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. T o
So limsupx, = hrrlr_l) g}f xp and {x,}, converges.
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This thinking generalizes to more abstract settings.

Remark: Cauchy is stronger than [x,11 — x,| = 0asn — oo (or |xn+j - xn| — 0 for a fixed j).
E.g., the partial sums of the harmonic series satisfy x,1 — x, = 1/n,

but the sequence is not Cauchy.

In fact, 7}21010 |xn+j — xn| =0 forevery;jeN.

The key point in the definition of Cauchy is that n and k vary independently and can be
arbitrarily far apart.



