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Definition
Let (X, dX) and (Y, dY) be metric spaces and c ∈ X.

f : X → Y is continuous at c if
∀ 𝜖 > 0 ∃ 𝛿 > 0 s.t. whenever x ∈ X and dX(x, c) < 𝛿, then dY

(
f (x), f (c)

)
< 𝜖.

If f : X → Y is continuous at all c ∈ X, then f is a continuous function.

Proposition
Let (X, dX) and (Y, dY) be metric spaces. Then f : X → Y is continuous at c ∈ X ⇔ for every
{xn}∞n=1 in X converging to c,

{
f (xn)

}∞
n=1 converges to f (c).

Proof: Suppose f is continuous at c and {xn}∞n=1 converges to c.
Given 𝜖 > 0, ∃ 𝛿 > 0 s.t. dX(x, c) < 𝛿 implies dY

(
f (x), f (c)

)
< 𝜖.

Take M such that ∀ n ≥ M, dX(xn , c) < 𝛿
⇒ ∀ n ≥ M, dY

(
f (xn), f (c)

)
< 𝜖 ⇒

{
f (xn)

}∞
n=1 converges to f (c).

Now suppose f is not continuous at c.
∃ 𝜖 > 0, s.t. for every n ∈ ℕ ∃ xn ∈ X, dX(xn , c) < 1/n and dY

(
f (xn), f (c)

)
≥ 𝜖.

⇒ {xn}∞n=1 converges to c, but
{
f (xn)

}∞
n=1 does not converge to f (c). □
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Example: Suppose f : ℝ2 → ℝ is a polynomial:

f (x, y) =
d∑

j=0

d−j∑
k=0

ajk xjyk = a0 0 + a1 0 x + a0 1 y + a2 0 x2 + a1 1 xy + a0 2 y2 + · · · + a0 d yd ,

Claim: f is continuous.

Let
{
(xn , yn)

}∞
n=1 be a sequence in ℝ2 converging to (x, y) ∈ ℝ2.

⇒ lim
n→∞

xn = x and lim
n→∞

yn = y.

Then

lim
n→∞

f (xn , yn) = lim
n→∞

d∑
j=0

d−j∑
k=0

ajk xj
nyk

n =

d∑
j=0

d−j∑
k=0
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Careful about taking limits separately in ℝn.

Consider f (x, y) B xy
x2+y2 for (x, y) ≠ (0, 0) and f (0, 0) B 0.

G

H

I

Exercise: Prove that f is not continuous at (0, 0),
but that for every fixed y, the function g(x) B f (x, y) is continuous,
and for every fixed x, h(y) B f (x, y) is continuous.
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Let X be a metric space and f : X → ℂ a complex-valued function.

Write f (p) = g(p) + i h(p), where g : X → ℝ and h : X → ℝ.

Claim: f is continuous at c ∈ X ⇔ g and h are continuous at c.

Claim follows as
{
f (pn) = g(pn) + i h(pn)

}∞
n=1 converges to f (p) = g(p) + i h(p)

⇔
{
g(pn)

}∞
n=1 converges to g(p) and

{
h(pn)

}∞
n=1 converges to h(p).
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Continuous maps do not map closed sets to closed sets.

E.g., if f : (0, 1) → ℝ, f (x) B x, then f
(
(0, 1)

)
= (0, 1),

but (0, 1) is closed in (0, 1), but not closed in ℝ.

Lemma
Let (X, dX) and (Y, dY) be metric spaces and f : X → Y a continuous function.
If K ⊂ X is compact, then f (K) is compact.

Proof: A sequence in f (K) can be written as
{
f (xn)

}∞
n=1, where {xn}∞n=1 is a sequence in K.

K is compact ⇒ ∃ subsequence {xnj}∞j=1 converging to some x ∈ K.

By continuity lim
j→∞

f (xnj) = f (x) ∈ f (K).

⇒ every sequence in f (K) has a subsequence convergent to a point in f (K)
⇒ f (K) is (sequentially) compact. □
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f : X → ℝ achieves an absolute minimum at c ∈ X if

f (x) ≥ f (c) for all x ∈ X.

f achieves an absolute maximum at c ∈ X if

f (x) ≤ f (c) for all x ∈ X.

Theorem
Let (X, d) be a nonempty compact metric space and let f : X → ℝ be continuous.
⇒ f is bounded and achieves an absolute minimum and an absolute maximum on X.

Proof: X is compact and f continuous ⇒ f (X) ⊂ ℝ is compact.
Thus f (X) is closed and bounded.
⇒ sup f (X) ∈ f (X) and inf f (X) ∈ f (X)
(both achieved by sequences in f (X), which is closed).

⇒ ∃ x ∈ X s.t. f (x) = sup f (X) and ∃ y ∈ X s.t. f (y) = inf f (X). □
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Lemma
Let (X, dX) and (Y, dY) be metric spaces.

f : X → Y is continuous at c ∈ X ⇔ for every open
neighborhood U of f (c) in Y, f−1(U) contains an open neighborhood of c in X.

f
U

W

f (c)

f−1(U)

c

Proof: Suppose f is continuous at c, and
U ⊂ Y is an open neighborhood of f (c).
⇒ BY

(
f (c), 𝜖

)
⊂ U for some 𝜖 > 0.

∃ 𝛿 > 0, s.t. if dX(x, c) < 𝛿,
then dY

(
f (x), f (c)

)
< 𝜖.

I.e., BX(c, 𝛿) ⊂ f−1 (BY
(
f (c), 𝜖

) )
⊂ f−1(U),

and BX(c, 𝛿) is an open neighborhood of c.

Now let 𝜖 > 0 be given.
If f−1 (BY

(
f (c), 𝜖

) )
contains an open neighborhood W of c, then

∃ 𝛿 > 0, s.t. BX(c, 𝛿) ⊂ W ⊂ f−1 (BY
(
f (c), 𝜖

) )
.

That means if dX(x, c) < 𝛿, then dY
(
f (x), f (c)

)
< 𝜖,

⇒ f is continuous at c. □
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Theorem
Let (X, dX) and (Y, dY) be metric spaces.

f : X → Y is continuous ⇔ for every open U ⊂ Y, f−1(U) is open in X.

Proof: Exercise.
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Example: If f : X → Y is continuous and E is closed,

then f−1(E) = X \ f−1(Ec) is also closed.

Suppose f : X → ℝ is continuous.

⇒ the zero set of f , f−1(0) =
{
x ∈ X : f (x) = 0

}
, is closed.

For example, the zero set of a polynomial is closed.

Similarly,

f−1 ([0,∞)
)
=
{
x ∈ X : f (x) ≥ 0

}
is closed.

f−1 ((0,∞)
)
=
{
x ∈ X : f (x) > 0

}
is open.
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Definition
Let (X, dX) and (Y, dY) be metric spaces. f : X → Y is uniformly continuous if

∀ 𝜖 > 0 ∃ 𝛿 > 0 s.t. whenever p, q ∈ X and dX(p, q) < 𝛿, then dY
(
f (p), f (q)

)
< 𝜖.

Theorem
Let (X, dX) and (Y, dY) be metric spaces. Suppose f : X → Y is continuous and X is compact.
Then f is uniformly continuous.

Proof: Let 𝜖 > 0 be given.
∀ c ∈ X, pick 𝛿c > 0 s.t. dY

(
f (x), f (c)

)
< 𝜖/2 whenever x ∈ B(c, 𝛿c).

X ⊂ ⋃
c∈X B(c, 𝛿c) and X is compact.

By Lebesgue covering lemma,
∃ 𝛿 > 0 s.t. ∀ x ∈ X, ∃ c ∈ X for which B(x, 𝛿) ⊂ B(c, 𝛿c).
Suppose p, q ∈ X where dX(p, q) < 𝛿. Find c ∈ X s.t. B(p, 𝛿) ⊂ B(c, 𝛿c). ⇒ q ∈ B(c, 𝛿c).

By the triangle inequality and the definition of 𝛿c,
dY

(
f (p), f (q)

)
≤ dY

(
f (p), f (c)

)
+ dY

(
f (c), f (q)

)
< 𝜖/2 + 𝜖/2 = 𝜖. □
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Proposition
If f : [a, b] × [c, d] → ℝ is continuous, then g : [c, d] → ℝ defined by

g(y) B
∫ b

a
f (x, y) dx is continuous.

Proof: Suppose y ∈ [c, d].
Let 𝜖 > 0 be given.

As [a, b] × [c, d] is compact, f is uniformly continuous. So
∃ 𝛿 > 0 s.t. if z ∈ [c, d] and |z − y| < 𝛿, then |f (x, z) − f (x, y)| < 𝜖

b−a ∀ x ∈ [a, b].

Suppose |z − y| < 𝛿. Then

|g(z) − g(y)| =
����∫ b

a
f (x, z) dx −

∫ b

a
f (x, y) dx

����
=

����∫ b

a

(
f (x, z) − f (x, y)

)
dx
���� ≤ (b − a) 𝜖

b − a
= 𝜖. □
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Example: Suppose (X, dX) and (Y, dY) are metric spaces.

f : X → Y is Lipschitz or K-Lipschitz if ∃ K ∈ ℝ s.t.

dY
(
f (p), f (q)

)
≤ K dX(p, q) for all p, q ∈ X.

A Lipschitz f is uniformly continuous: Take 𝛿 = 𝜖/K.

f can be uniformly continuous but not Lipschitz:
√

x on [0, 1]
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Definition
Let (X, d) be a metric space and S ⊂ X.

p ∈ X is a cluster point of S if ∀ 𝜖 > 0, B(p, 𝜖) ∩ S \ {p} ≠ ∅.

Exercise: p ∈ X is a cluster point of S ⇔ p ∈ S \ {p}.

Definition
Let (X, dX), (Y, dY) be metric spaces, S ⊂ X, p ∈ X a cluster point of S, and f : S → Y a
function. Suppose ∃ L ∈ Y and ∀ 𝜖 > 0, ∃ 𝛿 > 0 s.t. if x ∈ S \ {p} and dX(x, p) < 𝛿, then

dY
(
f (x), L

)
< 𝜖.

Then f (x) converges to L as x goes to p, and L is a limit of f (x) as x goes to p.
If L is unique, write

lim
x→p

f (x) B L.

If f (x) does not converge as x goes to p, then f diverges at p.
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Proposition
Let (X, dX), (Y, dY) be metric spaces, S ⊂ X, p ∈ X a cluster point of S, and f : S → Y a function
such that f (x) converges as x goes to p.

Then the limit of f (x) as x goes to p is unique.

Proof: Exercise.

Lemma
Let (X, dX), (Y, dY) be metric spaces, S ⊂ X, p ∈ X a cluster point of S, and f : S → Y a function.
Then f (x) converges to L ∈ Y as x goes to p ⇔ for every {xn}∞n=1 in S \ {p} s.t. lim

n→∞
xn = p,{

f (xn)
}∞

n=1 converges to L.

Proof: Exercise.

Exercise: As on the real numbers, if p is a cluster point of S, then f : S → Y is continuous at
p if and only if

lim
x→p

f (x) = f (p).
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Let X and Y be metric spaces.

Exercise: If f : X → Y is continuous and A ⊂ X, then f (A) ⊂ f (A). The subset can be proper.

Exercise: If f : X → Y is continuous and X connected, then f (X) is connected.

Exercise: “Intermediate value theorem.” Let (X, d) be connected and f : X → ℝ

continuous. If x0 , x1 ∈ X and y ∈ ℝ such that f (x0) < y < f (x1), then ∃ z ∈ X such that
f (z) = y.

Exercise: Suppose f : X → Y is one-to-one, onto, and continuous. Suppose X is compact.
Then the inverse f−1 : Y → X is continuous.
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