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Supposea < b < candf: [a,c] — R is a bounded function. Then

/chszber/ch and ff:fﬂff.

Proof: Let Py = {xo,x1, ..., xx} be a partition of [a, b],
and P2 = {xk/xk+l/ e /xi’l} of [bl C]/
= P:=P1UPy ={x0,x1,...,x,} is a partition of [g, c].

n k n
L(P,f) = > mihxi = > midxi+ Y miAx; = L(Py,f) + L(P2, f).
i=1 i=1

i=k+1
sup of RHS over all P; and P; is like sup of LHS over all Ps.t. b € P.
If P = QU {b}, then P is a refinement of P, so L(Q, f) < L(P, f).

= sup L(P,f) over all P with b € P is sulfficient to get sup L(P, f) over all P.
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:/a_hf+/ch.

The upper integral argument is analogous (see book).
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Thelemma = [cf=£f:£f+/icfszf+ff=ff=/acﬁ
= /Lbf+/ch:/abf+ff.
/Lbfsffand/chsff = th:ffand/ch:Tf.

= fis Riemann integrable on [a, b] and [b, c] and facf = /abf + /bcf
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= f is Riemann integrable on [a, c] and facf = fﬂbf + /bcf

Corollary

Iff € Rla,b] and [c,d] C [a, b], then the restriction f||. 4 is in Rc, d].

Proof: Exercise.
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Proposition (Monotonicity)
Letf: [a,b] — Rand g: [a,b] — R be bounded, and f(x) < g(x) V x € [a,b]. Then

/ﬂbfs/ﬂbg and /ubfs‘/ubg.

b b
Moreover, if f and g are in R][a, b], then / f< / g
a a

Proof: Let P = {xo, x1, ..., x,} be a partition of [a, b].
Let m; == inf {f(x) 1x € [xi_l,xi]} and m; = inf {g(x) 1xX € [xi_l,xi]}.
f(x) <gx)forallx = m; <m.

LP.f)= Y mifxi < Y imiAvi=L(P,g) =  [f<['s
i=1 i=1 — —

Similarly, Ef < fg.

If f and g are integrable, = fa ’ f< fa ’ g
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It is not hard to prove that functions with finitely many discontinuities are also integrable
(we skip the proof), although a lot more is true.

Also,
Proposition
Let f: [a,b] — R be a monotone function. Then f € R[a, b].

Proof: Exercise.

Functions / of the form i = f — g where f and ¢ are monotone are said to be of bounded
variation.

Such functions are Riemann integrable.
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b
< / [f(x)] dx.
a

‘/ahf(x)dx




