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Consider C([a, b], R) with the uniform norm as the metric

d(f, &) = IlIf —8lla,e1 = Sl[l}z] If (x) = g(x)| -

Convergence in this metric space is uniform convergence.

In chapter 6, we proved a uniform limit of continuous functions is continuous.
The following proposition is then an easy exercise in verifying the definitions:
Proposition

The space of continuous functions C([a, b], R) with the uniform norm as metric is a complete
metric space.
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Example: A subset of a complete metric space need not be complete:
(0, 1] with the subspace metric is not complete.
{t/n},7, is Cauchy with no limit in (0, 1].

Proposition

Suppose (X, d) is a complete metric space and E C X is closed. Then E is a complete metric space
with the subspace metric.

Proof: Exercise.
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Proof: Fixp € X.

The open cover K C U B(p,n) =X
n=1

has a finite subcover

Kc U B(p,nj) = B(p, nm).
j=1

= Kis bounded. S B(P, 3) -~ B(p,1)
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Warning: Heine-Borel only holds for R” and not for metric spaces in general.
The theorem does not hold even for subspaces of R”, just in R" itself.

Example: In X = (0, c0) the subset (0, 1] is closed and bounded and not compact.
In general, compact = closed and bounded, but not vice versa!
Just for emphasis: Closed and bounded does not imply compact in general!

An example complete metric space where closed and bounded is not compact is the space
of continuous functions C([0, 1], R).

Exercise: The closed unit ball C(0, 1) in C([0, 1], R) is not compact.
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(i) (X,d)is a complete metric space.
(if) Any K c X is closed and bounded.
(iii) K ¢ Xiscompact <« Kis a finite set.

(iv) The conclusion of the Lebesgue covering lemma is always satisfied, e.g. with 6 = 1/2,
even for noncompact K C X.

Proof: Exercises.
Remark: Compactness only depends on topology (on the set of open sets).

Completeness depends on which sequences are Cauchy, so it depends on the actual metric.
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Exercise: Finite sets are compact.
Exercise: The union of finitely many compact sets is compact.
Exercise: A compact set is a complete metric space.

Exercise: Suppose (X, d) is complete and E; D E; D E3 D - - - are compact and nonempty.
Prove (2, Ej # 0.

Exercise: Let (X, d) be a complete metric space. Show that K C X is compact if and only if
Kis closed and such that for every € > 0 there exists a finite set of points x1, x2, . . ., X, with
Kc U}Ll B(xj, €). Note: Such a set K is said to be totally bounded, so in a complete metric
space a set is compact if and only if it is closed and totally bounded.

Exercise: Prove the general Bolzano-Weierstrass theorem: Any bounded sequence {xi};?,
in R" has a convergent subsequence.

Exercise: Let (X, d) be a metric space and K C X. Prove that K is compact as a subset of
(X, d) if and only if K is compact as a subset of itself with the subspace metric.



