, there exists an M ∈ ℕ such that for all n ≥ M, we have xn > K, we say
{xn}∞n=1 diverges to infinity and write lim

n→∞ xn B ∞.

If for every K ∈ ℝ there exists an M ∈ ℕ such that for all n ≥ M, we have xn < K, we say
{xn}∞n=1 diverges to minus infinity and write lim

n→∞ xn B −∞.

Proposition

If {xn}∞n=1 is monotone and unbounded, then lim
n→∞ xn =

{
∞ if {xn}∞n=1 is increasing,
−∞ if {xn}∞n=1 is decreasing.

Proof: Suppose {xn}∞n=1 is decreasing and unbounded.
Unbounded means that ∀ K ∈ ℝ, ∃ M ∈ ℕ s. t. xM < K.
By monotonicity xn ≤ xM < K for all n ≥ M. (increasing is an exercise). □

Examples: lim
n→∞ n = ∞, lim

n→∞ n2 = ∞, lim
n→∞−n = −∞.
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lim inf and lim sup can also take on ∞ and −∞ if {xn}∞n=1 is unbounded.

However, then {an}∞n=1 and {bn}∞n=1 may be extended reals.

Definition
Let {xn}∞n=1 be an unbounded sequence of real numbers. Define sequences of extended
real numbers by an B sup{xk : k ≥ n} and bn B inf{xk : k ≥ n}.
Define lim sup

n→∞
xn B inf{an : n ∈ ℕ}, and lim inf

n→∞ xn B sup{bn : n ∈ ℕ}.

This definition agrees with the definition for bounded sequences.

Proposition
Let {xn}∞n=1 be unbounded. Define {an}∞n=1 and {bn}∞n=1 as above. Then {an}∞n=1 is decreasing, and
{bn}∞n=1 is increasing. If an ∈ ℝ for every n, then lim sup

n→∞
xn = lim

n→∞ an. If bn ∈ ℝ for every n, then

lim inf
n→∞ xn = lim

n→∞ bn.

Proof: an = sup{xk : k ≥ n} ≥ sup{xk : k ≥ n + 1} = an+1. Same for {bn}∞n=1.
If {an}∞n=1 is a sequence of reals, then lim

n→∞ an = inf{an : n ∈ ℕ}.
If {bn}∞n=1 is a sequence of reals, then lim

n→∞ bn = sup{bn : n ∈ ℕ}. □
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Example: Suppose xn B 0 for odd n and xn B n for even n.

an = ∞ for all n, as for every M, ∃ an even k such that xk = k ≥ M.

bn = 0 for all n, as for every n, {bk : k ≥ n} consists of 0 and positive numbers.

lim
n→∞ xn does not exist, lim sup

n→∞
xn = ∞, lim inf

n→∞ xn = 0.
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Limsups and liminfs play nice with inequalities (“bounded” is for simplicity):

Exercise: Let {xn}∞n=1 and {yn}∞n=1 be bounded such that xn ≤ yn for all n. Then
lim sup

n→∞
xn ≤ lim sup

n→∞
yn and lim inf

n→∞ xn ≤ lim inf
n→∞ yn.

Things are a little bit more complicated with algebra.

Exercise: Let {xn}∞n=1 and {yn}∞n=1 be bounded sequences.
a) Show that {xn + yn}∞n=1 is bounded.

b) Show that
(
lim inf

n→∞ xn

)
+
(
lim inf

n→∞ yn

)
≤ lim inf

n→∞ (xn + yn).

c) Find an example where
(
lim inf

n→∞ xn

)
+
(
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n→∞ yn

)
< lim inf

n→∞ (xn + yn).

d) Show that
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lim sup
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xn

)
+
(
lim sup
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yn

)
≥ lim sup

n→∞
(xn + yn).

e) Find an example where
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+
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yn

)
> lim sup

n→∞
(xn + yn).
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