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Consider f(x,y) :== 5 for (x,y) # (0,0) and (0, 0) := 0.

x2+y?

Exercise: Prove that f is not continuous at (0, 0),
but that for every fixed y, the function g(x) = f(x, y) is continuous,
and for every fixed x, h(y) := f(x,y) is continuous.
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S {g(pn)}jz1 converges to g(p) and {h(pn)}zoz1 converges to h(p).
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f can be uniformly continuous but not Lipschitz: vx on [0, 1]
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Let (X, dx), (Y, dy) be metric spaces, S € X, p € X a cluster pointof S,and f: S — Y a
function. Suppose 3L € YandVe > 0,36 > 0s.t. ifx € S\ {p} and dx(x, p) < 6, then

dy(f(x),L) <e.

Then f(x) converges to L as x goes to p, and L is a limit of f(x) as x goes to p.
If L is unique, write

lim f(x) = L.

If f(x) does not converge as x goes to p, then f diverges at p.




Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p.




Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.




Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.

Proof: Exercise.



Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.

Proof: Exercise.

Lemma
Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function.




Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.

Proof: Exercise.

Lemma

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function.

Then f(x) converges to L € Y as x goestop & for every {x,};” in S\ {p}s.t. lim x, =p,
n—oo

{f(xn)} ", converges to L.




Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.

Proof: Exercise.

Lemma

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function.

Then f(x) converges to L € Y as x goestop & for every {x,};” in S\ {p}s.t. lim x, =p,
n—oo

{f(xn)} ", converges to L.

Proof: Exercise.



Proposition

Let (X, dx), (Y, dy) be metric spaces, S C X, p € X a cluster point of S, and f: S — Y a function
such that f(x) converges as x goes to p. Then the limit of f(x) as x goes to p is unique.

Proof: Exercise.

Lemma
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Then f(x) converges to L € Y as x goestop & for every {x,};” in S\ {p}s.t. lim x, =p,
n—oo

{f(xn)} ", converges to L.

Proof: Exercise.

Exercise: As on the real numbers, if p is a cluster point of S, then f: S — Y is continuous at
p if and only if
lim f(2) = f(p).
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Let X and Y be metric spaces.

Exercise: If f: X — Y is continuous and A C X, then f (A) c f(A). The subset can be proper.
Exercise: If f: X — Y is continuous and X connected, then f(X) is connected.

Exercise: “Intermediate value theorem.” Let (X, d) be connected and f: X — R
continuous. If xg, x; € X and y € R such that f(xg) < y < f(x1), then 3 z € X such that

f@=y.

Exercise: Suppose f: X — Y is one-to-one, onto, and continuous. Suppose X is compact.
Then the inverse f~!: Y — X is continuous.



