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Definition
An ordered set is a set S together with a relation < such that

(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.
(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.

We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



2 / 11

Definition
An ordered set is a set S together with a relation < such that
(i) (trichotomy) For all x, y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) (transitivity) If x, y, z ∈ S are such that x < y and y < z, then x < z.
We write x ≤ y if x < y or x = y. We define > and ≥ in the obvious way.

Examples:

ℤ is an ordered set by letting x < y if and only if y − x = p where p ∈ ℕ.

ℚ is an ordered set by letting x < y if and only if y − x = p/q where p, q ∈ ℕ.

The set of words is an ordered set by using lexicographic ordering.



3 / 11

Definition
Let E ⊂ S, where S is an ordered set.

(i) If ∃b ∈ S such that x ≤ b for all x ∈ E,
then E is bounded above and b is an upper bound of E.

(ii) If ∃b ∈ S such that x ≥ b for all x ∈ E,
then E is bounded below and b is a lower bound of E.

(iii) If ∃ an upper bound b0 of E such that b0 ≤ b for all upper bounds b of E, then b0 is
called the least upper bound or the supremum of E. Write

sup E B b0.

(iv) If ∃ a lower bound b0 of E such that b0 ≥ b for all lower bounds b of E, then b0 is called
the greatest lower bound or the infimum of E. Write

inf E B b0.

If E is bounded above and bounded below, we say that E is bounded.
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upper bounds of E

smaller bigger

least upper bound of E

E

Notation sup E and inf E is justified as the supremum (or infimum) is unique (if it exists):

If b and b′ are suprema of E, then b ≤ b′ and b′ ≤ b, because both b and b′ are the least
upper bounds, so b = b′.

Example:
S B {a, b, c, d, e} ordered as a < b < c < d < e. E B {a, c}.
c, d, and e are upper bounds of E,
c is the least upper bound or supremum of E.

Example: E B {x ∈ ℚ : x < 1} ⊂ ℚ has a least upper bound 1, but 1 ∉ E.

Example: P B {x ∈ ℚ : x ≥ 0} ⊂ ℚ has no upper bound.
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Definition
An ordered set S has the least-upper-bound property if every nonempty E ⊂ S that is
bounded above has a least upper bound (sup E exists in S).

Also called the completeness property or the Dedekind completeness property.

Example: ℚ does not have the least-upper-bound property.

{x ∈ ℚ : x2 < 2} does not have a supremum in ℚ.

We will show later that the supremum would be
√

2, but
√

2 ∉ ℚ:

Suppose x ∈ ℚ such that x2 = 2.
x = m/n in lowest terms.
So (m/n)2 = 2 or m2 = 2n2.
Hence, m2 is divisible by 2, and so m is divisible by 2.
Write m = 2k and so (2k)2 = 2n2.
Thus 2k2 = n2, and hence n is divisible by 2.
Contradiction as as m/n is in lowest terms.

This is the main reason why analysis needs ℝ and not just ℚ.
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x = m/n in lowest terms.
So (m/n)2 = 2 or m2 = 2n2.
Hence, m2 is divisible by 2, and so m is divisible by 2.
Write m = 2k and so (2k)2 = 2n2.
Thus 2k2 = n2, and hence n is divisible by 2.
Contradiction as as m/n is in lowest terms.

This is the main reason why analysis needs ℝ and not just ℚ.
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Definition
A set F is called a field if it has two operations defined on it, addition x + y and
multiplication xy, and if it satisfies the following axioms:

(A1) x ∈ F and y ∈ F ⇒ x + y ∈ F.
(A2) (commutativity of addition) x + y = y + x for all x, y ∈ F.
(A3) (associativity of addition) (x + y) + z = x + (y + z) for all x, y, z ∈ F.
(A4) ∃0 ∈ F such that 0 + x = x for all x ∈ F.
(A5) For every x ∈ F, there exists −x ∈ F such that x + (−x) = 0.

(M1) x ∈ F and y ∈ F ⇒ xy ∈ F.
(M2) (commutativity of multiplication) xy = yx for all x, y ∈ F.
(M3) (associativity of multiplication) (xy)z = x(yz) for all x, y, z ∈ F.
(M4) There exists 1 ∈ F (and 1 ≠ 0) such that 1x = x for all x ∈ F.
(M5) For every x ∈ F such that x ≠ 0 there exists 1/x ∈ F such that x(1/x) = 1.

(D) (distributive law) x(y + z) = xy + xz for all x, y, z ∈ F.
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Example: ℚ is a field.

Example: ℤ is not a field: No x ∈ ℤ such that 2x = 1, so (M5) not satisfied.

This is not an algebra class, so we’ll just assume basic properties that follow directly from
the axioms without proofs.

Definition
A field F is said to be an ordered field if F is also an ordered set such that

(i) For x, y, z ∈ F, x < y implies x + z < y + z.

(ii) For x, y ∈ F, x > 0 and y > 0 implies xy > 0.
If x > 0, we say x is positive.
If x < 0, we say x is negative.
We say x is nonnegative if x ≥ 0,
and x is nonpositive if x ≤ 0.

Example: Not hard to check that ℚ is an ordered field.
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Proposition
Let F be an ordered field and x, y, z,w ∈ F. Then

(i) If x > 0, then −x < 0 (and vice versa).

(ii) If x > 0 and y < z, then xy < xz.

(iii) If x < 0 and y < z, then xy > xz.

(iv) If x ≠ 0, then x2 > 0. In particular, 1 > 0.

(v) If 0 < x < y, then 0 < 1/y < 1/x.

(vi) If 0 < x < y, then x2 < y2.

(vii) If x ≤ y and z ≤ w, then x + z ≤ y + w.

Proof: (i): x > 0 implies x + (−x) > 0 + (−x) (item (i) of definition).
Then 0 > −x. “vice versa” follows by similar calculation.

(ii): y < z implies 0 < z − y (item (i) of def).
So by item (ii) of the definition: 0 < x(z − y).
Hence 0 < xz − xy and by item (i) again, xy < xz.
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“(iii) If x < 0 and y < z, then xy > xz.” left as exercise.

“(iv) If x ≠ 0, then x2 > 0.”:
Suppose x > 0. By item (ii) of definition, x2 > 0.
If x < 0, use (iii) (with y = x, z = 0) to get x2 > 0.

“(v) If 0 < x < y, then 0 < 1/y < 1/x.”:
Note 1/x ≠ 0.
If 1/x < 0, then −1/x > 0 by (i).
x > 0 and −1/x > 0 ⇒ x(−1/x) > 0 ⇒ −1 > 0, contradicting 1 > 0 (use (i))
So 1/x > 0. Similarly, 1/y > 0.
Thus (1/x)(1/y) > 0.
By (ii) (1/x)(1/y)x < (1/x)(1/y)y.
So 1/y < 1/x.

“(vi) If 0 < x < y, then x2 < y2.”
“(vii) If x ≤ y and z ≤ w, then x + z ≤ y + w.”
left as exercises. □

Example: The complex numbers ℂ (numbers x + iy where x, y ∈ ℝ and i2 = −1) is not an
ordered field: In every ordered field −1 < 0.
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left as exercises. □

Example: The complex numbers ℂ (numbers x + iy where x, y ∈ ℝ and i2 = −1) is not an
ordered field: In every ordered field −1 < 0.
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Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0 and y < 0.
Multiply y < 0 by x to get xy < 0x = 0. □



10 / 11

Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0 and y < 0.
Multiply y < 0 by x to get xy < 0x = 0. □



10 / 11

Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0 and y < 0.
Multiply y < 0 by x to get xy < 0x = 0. □



10 / 11

Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.

WLOG x > 0 and y < 0.
Multiply y < 0 by x to get xy < 0x = 0. □



10 / 11

Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0 and y < 0.

Multiply y < 0 by x to get xy < 0x = 0. □



10 / 11

Proposition
Let x, y ∈ F, where F is an ordered field. If xy > 0, then either both x and y are positive, or both are
negative.

Proof: We show the contrapositive: If x = 0 or y = 0, or if x and y have opposite signs, then
xy is not positive.

If x = 0 or y = 0 is zero, then xy = 0 and hence not positive.

Suppose x and y are nonzero and have opposite signs.
WLOG x > 0 and y < 0.
Multiply y < 0 by x to get xy < 0x = 0. □



11 / 11

Proposition
Let F be an ordered field with the least-upper-bound property. Let A ⊂ F be a nonempty set that is
bounded below. Then inf A exists.

Proof: Let B B {−x : x ∈ A}.
Let b ∈ F be a lower bound for A: If x ∈ A, then x ≥ b. In other words, −x ≤ −b.
So −b is an upper bound for B.
F has the least-upper-bound property ⇒ c B sup B exists, and c ≤ −b.
As y ≤ c for all y ∈ B, then −c ≤ x for all x ∈ A.
So −c is a lower bound for A.
As −c ≥ b, −c is the greatest lower bound of A. □
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