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Definition
Let S € R be a set. A number x € R is called a cluster point of S if for every € > 0, the set
(x—€,x+€)N S\ {x} is not empty.

Le., x € Risacluster pointof SifVe >0 yeSst y#xand |[x—y| <e.
Note: A cluster point of S need not lie in S.
Examples:
(i) {/n:n e N} has a unique cluster point: 0.
(ii) The set of cluster points of (0, 1) is [0, 1].
(iii) The set of cluster points of Q is R.
(iv) The set of cluster points of [0,1) U {2} is [0, 1].
(v) N has no cluster points.
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(x, exists as x is a cluster point of S).
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suppose {x,} , isaseq. in S\ {x} converging to x.

= forevery € >0 I Msuch that |xp — x| <e.

= xmex—€,x+e)NS\ {x}.
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Consider f: S — R where cis a cluster point of S C R.

Suppose 3L € Rand V € > 0, 3 6 > 0 such that whenever x € S\ {c} and |x —c| < §, we
have |f(x)-L|<e.

We then say f(x) converges to L as x goes to c.
We say L is the limit of f(x) as x goes to c.

We write limf(x) =L, or f(x) >L asx—c.
X—C

If no such L exists, we say the limit does not exist or that f diverges at c.

Cheating again: The notation assumes the limit is unique,
we’ll prove that momentarily.

Remark: It is irrelevant whether f(c) is defined or not.
The limit may not equal f(c), even if f(c) is defined.
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x ifx>0,

E le: Defi : 0,1 Rb =
xample: Define f: [0,1) — y  f(x) {1 N

Then lirr(l) f(x) =0, even though f(0) = 1.
x—

Proof: Let € > 0 be given.
Let6 = €.
Forxe€[0,1),x#0,and |[x —0] < 6, weget |f(x)—0|=|x| <0 =¢€.
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Exercise: It is possible to strengthen the <: It is enough to suppose that {f(x,)}}
converges for every {x,} , without requiring a specific limit.
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Graphs of sin(1/x) and x sin(1/x):

L
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sothatx, - 0 = sin(l/x,) = sin(rn + 7/2) = (-1)"

Proof: Define x,, := #71/2’

= {sin(1/xn)}:;o_1 does not converge = lir% sin(1/x) does not exist.
- x—
Let {x,} ", asequence in R \ {0} such that lim x, = 0.
n—-oo
Isin(f)] < 1forallte R = |x,sin(l/x,) — 0] = |xy]| [sin(Yx,)| < |x]
X =0 = || —>0 = xsin(lfx,) >0 = lin(g xsin(1/x) = 0.
X—

Remark: Keep in mind the “for every sequence”:
If x, := 1/mn, then {sin(Y/x,)} >, = {0}>7,, but lir% sin(1/x) DNE.
X—

n=1’



Corollary

Let S C R and let ¢ be a cluster point of S. Suppose f: S — Rand g: S — R are functions such
that the limits of f(x) and g(x) as x goes to ¢ both exist, and

fx) <g(x)  forallx e S\ {c}.
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Let S C R and let ¢ be a cluster point of S. Suppose f: S — Rand g: S — R are functions such
that the limits of f(x) and g(x) as x goes to ¢ both exist, and

flx)<gx)  forallx e S\ {c}.

Then
lim f(x) < lim g(x).

Proof: Take {x,},’, be a sequence in S\ {c} converging to c.
Let L;:=limf(x) and L, :=limg(x).
s x5¢
By the lemma above, {f(x,)} ., converges to L1 and {g(x,)} ., converges to Lo.
We also have f(x,) < g(x,,) for all n € N.

= L; <L, (by lemma about sequence limits)



Proofs of the next corollaries are exercises.
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Let S € R and let c be a cluster point of S. Supposef: S — Rand g: S — R are such that the
limits of f(x) and g(x) as x goes to c both exist. Then

() Hm(f) +g() = (limf () + (limg(x))
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Corollary
Let S C R and let ¢ be a cluster point of S. Suppose f: S — R is such that lim f (x) exists.
X—C

Then lim |f(x)| = |lim f(x)|.




Definition
Letf: S — R be a function and A C S. Define the function f|a: A — R by

fla(x) :=f(x)  forxe€A.
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fla(x) = f(x) forx € A.

The function f|4 is called the restriction of f to A.

The function f|4 is simply the function f taken on a smaller domain.

Be careful, e.g., f: R — R defined by say f(x) = x2
and f|o,11: [0, 1] — R really are different functions.

E.g., it is not true that KIOXPXX2.  f|0,13(2) is not defined.  But f(2) = 2>
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Finally, suppose f|a(x) — L as x — c and let € > 0 be given.
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[x—c|<a = xeA\{c},
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Remark: The hypothesis on A in the proposition is necessary.
Without it, we only get one implication (exercise):

Assume c is a cluster point of A, then

f(x) > Lasx —>c¢ = fla(x) > Lasx—c.

Notation: }Cin} f(x) = limfla(x).
xg‘l xX—C
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Letf: S — R be function and c € R.

If ¢ is a cluster point of S N (c, ) and the limit of f|sn(c,«) as x — ¢ exists, define
Lim £(x) = Lm flsne,e0) (%)-
If ¢ is a cluster point of S N (—oo, c) and the limit of f|sn(—c0,c) @s X — ¢ exists, define
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Definition (One sided limits)
Letf: S — R be function and ¢ € R.

If ¢ is a cluster point of S N (c, o) and the limit of f[sn(c,c0) as x — ¢ exists, define
Lim £(x) = Lm flsne,e0) (%)-
If ¢ is a cluster point of S N (—oo, c) and the limit of f|sn(—c0,c) @s X — ¢ exists, define

xh_)rgf(x) = }Clgzﬂm(—oo,c)(x)-

Many common notations:
For i X li x), li X), li X).
or lim f(x) one sees ,gcgf( ) ;g}f( ), or ;}I}f( )

For lim f(x) onesees limf(x), limf(x), or limf(x).
x—ct 3;;’5 xle N(C



The proposition above does not apply to one-sided limits.
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The proposition above does not apply to one-sided limits.

Example: Define f: R — R by f(x) := 1 for x < 0 and f(x) := 0 for x > 0. Then

lim f(x) =1, lim f(x) =0, limf(x) does not exist.
x—0~ x—0* x—0

But we do have:
Proposition

Let S C R be such that c is a cluster point of both S N (=0, c) and SN (¢, 0), let f: S — R bea
function, and let L € R. Then c is a cluster point of S and

limf(x)=L  ifand only if lim f(x) = lim f(x) = L.

Proof: Exercise.

Hint: (SN (—0,¢)) U (SN (c,»)) =S\ {c}.
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Composition also plays nice with limits if one is careful:

Exercise: Let ¢ be a cluster point of A C R and c; be a cluster point of B C R.

Supposef: A — Band g: B — R are such that f(x) = cpasx — ¢jand g(y) = Lasy — c.
If c; € B, also suppose that g(cz) = L (important).

Let h(x) = g(f(x)). Show h(x) — Las x — c;.

Hint: Note that f(x) could equal ¢, for many x € A.



