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It would be nice to check convergence without knowing the limit.

Definition
A sequence {xn}∞n=1 is a Cauchy sequence if for every 𝜖 > 0 there exists an M ∈ ℕ such that
for all n ≥ M and all k ≥ M, we have |xn − xk | < 𝜖.

Example: {1/n}∞n=1 is a Cauchy sequence.

Proof: Given 𝜖 > 0, ∃ M such that M > 2/𝜖.
⇒ for n, k ≥ M, 1/n < 𝜖/2 and 1/k < 𝜖/2.

⇒ for n, k ≥ M,
����1n − 1

k

���� ≤ ����1n ���� + ����1k ���� < 𝜖
2 + 𝜖

2 = 𝜖. □

Example:
{
(−1)n

}∞
n=1 is not a Cauchy sequence.

Proof: Given any M ∈ ℕ, take n ≥ M to even, and k B n + 1.
Then ���(−1)n − (−1)k

��� = ���(−1)n − (−1)n+1
��� = |1 − (−1)| = 2.

⇒ for any 𝜖 ≤ 2 the definition is not satisfied. ⇒ The sequence is not Cauchy. □
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Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.

By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



3 / 6

Proposition
A Cauchy sequence is bounded.

Proof: Suppose {xn}∞n=1 is Cauchy.

Pick an M such that for all n, k ≥ M, we have |xn − xk | < 1.

In particular, for all n ≥ M, |xn − xM | < 1.
By the reverse triangle inequality, |xn | − |xM | ≤ |xn − xM | < 1.

Hence for n ≥ M, |xn | < 1 + |xM |.

Let B B max
{
|x1 | , |x2 | , . . . , |xM−1 | , 1 + |xM |

}
.

Then |xn | ≤ B for all n ∈ ℕ. □



4 / 6

Theorem
A sequence of real numbers is Cauchy if and only if it converges.

Proof: Let 𝜖 > 0 be given and suppose {xn}∞n=1 converges to x.
∃ M such that for n ≥ M, |xn − x| < 𝜖

2 .

⇒ for n, k ≥ M, |xn − xk | = |xn − x + x − xk | ≤ |xn − x| + |x − xk | < 𝜖
2 + 𝜖

2 = 𝜖.
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Now suppose {xn}∞n=1 is Cauchy.
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Remark: A set X is Cauchy-complete if every Cauchy sequence converges in X.

Can be used to define completeness of ℝ instead of the least-upper-bound property.
We proved that for ℝ, least-upper-bound property implies Cauchy-complete.
A way to construct ℝ is to “complete” ℚ by “throwing in” enough points to make all
Cauchy sequences converge.
The resulting field has the least-upper-bound property.
This thinking generalizes to more abstract settings.

Remark: Cauchy is stronger than |xn+1 − xn | → 0 as n → ∞ (or
��xn+j − xn

�� → 0 for a fixed j).
E.g., the partial sums of the harmonic series satisfy xn+1 − xn = 1/n,
but the sequence is not Cauchy.
In fact, lim

n→∞

��xn+j − xn
�� = 0 for every j ∈ ℕ.

The key point in the definition of Cauchy is that n and k vary independently and can be
arbitrarily far apart.
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