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Definition
Let S ⊂ ℝ, c ∈ S. We say f : S → ℝ is continuous at c if for every 𝜖 > 0 there is a 𝛿 > 0 such
that whenever x ∈ S and |x − c| < 𝛿, we have |f (x) − f (c)| < 𝜖.

When f : S → ℝ is continuous at all c ∈ S, we say f is a continuous function.

y = f (x)

c

f (c)
𝜖

𝜖

𝛿 𝛿

Note: 𝛿 depends on both 𝜖 and c; no need to pick the same 𝛿 for all c ∈ S.

If f is continuous for all c ∈ A, we say f is continuous on A ⊂ S.

Remark: If f is continuous on A, then f |A is continuous (exercise), but the converse does
not hold (we’ll give an example shortly).
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Proposition
Consider f : S → ℝ where S ⊂ ℝ and let c ∈ S.

Then:
(i) If c is not a cluster point of S, then f is continuous at c.

(ii) If c is a cluster point of S, then f is continuous at c if and only if the limit of f (x) as x → c
exists and

lim
x→c

f (x) = f (c).
(iii) The function f is continuous at c if and only if for every sequence {xn}∞n=1 where xn ∈ S and

lim
n→∞ xn = c, the sequence

{
f (xn)

}∞
n=1 converges to f (c).

Proof: (i) Suppose c is not a cluster point of S. Let 𝜖 > 0 be given.
∃ 𝛿 > 0 such that S ∩ (c − 𝛿, c + 𝛿) = {c}.
If x ∈ S and |x − c| < 𝛿, then x = c. ⇒ |f (x) − f (c)| = |f (c) − f (c)| = 0 < 𝜖.

(ii) Suppose c is a cluster point of S.
First suppose lim

x→c
f (x) = f (c).

Given 𝜖 > 0, ∃ 𝛿 > 0 s.t. if x ∈ S \ {c} and |x − c| < 𝛿, then |f (x) − f (c)| < 𝜖.
Also |f (c) − f (c)| = 0 < 𝜖. ⇒ f is continuous at c.
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Now suppose f is continuous at c.

Given 𝜖 > 0, ∃ 𝛿 > 0 s.t. ∀ x ∈ S where |x − c| < 𝛿, we have |f (x) − f (c)| < 𝜖.
That’s still true if x ∈ S \ {c} ⊂ S.
⇒ lim

x→c
f (x) = f (c).

(iii) First suppose f is continuous at c.
Let {xn}∞n=1 be a sequence in S and lim

n→∞ xn = c.
Given 𝜖 > 0, ∃ 𝛿 > 0 s.t. ∀ x ∈ S where |x − c| < 𝛿, we have |f (x) − f (c)| < 𝜖.
∃ M ∈ ℕ such that ∀ n ≥ M, we have |xn − c| < 𝛿.
⇒ if n ≥ M, then |f (xn) − f (c)| < 𝜖. ⇒ {

f (xn)
}∞

n=1 converges to f (c).
Suppose f is not continuous at c.
∃ 𝜖 > 0, s.t. ∀ n ∈ ℕ, ∃ xn ∈ S where |xn − c| < 1/n and |f (xn) − f (c)| ≥ 𝜖.
lim
n→∞ xn = c, but as |f (xn) − f (c)| ≥ 𝜖 ∀ n ∈ ℕ,
⇒ {f (xn)}∞n=1 does not converge to f (c). □
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Example: f : (0,∞) → ℝ defined by f (x) B 1/x is continuous.

Proof: Fix c ∈ (0,∞).
Let {xn}∞n=1 be a sequence in (0,∞) such that lim

n→∞ xn = c.
Then

f (c) = 1
c
=

1
lim
n→∞ xn

= lim
n→∞

1
xn

= lim
n→∞ f (xn).

⇒ f is continuous at c.

As f is continuous at all c ∈ (0,∞), f is continuous. □
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Proposition
Let f : ℝ → ℝ be a polynomial. That is

f (x) = adxd + ad−1xd−1 + · · · + a1x + a0 ,

for some constants a0 , a1 , . . . , ad. Then f is continuous.

Proof: Fix c ∈ ℝ. Let {xn}∞n=1 be such that lim
n→∞ xn = c. Then

f (c) = adcd + ad−1cd−1 + · · · + a1c + a0

= ad

(
lim
n→∞ xn

)d
+ ad−1

(
lim
n→∞ xn

)d−1
+ · · · + a1

(
lim
n→∞ xn

)
+ a0

= lim
n→∞

(
adxd

n + ad−1xd−1
n + · · · + a1xn + a0

)
= lim

n→∞ f (xn).
⇒ f is continuous at c ⇒ f is continuous (c was arbitrary). □
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Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.

(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.
(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.

(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



7 / 15

Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.
(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.

(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.
(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



7 / 15

Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.
(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.

(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.

(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



7 / 15

Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.
(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.

(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.
(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



7 / 15

Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.
(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.

(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.
(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



7 / 15

Proposition
Let f : S → ℝ and g : S → ℝ be functions continuous at c ∈ S.
(i) The function h : S → ℝ defined by h(x) B f (x) + g(x) is continuous at c.

(ii) The function h : S → ℝ defined by h(x) B f (x) − g(x) is continuous at c.
(iii) The function h : S → ℝ defined by h(x) B f (x)g(x) is continuous at c.

(iv) If g(x) ≠ 0 for all x ∈ S, the function h : S → ℝ defined by h(x) B f (x)
g(x) is continuous at c.

Proof: Exercise.



8 / 15

Example: sin(x) and cos(x) are continuous.

|sin(x) − sin(c)| =
���2 sin

(x − c
2

)
cos

(x + c
2

)���
= 2

���sin
(x − c

2

)��� ���cos
(x + c

2

)���
≤ 2

���sin
(x − c

2

)��� ≤ 2
���x − c

2

��� = |x − c|

|cos(x) − cos(c)| =
���−2 sin

(x − c
2

)
sin

(x + c
2

)���
= 2

���sin
(x − c

2

)��� ���sin
(x + c

2

)���
≤ 2

���sin
(x − c

2

)��� ≤ 2
���x − c

2

��� = |x − c|
Details left to student.
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Recall f ◦ g is defined by (f ◦ g)(x) B f
(
g(x)) .

Proposition
Let A, B ⊂ ℝ and f : B → ℝ and g : A → B be functions. If g is continuous at c ∈ A and f is
continuous at g(c), then f ◦ g : A → ℝ is continuous at c.

Proof: Let {xn}∞n=1 be a sequence in A such that lim
n→∞ xn = c.

g continuous at c ⇒ {
g(xn)

}∞
n=1 converges to g(c).

f continuous at g(c) ⇒ {
f
(
g(xn)

)}∞
n=1 converges to f

(
g(c)) .

⇒ f ◦ g is continuous at c. □

Example:
(
sin(1/x))2 is a continuous function on (0,∞).

Proof: 1/x is continuous on (0,∞) and sin(x) is continuous on (0,∞).
⇒ The composition sin(1/x) is continuous on (0,∞).
x2 is continuous on [−1, 1]. ⇒ The composition

(
sin(1/x))2 is continuous on (0,∞). □
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If f is not continuous at c, say f is discontinuous at c (has a discontinuity at c).

Proposition
Consider f : S → ℝ and c ∈ S. Suppose ∃ a sequence {xn}∞n=1 in S where lim

n→∞ xn = c such that{
f (xn)

}∞
n=1 does not converge to f (c).

Then f is discontinuous at c.

Proof: A restatement of one direction of part (iii) of the proposition above. □
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Example: f : ℝ → ℝ defined by f (x) B
{
−1 if x < 0,
1 if x ≥ 0

is not continuous at 0.

Proof: f (−1/n) = −1 ∀n, so lim
n→∞ f (−1/n) = −1, but f (0) = 1.

⇒ f has a discontinuity at 0. □

−1
4

−1
3

−1
2−1 · · ·

Note also:

f (1/n) = 1 for all n ∈ ℕ ⇒ lim
n→∞ f (1/n) = f (0) = 1.

f
( (−1)n

n

)
= (−1)n.
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Example: Consider the Dirichlet function.

f (x) B
{

1 if x ∈ ℚ,

0 if x ∈ ℝ \ℚ.

f is discontinuous at all c ∈ ℝ.

Proof: For c ∈ ℚ, take {xn}∞n=1 in ℝ \ℚ such that lim
n→∞ xn = c.

f (xn) = 0 ⇒ lim
n→∞ f (xn) = 0, but f (c) = 1.

For c ∈ ℝ \ℚ, take {xn}∞n=1 in ℚ such that lim
n→∞ xn = c.

f (xn) = 1 ⇒ lim
n→∞ f (xn) = 1, but f (c) = 0. □
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Q: Does there exist a function continuous at all irrational numbers, but discontinuous at
all rational numbers?

A: Yes.

Example: (Thomae function or popcorn function).
Define f : (0, 1) → ℝ as

f (x) B
{

1/k if x = m/k, where m, k ∈ ℕ and m and k have no common divisors,
0 if x is irrational.

Claim: f is continuous at every irrational number and discontinuous at every rational number.
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Proof of claim: Suppose c = m/k.

Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim
n→∞ xn = c.

Then lim
n→∞ f (xn) = lim

n→∞ 0 = 0, but f (c) = 1/k ≠ 0.
⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.

Then lim
n→∞ f (xn) = lim

n→∞ 0 = 0, but f (c) = 1/k ≠ 0.
⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.

Take a sequence {xn}∞n=1 in (0, 1) such that lim
n→∞ xn = c.

Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.

Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.

If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.

Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.

As lim
n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.

Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.

Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn)

≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K

< 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



14 / 15

Proof of claim: Suppose c = m/k.
Take a sequence {xn}∞n=1 in ℝ \ℚ such that lim

n→∞ xn = c.
Then lim

n→∞ f (xn) = lim
n→∞ 0 = 0, but f (c) = 1/k ≠ 0.

⇒ f is discontinuous at c.

Now let c be irrational, so f (c) = 0.
Take a sequence {xn}∞n=1 in (0, 1) such that lim

n→∞ xn = c.
Given 𝜖 > 0, find K ∈ ℕ such that 1/K < 𝜖.
If m/k ∈ (0, 1), then 0 < m < k.
Only finitely many such numbers where k < K.
As lim

n→∞ xn = c, any x ≠ c appears at most finitely many times in {xn}∞n=1.
Hence, ∃ M such that for n ≥ M, all the numbers xn that are rational have a denominator
larger than or equal to K.

For n ≥ M, |f (xn) − 0| = f (xn) ≤ 1/K < 𝜖.

⇒ f is continuous at irrational c. □



15 / 15

Example: Define g : ℝ → ℝ by g(x) B 0 if x ≠ 0 and g(0) B 1.

g is discontinuous at 0, but continuous on ℝ \ {0}.
x = 0 is called a removable discontinuity:
We could redefine g(0) and obtain a continuous function.

The jump discontinuty, f (x) B −1 for x < 0 and f (x) B 1 for x ≥ 0,
does not have a removable singularity at x = 0.

lim
x→0

g(x) exists lim
x→0

f (x) does not.

Another thing:
Let A B {0} and B B ℝ \ {0}.
g|A is continuous, but g is not continuous on A.

g|B is continuous, and g is continuous on B.
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