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()—(iii) are again easy.  For triangle
inequality, (iv), note d(x, y) = @(|x — yI),
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With this metric, d(x, y) < 1 forall x,y € R.
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Example: We define the standard metric for R™:

() = =1+ (2 = 1) o+ (o=l = 4| D G = i
k=1

Note: If n = 1 agrees with above.

The only tricky bit (again) is to check triangle inequality.
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2
= (\/zz=1 (o =900 + Sy =207 = e 9) + =)

The triangle inequality follows as /- is an increasing function.
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Example: Complex numbers C is the set of numbers z = x + iy, where x, y € R.
Imposing > = —1, makes C into a field.
To make C into a metric space, identify C with R? by
x+iyeC & (x,y) €R?
and use the standard metric.

Define the complex modulus |x + iy| := y/x% + y2.

If z; = x1 +iy7 and z = xp + 1Yo, then

d(z1,22) = \/(xl —x2)* + (y1 = 12)* = |21 — 2]
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A very useful “smell test” for statements about metric spaces.
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d(f, g) is finite as |f(x) — g(x)| is a continuous function on a closed bounded interval [a, b]
and so bounded.

(i) Clearlyd(f,g) > 0.

(i) f=g = VYx[f(x)-gx)|=0 = d(f,g)=0.
dif,g)=0 = Vx |f(x) -g)|<d(f,g)=0 = Vxflx)=g¢gkx) = f=g

(iil) d(f,g) =d(g,f) is trivial.
(iv) d(f,g) = sup [f(x) —g®)| = sup |f(x) = h(x) + h(x) - g(x)|
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Example (Great circle distance): 5% = {x € R? : x] + x5 + x5 = 1} is the unit sphere in R>.

If x and y are in S?, the lines they make
with the origin meet at angle 0 (in radians).

The function defined by
d(x,y) = 0 = arccos(x1y1 + X212 + X3Y3)
gives a metric (we skip the proof).

It is the shortest path between the points
if we travel along the sphere.
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Let (X, d) be a metric space and Y C X. Then the restriction d|yxy is a metricon Y. J

Proof: Obvious.

Definition
If (X, d) is a metric space, Y C X, and d’ := d|yxy, then (Y, d’) is a subspace of (X, d), and d’ is
the subspace metric (sometimes we talk about subspace topology).

Common to just write d for the metric on Y.
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Definition
Let (X, d) be a metric space. S C X is bounded if 3 p € X and B € R such that
d(p,x) <B forallxeS.

(X, d) is bounded if X is a bounded subset.

Example: R with standard metric is not bounded.

Example: R with the discrete metric is bounded.

Exercise: Suppose X # (). Then S C X being bounded is equivalent to
(i) Vpe X,3B > 0suchthatd(p,x) <Bforallx € S.

(ii) diam(S) := sup{d(x, Yy):x,y€ S} < oo,

The quantity diam(S) is called the diameter of a set.



Exercise: Let (X, dx) and (Y, dy) be metric spaces.
a) Show that (X x Y, d) with d((x1, 1), (x2,2)) = dx(x1,x2) + dy(y1, y2) is a metric space.

b) Show that (X X Y, d) with d((x1,11), (x2,2)) = max{dx(xl,xz),dy(y1,y2)} is a metric
space.



Exercise: Let (X, dx) and (Y, dy) be metric spaces.
a) Show that (X x Y, d) with d((x1, 1), (x2,2)) = dx(x1,x2) + dy(y1, y2) is a metric space.
b) Show that (X X Y, d) with d((x1,11), (x2,2)) = max{dx(xl,xz), dy(yl,yz)} is a metric
space.

Exercise: Let X be the set of continuous functions on [0, 1]. Let ¢: [0, 1] — (0, o) be
continuous. Define

1
a(f, g) = /0 () — g () d.

Show that (X, d) is a metric space.



