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Theorem (15t form of the Fundamental Theorem of Calculus)
Let F: [a,b] — R be continuous, differentiable on (a, b). Let f € R[a, b] be such that f(x) = F'(x)

b
for x € (a,b). Then / = E(b) - F(a).

Proof: Let P = {xg,x1, ..., x,} be a partition of [a, b].
By MVT, Vifind ¢; € (x;-1, x;) s.t. f(cl-)Axi = F'(ci)(xi — xi-1) = F(x;) — F(xi—1).

fleia) / y=f@O=FF) = fleir1)Axi
Flc:) | ; = F(xix1) — F(xi)

area = f(ci—1)Axi_1 area = f(c;)Ax; \k

flew) |- = F(xim)=F(i2) = F(x) = F(xi) T ~__|

Xi-1 Ci Xi Ci+l Xi+1

Axi—q Ax;

The area of all three shaded rectangles is F(x;1) — F(xi—2).
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= mAx; < F(x;) — F(xi-1) < M;Ax; Vi

n n n
= ZmiAxi < Z(F(xi) - F(xim)) < ZMiAxi-
i=1 p i=1

= L(P,f) < F(b) - F(a) < U(P,f).

= / hf < F(b) - F(a) < ff.

b b b b
f is Riemann integrable = /fz/fSF(b)—F(a)S/f=/f.



Using the notation from the definition of the integral, —m; < f(c;) < M; Vi.
= mAx; < F(x;) — F(xi-1) < M;Ax; Vi

n n n
= Z miAx; < Z(F(xi) - F(xim)) < ZMiAxi-
i=1 p i=1

= L(P,f) < F(b) - F(a) < U(P,f).
b T b
= /st(b)—F(a) S/f
b b b b
f is Riemann integrable = / f=/fSF(b)—F(a) S/f=/ f.

b
- / £ =E(b) - F(a).
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Let f: [a,b] — R be a Riemann integrable function.
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Theorem (274 form of the Fundamental Theorem of Calculus)
Let f: [a,b] — R be a Riemann integrable function. Define

F(x) = /uxf.

First, F is continuous on [a, b]. Second, if f is continuous at c € [a, b], then F is differentiable at c
and F'(c) = f(c).

b].

Proof: fisbounded = 3IM > 0s.t. |f(x)] <Mforallx € [a,
X
f

Ifx,y€lablwithx >y, |F(x)-F(y)| = /Xf—/yf‘ = <Mlx -yl

y



Theorem (279 form of the Fundamental Theorem of Calculus)
Let f: [a,b] — R be a Riemann integrable function. Define

F(x) = /uxf.

First, F is continuous on [a, b]. Second, if f is continuous at c € [a, b], then F is differentiable at c
and F'(c) = f(c).

b].

Proof: fisbounded = 3IM > 0s.t. |f(x)] <Mforallx € [a,
X
f

Ifx,y€lablwithx >y, |F(x)-F(y)| = /Xf—/yf’ = <Mlx -yl

Y
Same holds if x < y.



Theorem (279 form of the Fundamental Theorem of Calculus)
Let f: [a,b] — R be a Riemann integrable function. Define

F(x) = /uxf.

First, F is continuous on [a, b]. Second, if f is continuous at c € [a, b], then F is differentiable at c
and F'(c) = f(c).

Proof: fisbounded = 3IM>0s.t. |f(x)] < Mforallxe

ISR

[a, b].
X
Ifx,y € [a,b] withx >y, |F(x)-F(y)| = fl <M|x—yl.

Y
Same holds if x < y.

So F is Lipschitz, thus continuous.



Now suppose f is continuous at c.
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Now suppose f is continuous at c.
Fix € > 0. Find 6 > 0s.t. for x € [a,b], |[x — c| < 6, we have |f(x) — f(c)| < e.
Forsuchx, f(c)—e <f(x)<f(c)+e.

. ifx>oc then (f(c)—e)(x—c)s‘/cxfs (F(©) + €)(x =),
If ¢ > , the inequalities reverse.

S ifxte f(O) / xf

F@)-Fo) _ L f-ff _ ff

X—cC X—cC X—C

‘F(x)_F(C) _f(C)

X—cC

<e.




Now suppose f is continuous at c.
Fix € > 0. Find 6 > 0s.t. for x € [a,b], |[x — c| < 6, we have |f(x) — f(c)| < e.
Forsuchx, f(c)—e <f(x)<f(c)+e.
X
= ifx>c then (f(c)—€)(x—c)< / f<(fle)+€)(x—o).
Cc
If ¢ > x, the inequalities reverse.

= ifx#c,  f(o) /f
F@)-Fo) _ L f-ff _ ff

X—cC X—cC X—C

F(x)_F(C) _f(C)

xX—c
The result follows.

<e.
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Remark: If f is continuous on [4, b], then it is Riemann integrable, F is differentiable on all
of [a,b], and F'(x) = f(x) for all x € [a, b].

Remark: 2nd form of FTC still holds if for d € [a, b], we define

F(x)—/f

Any point can be the base point. Proof: Exercise.

Example: Define f(x) := —-1if x < 0,and f(x) :=1if x > 0.
Let F(x) = foxf. Not hard to see that F(x) = |x]|.
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Remark: If f is continuous on [4, b], then it is Riemann integrable, F is differentiable on all
of [a,b], and F'(x) = f(x) for all x € [a, b].

Remark: 2nd form of FTC still holds if for d € [a, b], we define

F(x)—/f

Any point can be the base point. Proof: Exercise.

Example: Define f(x) := —-1if x < 0,and f(x) :=1if x > 0.
Let F(x) = foxf. Not hard to see that F(x) = |x]|.
f is discontinuous at 0 and F is not differentiable at 0.

The converse in the theorem does not hold.
Letg(x) :=0if x # 0, and g(0) := 1.
Let G(x) = [ g. Then G(x) = 0 for all .



Remark: If f is continuous on [4, b], then it is Riemann integrable, F is differentiable on all
of [a,b], and F'(x) = f(x) for all x € [a, b].

Remark: 2nd form of FTC still holds if for d € [a, b], we define

F(x)—/f

Any point can be the base point. Proof: Exercise.

Example: Define f(x) := —-1if x < 0,and f(x) :=1if x > 0.
Let F(x) = foxf. Not hard to see that F(x) = |x]|.
f is discontinuous at 0 and F is not differentiable at 0.

The converse in the theorem does not hold.

Letg(x) :=0if x # 0, and g(0) := 1.

Let G(x) = [ g. Then G(x) = 0 for all x.

g is discontinuous at 0, but G’(0) exists and equals 0.
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Remark on calculus: What is “closed form”?

X
lnx:=/ 1ds.
1 S

So is writing /a ’ 1 dx = Inb - Ina writing things in closed form?

Natural logarithm is just defined as

Another common function defined by an integral

2 Y2
erf(x) == — / e ds.
V7 Jo

s

etc.
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Let g: [a,b] — R be continuously differentiable, f: [c,d] — R continuous, and suppose

g([a,b]) c [c,d]. Then , "
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Proof: g, ¢, and f are continuous = f(g(x)) ¢'(x) is continuous on [a, ],
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Let g: [a,b] — R be continuously differentiable, f: [c,d] — R continuous, and suppose
g([a,b]) C [c,d]. Then

g(b)
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Proof: g, ¢’, and f are continuous = f(g(x)) ¢’(x) is continuous on [a, b],
thus Riemann integrable.  Also, f integrable on every subinterval of [c, d].
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By 2nd form of FTC, F is differentiable and F'(y) = f(y).

Chainrule = (F og)’(x) =F (g(X))g’(X) =f(g(x))g’(X).
F(g(a)) = 0 and the 1¢t form of FTC implies

g(b)
/ f(s)ds
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Let g: [a,b] — R be continuously differentiable, f: [c,d] — R continuous, and suppose
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Theorem (Change of variables or u-substitution)

Let g: [a,b] — R be continuously differentiable, f: [c,d] — R continuous, and suppose
g([a,b]) C [c,d]. Then

g(b)
/ Flg() g/ () dx = /( s
a gﬂ

Proof: g, ¢’, and f are continuous = f(g(x)) ¢’(x) is continuous on [a, b],
thus Riemann integrable.  Also, f integrable on every subinterval of [c, d].
Define F: [c,d] — R by F(y) = /g fu) f(s) ds.

By 2nd form of FTC, F is differentiable and F'(y) = f(y).

Chainrule = (Fog)'(x) = F(g(x)g'(x) = f(g(x))g ().
F(g(a)) = 0 and the 1¢t form of FTC implies
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Theorem (Change of variables or u-substitution)

Let g: [a,b] — R be continuously differentiable, f: [c,d] — R continuous, and suppose

g([a,b]) C [c,d]. Then W
/ flee)gwn= [ oy
a ()

Proof: g, ¢’, and f are continuous = f(g(x)) ¢’(x) is continuous on [a, b],
thus Riemann integrable.  Also, f integrable on every subinterval of [c, d].
Define F: [c,d] — R by F(y) = /g fu) f(s) ds.

By 2nd form of FTC, F is differentiable and F'(y) = f(y).

Chainrule = (Fog)'(x) = F(g(x)g'(x) = f(g(x))g ().
F(g(a)) = 0 and the 1¢t form of FTC implies

g(b)
f( 64 = Flg() = Flg) ~F(st)
gla

b ) b
:/ (Fog) (x)dx=/ f(g(x))g’ (x) dx.
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Example: The derivative of sin(x) is cos(x). Using g(x) = x=,

\r
/ x cos(x?) dx = /
0 0

Example: Consider / e
-1

1
Infx| .

cos(s)

2

ds = 2‘/Onczos(s)d:szw =

2

sin(0)
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Example: The derivative of sin(x) is cos(x). Using g(x) := x?,

\r n . .
5 _ cos(s) _ sin(7) - sin(0)
‘/0 xcos(x?) dx = /0 ds = =5 [) cos(s)ds = —

1
Example: Consider / lnxﬁ d
-1

Tempting to take g(x) := In|x|. Compute g’(x) = I/x and try to write
! 8
X ds X sXs X0.
KKK KHX

1) lnxﬁ is not continuous on [-1, 1].

This is incorrect!

2) lnxﬂ is not even Riemann integrable on [—1, 1] (it is unbounded).

1 .
/_ ) lnTM dx simply does not make sense!

3) g is not continuous on [-1, 1], let alone continuously differentiable.

=0.
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Exercise: Suppose F: [a,b] — R is continuous and differentiable on [a, b] \ S, where S is a
finite set. Suppose there exists an f € R[a, b] such that f(x) = F’(x) for x € [a,b] \ S. Show

that [ f = F(b) - F(a).

Exercise: Letf: [a,b] — R be continuous and € > 0 such thata+ € < b —e. For
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1 X+€
8(x) = %/x_e f.

a) Show that g is differentiable and find the derivative.
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Exercise: Suppose F: [a,b] — R is continuous and differentiable on [a, b] \ S, where S is a
finite set. Suppose there exists an f € R[a, b] such that f(x) = F’(x) for x € [a,b] \ S. Show

that [ f = F(b) - F(a).

Exercise: Letf: [a,b] — R be continuous and € > 0 such thata+ € < b —e. For
X € [a+¢€,b— €], define
1 xX+e
glx) = %/x_e f

a) Show that g is differentiable and find the derivative.

b) Let f be differentiable and fix x € (a, b) (let € be small enough). What happens to g’(x)
as € gets smaller?

¢) Find g for f(x) := |x|, € = 1 (you can assume [4, b] is large enough).



