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Introduction

0.1 About this book
This first volume is a one semester course in basic analysis. With the second volume, it is a
year-long course. The book started its life as my lecture notes for teaching Math 444 at the
University of Illinois at Urbana-Champaign (UIUC) in the fall semester of 2009. I added the
metric space chapter for Math 521 at the University of Wisconsin–Madison (UW). Volume
II was added to teach Math 4143/4153 at Oklahoma State University (OSU). A prerequisite
for these courses is usually a basic proof course, using, for example, [ H ], [ F ], or [ DW ].

It should be possible to use the book for both a basic course for students who do not
necessarily wish to go to graduate school (such as UIUC 444), and also as a more advanced
one-semester course that also covers topics such as metric spaces (such as UW 521). Here
are suggestions for a semester course. A slower course such as UIUC 444:

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.3

A more rigorous course covering metric spaces that runs quite a bit faster (e.g., UW 521):

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.2, §7.1–§7.6

It should also be possible to run a faster course without metric spaces covering all sections
of chapters 0 through 6. The approximate number of lectures given in the section notes
through Chapter 6 are a very rough estimate and were designed for the slower course. The
first few chapters of the book can be used in an introductory proofs course, as is done, for
example, at Iowa State University Math 201, where this book is used in conjunction with
Hammack’s Book of Proof [ H ].

With volume II, one can run a year-long course that covers multivariable topics. In this
scenario, it may make sense to cover most of the first volume in the first semester while
leaving metric spaces for the beginning of the second semester.

The structure of the beginning of volume I somewhat follows the standard syllabus of
UIUC Math 444 and, therefore, has some similarities with Bartle and Sherbert, Introduction
to Real Analysis [ BS ], which is the standard book at UIUC. A major difference is that we
define the Riemann integral using Darboux sums and not tagged partitions. The Darboux
approach is far more appropriate for a course of this level.

Our approach allows us to fit a course such as UIUC 444 within a semester and still
spend some time on the interchange of limits and end with Picard’s theorem on the
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existence and uniqueness of solutions of ordinary differential equations. This theorem
is a wonderful example that uses many results proved in the book. For more advanced
students, material may be covered faster so that we arrive at metric spaces and prove
Picard’s theorem using the fixed point theorem as is usual.

Other excellent books exist. My favorite is Rudin’s excellent Principles of Mathematical
Analysis [ R2 ] or, as it is commonly and lovingly called, baby Rudin (to distinguish it from
his other great analysis textbook, big Rudin). I took a lot of inspiration and ideas from
Rudin. However, Rudin is a bit more advanced and ambitious than this present course.
For those who wish to continue mathematics, Rudin is a fine investment. An inexpensive
and somewhat simpler alternative to Rudin is Rosenlicht’s Introduction to Analysis [ R1 ].
There is also the freely downloadable Introduction to Real Analysis by William Trench [ T ].

A note about the style of some of the proofs: Many proofs traditionally done by
contradiction, I prefer to do by a direct proof or by contrapositive. While the book does
include proofs by contradiction, I only do so when the contrapositive statement seemed
too awkward or when contradiction follows rather quickly. Contradiction is more likely to
get beginning students into trouble, as we are talking about objects that do not exist.

I try to avoid unnecessary formalism where it is unhelpful. Furthermore, the proofs
and the language get slightly less formal as we progress through the book, as more and
more details are left out to avoid clutter.

As a general rule, I use B instead of = to define an object rather than to simply show
equality. I use this symbol rather more liberally than is usual for emphasis. I use it even
when the context is “local,” that is, I may simply define a function 𝑓 (𝑥) B 𝑥2 for a single
exercise or example.

Finally, I would like to acknowledge Jana Maříková, Glen Pugh, Paul Vojta, Frank
Beatrous, Sönmez Şahutoğlu, Jim Brandt, Kenji Kozai, Arthur Busch, Anton Petrunin, Mark
Meilstrup, Harold P. Boas, Atilla Yılmaz, Thomas Mahoney, Scott Armstrong, and Paul
Sacks, Matthias Weber, Manuele Santoprete, Robert Niemeyer, Amanullah Nabavi, for
teaching with the book and giving me lots of useful feedback. Frank Beatrous wrote the
University of Pittsburgh version extensions, which served as inspiration for many more
recent additions. I would also like to thank Dan Stoneham, Jeremy Sutter, Eliya Gwetta,
Daniel Pimentel-Alarcón, Steve Hoerning, Yi Zhang, Nicole Caviris, Kristopher Lee, Baoyue
Bi, Hannah Lund, Trevor Mannella, Mitchel Meyer, Gregory Beauregard, Chase Meadors,
Andreas Giannopoulos, Nick Nelsen, Ru Wang, Trevor Fancher, Brandon Tague, Wang
KP, Wai Yan Pong, Sam Merat, Judah Nouriyelian, Arnold Cross, Jesse Wallace, Adnan
Hashem Mohamed, Nikita Borisov, Bob Strain, Salven V. DeMartino, Xuechi Wang, an
anonymous reader or two, and in general all the students in my classes for suggestions and
finding errors and typos.
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0.2 About analysis
Analysis is the branch of mathematics that deals with inequalities and limits. The present
course deals with the most basic concepts in analysis. The goal of the course is to acquaint
the reader with rigorous proofs in analysis and also to set a firm foundation for calculus of
one variable (and several variables if volume II is also considered).

Calculus has prepared you, the student, for using mathematics without telling you
why what you learned is true. To use, or teach, mathematics effectively, you cannot simply
know what is true, you must know why it is true. This course shows you why calculus is
true. It is here to give you a good understanding of the concept of a limit, the derivative,
and the integral.

Let us use an analogy. An auto mechanic who has learned to change the oil, fix broken
headlights, and charge the battery, but who does not understand how the engine works,
will only be able to do those simple tasks. He will be unable to work independently to
diagnose and fix problems. A high school teacher who does not understand the definition
of the Riemann integral or the derivative may not be able to properly answer all the students’
questions. To this day I remember several nonsensical statements I heard from my calculus
teacher in high school, who simply did not understand the concept of the limit, although
he could “do” the problems in the textbook.

We start with a discussion of the real number system, most importantly its completeness
property, which is the basis for all that follows. We then discuss the simplest form of a limit,
the limit of a sequence. Afterwards, we study functions of one variable, continuity, and the
derivative. Next, we define the Riemann integral and prove the fundamental theorem of
calculus. We discuss sequences of functions and the interchange of limits. Finally, we give
an introduction to metric spaces.

Let us give the most important difference between analysis and algebra. In algebra, we
prove equalities directly; we prove that an object, perhaps a number, is equal to another
object. In analysis, we usually prove inequalities, and we prove those inequalities by
estimating. To illustrate the point, consider the following statement.

Let 𝑥 be a real number. If 𝑥 < 𝜖 is true for all real numbers 𝜖 > 0, then 𝑥 ≤ 0.

This statement is the general idea of what we do in analysis. Suppose we really wish to
prove the equality 𝑥 = 0. In analysis, we prove two inequalities: 𝑥 ≤ 0 and 𝑥 ≥ 0. To prove
the inequality 𝑥 ≤ 0, we prove 𝑥 < 𝜖 for all positive 𝜖. To prove the inequality 𝑥 ≥ 0, we
prove 𝑥 > −𝜖 for all positive 𝜖.

The term real analysis is a little bit of a misnomer. I prefer to use simply analysis. The
other type of analysis, complex analysis, really builds up on the present material, rather than
being distinct. Furthermore, a more advanced course on real analysis would talk about
complex numbers often. I suspect the nomenclature is historical baggage.

Let us get on with the show. . .
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0.3 Basic set theory
Note: 1–3 lectures (some material can be skipped, covered lightly, or left as reading)

Before we start talking about analysis, we need to fix some language. Modern 

‗
 analysis

uses the language of sets and, therefore, that is where we start. We talk about sets in a
rather informal way, using the so-called “naïve set theory.” Do not worry, that is what the
majority of mathematicians use, and it is hard to get into trouble. The reader has hopefully
seen the very basics of set theory and proof writing before, and this section should be a
quick refresher.

0.3.1 Sets
Definition 0.3.1. A set is a collection of objects called elements or members. A set with no
objects is called the empty set and is denoted by ∅ (or sometimes by {}).

Think of a set as a club with a certain membership. For example, the students who play
chess are members of the chess club. The same student can be a member of many different
clubs. However, do not take the analogy too far. A set is only defined by the members that
form the set; two sets that have the same members are the same set.

Most of the time, we will consider sets of numbers. For example, the set

𝑆 B {0, 1, 2}
is the set containing the three elements 0, 1, and 2. By “B”, we mean we are defining what
𝑆 is, rather than just showing equality. We write

1 ∈ 𝑆
to denote that the number 1 belongs to the set 𝑆. That is, 1 is a member of 𝑆. At times we
want to say that two elements are in a set 𝑆, so we write “1, 2 ∈ 𝑆” as a shorthand for “1 ∈ 𝑆
and 2 ∈ 𝑆.”

Similarly, we write
7 ∉ 𝑆

to denote that the number 7 is not in 𝑆. That is, 7 is not a member of 𝑆.
The elements of all sets under consideration come from some set we call the universe.

For simplicity, we often consider the universe to be the set that contains only the elements
we are interested in. The universe is generally understood from context and is not explicitly
mentioned. In this course, our universe will often be the set of real numbers.

Although the elements of a set are often numbers, other objects, such as other sets, can
be elements of a set. A set may also contain some of the same elements as another set. For
example,

𝑇 B {0, 2}
contains the numbers 0 and 2. In this case, all elements of 𝑇 also belong to 𝑆. We write
𝑇 ⊂ 𝑆. See  Figure 1 for a diagram.

‗The term “modern” refers to the late 19th century up to the present.
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𝑇

𝑆
0

2
1 7

Figure 1: A diagram of the example sets 𝑆 and its subset 𝑇.

Definition 0.3.2.

(i) A set 𝐴 is a subset of a set 𝐵 if 𝑥 ∈ 𝐴 implies 𝑥 ∈ 𝐵, and we write 𝐴 ⊂ 𝐵. That is, all
members of 𝐴 are also members of 𝐵. At times we write 𝐵 ⊃ 𝐴 to mean the same
thing.

(ii) Two sets 𝐴 and 𝐵 are equal if 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. We write 𝐴 = 𝐵. That is, 𝐴 and 𝐵
contain exactly the same elements. If it is not true that 𝐴 and 𝐵 are equal, then we
write 𝐴 ≠ 𝐵.

(iii) A set 𝐴 is a proper subset of 𝐵 if 𝐴 ⊂ 𝐵 and 𝐴 ≠ 𝐵. We write 𝐴 ⊊ 𝐵.

For the example 𝑆 and 𝑇 defined above, 𝑇 ⊂ 𝑆, but 𝑇 ≠ 𝑆. So 𝑇 is a proper subset of 𝑆.
If 𝐴 = 𝐵, then 𝐴 and 𝐵 are simply two names for the same exact set.

To define new sets, one often uses the set building notation,{
𝑥 ∈ 𝐴 : 𝑃(𝑥)}.

This notation refers to a subset of the set 𝐴 containing all elements of 𝐴 that satisfy the
property 𝑃(𝑥). Using 𝑆 = {0, 1, 2} as above, {𝑥 ∈ 𝑆 : 𝑥 ≠ 2} is the set {0, 1}. The notation is
sometimes abbreviated as

{
𝑥 : 𝑃(𝑥)}, that is, 𝐴 is not mentioned when understood from

context. Furthermore, 𝑥 ∈ 𝐴 is sometimes replaced with a formula to make the notation
easier to read.

Example 0.3.3: The following are sets including the standard notations.

(i) The set of natural numbers, ℕ B {1, 2, 3, . . .}.
(ii) The set of integers, ℤ B {0,−1, 1,−2, 2, . . .}.

(iii) The set of rational numbers, ℚ B
{
𝑚
𝑛 : 𝑚, 𝑛 ∈ ℤ and 𝑛 ≠ 0

}
.

(iv) The set of even natural numbers, {2𝑚 : 𝑚 ∈ ℕ}.
(v) The set of real numbers, ℝ.

Note that ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ.

We create new sets out of old ones by applying some natural operations.
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Definition 0.3.4.
(i) A union of two sets 𝐴 and 𝐵 is defined as

𝐴 ∪ 𝐵 B {𝑥 : 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.

(ii) An intersection of two sets 𝐴 and 𝐵 is defined as

𝐴 ∩ 𝐵 B {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.

(iii) A complement of 𝐵 relative to 𝐴 (or set-theoretic difference of 𝐴 and 𝐵) is defined as

𝐴 \ 𝐵 B {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵}.

(iv) We say complement of 𝐵 and write 𝐵𝑐 instead of 𝐴 \ 𝐵 if the set 𝐴 is either the entire
universe or if it is the obvious set containing 𝐵, and is understood from context.

(v) We say sets 𝐴 and 𝐵 are disjoint if 𝐴 ∩ 𝐵 = ∅.

The notation 𝐵𝑐 may be a little vague at this point. If the set 𝐵 is a subset of the real
numbers ℝ, then 𝐵𝑐 means ℝ \ 𝐵. If 𝐵 is naturally a subset of the natural numbers, then 𝐵𝑐
is ℕ \ 𝐵. If ambiguity can arise, we use the set difference notation 𝐴 \ 𝐵.

𝐴 ∪ 𝐵

𝐴 \ 𝐵 𝐵𝑐

𝐴 ∩ 𝐵

𝐵

𝐴 𝐵 𝐵𝐴

𝐵𝐴

Figure 2: Venn diagrams of set operations, the result of the operation is shaded.

We illustrate the operations on the Venn diagrams in  Figure 2 . Let us now establish one
of the most basic theorems about sets and logic.
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Theorem 0.3.5 (DeMorgan). Let 𝐴, 𝐵, 𝐶 be sets. Then

(𝐵 ∪ 𝐶)𝑐 = 𝐵𝑐 ∩ 𝐶𝑐 , (𝐵 ∩ 𝐶)𝑐 = 𝐵𝑐 ∪ 𝐶𝑐 ,
or, more generally,

𝐴 \ (𝐵 ∪ 𝐶) = (𝐴 \ 𝐵) ∩ (𝐴 \ 𝐶), 𝐴 \ (𝐵 ∩ 𝐶) = (𝐴 \ 𝐵) ∪ (𝐴 \ 𝐶).
Proof. The first statement is proved by the second statement if we assume the set 𝐴 is our
“universe.”

Let us prove 𝐴 \ (𝐵∪𝐶) = (𝐴 \ 𝐵) ∩ (𝐴 \𝐶). Remember the definition of equality of sets.
First, we must show that if 𝑥 ∈ 𝐴 \ (𝐵∪𝐶), then 𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐴 \𝐶). Second, we must also
show that if 𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐴 \ 𝐶), then 𝑥 ∈ 𝐴 \ (𝐵 ∪ 𝐶). So let us assume 𝑥 ∈ 𝐴 \ (𝐵 ∪ 𝐶).
Then 𝑥 is in 𝐴, but not in 𝐵 nor 𝐶. Hence 𝑥 is in 𝐴 and not in 𝐵, that is, 𝑥 ∈ 𝐴 \ 𝐵. Similarly,
𝑥 ∈ 𝐴 \ 𝐶. Thus 𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐴 \ 𝐶). On the other hand, suppose 𝑥 ∈ (𝐴 \ 𝐵) ∩ (𝐴 \ 𝐶).
In particular, 𝑥 ∈ (𝐴 \ 𝐵), so 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵. Also, as 𝑥 ∈ (𝐴 \ 𝐶), then 𝑥 ∉ 𝐶. Hence
𝑥 ∈ 𝐴 \ (𝐵 ∪ 𝐶).

The proof of the other equality is left as an exercise. □

The result above we called a Theorem, while most results we call a Proposition, and a few
we call a Lemma (a result leading to another result) or Corollary (a quick consequence of the
preceding result). Do not read too much into the naming. Some of it is traditional, some
of it is stylistic choice. It is not necessarily true that a Theorem is always “more important”
than a Proposition or a Lemma.

We will also need to intersect or union several sets at once. If there are only finitely
many, then we simply apply the union or intersection operation several times. However,
suppose we have an infinite collection of sets (a set of sets) {𝐴1, 𝐴2, 𝐴3, . . .}. We define

∞⋃
𝑛=1

𝐴𝑛 B {𝑥 : 𝑥 ∈ 𝐴𝑛 for some 𝑛 ∈ ℕ},
∞⋂
𝑛=1

𝐴𝑛 B {𝑥 : 𝑥 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ}.

We can also have sets indexed by two natural numbers. For example, we can have the
set of sets {𝐴1,1, 𝐴1,2, 𝐴2,1, 𝐴1,3, 𝐴2,2, 𝐴3,1, . . .}. Then we write

∞⋃
𝑛=1

∞⋃
𝑚=1

𝐴𝑛,𝑚 =
∞⋃
𝑛=1

( ∞⋃
𝑚=1

𝐴𝑛,𝑚

)
.

And similarly with intersections.
It is not hard to see that we can take the unions in any order. However, switching the

order of unions and intersections is not generally permitted without proof. For instance,
∞⋃
𝑛=1

∞⋂
𝑚=1

{𝑘 ∈ ℕ : 𝑚𝑘 < 𝑛} =
∞⋃
𝑛=1

∅ = ∅.
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However,
∞⋂
𝑚=1

∞⋃
𝑛=1

{𝑘 ∈ ℕ : 𝑚𝑘 < 𝑛} =
∞⋂
𝑚=1

ℕ = ℕ.

Sometimes, the index set is not the set of natural numbers. In such a case, we require a
more general notation. Suppose 𝐼 is some set and for each 𝜆 ∈ 𝐼, there is a set 𝐴𝜆. Then we
define⋃

𝜆∈𝐼
𝐴𝜆 B {𝑥 : 𝑥 ∈ 𝐴𝜆 for some 𝜆 ∈ 𝐼},

⋂
𝜆∈𝐼

𝐴𝜆 B {𝑥 : 𝑥 ∈ 𝐴𝜆 for all 𝜆 ∈ 𝐼}.

0.3.2 Induction

When a statement includes an arbitrary natural number, a common proof method is the
principle of induction. We start with the set of natural numbers ℕ = {1, 2, 3, . . .}, and we
give them their natural ordering, that is, 1 < 2 < 3 < 4 < · · · . By 𝑆 ⊂ ℕ having a least
element, we mean that there exists an 𝑥 ∈ 𝑆, such that for every 𝑦 ∈ 𝑆, we have 𝑥 ≤ 𝑦.

The natural numbers ℕ ordered in the natural way possess the so-called well ordering
property. We take this property as an axiom; we simply assume it is true.

Well ordering property of ℕ. Every nonempty subset of ℕ has a least (smallest) element.

The principle of induction is the following theorem, which is in a sense 

‗
 equivalent to the

well ordering property of the natural numbers.

Theorem 0.3.6 (Principle of induction). Let 𝑃(𝑛) be a statement depending on a natural
number 𝑛. Suppose that

(i) (basis statement) 𝑃(1) is true.
(ii) (induction step) If 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true.

Then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ.

Proof. Let 𝑆 be the set of natural numbers 𝑛 for which 𝑃(𝑛) is not true. Suppose for
contradiction that 𝑆 is nonempty. Then 𝑆 has a least element by the well ordering property.
Call 𝑚 ∈ 𝑆 the least element of 𝑆. We know 1 ∉ 𝑆 by hypothesis. So 𝑚 > 1, and 𝑚 − 1 is a
natural number as well. Since 𝑚 is the least element of 𝑆, we know that 𝑃(𝑚 − 1) is true.
But the induction step says that 𝑃(𝑚 − 1 + 1) = 𝑃(𝑚) is true, contradicting the statement
that 𝑚 ∈ 𝑆. Therefore, 𝑆 is empty and 𝑃(𝑛) is true for all 𝑛 ∈ ℕ. □

Sometimes it is convenient to start at a different number than 1, all that changes is
the labeling. The assumption that 𝑃(𝑛) is true in “if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true” is
usually called the induction hypothesis.

‗To be completely rigorous, this equivalence is only true if we also assume as an axiom that 𝑛−1 exists for
all natural numbers bigger than 1, which we do. In this book, we are assuming all the usual arithmetic holds.
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Example 0.3.7: Let us prove that for all 𝑛 ∈ ℕ,

2𝑛−1 ≤ 𝑛! (recall 𝑛! = 1 · 2 · 3 · · · 𝑛).

Let 𝑃(𝑛) be the statement that 2𝑛−1 ≤ 𝑛! is true. Plug in 𝑛 = 1 to see that 𝑃(1) is true.
Suppose 𝑃(𝑛) is true. That is, suppose 2𝑛−1 ≤ 𝑛! holds. Multiply both sides by 2 to

obtain
2𝑛 ≤ 2(𝑛!).

As 2 ≤ (𝑛 + 1) when 𝑛 ∈ ℕ, we have 2(𝑛!) ≤ (𝑛 + 1)(𝑛!) = (𝑛 + 1)!. That is,

2𝑛 ≤ 2(𝑛!) ≤ (𝑛 + 1)!,
and hence 𝑃(𝑛 + 1) is true. By the principle of induction, 𝑃(𝑛) is true for all 𝑛 ∈ ℕ. In other
words, 2𝑛−1 ≤ 𝑛! is true for all 𝑛 ∈ ℕ.

Example 0.3.8: We claim that for all 𝑐 ≠ 1,

1 + 𝑐 + 𝑐2 + · · · + 𝑐𝑛 =
1 − 𝑐𝑛+1

1 − 𝑐 .

Proof: It is easy to check that the equation holds with 𝑛 = 1. Suppose it is true for 𝑛.
Then

1 + 𝑐 + 𝑐2 + · · · + 𝑐𝑛 + 𝑐𝑛+1 = (1 + 𝑐 + 𝑐2 + · · · + 𝑐𝑛) + 𝑐𝑛+1

=
1 − 𝑐𝑛+1

1 − 𝑐 + 𝑐𝑛+1

=
1 − 𝑐𝑛+1 + (1 − 𝑐)𝑐𝑛+1

1 − 𝑐
=

1 − 𝑐𝑛+2

1 − 𝑐 .

Sometimes, it is easier to use in the inductive step that 𝑃(𝑘) is true for all 𝑘 = 1, 2, . . . , 𝑛,
not just for 𝑘 = 𝑛. This principle is called strong induction and is equivalent to the normal
induction above. The proof of that equivalence is left as an exercise.

Theorem 0.3.9 (Principle of strong induction). Let 𝑃(𝑛) be a statement depending on a natural
number 𝑛. Suppose that

(i) (basis statement) 𝑃(1) is true.
(ii) (induction step) If 𝑃(𝑘) is true for all 𝑘 = 1, 2, . . . , 𝑛, then 𝑃(𝑛 + 1) is true.

Then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ.

0.3.3 Functions
Informally, a set-theoretic function 𝑓 taking a set 𝐴 to a set 𝐵 is a mapping that to each
𝑥 ∈ 𝐴 assigns a unique 𝑦 ∈ 𝐵. We write 𝑓 : 𝐴→ 𝐵. An example function 𝑓 : 𝑆 → 𝑇 taking
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𝑆 B {0, 1, 2} to 𝑇 B {0, 2} can be defined by assigning 𝑓 (0) B 2, 𝑓 (1) B 2, and 𝑓 (2) B 0.
That is, a function 𝑓 : 𝐴 → 𝐵 is a black box, into which we stick an element of 𝐴 and the
function spits out an element of 𝐵. Sometimes 𝑓 is called a mapping or a map, and we say 𝑓
maps 𝐴 to 𝐵.

Often, functions are defined by some sort of formula; however, you should really think
of a function as just a very large table of values. The subtle issue here is that a single
function can have several formulas, all giving the same function. Also, for many functions,
there is no formula that expresses its values.

To define a function rigorously, let us first define the Cartesian product.

Definition 0.3.10. Let 𝐴 and 𝐵 be sets. The Cartesian product is the set of tuples defined as

𝐴 × 𝐵 B {(𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.
For instance, {𝑎, 𝑏} × {𝑐, 𝑑} =

{(𝑎, 𝑐), (𝑎, 𝑑), (𝑏, 𝑐), (𝑏, 𝑑)}. A more complicated example
is the set [0, 1] × [0, 1]: a subset of the plane bounded by a square with vertices (0, 0), (0, 1),
(1, 0), and (1, 1). When 𝐴 and 𝐵 are the same set, we often use a superscript 2 to denote
such a product. For example, [0, 1]2 = [0, 1] × [0, 1] or ℝ2 = ℝ ×ℝ (the Cartesian plane).

Definition 0.3.11. A function 𝑓 : 𝐴 → 𝐵 is a subset 𝑓 of 𝐴 × 𝐵 such that for each 𝑥 ∈ 𝐴,
there exists a unique 𝑦 ∈ 𝐵 for which (𝑥, 𝑦) ∈ 𝑓 . We write 𝑓 (𝑥) = 𝑦. Sometimes the set 𝑓 is
called the graph of the function rather than the function itself.

The set 𝐴 is called the domain of 𝑓 (and sometimes confusingly denoted 𝐷( 𝑓 )). The set

𝑅( 𝑓 ) B {𝑦 ∈ 𝐵 : there exists an 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) = 𝑦}
is called the range of 𝑓 . The set 𝐵 is called the codomain of 𝑓 .

It is possible that the range 𝑅( 𝑓 ) is a proper subset of the codomain 𝐵, while the domain
of 𝑓 is always equal to 𝐴. We generally assume that the domain of 𝑓 is nonempty.

Example 0.3.12: From calculus, you are most familiar with functions taking real numbers
to real numbers. However, you saw some other types of functions as well. The derivative is
a function that maps the set of differentiable functions to the set of all functions. Another
example is the Laplace transform, which also takes functions to functions. Yet another
example is the function that takes a continuous function 𝑔 defined on the interval [0, 1]
and returns the number

∫ 1
0 𝑔(𝑥) 𝑑𝑥.

Definition 0.3.13. Consider a function 𝑓 : 𝐴 → 𝐵. Define the image (or direct image) of a
subset 𝐶 ⊂ 𝐴 as

𝑓 (𝐶) B {
𝑓 (𝑥) ∈ 𝐵 : 𝑥 ∈ 𝐶}

.

Define the inverse image of a subset 𝐷 ⊂ 𝐵 as

𝑓 −1(𝐷) B {
𝑥 ∈ 𝐴 : 𝑓 (𝑥) ∈ 𝐷}

.

In particular, 𝑅( 𝑓 ) = 𝑓 (𝐴), the range is the direct image of the domain 𝐴.
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𝑎1

2

3

4

𝑏

𝑐

𝑑

𝑓 𝑓
({1, 2, 3, 4}) = {𝑏, 𝑐, 𝑑}
𝑓
({1, 2, 4}) = {𝑏, 𝑑}
𝑓
({1}) = {𝑏}
𝑓 −1 ({𝑎, 𝑏, 𝑐}) = {1, 3, 4}
𝑓 −1 ({𝑎}) = ∅
𝑓 −1 ({𝑏}) = {1, 4}

Figure 3: Example of direct and inverse images for the function 𝑓 : {1, 2, 3, 4} → {𝑎, 𝑏, 𝑐, 𝑑}
defined by 𝑓 (1) B 𝑏, 𝑓 (2) B 𝑑, 𝑓 (3) B 𝑐, 𝑓 (4) B 𝑏.

Example 0.3.14: Define the function 𝑓 : ℝ → ℝ by 𝑓 (𝑥) B sin(𝜋𝑥). Then 𝑓
([0, 1/2]) = [0, 1],

𝑓 −1 ({0}) = ℤ, etc.

Proposition 0.3.15. Consider 𝑓 : 𝐴→ 𝐵. Let 𝐶, 𝐷 be subsets of 𝐵. Then

𝑓 −1(𝐶 ∪ 𝐷) = 𝑓 −1(𝐶) ∪ 𝑓 −1(𝐷),
𝑓 −1(𝐶 ∩ 𝐷) = 𝑓 −1(𝐶) ∩ 𝑓 −1(𝐷),
𝑓 −1(𝐶𝑐) = (

𝑓 −1(𝐶)) 𝑐 .
Read the last line of the proposition as 𝑓 −1(𝐵 \ 𝐶) = 𝐴 \ 𝑓 −1(𝐶).

Proof. We start with the union. If 𝑥 ∈ 𝑓 −1(𝐶 ∪ 𝐷), then 𝑥 is taken to 𝐶 or 𝐷, that is,
𝑓 (𝑥) ∈ 𝐶 or 𝑓 (𝑥) ∈ 𝐷. Thus 𝑓 −1(𝐶 ∪𝐷) ⊂ 𝑓 −1(𝐶) ∪ 𝑓 −1(𝐷). Conversely, if 𝑥 ∈ 𝑓 −1(𝐶), then
𝑥 ∈ 𝑓 −1(𝐶 ∪ 𝐷). Similarly for 𝑥 ∈ 𝑓 −1(𝐷). Hence 𝑓 −1(𝐶 ∪ 𝐷) ⊃ 𝑓 −1(𝐶) ∪ 𝑓 −1(𝐷), and we
have equality.

The rest of the proof is left as an exercise. □

For direct images, the best we can do is the following weaker result.

Proposition 0.3.16. Consider 𝑓 : 𝐴→ 𝐵. Let 𝐶, 𝐷 be subsets of 𝐴. Then

𝑓 (𝐶 ∪ 𝐷) = 𝑓 (𝐶) ∪ 𝑓 (𝐷),
𝑓 (𝐶 ∩ 𝐷) ⊂ 𝑓 (𝐶) ∩ 𝑓 (𝐷).

The proof is left as an exercise.

Definition 0.3.17. Let 𝑓 : 𝐴 → 𝐵 be a function. The function 𝑓 is said to be injective or
one-to-one if 𝑓 (𝑥1) = 𝑓 (𝑥2) implies 𝑥1 = 𝑥2. In other words, 𝑓 is injective if for all 𝑦 ∈ 𝐵, the
set 𝑓 −1({𝑦}) is empty or consists of a single element. We call such an 𝑓 an injection.

If 𝑓 (𝐴) = 𝐵, then we say 𝑓 is surjective or onto. In other words, 𝑓 is surjective if the range
and the codomain of 𝑓 are equal. We call such an 𝑓 a surjection.

If 𝑓 is both surjective and injective, then we say 𝑓 is bĳective or that 𝑓 is a bĳection.
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When 𝑓 : 𝐴→ 𝐵 is a bĳection, then the inverse image of a single element, 𝑓 −1({𝑦}), is
always a unique element of 𝐴. We then consider 𝑓 −1 as a function 𝑓 −1 : 𝐵 → 𝐴 and we
write simply 𝑓 −1(𝑦). In this case, we call 𝑓 −1 the inverse function of 𝑓 . For instance, for the
bĳection 𝑓 : ℝ → ℝ defined by 𝑓 (𝑥) B 𝑥3, we have 𝑓 −1(𝑥) = 3√𝑥.

Definition 0.3.18. Consider 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶. The composition of the functions 𝑓
and 𝑔 is the function 𝑔 ◦ 𝑓 : 𝐴→ 𝐶 defined as

(𝑔 ◦ 𝑓 )(𝑥) B 𝑔
(
𝑓 (𝑥)) .

For example, if 𝑓 : ℝ → ℝ is 𝑓 (𝑥) B 𝑥3 and 𝑔 : ℝ → ℝ is 𝑔(𝑦) = sin(𝑦), then
(𝑔 ◦ 𝑓 )(𝑥) = sin(𝑥3). It is left to the reader as an easy exercise to show that composition
of one-to-one maps is one-to-one and composition of onto maps is onto. Therefore, the
composition of bĳections is a bĳection.

0.3.4 Relations and equivalence classes
We often compare two objects in some way. For instance, we say 1 < 2 for natural numbers,
1/2 = 2/4 for rational numbers, or {𝑎, 𝑐} ⊂ {𝑎, 𝑏, 𝑐} for sets. The ‘<’, ‘=’, and ‘⊂’ are examples
of relations.

Definition 0.3.19. Given a set 𝐴, a binary relation on 𝐴 is a subset R ⊂ 𝐴×𝐴, which consists
of those pairs where the relation is said to hold. Instead of (𝑎, 𝑏) ∈ R, we write 𝑎R 𝑏.

Example 0.3.20: Take 𝐴 B {1, 2, 3}.
Consider the relation ‘<’. The corresponding set of pairs is

{(1, 2), (1, 3), (2, 3)}. So
1 < 2 holds as (1, 2) is in the corresponding set of pairs, but 3 < 1 does not hold as (3, 1) is
not in the set.

Similarly, the relation ‘=’ is defined by the set of pairs
{(1, 1), (2, 2), (3, 3)}.

Any subset of𝐴×𝐴 is a relation. If we define the relation † via
{(1, 2), (2, 1), (2, 3), (3, 1)},

then 1 † 2 and 3 † 1 are true, but 1 † 3 is not.

Definition 0.3.21. A relation R on a set 𝐴 is said to be
(i) Reflexive if 𝑎R 𝑎 for all 𝑎 ∈ 𝐴.

(ii) Symmetric if 𝑎R 𝑏 implies 𝑏R 𝑎.
(iii) Transitive if 𝑎R 𝑏 and 𝑏R 𝑐 implies 𝑎R 𝑐.

If R is reflexive, symmetric, and transitive, then it is said to be an equivalence relation.

Example 0.3.22: Let 𝐴 B {1, 2, 3}. The relation ‘<’ is transitive but neither reflexive nor
symmetric. The relation ‘≤’ defined by

{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} is reflexive
and transitive, but not symmetric. Finally, a relation ‘★’ defined by

{(1, 1), (1, 2), (2, 1),
(2, 2), (3, 3)} is an equivalence relation.

Equivalence relations are useful as they divide a set into sets of “equivalent” elements.
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Definition 0.3.23. Let 𝐴 be a set and R an equivalence relation. An equivalence class of
𝑎 ∈ 𝐴, often denoted by [𝑎], is the set {𝑥 ∈ 𝐴 : 𝑎R 𝑥}.

For example, given the relation ‘★’ above, there are two equivalence classes, [1] = [2] =
{1, 2} and [3] = {3}.

Reflexivity guarantees that 𝑎 ∈ [𝑎]. Symmetry guarantees that if 𝑏 ∈ [𝑎], then 𝑎 ∈ [𝑏].
Finally, transitivity guarantees that if 𝑏 ∈ [𝑎] and 𝑐 ∈ [𝑏], then 𝑐 ∈ [𝑎]. In particular, we
have the following proposition, whose proof is an exercise.

Proposition 0.3.24. If R is an equivalence relation on a set 𝐴, then every 𝑎 ∈ 𝐴 is in exactly one
equivalence class. Moreover, 𝑎R 𝑏 if and only if [𝑎] = [𝑏].

Example 0.3.25: The set of rational numbers can be defined as equivalence classes of a pair
of an integer and a natural number, that is, elements of ℤ × ℕ. The relation is defined by
(𝑎, 𝑏) ∼ (𝑐, 𝑑) whenever 𝑎𝑑 = 𝑏𝑐. It is left as an exercise to prove that ‘∼’ is an equivalence
relation. Usually, the equivalence class

[(𝑎, 𝑏)] is written as 𝑎/𝑏.

0.3.5 Cardinality

A subtle but fundamental issue in set theory and one that generates a considerable amount
of confusion among beginning students is that of cardinality, or “size” of sets. Indeed, in
this section, we will see the first really unexpected theorem.

Definition 0.3.26. Let 𝐴 and 𝐵 be sets. We say 𝐴 and 𝐵 have the same cardinality when
there exists a bĳection 𝑓 : 𝐴→ 𝐵. We denote by |𝐴| the equivalence class of all sets with
the same cardinality as 𝐴, and we simply call |𝐴| the cardinality of 𝐴.

For example, {1, 2, 3} has the same cardinality as {𝑎, 𝑏, 𝑐} by defining a bĳection
𝑓 (1) B 𝑎, 𝑓 (2) B 𝑏, 𝑓 (3) B 𝑐. Clearly, the bĳection is not unique.

The existence of a bĳection really is an equivalence relation. The identity function,
𝑓 (𝑥) B 𝑥, is a bĳection showing reflexivity. If 𝑓 is a bĳection, then so is 𝑓 −1, showing
symmetry. If 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶 are bĳections, then 𝑔 ◦ 𝑓 is a bĳection of 𝐴 and 𝐶,
showing transitivity. A set 𝐴 has the same cardinality as the empty set if and only if 𝐴
itself is the empty set: If 𝐵 is nonempty, then no function 𝑓 : 𝐵 → ∅ can exist. In particular,
there is no bĳection of 𝐵 and ∅.

Definition 0.3.27. If 𝐴 has the same cardinality as {1, 2, 3, . . . , 𝑛} for some 𝑛 ∈ ℕ, we write
|𝐴| B 𝑛. If 𝐴 is empty, we write |𝐴| B 0. In either case, we say that 𝐴 is finite. We say 𝐴 is
infinite or “of infinite cardinality” if 𝐴 is not finite.

That the notation |𝐴| = 𝑛 is justified, we leave as an exercise. That is, for each nonempty
finite set 𝐴, there exists a unique natural number 𝑛 such that there exists a bĳection from 𝐴
to {1, 2, 3, . . . , 𝑛}.

We can order sets by size.
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Definition 0.3.28. We write
|𝐴| ≤ |𝐵|

if there exists an injection from 𝐴 to 𝐵. We write |𝐴| = |𝐵| if 𝐴 and 𝐵 have the same
cardinality. We write |𝐴| < |𝐵| if |𝐴| ≤ |𝐵|, but 𝐴 and 𝐵 do not have the same cardinality.

We state without proof that 𝐴 and 𝐵 have the same cardinality if and only if |𝐴| ≤ |𝐵|
and |𝐵| ≤ |𝐴|. This is the so-called Cantor–Bernstein–Schröder theorem. Furthermore, if 𝐴
and 𝐵 are any two sets, we can always write |𝐴| ≤ |𝐵| or |𝐵| ≤ |𝐴|. The issues surrounding
this last statement are very subtle. As we do not require either of these two statements, we
omit proofs.

The truly interesting cases of cardinality are infinite sets. We will distinguish two types
of infinite cardinality.

Definition 0.3.29. If |𝐴| = |ℕ|, then we say 𝐴 is countably infinite. If 𝐴 is finite or countably
infinite, then we say 𝐴 is countable. If 𝐴 is not countable, then 𝐴 is said to be uncountable.

The cardinality of ℕ is usually denoted as ℵ0 (read as aleph-naught) 

‗
 .

Example 0.3.30: The set of even natural numbers has the same cardinality as ℕ. Proof: Let
𝐸 ⊂ ℕ be the set of even natural numbers. Given 𝑘 ∈ 𝐸, write 𝑘 = 2𝑛 for some 𝑛 ∈ ℕ. Then
𝑓 (𝑛) B 2𝑛 defines a bĳection 𝑓 : ℕ → 𝐸.

In fact, we mention without proof the following characterization of infinite sets: A set is
infinite if and only if it is in one-to-one correspondence with a proper subset of itself.

Example 0.3.31: ℕ × ℕ is a countably infinite set. Proof: Arrange the elements of ℕ × ℕ as
follows (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . . . That is, first write down all the elements
whose two entries sum to 𝑘, then write down all the elements whose entries sum to 𝑘 + 1,
and so on. Define a bĳection with ℕ by letting 1 go to (1, 1), 2 go to (1, 2), and so on. See

 Figure 4 .

Example 0.3.32: The set of rational numbers is countable. Proof: (informal) For positive
rational numbers, follow the same procedure as in the previous example, writing 1/1, 1/2,
2/1, etc. However, leave out fractions (such as 2/2) that have already appeared. The list
would continue: 1/3, 3/1, 1/4, 2/3, etc. For all rational numbers, include 0 and the negative
numbers: 0, 1/1, −1/1, 1/2, −1/2, etc.

For completeness, we mention the following statements from the exercises. If 𝐴 ⊂ 𝐵
and 𝐵 is countable, then 𝐴 is countable. The contrapositive of the statement is that if 𝐴
is uncountable, then 𝐵 is uncountable. As a consequence, if |𝐴| < |ℕ|, then 𝐴 is finite.
Similarly, if 𝐵 is finite and 𝐴 ⊂ 𝐵, then 𝐴 is finite.

‗For the fans of the TV show Futurama, there is a movie theater in one episode called an ℵ0-plex.
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(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) . . .

(3, 1) (3, 2) . . .

(4, 1) . . .

Figure 4: Showing ℕ × ℕ is countable.

We give the first truly striking result about cardinality. To do so, we need a notation for
the set of all subsets of a set.

Definition 0.3.33. The power set of a set 𝐴, denoted by P(𝐴), is the set of all subsets of 𝐴.

For example, if 𝐴 B {1, 2}, then P(𝐴) = {∅, {1}, {2}, {1, 2}}. In particular, |𝐴| = 2 and
|P(𝐴)| = 4 = 22. In general, for a finite set 𝐴 of cardinality 𝑛, the cardinality of P(𝐴) is
2𝑛 . This fact is left as an exercise. Hence, for a finite set 𝐴, the cardinality of P(𝐴) is
strictly larger than the cardinality of 𝐴. What is an unexpected and striking fact is that this
statement is also true for infinite sets.
Theorem 0.3.34 (Cantor 

‗
 ). Let 𝐴 be a set. Then |𝐴| < |P(𝐴)|. In particular, there exists no

surjection from 𝐴 onto P(𝐴).
Proof. An injection 𝑓 : 𝐴→ P(𝐴) exists: For 𝑥 ∈ 𝐴, let 𝑓 (𝑥) B {𝑥}. Thus, |𝐴| ≤ |P(𝐴)|.

To finish the proof, we must show that no function 𝑔 : 𝐴 → P(𝐴) is a surjection.
Suppose 𝑔 : 𝐴→ P(𝐴) is a function. So for 𝑥 ∈ 𝐴, 𝑔(𝑥) is a subset of 𝐴. Define the set

𝐵 B
{
𝑥 ∈ 𝐴 : 𝑥 ∉ 𝑔(𝑥)}.

We claim that 𝐵 is not in the range of 𝑔 and hence 𝑔 is not a surjection. Suppose for
contradiction that there exists an 𝑥0 such that 𝑔(𝑥0) = 𝐵. Either 𝑥0 ∈ 𝐵 or 𝑥0 ∉ 𝐵. If 𝑥0 ∈ 𝐵,
then 𝑥0 ∉ 𝑔(𝑥0) = 𝐵, which is a contradiction. If 𝑥0 ∉ 𝐵, then 𝑥0 ∈ 𝑔(𝑥0) = 𝐵, which is again
a contradiction. Thus such an 𝑥0 does not exist. Therefore, 𝐵 is not in the range of 𝑔, and 𝑔
is not a surjection. As 𝑔 was an arbitrary function, no surjection exists. □

One particular consequence of this theorem is that there do exist uncountable sets,
as P(ℕ) must be uncountable. A related fact is that the set of real numbers (which we
study in the next chapter) is uncountable. The existence of uncountable sets may seem
unintuitive, and the theorem caused quite a controversy at the time it was announced. The
theorem not only says that uncountable sets exist, but that there, in fact, exist progressively
larger and larger infinite sets ℕ, P(ℕ), P(P(ℕ)), P(P(P(ℕ))), etc.

‗Named after the German mathematician  Georg Ferdinand Ludwig Philipp Cantor (1845–1918).

https://en.wikipedia.org/wiki/Georg_Cantor
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0.3.6 Exercises
Exercise 0.3.1: Show 𝐴 \ (𝐵 ∩ 𝐶) = (𝐴 \ 𝐵) ∪ (𝐴 \ 𝐶).
Exercise 0.3.2: Prove that the principle of strong induction is equivalent to the standard induction.

Exercise 0.3.3: Finish the proof of  Proposition 0.3.15 .

Exercise 0.3.4:

a) Prove  Proposition 0.3.16 .

b) Find an example for which the equality of sets in 𝑓 (𝐶 ∩ 𝐷) ⊂ 𝑓 (𝐶) ∩ 𝑓 (𝐷) fails. That is, find an 𝑓 , 𝐴,
𝐵, 𝐶, and 𝐷 such that 𝑓 (𝐶 ∩ 𝐷) is a proper subset of 𝑓 (𝐶) ∩ 𝑓 (𝐷).

Exercise 0.3.5 (Tricky): Prove that if 𝐴 is nonempty and finite, then there exists a unique 𝑛 ∈ ℕ such that
there exists a bĳection between 𝐴 and {1, 2, 3, . . . , 𝑛}. In other words, the notation |𝐴| B 𝑛 is justified.
Hint: Show that if 𝑛 > 𝑚, then there is no injection from {1, 2, 3, . . . , 𝑛} to {1, 2, 3, . . . , 𝑚}.

Exercise 0.3.6: Prove:

a) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).
b) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶).

Exercise 0.3.7: Let 𝐴Δ𝐵 denote the symmetric difference, that is, the set of all elements that belong to
either 𝐴 or 𝐵, but not to both 𝐴 and 𝐵.

a) Draw a Venn diagram for 𝐴Δ𝐵.

b) Show 𝐴Δ𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴).
c) Show 𝐴Δ𝐵 = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵).

Exercise 0.3.8: For each 𝑛 ∈ ℕ, let 𝐴𝑛 B {(𝑛 + 1)𝑘 : 𝑘 ∈ ℕ}.

a) Find 𝐴1 ∩ 𝐴2.

b) Find
⋃∞
𝑛=1 𝐴𝑛 .

c) Find
⋂∞
𝑛=1 𝐴𝑛 .

Exercise 0.3.9: Determine P(𝑆) (the power set) for each of the following:

a) 𝑆 = ∅,

b) 𝑆 = {1},

c) 𝑆 = {1, 2},

d) 𝑆 = {1, 2, 3, 4}.

Exercise 0.3.10: Let 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶 be functions.

a) Prove that if 𝑔 ◦ 𝑓 is injective, then 𝑓 is injective.

b) Prove that if 𝑔 ◦ 𝑓 is surjective, then 𝑔 is surjective.

c) Find an explicit example where 𝑔 ◦ 𝑓 is bĳective, but neither 𝑓 nor 𝑔 is bĳective.
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Exercise 0.3.11: Prove by induction that 𝑛 < 2𝑛 for all 𝑛 ∈ ℕ.

Exercise 0.3.12: Show that for a finite set 𝐴 of cardinality 𝑛, the cardinality of P(𝐴) is 2𝑛 .

Exercise 0.3.13: Prove 1
1·2 + 1

2·3 + · · · + 1
𝑛(𝑛+1) =

𝑛
𝑛+1 for all 𝑛 ∈ ℕ.

Exercise 0.3.14: Prove 13 + 23 + · · · + 𝑛3 =
(
𝑛(𝑛+1)

2

)2
for all 𝑛 ∈ ℕ.

Exercise 0.3.15: Prove that 𝑛3 + 5𝑛 is divisible by 6 for all 𝑛 ∈ ℕ.

Exercise 0.3.16: Find the smallest 𝑛 ∈ ℕ such that 2(𝑛 + 5)2 < 𝑛3 and call it 𝑛0. Show that 2(𝑛 + 5)2 < 𝑛3

for all 𝑛 ≥ 𝑛0.

Exercise 0.3.17: Find all 𝑛 ∈ ℕ such that 𝑛2 < 2𝑛 .

Exercise 0.3.18: Prove the  well ordering property of ℕ using the  principle of induction .

Exercise 0.3.19: Give an example of a countably infinite collection of finite sets 𝐴1 , 𝐴2 , . . ., whose union is
not a finite set.

Exercise 0.3.20: Give an example of a countably infinite collection of infinite sets 𝐴1 , 𝐴2 , . . ., with 𝐴 𝑗 ∩ 𝐴𝑘
being infinite for all 𝑗 and 𝑘, such that

⋂∞
𝑗=1 𝐴 𝑗 is nonempty and finite.

Exercise 0.3.21: Suppose 𝐴 ⊂ 𝐵 and 𝐵 is finite. Prove that 𝐴 is finite. That is, if 𝐴 is nonempty, construct a
bĳection of 𝐴 to {1, 2, . . . , 𝑛}.

Exercise 0.3.22: Prove  Proposition 0.3.24 . That is, prove that if R is an equivalence relation on a set 𝐴, then
every 𝑎 ∈ 𝐴 is in exactly one equivalence class. Then prove that 𝑎R 𝑏 if and only if [𝑎] = [𝑏].
Exercise 0.3.23: Prove that the relation ‘∼’ in  Example 0.3.25 is an equivalence relation.

Exercise 0.3.24:

a) Suppose 𝐴 ⊂ 𝐵 and 𝐵 is countably infinite. By constructing a bĳection, show that 𝐴 is countable (that
is, 𝐴 is empty, finite, or countably infinite).

b) Use part a) to show that if |𝐴| < |ℕ|, then 𝐴 is finite.

Exercise 0.3.25 (Challenging): Suppose |ℕ| ≤ |𝑆|, or in other words, 𝑆 contains a countably infinite subset.
Show that there exists a countably infinite subset 𝐴 ⊂ 𝑆 and a bĳection between 𝑆 \ 𝐴 and 𝑆.

Exercise 0.3.26: Prove the infinite versions of DeMorgan’s laws. Suppose 𝐴 is a set and 𝐵𝜆 is a collection of
sets for 𝜆 ∈ 𝐼. Prove

𝐴 \
(⋃
𝜆∈𝐼

𝐵𝜆

)
=

⋂
𝜆∈𝐼

(𝐴 \ 𝐵𝜆), 𝐴 \
(⋂
𝜆∈𝐼

𝐵𝜆

)
=

⋃
𝜆∈𝐼

(𝐴 \ 𝐵𝜆).

Exercise 0.3.27: Suppose 𝑓 : 𝐴→ 𝐵 is a function and for 𝜆 ∈ 𝐼, we have a collection of subsets 𝐶𝜆 ⊂ 𝐴 and
𝐷𝜆 ⊂ 𝐵. Prove

𝑓 −1
(⋃
𝜆∈𝐼

𝐷𝜆

)
=

⋃
𝜆∈𝐼

𝑓 −1(𝐷𝜆), 𝑓 −1
(⋂
𝜆∈𝐼

𝐷𝜆

)
=

⋂
𝜆∈𝐼

𝑓 −1(𝐷𝜆),

and
𝑓

(⋃
𝜆∈𝐼

𝐶𝜆

)
=

⋃
𝜆∈𝐼

𝑓 (𝐶𝜆), 𝑓

(⋂
𝜆∈𝐼

𝐶𝜆

)
⊂

⋂
𝜆∈𝐼

𝑓 (𝐶𝜆).



22 INTRODUCTION



Chapter 1

Real Numbers

1.1 Basic properties
Note: 1.5 lectures

In analysis, the main object we work with is the set of real numbers. As this set is
so fundamental, often much time is spent formally constructing the set of real numbers.
However, we take an easier approach, and we will assume that a set with the correct
properties exists. The three key properties of the real numbers is that it is an ordered set, it
is complete with respect to this order, and it is a field compatible with this order. We start
with order.

Definition 1.1.1. An ordered set is a set 𝑆 together with a relation < such that
(i) (trichotomy) For all 𝑥, 𝑦 ∈ 𝑆, exactly one of 𝑥 < 𝑦, 𝑥 = 𝑦, or 𝑦 < 𝑥 holds.

(ii) (transitivity) If 𝑥, 𝑦, 𝑧 ∈ 𝑆 are such that 𝑥 < 𝑦 and 𝑦 < 𝑧, then 𝑥 < 𝑧.
We write 𝑥 ≤ 𝑦 if 𝑥 < 𝑦 or 𝑥 = 𝑦. We define > and ≥ in the obvious way.

The set of rational numbers ℚ is an ordered set: We say 𝑥 < 𝑦 if and only if 𝑦 − 𝑥 is a
positive rational number, that is, if 𝑦 − 𝑥 = 𝑝/𝑞 where 𝑝, 𝑞 ∈ ℕ. Similarly, ℕ and ℤ are also
ordered sets.

There are other ordered sets than sets of numbers. For example, the set of countries can
be ordered by landmass, so India > Lichtenstein. A typical ordered set that you have used
since primary school is the dictionary. It is the ordered set of words where the order is the
so-called lexicographic ordering. Such ordered sets often appear, for example, in computer
science. In this book, we will mostly be interested in ordered sets of numbers.

Definition 1.1.2. Let 𝐸 ⊂ 𝑆, where 𝑆 is an ordered set.
(i) If there exists a 𝑏 ∈ 𝑆 such that 𝑥 ≤ 𝑏 for all 𝑥 ∈ 𝐸, then we say 𝐸 is bounded above and

𝑏 is an upper bound of 𝐸.
(ii) If there exists a 𝑏 ∈ 𝑆 such that 𝑥 ≥ 𝑏 for all 𝑥 ∈ 𝐸, then we say 𝐸 is bounded below and

𝑏 is a lower bound of 𝐸.
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(iii) If there exists an upper bound 𝑏0 of 𝐸 such that 𝑏0 ≤ 𝑏 for all upper bounds 𝑏 of 𝐸,
then 𝑏0 is called the least upper bound or the supremum of 𝐸. See  Figure 1.1 . We write

sup 𝐸 B 𝑏0.

(iv) Similarly, if there exists a lower bound 𝑏0 of 𝐸 such that 𝑏0 ≥ 𝑏 for all lower bounds 𝑏
of 𝐸, then 𝑏0 is called the greatest lower bound or the infimum of 𝐸. We write

inf 𝐸 B 𝑏0.

When a set 𝐸 is both bounded above and bounded below, we say simply that 𝐸 is bounded.

The notation sup𝐸 and inf𝐸 is justified as the supremum (or infimum) is unique (if it
exists): If 𝑏 and 𝑏′ are suprema of 𝐸, then 𝑏 ≤ 𝑏′ and 𝑏′ ≤ 𝑏, because both 𝑏 and 𝑏′ are the
least upper bounds, so 𝑏 = 𝑏′.

upper bounds of 𝐸

smaller bigger

least upper bound of 𝐸

𝐸

Figure 1.1: A set 𝐸 bounded above and the least upper bound of 𝐸.

A simple example: Let 𝑆 B {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be ordered as 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒, and let
𝐸 B {𝑎, 𝑐}. Then 𝑐, 𝑑, and 𝑒 are upper bounds of 𝐸, and 𝑐 is the least upper bound or
supremum of 𝐸.

A supremum or infimum for 𝐸 (even if it exists) need not be in 𝐸. The set 𝐸 B
{𝑥 ∈ ℚ : 𝑥 < 1} has a least upper bound of 1, but 1 is not in the set 𝐸 itself. The set
𝐺 B {𝑥 ∈ ℚ : 𝑥 ≤ 1} also has an upper bound of 1, and in this case 1 ∈ 𝐺. The set
𝑃 B {𝑥 ∈ ℚ : 𝑥 ≥ 0} has no upper bound (why?) and therefore cannot have a least upper
bound. The set 𝑃 does have a greatest lower bound: 0.

Definition 1.1.3. An ordered set 𝑆 has the least-upper-bound property if every nonempty
subset 𝐸 ⊂ 𝑆 that is bounded above has a least upper bound, that is, sup 𝐸 exists in 𝑆.

The least-upper-bound property is sometimes called the completeness property or the
Dedekind completeness property 

‗
 . The real numbers have this property.

Example 1.1.4: The set ℚ of rational numbers does not have the least-upper-bound
property. The subset {𝑥 ∈ ℚ : 𝑥2 < 2} does not have a supremum in ℚ. We will see later

‗Named after the German mathematician  Julius Wilhelm Richard Dedekind (1831–1916).

https://en.wikipedia.org/wiki/Richard_Dedekind
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( Example 1.2.3 ) that the supremum is
√

2, which is not rational 

‗
 . Suppose 𝑥 ∈ ℚ such that

𝑥2 = 2. Write 𝑥 = 𝑚/𝑛 in lowest terms. So (𝑚/𝑛)2 = 2 or 𝑚2 = 2𝑛2. Hence, 𝑚2 is divisible by
2, and so 𝑚 is divisible by 2. Write 𝑚 = 2𝑘 and so (2𝑘)2 = 2𝑛2. Divide by 2 and note that
2𝑘2 = 𝑛2, and hence 𝑛 is divisible by 2. But that is a contradiction as 𝑚/𝑛 is in lowest terms.

That ℚ does not have the least-upper-bound property is one of the most important
reasons we work with ℝ in analysis. The set ℚ is just fine for algebraists. But us analysts
require the least-upper-bound property to do any work. We also require our real numbers
to have many algebraic properties. In particular, we require that they be a field.

Definition 1.1.5. A set 𝐹 is called a field if it has two operations defined on it, addition 𝑥 + 𝑦
and multiplication 𝑥𝑦, and if it satisfies the following axioms:
(A1) If 𝑥 ∈ 𝐹 and 𝑦 ∈ 𝐹, then 𝑥 + 𝑦 ∈ 𝐹.
(A2) (commutativity of addition) 𝑥 + 𝑦 = 𝑦 + 𝑥 for all 𝑥, 𝑦 ∈ 𝐹.
(A3) (associativity of addition) (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐹.
(A4) There exists an element 0 ∈ 𝐹 such that 0 + 𝑥 = 𝑥 for all 𝑥 ∈ 𝐹.
(A5) For every element 𝑥 ∈ 𝐹, there exists an element −𝑥 ∈ 𝐹 such that 𝑥 + (−𝑥) = 0.

(M1) If 𝑥 ∈ 𝐹 and 𝑦 ∈ 𝐹, then 𝑥𝑦 ∈ 𝐹.
(M2) (commutativity of multiplication) 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝐹.
(M3) (associativity of multiplication) (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐹.
(M4) There exists an element 1 ∈ 𝐹 (and 1 ≠ 0) such that 1𝑥 = 𝑥 for all 𝑥 ∈ 𝐹.
(M5) For every 𝑥 ∈ 𝐹 such that 𝑥 ≠ 0 there exists an element 1/𝑥 ∈ 𝐹 such that 𝑥(1/𝑥) = 1.

(D) (distributive law) 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐹.

Example 1.1.6: The set ℚ of rational numbers is a field. On the other hand ℤ is not a field,
as it does not contain multiplicative inverses. For example, there is no 𝑥 ∈ ℤ such that
2𝑥 = 1, so (M5) is not satisfied. You can check that (M5) is the only property that fails  

†
 .

We will assume the basic facts about fields that are easily proved from the axioms. For
example, 0𝑥 = 0 is easily proved by noting that 𝑥𝑥 = (0 + 𝑥)𝑥 = 0𝑥 + 𝑥𝑥, using (A4), (D),
and (M2). Then using (A5) on 𝑥𝑥, along with (A2), (A3), and (A4), we obtain 0 = 0𝑥.

Definition 1.1.7. A field 𝐹 is said to be an ordered field if 𝐹 is also an ordered set such that
(i) For 𝑥, 𝑦, 𝑧 ∈ 𝐹, 𝑥 < 𝑦 implies 𝑥 + 𝑧 < 𝑦 + 𝑧.

(ii) For 𝑥, 𝑦 ∈ 𝐹, 𝑥 > 0 and 𝑦 > 0 implies 𝑥𝑦 > 0.
If 𝑥 > 0, we say 𝑥 is positive. If 𝑥 < 0, we say 𝑥 is negative. We also say 𝑥 is nonnegative if
𝑥 ≥ 0, and 𝑥 is nonpositive if 𝑥 ≤ 0.

‗This is true for all other roots of 2, and interestingly, the fact that 𝑘
√

2 is never rational for 𝑘 > 1 implies
no piano can ever be perfectly tuned in all keys. See, for example:  https://youtu.be/1Hqm0dYKUx4 .

†An algebraist would say that ℤ is an ordered ring, or perhaps a commutative ordered ring.

https://youtu.be/1Hqm0dYKUx4
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The rational numbers ℚ with the standard ordering is an ordered field. We leave the
details to the interested reader.
Proposition 1.1.8. Let 𝐹 be an ordered field and 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐹. Then

(i) If 𝑥 > 0, then −𝑥 < 0 (and vice versa).
(ii) If 𝑥 > 0 and 𝑦 < 𝑧, then 𝑥𝑦 < 𝑥𝑧.
(iii) If 𝑥 < 0 and 𝑦 < 𝑧, then 𝑥𝑦 > 𝑥𝑧.
(iv) If 𝑥 ≠ 0, then 𝑥2 > 0.
(v) If 0 < 𝑥 < 𝑦, then 0 < 1/𝑦 < 1/𝑥.
(vi) If 0 < 𝑥 < 𝑦, then 𝑥2 < 𝑦2.
(vii) If 𝑥 ≤ 𝑦 and 𝑧 ≤ 𝑤, then 𝑥 + 𝑧 ≤ 𝑦 + 𝑤.

Note that  (iv) implies, in particular, that 1 > 0.

Proof. Let us prove  (i) . The inequality 𝑥 > 0 implies by item  (i) of the definition of ordered
fields that 𝑥 + (−𝑥) > 0 + (−𝑥). Apply the algebraic properties of fields to obtain 0 > −𝑥.
The “vice versa” follows by a similar calculation.

For  (ii) , note that 𝑦 < 𝑧 implies 0 < 𝑧 − 𝑦 by item  (i) of the definition of ordered fields.
Apply item  (ii) of the definition of ordered fields to obtain 0 < 𝑥(𝑧 − 𝑦). By algebraic
properties, 0 < 𝑥𝑧 − 𝑥𝑦. Again by item  (i) of the definition, 𝑥𝑦 < 𝑥𝑧.

Part  (iii) is left as an exercise.
To prove part  (iv) , first suppose 𝑥 > 0. By item  (ii) of the definition of ordered fields,

𝑥2 > 0 (use 𝑦 = 𝑥). If 𝑥 < 0, we use part  (iii) of this proposition, where we plug in 𝑦 = 𝑥
and 𝑧 = 0.

To prove part  (v) , notice that 1/𝑥 cannot be equal to zero (why?). Suppose 1/𝑥 < 0, then
−1/𝑥 > 0 by  (i) . Apply part  (ii) of the definition (as 𝑥 > 0) to obtain 𝑥(−1/𝑥) > 0 or −1 > 0,
which contradicts 1 > 0 by using part  (i) again. Hence 1/𝑥 > 0. Similarly, 1/𝑦 > 0. Thus
(1/𝑥)(1/𝑦) > 0 by definition of ordered field, and by part  (ii) ,

(1/𝑥)(1/𝑦)𝑥 < (1/𝑥)(1/𝑦)𝑦.
By algebraic properties, 1/𝑦 < 1/𝑥.

Parts  (vi) and  (vii) are left as exercises. □

The product of two positive numbers (elements of an ordered field) is positive (follows
by setting 𝑦 = 0 in  (ii) ). However, it is not true that if the product is positive, then each of
the two factors must be positive. For instance, (−1)(−1) = 1 > 0.
Proposition 1.1.9. Let 𝑥, 𝑦 ∈ 𝐹, where 𝐹 is an ordered field. If 𝑥𝑦 > 0, then either both 𝑥 and 𝑦
are positive, or both are negative.

Proof. We show the contrapositive: If either one of 𝑥 or 𝑦 is zero, or if 𝑥 and 𝑦 have opposite
signs, then 𝑥𝑦 is not positive. If 𝑥 or 𝑦 is zero, then 𝑥𝑦 is zero and hence not positive.
Hence assume that 𝑥 and 𝑦 are nonzero and have opposite signs. Without loss of generality,
suppose 𝑥 > 0 and 𝑦 < 0. Multiply 𝑦 < 0 by 𝑥 to get 𝑥𝑦 < 0𝑥 = 0. □
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Example 1.1.10: The reader may have heard about the complex numbers, usually denoted by
ℂ. That is, ℂ is the set of numbers of the form 𝑥 + 𝑖𝑦, where 𝑥 and 𝑦 are real numbers, and
𝑖 is the imaginary number, a number such that 𝑖2 = −1. The reader may remember from
algebra that ℂ is also a field; however, it is not an ordered field. While one can make ℂ into
an ordered set in some way, it is not possible to put an order on ℂ that would make it an
ordered field: In every ordered field, −1 < 0 and 𝑥2 > 0 for all nonzero 𝑥, but in ℂ, 𝑖2 = −1.

Finally, an ordered field that has the least-upper-bound property has the corresponding
property for greatest lower bounds.
Proposition 1.1.11. Let 𝐹 be an ordered field with the least-upper-bound property. Let 𝐴 ⊂ 𝐹 be
a nonempty set that is bounded below. Then inf 𝐴 exists.

Proof. Let 𝐵 B {−𝑥 : 𝑥 ∈ 𝐴}. Let 𝑏 ∈ 𝐹 be a lower bound for 𝐴: If 𝑥 ∈ 𝐴, then 𝑥 ≥ 𝑏 and
hence −𝑥 ≤ −𝑏. So −𝑏 is an upper bound for 𝐵. Since 𝐹 has the least-upper-bound property,
𝑐 B sup 𝐵 exists, and 𝑐 ≤ −𝑏. As 𝑦 ≤ 𝑐 for all 𝑦 ∈ 𝐵, then −𝑐 ≤ 𝑥 for all 𝑥 ∈ 𝐴. So −𝑐 is a
lower bound for 𝐴. As −𝑐 ≥ 𝑏, the greatest lower bound of 𝐴 exists and equals −𝑐. □

1.1.1 Exercises
Exercise 1.1.1: Prove part  (iii) of  Proposition 1.1.8  . That is, let 𝐹 be an ordered field and 𝑥, 𝑦, 𝑧 ∈ 𝐹. Prove
If 𝑥 < 0 and 𝑦 < 𝑧, then 𝑥𝑦 > 𝑥𝑧.

Exercise 1.1.2: Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be a nonempty finite subset. Then 𝐴 is bounded.
Furthermore, inf 𝐴 exists and is in 𝐴 and sup 𝐴 exists and is in 𝐴. Hint: Use  induction .

Exercise 1.1.3: Prove part  (vi) of  Proposition 1.1.8 . That is, let 𝑥, 𝑦 ∈ 𝐹, where 𝐹 is an ordered field, such
that 0 < 𝑥 < 𝑦. Show that 𝑥2 < 𝑦2.

Exercise 1.1.4: Let 𝑆 be an ordered set. Let 𝐵 ⊂ 𝑆 be bounded (above and below). Let 𝐴 ⊂ 𝐵 be a nonempty
subset. Suppose all the infs and sups exist. Show that

inf 𝐵 ≤ inf 𝐴 ≤ sup 𝐴 ≤ sup 𝐵.

Exercise 1.1.5: Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 and suppose 𝑏 is an upper bound for 𝐴. Suppose 𝑏 ∈ 𝐴.
Show that 𝑏 = sup 𝐴.

Exercise 1.1.6: Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be nonempty and bounded above. Suppose sup 𝐴 exists
and sup 𝐴 ∉ 𝐴. Show that 𝐴 contains a countably infinite subset.

Exercise 1.1.7: Find a nonstandard ordering of the set of natural numbers ℕ such that there exists a nonempty
proper subset 𝐴 ⊊ ℕ and such that sup 𝐴 exists in ℕ, but sup 𝐴 ∉ 𝐴. To keep things straight, it might be a
good idea to use a different notation for the nonstandard ordering such as 𝑛 ≺ 𝑚.

Exercise 1.1.8: Let 𝐹 B {0, 1, 2}.

a) Prove that there is exactly one way to define addition and multiplication so that 𝐹 is a field if 0 and 1 have
their usual meaning of (A4) and (M4).

b) Show that 𝐹 cannot be an ordered field.
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Exercise 1.1.9: Let 𝑆 be an ordered set and 𝐴 is a nonempty subset such that sup 𝐴 exists. Suppose there
is a 𝐵 ⊂ 𝐴 such that whenever 𝑥 ∈ 𝐴 there is a 𝑦 ∈ 𝐵 such that 𝑥 ≤ 𝑦. Show that sup 𝐵 exists and
sup 𝐵 = sup 𝐴.

Exercise 1.1.10: Let 𝐷 be the ordered set of all possible words (not just English words, all strings of letters of
arbitrary length) using the Latin alphabet using only lowercase letters. The order is the lexicographic order as
in a dictionary (e.g. aa < aaa < dog < door). Let 𝐴 be the subset of 𝐷 containing the words whose first
letter is ‘a’ (e.g. a ∈ 𝐴, abcd ∈ 𝐴). Show that 𝐴 has a supremum and find what it is.

Exercise 1.1.11: Let 𝐹 be an ordered field and 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐹.

a) Prove part  (vii) of  Proposition 1.1.8 . That is, if 𝑥 ≤ 𝑦 and 𝑧 ≤ 𝑤, then 𝑥 + 𝑧 ≤ 𝑦 + 𝑤.

b) Prove that if 𝑥 < 𝑦 and 𝑧 ≤ 𝑤, then 𝑥 + 𝑧 < 𝑦 + 𝑤.

Exercise 1.1.12: Prove that any ordered field must contain a countably infinite set.

Exercise 1.1.13: Let ℕ∞ B ℕ ∪ {∞}, where the elements of ℕ are ordered in the usual way amongst
themselves, and 𝑘 < ∞ for every 𝑘 ∈ ℕ. Show ℕ∞ is an ordered set and that every subset 𝐸 ⊂ ℕ∞ has a
supremum in ℕ∞ (make sure to also handle the case of an empty set).

Exercise 1.1.14: Let 𝑆 B {𝑎𝑘 : 𝑘 ∈ ℕ}∪{𝑏𝑘 : 𝑘 ∈ ℕ}, ordered such that 𝑎𝑘 < 𝑏 𝑗 for every 𝑘 and 𝑗, 𝑎𝑘 < 𝑎𝑚
whenever 𝑘 < 𝑚, and 𝑏𝑘 > 𝑏𝑚 whenever 𝑘 < 𝑚.

a) Show that 𝑆 is an ordered set.

b) Show that every subset of 𝑆 is bounded (both above and below).

c) Find a bounded subset of 𝑆 that has no least upper bound.
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1.2 The set of real numbers

Note: 2 lectures, the extended real numbers are optional

1.2.1 The set of real numbers

We finally get to the real number system. To simplify matters, instead of constructing the
real number set from the rational numbers, we simply state their existence as a theorem
without proof. Notice that ℚ is an ordered field.

Theorem 1.2.1. There exists a unique  

‗
 ordered field ℝ with the  least-upper-bound property such

that ℚ ⊂ ℝ.

Note also that ℕ ⊂ ℚ. We saw that 1 > 0. By  induction (exercise), we can prove that
𝑛 > 0 for all 𝑛 ∈ ℕ. Similarly, we verify simple statements about rational numbers. For
example, we proved that if 𝑛 > 0, then 1/𝑛 > 0. Then 𝑚 < 𝑘 implies 𝑚/𝑛 < 𝑘/𝑛.

Analysis consists of proving inequalities, and the following proposition, or one of its
many variations, is how an analyst proves a nonstrict inequality.

Proposition 1.2.2. If 𝑥 ∈ ℝ is such that 𝑥 ≤ 𝜖 for all 𝜖 ∈ ℝ where 𝜖 > 0, then 𝑥 ≤ 0.

Proof. If 𝑥 > 0, then 0 < 𝑥/2 < 𝑥 (why?). Take 𝜖 = 𝑥/2 to get a contradiction. Thus 𝑥 ≤ 0. □

For nonnegative 𝑥, equality results: If 𝑥 ≥ 0 is such that 𝑥 ≤ 𝜖 for all 𝜖 > 0, then 𝑥 = 0. A
common version uses the absolute value (see  §1.3 ): If |𝑥| ≤ 𝜖 for all 𝜖 > 0, then 𝑥 = 0. To
prove 𝑥 ≥ 0, an analyst might prove that 𝑥 ≥ −𝜖 for all 𝜖 > 0. From now on, when we say
𝑥 ≥ 0 or 𝜖 > 0, we automatically mean that 𝑥 ∈ ℝ and 𝜖 ∈ ℝ.

The idea behind the proposition above is that any time we have two real numbers 𝑎 < 𝑏,
there is another real number 𝑐 such that 𝑎 < 𝑐 < 𝑏. Infinitely many such 𝑐 exist. One of
them is, for example, 𝑐 = 𝑎+𝑏

2 (why?). We will use this fact in the next example.
The most useful property of ℝ for analysts is not just that it is an ordered field, but that

it has the  least-upper-bound property . Essentially, we want ℚ, but we also want to take
suprema (and infima) willy-nilly. So what we do is take ℚ and throw in enough numbers
to obtain ℝ.

We mentioned already that ℝ contains elements that are not in ℚ because of the
 least-upper-bound property . Let us prove it. We saw there is no rational square root of
two. The set {𝑥 ∈ ℚ : 𝑥2 < 2} implies the existence of the real number

√
2, although this

fact requires a bit of work. See also  Exercise 1.2.14 .

Example 1.2.3: Claim: There exists a unique positive 𝑟 ∈ ℝ such that 𝑟2 = 2. We denote 𝑟 by
√

2.

‗Uniqueness is up to isomorphism, but we wish to avoid excessive use of algebra. For us, it is simply
enough to assume that a set of real numbers exists. See Rudin [ R2 ] for the construction and more details.
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Proof. Take the set 𝐴 B {𝑥 ∈ ℝ : 𝑥2 < 2}. We first show that 𝐴 is bounded above and
nonempty. The inequality 𝑥 ≥ 2 implies 𝑥2 ≥ 4 (see  Exercise 1.1.3  ). So if 𝑥2 < 2, then 𝑥 < 2.
So 𝐴 is bounded above. As 1 ∈ 𝐴, the set 𝐴 is nonempty. The supremum, therefore, exists.

Let 𝑟 B sup 𝐴. We will show that 𝑟2 = 2 by showing that 𝑟2 ≥ 2 and 𝑟2 ≤ 2. This is the
way analysts show equality, by showing two inequalities. We already know that 𝑟 ≥ 1 > 0.

In the following, it may seem we are pulling certain expressions out of a hat. When
writing a proof such as this, we would, of course, come up with the expressions only after
playing around with what we wish to prove. The order in which we write the proof is not
necessarily the order in which we come up with the proof.

Let us first show that 𝑟2 ≥ 2. Take a positive number 𝑠 such that 𝑠2 < 2. We wish to find
an ℎ > 0 such that (𝑠 + ℎ)2 < 2. As 2 − 𝑠2 > 0, we have 2−𝑠2

2𝑠+1 > 0. Choose an ℎ ∈ ℝ such
that 0 < ℎ < 2−𝑠2

2𝑠+1 . Furthermore, assume ℎ < 1. Estimate,

(𝑠 + ℎ)2 − 𝑠2 = ℎ(2𝑠 + ℎ)
< ℎ(2𝑠 + 1) (

since ℎ < 1
)

< 2 − 𝑠2 (
since ℎ < 2−𝑠2

2𝑠+1
)
.

Therefore, (𝑠 + ℎ)2 < 2. Hence 𝑠 + ℎ ∈ 𝐴, but as ℎ > 0, we have 𝑠 + ℎ > 𝑠. So 𝑠 < 𝑟 = sup 𝐴.
As 𝑠 was an arbitrary positive number such that 𝑠2 < 2, it follows that 𝑟2 ≥ 2.

Now take a positive number 𝑠 such that 𝑠2 > 2. We wish to find an ℎ > 0 such that
(𝑠 − ℎ)2 > 2 and 𝑠 − ℎ is still positive. As 𝑠2 − 2 > 0, we have 𝑠2−2

2𝑠 > 0. Let ℎ B 𝑠2−2
2𝑠 , and

check 𝑠 − ℎ = 𝑠 − 𝑠2−2
2𝑠 = 𝑠

2 + 1
𝑠 > 0. Estimate,

𝑠2 − (𝑠 − ℎ)2 = 2𝑠ℎ − ℎ2

< 2𝑠ℎ
(
since ℎ2 > 0 as ℎ ≠ 0

)
= 𝑠2 − 2

(
since ℎ = 𝑠2−2

2𝑠
)
.

By subtracting 𝑠2 from both sides and multiplying by −1, we find (𝑠 − ℎ)2 > 2. Therefore,
𝑠 − ℎ ∉ 𝐴.

Moreover, if 𝑥 ≥ 𝑠 − ℎ, then 𝑥2 ≥ (𝑠 − ℎ)2 > 2 (as 𝑥 > 0 and 𝑠 − ℎ > 0) and so 𝑥 ∉ 𝐴.
Thus, 𝑠 − ℎ is an upper bound for 𝐴. However, 𝑠 − ℎ < 𝑠, or in other words, 𝑠 > 𝑟 = sup 𝐴.
Hence, 𝑟2 ≤ 2.

Together, 𝑟2 ≥ 2 and 𝑟2 ≤ 2 imply 𝑟2 = 2. The existence part is finished. We still need to
handle uniqueness. Suppose 𝑠 ∈ ℝ such that 𝑠2 = 2 and 𝑠 > 0. Thus, 𝑠2 = 𝑟2. However, if
0 < 𝑠 < 𝑟, then 𝑠2 < 𝑟2. Similarly, 0 < 𝑟 < 𝑠 implies 𝑟2 < 𝑠2. Hence, 𝑠 = 𝑟. □

The number
√

2 ∉ ℚ. The set ℝ\ℚ is called the set of irrational numbers. We just proved
that ℝ \ℚ is nonempty. Not only is it nonempty, as we will see, it is very large indeed.

Using the same technique as above, we can show that a positive real number 𝑥1/𝑛 exists
for all 𝑛 ∈ ℕ and all 𝑥 > 0. That is, for each 𝑥 > 0, there exists a unique positive real
number 𝑟 such that 𝑟𝑛 = 𝑥. The proof is left as an exercise.
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1.2.2 Archimedean property
As we have seen, there are plenty of real numbers in any interval. But there are also
infinitely many rational numbers in any interval. The following is one of the fundamental
facts about the real numbers. The two parts of the next theorem are actually equivalent,
even though it may not seem like that at first sight.
Theorem 1.2.4.

(i) (Archimedean property) 

‗
 If 𝑥, 𝑦 ∈ ℝ and 𝑥 > 0, then there exists an 𝑛 ∈ ℕ such that

𝑛𝑥 > 𝑦.

(ii) (ℚ is dense in ℝ) If 𝑥, 𝑦 ∈ ℝ and 𝑥 < 𝑦, then there exists an 𝑟 ∈ ℚ such that 𝑥 < 𝑟 < 𝑦.

Proof. Let us prove  (i) . Divide through by 𝑥. Then  (i) says that for every real number
𝑡 B 𝑦/𝑥, we can find 𝑛 ∈ ℕ such that 𝑛 > 𝑡. In other words,  (i) says that ℕ ⊂ ℝ is not
bounded above. Suppose for contradiction that ℕ is bounded above. Let 𝑏 B supℕ. The
number 𝑏 − 1 cannot possibly be an upper bound for ℕ as it is strictly less than 𝑏 (the
least upper bound). Thus there exists an 𝑚 ∈ ℕ such that 𝑚 > 𝑏 − 1. Add one to obtain
𝑚 + 1 > 𝑏, contradicting 𝑏 being an upper bound.

𝑚−1
𝑛

𝑚
𝑛

1
𝑛

𝑚+1
𝑛

𝑦𝑥

Figure 1.2: Idea of the proof of the density of ℚ: Find 𝑛 such that 𝑦 − 𝑥 > 1/𝑛, then take the
least 𝑚 such that 𝑚/𝑛 > 𝑥.

Let us tackle  (ii) . See  Figure 1.2 for a picture of the idea behind the proof. First assume
𝑥 ≥ 0. Note that 𝑦 − 𝑥 > 0. By  (i) , there exists an 𝑛 ∈ ℕ such that

𝑛(𝑦 − 𝑥) > 1 or 𝑦 − 𝑥 > 1/𝑛.
Again by  (i) the set 𝐴 B {𝑘 ∈ ℕ : 𝑘 > 𝑛𝑥} is nonempty. By the  well ordering property of ℕ,
𝐴 has a least element 𝑚, and as 𝑚 ∈ 𝐴, then 𝑚 > 𝑛𝑥. Divide through by 𝑛 to get 𝑥 < 𝑚/𝑛.
As 𝑚 is the least element of 𝐴, 𝑚 − 1 ∉ 𝐴. If 𝑚 > 1, then 𝑚 − 1 ∈ ℕ, but 𝑚 − 1 ∉ 𝐴 and so
𝑚 − 1 ≤ 𝑛𝑥. If 𝑚 = 1, then 𝑚 − 1 = 0, and 𝑚 − 1 ≤ 𝑛𝑥 still holds as 𝑥 ≥ 0. In other words,

𝑚 − 1 ≤ 𝑛𝑥 or 𝑚 ≤ 𝑛𝑥 + 1.

On the other hand, from 𝑛(𝑦 − 𝑥) > 1 we obtain 𝑛𝑦 > 1+ 𝑛𝑥. Hence 𝑛𝑦 > 1+ 𝑛𝑥 ≥ 𝑚, and
therefore 𝑦 > 𝑚/𝑛. Putting everything together, we obtain 𝑥 < 𝑚/𝑛 < 𝑦. So take 𝑟 = 𝑚/𝑛.

‗Named after the Ancient Greek mathematician  Archimedes of Syracuse (c. 287 BC – c. 212 BC). This
property is Axiom V from Archimedes’ “On the Sphere and Cylinder” 225 BC.

https://en.wikipedia.org/wiki/Archimedes
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Now assume 𝑥 < 0. If 𝑦 > 0, then just take 𝑟 = 0. If 𝑦 ≤ 0, then 0 ≤ −𝑦 < −𝑥, and we
find a rational 𝑞 such that −𝑦 < 𝑞 < −𝑥. Then take 𝑟 = −𝑞. □

Let us state and prove a simple but useful corollary of the  Archimedean property .

Corollary 1.2.5. inf{1/𝑛 : 𝑛 ∈ ℕ} = 0. See  Figure 1.3 .

Proof. Let 𝐴 B {1/𝑛 : 𝑛 ∈ ℕ}. Obviously, 𝐴 is not empty. Furthermore, 1/𝑛 > 0 for all 𝑛 ∈ ℕ,
so 0 is a lower bound and 𝑏 B inf 𝐴 exists. As 0 is a lower bound, then 𝑏 ≥ 0. Take an
arbitrary 𝑎 > 0. By the  Archimedean property , there exists an 𝑛 such that 𝑛𝑎 > 1, that is,
𝑎 > 1/𝑛 ∈ 𝐴. Therefore, 𝑎 cannot be a lower bound for 𝐴. Hence 𝑏 = 0. □

11
2

1
3

1
4

1
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1
6

1
7

1
8· · ·0

Figure 1.3: The set {1/𝑛 : 𝑛 ∈ ℕ} and its infimum 0.

1.2.3 Using supremum and infimum
Suprema and infima are compatible with algebraic operations. For a set 𝐴 ⊂ ℝ and 𝑥 ∈ ℝ

define

𝑥 + 𝐴 B {𝑥 + 𝑦 ∈ ℝ : 𝑦 ∈ 𝐴},
𝑥𝐴 B {𝑥𝑦 ∈ ℝ : 𝑦 ∈ 𝐴}.

For example, if 𝐴 = {1, 2, 3}, then 5 + 𝐴 = {6, 7, 8} and 3𝐴 = {3, 6, 9}.

Proposition 1.2.6. Let 𝐴 ⊂ ℝ be nonempty.

(i) If 𝑥 ∈ ℝ and 𝐴 is bounded above, then sup(𝑥 + 𝐴) = 𝑥 + sup 𝐴.
(ii) If 𝑥 ∈ ℝ and 𝐴 is bounded below, then inf(𝑥 + 𝐴) = 𝑥 + inf 𝐴.
(iii) If 𝑥 > 0 and 𝐴 is bounded above, then sup(𝑥𝐴) = 𝑥(sup 𝐴).
(iv) If 𝑥 > 0 and 𝐴 is bounded below, then inf(𝑥𝐴) = 𝑥(inf 𝐴).
(v) If 𝑥 < 0 and 𝐴 is bounded below, then sup(𝑥𝐴) = 𝑥(inf 𝐴).
(vi) If 𝑥 < 0 and 𝐴 is bounded above, then inf(𝑥𝐴) = 𝑥(sup 𝐴).

Do note that multiplying a set by a negative number switches supremum for an infimum
and vice versa. Also, as the proposition implies that supremum (resp. infimum) of 𝑥 +𝐴 or
𝑥𝐴 exists, it also implies that 𝑥 + 𝐴 or 𝑥𝐴 is nonempty and bounded above (resp. below).

Proof. Let us only prove the first statement. The rest are left as exercises.
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Suppose 𝑏 is an upper bound for 𝐴. That is, 𝑦 ≤ 𝑏 for all 𝑦 ∈ 𝐴. Then 𝑥 + 𝑦 ≤ 𝑥 + 𝑏 for
all 𝑦 ∈ 𝐴, and so 𝑥 + 𝑏 is an upper bound for 𝑥 + 𝐴. In particular, if 𝑏 = sup 𝐴, then

sup(𝑥 + 𝐴) ≤ 𝑥 + 𝑏 = 𝑥 + sup 𝐴.

The opposite inequality is similar: If 𝑐 is an upper bound for 𝑥 + 𝐴, then 𝑥 + 𝑦 ≤ 𝑐 for
all 𝑦 ∈ 𝐴 and so 𝑦 ≤ 𝑐 − 𝑥 for all 𝑦 ∈ 𝐴. So 𝑐 − 𝑥 is an upper bound for 𝐴. If 𝑐 = sup(𝑥 +𝐴),
then

sup 𝐴 ≤ 𝑐 − 𝑥 = sup(𝑥 + 𝐴) − 𝑥.
The result follows. □

Sometimes we need to apply supremum or infimum twice. Here is an example.

Proposition 1.2.7. Let 𝐴, 𝐵 ⊂ ℝ be nonempty sets such that 𝑥 ≤ 𝑦 whenever 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.
Then 𝐴 is bounded above, 𝐵 is bounded below, and sup 𝐴 ≤ inf 𝐵.

Proof. Any 𝑥 ∈ 𝐴 is a lower bound for 𝐵. Therefore, 𝑥 ≤ inf 𝐵 for all 𝑥 ∈ 𝐴, so inf 𝐵 is an
upper bound for 𝐴. Hence, sup 𝐴 ≤ inf 𝐵. □

We must be careful about strict inequalities and taking suprema and infima. Note
that 𝑥 < 𝑦 whenever 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 still only implies sup 𝐴 ≤ inf 𝐵, and not a strict
inequality. For example, take 𝐴 B {0} and 𝐵 B {1/𝑛 : 𝑛 ∈ ℕ}. Then 0 < 1/𝑛 for all 𝑛 ∈ ℕ.
However, sup 𝐴 = 0 and inf 𝐵 = 0. This important subtle point comes up often.

The proof of the following often used fact is left to the reader. A similar result holds for
infima.

Proposition 1.2.8. If 𝑆 ⊂ ℝ is nonempty and bounded above, then for every 𝜖 > 0 there exists an
𝑥 ∈ 𝑆 such that (sup 𝑆) − 𝜖 < 𝑥 ≤ sup 𝑆.

To make using suprema and infima even easier, we may want to write sup 𝐴 and inf 𝐴
without worrying about 𝐴 being bounded and nonempty. We make the following natural
definitions.

Definition 1.2.9. Let 𝐴 ⊂ ℝ be a set.
(i) If 𝐴 is empty, then sup 𝐴 B −∞.

(ii) If 𝐴 is not bounded above, then sup 𝐴 B ∞.
(iii) If 𝐴 is empty, then inf 𝐴 B ∞.
(iv) If 𝐴 is not bounded below, then inf 𝐴 B −∞.

For convenience, ∞ and −∞ are sometimes treated as if they were numbers, except we
do not allow arbitrary arithmetic with them. We make ℝ∗ B ℝ∪ {−∞,∞} into an ordered
set by letting

−∞ < ∞ and −∞ < 𝑥 and 𝑥 < ∞ for all 𝑥 ∈ ℝ.
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The set ℝ∗ is called the set of extended real numbers. It is possible to define some arithmetic
on ℝ∗. Most operations are extended in an obvious way, but we must leave ∞−∞, 0 · (±∞),
and ±∞

±∞ undefined. We refrain from using this arithmetic, it leads to easy mistakes as
ℝ∗ is not a field. Now we can take suprema and infima without fear of emptiness or
unboundedness. In this book, we mostly avoid using ℝ∗ outside of exercises and leave
such generalizations to the interested reader.

1.2.4 Maxima and minima
By  Exercise 1.1.2 , a finite set of numbers always has a supremum and an infimum and
they are both contained in the set itself. In this case, we usually do not use the words
supremum or infimum. When a set 𝐴 of real numbers is bounded above and sup 𝐴 ∈ 𝐴,
we can use the word maximum and the notation max 𝐴 to denote the supremum. Similarly
for infimum: When 𝐴 is bounded below and inf 𝐴 ∈ 𝐴, we can use the word minimum and
the notation min 𝐴. For example,

max{1, 2.4,𝜋, 100} = 100,
min{1, 2.4,𝜋, 100} = 1.

While writing sup and inf may be technically correct in this situation, max and min are
generally used to emphasize that the supremum or infimum is in the set itself, especially
when the set is finite.

1.2.5 Exercises

Exercise 1.2.1: Prove that if 𝑡 > 0 (𝑡 ∈ ℝ), then there exists an 𝑛 ∈ ℕ such that 1
𝑛2 < 𝑡.

Exercise 1.2.2: Prove that if 𝑡 ≥ 0 (𝑡 ∈ ℝ), then there exists an 𝑛 ∈ ℕ such that 𝑛 − 1 ≤ 𝑡 < 𝑛.

Exercise 1.2.3: Finish the proof of  Proposition 1.2.6 .

Exercise 1.2.4: Let 𝑥, 𝑦 ∈ ℝ. Suppose 𝑥2 + 𝑦2 = 0. Prove that 𝑥 = 0 and 𝑦 = 0.

Exercise 1.2.5: Show that
√

3 is irrational.

Exercise 1.2.6: Let 𝑛 ∈ ℕ. Show that
√
𝑛 is either an integer or it is irrational.

Exercise 1.2.7: Prove the arithmetic-geometric mean inequality. For two positive real numbers 𝑥, 𝑦,

√
𝑥𝑦 ≤ 𝑥 + 𝑦

2 .

Furthermore, equality occurs if and only if 𝑥 = 𝑦.

Exercise 1.2.8: Show that for every pair of real numbers 𝑥 and 𝑦 such that 𝑥 < 𝑦, there exists an irrational
number 𝑠 such that 𝑥 < 𝑠 < 𝑦. Hint: Apply the density of ℚ to 𝑥√

2
and

𝑦√
2

.



1.2. THE SET OF REAL NUMBERS 35

Exercise 1.2.9: Let 𝐴 and 𝐵 be two nonempty bounded sets of real numbers. Let 𝐶 B {𝑎+𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
Show that 𝐶 is a bounded set and that

sup 𝐶 = sup 𝐴 + sup 𝐵 and inf 𝐶 = inf 𝐴 + inf 𝐵.

Exercise 1.2.10: Let 𝐴 and 𝐵 be two nonempty bounded sets of nonnegative real numbers. Define the set
𝐶 B {𝑎𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Show that 𝐶 is a bounded set and that

sup 𝐶 = (sup 𝐴)(sup 𝐵) and inf 𝐶 = (inf 𝐴)(inf 𝐵).
Exercise 1.2.11 (Hard): Given 𝑥 > 0 and 𝑛 ∈ ℕ, show that there exists a unique positive real number 𝑟
such that 𝑥 = 𝑟𝑛 . Usually, 𝑟 is denoted by 𝑥1/𝑛 .

Exercise 1.2.12 (Easy): Prove  Proposition 1.2.8 .

Exercise 1.2.13: Prove the so-called Bernoulli’s inequality 

‗
 : If 1 + 𝑥 > 0, then for all 𝑛 ∈ ℕ, we have

(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥.

Exercise 1.2.14: Prove sup{𝑥 ∈ ℚ : 𝑥2 < 2} = sup{𝑥 ∈ ℝ : 𝑥2 < 2}.

Exercise 1.2.15:

a) Prove that given 𝑦 ∈ ℝ, we have sup{𝑥 ∈ ℚ : 𝑥 < 𝑦} = 𝑦.

b) Let 𝐴 ⊂ ℚ be a set that is bounded above such that whenever 𝑥 ∈ 𝐴 and 𝑡 ∈ ℚ with 𝑡 < 𝑥, then 𝑡 ∈ 𝐴.
Further suppose sup 𝐴 ∉ 𝐴. Show that there exists a 𝑦 ∈ ℝ such that 𝐴 = {𝑥 ∈ ℚ : 𝑥 < 𝑦}. A set such
as 𝐴 is called a Dedekind cut.

c) Show that there is a bĳection between ℝ and Dedekind cuts.

Note: Dedekind used sets as in part b) in his construction of the real numbers.

Exercise 1.2.16: Prove that if 𝐴 ⊂ ℤ is a nonempty subset bounded below, then there exists a least element
in 𝐴. Now describe why this statement would simplify the proof of  Theorem 1.2.4 part  (ii) so that you do not
have to assume 𝑥 ≥ 0.

Exercise 1.2.17: Let us suppose we know 𝑥1/𝑛 exists for every 𝑥 > 0 and every 𝑛 ∈ ℕ (see  Exercise 1.2.11 

above). For integers 𝑝 and 𝑞 > 0 where 𝑝/𝑞 is in lowest terms, define 𝑥𝑝/𝑞 B (𝑥1/𝑞)𝑝 .
a) Show that the power is well-defined even if the fraction is not in lowest terms: If 𝑝/𝑞 = 𝑚/𝑘 where 𝑚 and

𝑘 > 0 are integers, then (𝑥1/𝑞)𝑝 = (𝑥1/𝑘)𝑚 .

b) Let 𝑥 and 𝑦 be two positive numbers and 𝑟 a rational number. Assuming 𝑟 > 0, show 𝑥 < 𝑦 if and only
if 𝑥𝑟 < 𝑦𝑟 . Then suppose 𝑟 < 0 and show: 𝑥 < 𝑦 if and only if 𝑥𝑟 > 𝑦𝑟 .

c) Suppose 𝑥 > 1 and 𝑟, 𝑠 are rational where 𝑟 < 𝑠. Show 𝑥𝑟 < 𝑥𝑠 . If 0 < 𝑥 < 1 and 𝑟 < 𝑠, show that
𝑥𝑟 > 𝑥𝑠 . Hint: Write 𝑟 and 𝑠 with the same denominator.

d) (Challenging) 

†
 For an irrational 𝑧 ∈ ℝ \ℚ and 𝑥 > 1 define 𝑥𝑧 B sup{𝑥𝑟 : 𝑟 ≤ 𝑧, 𝑟 ∈ ℚ}, for 𝑥 = 1

define 1𝑧 = 1, and for 0 < 𝑥 < 1 define 𝑥𝑧 B inf{𝑥𝑟 : 𝑟 ≤ 𝑧, 𝑟 ∈ ℚ}. Prove the two assertions of part b)
for all real 𝑧.

‗Named after the Swiss mathematician  Jacob Bernoulli (1655–1705).
†In  §5.4 we will define the exponential and the logarithm and define 𝑥𝑧 B exp(𝑧 ln 𝑥). We will then have

sufficient machinery to make proofs of these assertions far easier. At this point, however, we do not yet have
these tools.

https://en.wikipedia.org/wiki/Jacob_Bernoulli
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1.3 Absolute value and bounded functions

Note: 0.5–1 lecture

A concept we will encounter over and over is the concept of absolute value. You want to
think of the absolute value as the “size” of a real number. Here is the formal definition:

|𝑥| B
{
𝑥 if 𝑥 ≥ 0,
−𝑥 if 𝑥 < 0.

Let us give the main features of the absolute value as a proposition.

Proposition 1.3.1.

(i) |𝑥| ≥ 0, moreover, |𝑥| = 0 if and only if 𝑥 = 0.
(ii) |−𝑥| = |𝑥| for all 𝑥 ∈ ℝ.
(iii)

��𝑥𝑦�� = |𝑥| ��𝑦�� for all 𝑥, 𝑦 ∈ ℝ.

(iv) |𝑥|2 = 𝑥2 for all 𝑥 ∈ ℝ.
(v) |𝑥| ≤ 𝑦 if and only if −𝑦 ≤ 𝑥 ≤ 𝑦.
(vi) − |𝑥| ≤ 𝑥 ≤ |𝑥| for all 𝑥 ∈ ℝ.

Proof.  (i) : First suppose 𝑥 ≥ 0. Then |𝑥| = 𝑥 ≥ 0. Also, |𝑥| = 𝑥 = 0 if and only if 𝑥 = 0. On
the other hand, if 𝑥 < 0, then |𝑥| = −𝑥 > 0, and |𝑥| is never zero.

 (ii) : If 𝑥 > 0, then −𝑥 < 0 and so |−𝑥| = −(−𝑥) = 𝑥 = |𝑥|. Similarly when 𝑥 < 0, or 𝑥 = 0.

 (iii) : If 𝑥 or 𝑦 is zero, then the result is immediate. When 𝑥 and 𝑦 are both positive,
then |𝑥| ��𝑦�� = 𝑥𝑦. As 𝑥𝑦 is also positive, 𝑥𝑦 =

��𝑥𝑦��. If 𝑥 and 𝑦 are both negative, then
𝑥𝑦 = (−𝑥)(−𝑦) is still positive and

��𝑥𝑦�� = 𝑥𝑦. Also, |𝑥| ��𝑦�� = (−𝑥)(−𝑦) = 𝑥𝑦. If 𝑥 > 0 and
𝑦 < 0, then |𝑥| ��𝑦�� = 𝑥(−𝑦) = −(𝑥𝑦). Now 𝑥𝑦 is negative and

��𝑥𝑦�� = −(𝑥𝑦). Similarly when
𝑥 < 0 and 𝑦 > 0.

 (iv) : Immediate if 𝑥 ≥ 0. If 𝑥 < 0, then |𝑥|2 = (−𝑥)2 = 𝑥2.

 (v) : Suppose |𝑥| ≤ 𝑦. If 𝑥 ≥ 0, then 𝑥 ≤ 𝑦. It follows that 𝑦 ≥ 0, leading to −𝑦 ≤ 0 ≤ 𝑥.
So −𝑦 ≤ 𝑥 ≤ 𝑦 holds. If 𝑥 < 0, then |𝑥| ≤ 𝑦 means −𝑥 ≤ 𝑦. Negating both sides we get
𝑥 ≥ −𝑦. Again 𝑦 ≥ 0 and so 𝑦 ≥ 0 > 𝑥. Hence, −𝑦 ≤ 𝑥 ≤ 𝑦.

On the other hand, suppose −𝑦 ≤ 𝑥 ≤ 𝑦 is true. If 𝑥 ≥ 0, then 𝑥 ≤ 𝑦 is equivalent to
|𝑥| ≤ 𝑦. If 𝑥 < 0, then −𝑦 ≤ 𝑥 implies (−𝑥) ≤ 𝑦, which is equivalent to |𝑥| ≤ 𝑦.

 (vi) : Apply  (v) with 𝑦 = |𝑥|. □

A property used frequently enough to give it a name is the so-called triangle inequality.

Proposition 1.3.2 (Triangle Inequality). |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| for all 𝑥, 𝑦 ∈ ℝ.
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Proof.  Proposition 1.3.1 gives −|𝑥| ≤ 𝑥 ≤ |𝑥| and −|𝑦| ≤ 𝑦 ≤ |𝑦|. Add these two inequalities
to obtain

−(|𝑥| + |𝑦|) ≤ 𝑥 + 𝑦 ≤ |𝑥| + |𝑦|.
Apply  Proposition 1.3.1 again to find |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|. □

There are other often applied versions of the triangle inequality.

Corollary 1.3.3. Let 𝑥, 𝑦 ∈ ℝ.
(i) (reverse triangle inequality)

��(|𝑥| − ��𝑦��)�� ≤ ��𝑥 − 𝑦��.
(ii)

��𝑥 − 𝑦�� ≤ |𝑥| + ��𝑦��.
Proof. Let us plug in 𝑥 = 𝑎 − 𝑏 and 𝑦 = 𝑏 into the standard triangle inequality to obtain

|𝑎| = |𝑎 − 𝑏 + 𝑏| ≤ |𝑎 − 𝑏| + |𝑏| ,
or |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|. Switching the roles of 𝑎 and 𝑏 we find |𝑏| − |𝑎| ≤ |𝑏 − 𝑎| = |𝑎 − 𝑏|.
Applying  Proposition 1.3.1 , we obtain the reverse triangle inequality.

The second item in the corollary is obtained from the standard triangle inequality by
just replacing 𝑦 with −𝑦, and noting

��−𝑦�� = ��𝑦��. □

Corollary 1.3.4. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ ℝ. Then

|𝑥1 + 𝑥2 + · · · + 𝑥𝑛| ≤ |𝑥1| + |𝑥2| + · · · + |𝑥𝑛| .
Proof. We proceed by  induction . The conclusion holds trivially for 𝑛 = 1, and for 𝑛 = 2 it is
the standard triangle inequality. Suppose the corollary holds for 𝑛. Take 𝑛 + 1 numbers
𝑥1, 𝑥2, . . . , 𝑥𝑛+1 and first use the standard triangle inequality, then the induction hypothesis

|𝑥1 + 𝑥2 + · · · + 𝑥𝑛 + 𝑥𝑛+1| ≤ |𝑥1 + 𝑥2 + · · · + 𝑥𝑛| + |𝑥𝑛+1|
≤ |𝑥1| + |𝑥2| + · · · + |𝑥𝑛| + |𝑥𝑛+1|. □

Let us see an example of the use of the triangle inequality.

Example 1.3.5: Find a number 𝑀 such that |𝑥2 − 9𝑥 + 1| ≤ 𝑀 for all −1 ≤ 𝑥 ≤ 5.
Using the triangle inequality, write

|𝑥2 − 9𝑥 + 1| ≤ |𝑥2| + |9𝑥| + |1| = |𝑥|2 + 9|𝑥| + 1.

The expression |𝑥|2 + 9|𝑥| + 1 is largest when |𝑥| is largest (why?). In the interval provided,
|𝑥| is largest when 𝑥 = 5 and so |𝑥| = 5. One possibility for 𝑀 is

𝑀 = 52 + 9(5) + 1 = 71.

There are, of course, other 𝑀 that work. The bound of 71 is much higher than it need be,
but we didn’t ask for the best possible 𝑀, just one that works.

The last example leads us to the concept of bounded functions.
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Definition 1.3.6. Suppose 𝑓 : 𝐷 → ℝ is a function. We say 𝑓 is bounded if there exists a
number 𝑀 such that

�� 𝑓 (𝑥)�� ≤ 𝑀 for all 𝑥 ∈ 𝐷.

In the example, we proved 𝑥2 − 9𝑥 + 1 is bounded when considered as a function on
𝐷 = {𝑥 : −1 ≤ 𝑥 ≤ 5}. On the other hand, if we consider the same polynomial as a function
on the whole real line ℝ, then it is not bounded.

inf 5 (�)

sup 5 (�)
"

−"

5 (�)
�

Figure 1.4: Example of a bounded function, a bound 𝑀, and its supremum and infimum.

For a function 𝑓 : 𝐷 → ℝ, we write (see  Figure 1.4 for an example)

sup
𝑥∈𝐷

𝑓 (𝑥) B sup 𝑓 (𝐷) and inf
𝑥∈𝐷

𝑓 (𝑥) B inf 𝑓 (𝐷).

We also sometimes replace the “𝑥 ∈ 𝐷” with an expression. For example if, as before,
𝑓 (𝑥) = 𝑥2 − 9𝑥 + 1, for −1 ≤ 𝑥 ≤ 5, a little bit of calculus shows

sup
𝑥∈𝐷

𝑓 (𝑥) = sup
−1≤𝑥≤5

(𝑥2 − 9𝑥 + 1) = 11, inf
𝑥∈𝐷

𝑓 (𝑥) = inf
−1≤𝑥≤5

(𝑥2 − 9𝑥 + 1) = −77/4.

Proposition 1.3.7. If 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ (𝐷 nonempty) are bounded  

‗
 functions and

𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐷,
then

sup
𝑥∈𝐷

𝑓 (𝑥) ≤ sup
𝑥∈𝐷

𝑔(𝑥) and inf
𝑥∈𝐷

𝑓 (𝑥) ≤ inf
𝑥∈𝐷

𝑔(𝑥). (1.1)

Be careful with the variables. The 𝑥 on the left side of the inequality in ( 1.1 ) is different
from the 𝑥 on the right. You should really think of, say, the first inequality as

sup
𝑥∈𝐷

𝑓 (𝑥) ≤ sup
𝑦∈𝐷

𝑔(𝑦).

Let us prove this inequality. If 𝑏 is an upper bound for 𝑔(𝐷), then 𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ 𝑏 for all
𝑥 ∈ 𝐷, and hence 𝑏 is also an upper bound for 𝑓 (𝐷), or 𝑓 (𝑥) ≤ 𝑏 for all 𝑥 ∈ 𝐷. Take the
least upper bound of 𝑔(𝐷) to get that for all 𝑥 ∈ 𝐷

𝑓 (𝑥) ≤ sup
𝑦∈𝐷

𝑔(𝑦).

‗The boundedness hypothesis is for simplicity, it can be dropped if we allow for the extended real
numbers.
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Therefore, sup𝑦∈𝐷 𝑔(𝑦) is an upper bound for 𝑓 (𝐷) and thus greater than or equal to the
least upper bound of 𝑓 (𝐷).

sup
𝑥∈𝐷

𝑓 (𝑥) ≤ sup
𝑦∈𝐷

𝑔(𝑦).

The second inequality (the statement about the inf) is left as an exercise ( Exercise 1.3.4 ).
A common mistake is to conclude

sup
𝑥∈𝐷

𝑓 (𝑥) ≤ inf
𝑦∈𝐷

𝑔(𝑦). (1.2)

The inequality ( 1.2 ) is not true given the hypothesis of the proposition above. For this
stronger inequality we need the stronger hypothesis

𝑓 (𝑥) ≤ 𝑔(𝑦) for all 𝑥 ∈ 𝐷 and 𝑦 ∈ 𝐷.
The proof as well as a counterexample is left as an exercise ( Exercise 1.3.5 ).

1.3.1 Exercises
Exercise 1.3.1: Show that

��𝑥 − 𝑦�� < 𝜖 if and only if 𝑥 − 𝜖 < 𝑦 < 𝑥 + 𝜖.

Exercise 1.3.2: Show: a) max{𝑥, 𝑦} =
𝑥+𝑦+|𝑥−𝑦|

2 b) min{𝑥, 𝑦} =
𝑥+𝑦−|𝑥−𝑦|

2

Exercise 1.3.3: Find a number 𝑀 such that |𝑥3 − 𝑥2 + 8𝑥| ≤ 𝑀 for all −2 ≤ 𝑥 ≤ 10.

Exercise 1.3.4: Finish the proof of  Proposition 1.3.7 . That is, prove that given a set 𝐷, and two bounded
functions 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ such that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐷, then

inf
𝑥∈𝐷

𝑓 (𝑥) ≤ inf
𝑥∈𝐷

𝑔(𝑥).

Exercise 1.3.5: Let 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ be functions (𝐷 nonempty).

a) Suppose 𝑓 (𝑥) ≤ 𝑔(𝑦) for all 𝑥 ∈ 𝐷 and 𝑦 ∈ 𝐷. Show that

sup
𝑥∈𝐷

𝑓 (𝑥) ≤ inf
𝑥∈𝐷

𝑔(𝑥).

b) Find a specific 𝐷, 𝑓 , and 𝑔, such that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐷, but

sup
𝑥∈𝐷

𝑓 (𝑥) > inf
𝑥∈𝐷

𝑔(𝑥).

Exercise 1.3.6: Prove  Proposition 1.3.7 without the assumption that the functions are bounded. Hint: You
need to use the extended real numbers.

Exercise 1.3.7: Let 𝐷 be a nonempty set. Suppose 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ are bounded functions.

a) Show

sup
𝑥∈𝐷

(
𝑓 (𝑥) + 𝑔(𝑥)) ≤ sup

𝑥∈𝐷
𝑓 (𝑥) + sup

𝑥∈𝐷
𝑔(𝑥) and inf

𝑥∈𝐷
(
𝑓 (𝑥) + 𝑔(𝑥)) ≥ inf

𝑥∈𝐷
𝑓 (𝑥) + inf

𝑥∈𝐷
𝑔(𝑥).

b) Find an example (or examples) where we obtain strict inequalities.
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Exercise 1.3.8: Suppose 𝐷 is nonempty, 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ are bounded functions, and 𝛼 ∈ ℝ.

a) Show that 𝛼 𝑓 : 𝐷 → ℝ defined by (𝛼 𝑓 )(𝑥) B 𝛼 𝑓 (𝑥) is a bounded function.

b) Show that 𝑓 + 𝑔 : 𝐷 → ℝ defined by ( 𝑓 + 𝑔)(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥) is a bounded function.

Exercise 1.3.9: Let 𝑓 : 𝐷 → ℝ and 𝑔 : 𝐷 → ℝ be functions with 𝐷 nonempty, 𝛼 ∈ ℝ, and recall what
𝑓 + 𝑔 and 𝛼 𝑓 means from the previous exercise.

a) Prove that if 𝑓 + 𝑔 and 𝑔 are bounded, then 𝑓 is bounded.

b) Find an example where 𝑓 and 𝑔 are both unbounded, but 𝑓 + 𝑔 is bounded.

c) Prove that if 𝑓 is bounded but 𝑔 is unbounded, then 𝑓 + 𝑔 is unbounded.

d) Find an example where 𝑓 is unbounded but 𝛼 𝑓 is bounded.
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1.4 Intervals and the size of ℝ
Note: 0.5–1 lecture (proof of uncountability of ℝ can be optional)

You surely saw the notation for intervals before, but let us give a formal definition here.
For 𝑎, 𝑏 ∈ ℝ such that 𝑎 < 𝑏, we define

[𝑎, 𝑏] B {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥 ≤ 𝑏},
(𝑎, 𝑏) B {𝑥 ∈ ℝ : 𝑎 < 𝑥 < 𝑏},
(𝑎, 𝑏] B {𝑥 ∈ ℝ : 𝑎 < 𝑥 ≤ 𝑏},
[𝑎, 𝑏) B {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥 < 𝑏}.

The interval [𝑎, 𝑏] is called a closed interval and (𝑎, 𝑏) is called an open interval. The intervals
of the form (𝑎, 𝑏] and [𝑎, 𝑏) are called half-open intervals.

The intervals above are bounded intervals, since both 𝑎 and 𝑏 are real numbers. We define
unbounded intervals,

[𝑎,∞) B {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥},
(𝑎,∞) B {𝑥 ∈ ℝ : 𝑎 < 𝑥},
(−∞, 𝑏] B {𝑥 ∈ ℝ : 𝑥 ≤ 𝑏},
(−∞, 𝑏) B {𝑥 ∈ ℝ : 𝑥 < 𝑏}.

For completeness, we define (−∞,∞) B ℝ. The intervals [𝑎,∞), (−∞, 𝑏], and ℝ are
sometimes called unbounded closed intervals, and (𝑎,∞), (−∞, 𝑏), and ℝ are sometimes called
unbounded open intervals.

The proof of the following proposition is left as an exercise. In short, an interval is a set
with at least two points that contains all points between any two points. 

‗
 

Proposition 1.4.1. A set 𝐼 ⊂ ℝ is an interval if and only if 𝐼 contains at least 2 points and for all
𝑎, 𝑐 ∈ 𝐼 and 𝑏 ∈ ℝ such that 𝑎 < 𝑏 < 𝑐, we have 𝑏 ∈ 𝐼.

We have already seen that every open interval (𝑎, 𝑏) (where 𝑎 < 𝑏 of course) must be
nonempty. For example, it contains the number 𝑎+𝑏

2 . An unexpected fact is that from a
set-theoretic perspective, all intervals have the same “size,” that is, they all have the same
cardinality. For instance, the map 𝑓 (𝑥) B 2𝑥 takes the interval [0, 1] bĳectively to the
interval [0, 2].

Maybe more interestingly, the function 𝑓 (𝑥) B tan(𝑥) is a bĳective map from (−𝜋/2, 𝜋/2)
to ℝ. Hence the bounded interval (−𝜋/2, 𝜋/2) has the same cardinality as ℝ. It is not
completely straightforward to construct a bĳective map from [0, 1] to (0, 1), but it is
possible.

And do not worry, there does exist a way to measure the “size” of subsets of real
numbers that “sees” the difference between [0, 1] and [0, 2]. However, its proper definition
requires much more machinery than we have right now.

‗Sometimes single point sets and the empty set are also called intervals, but in this book, intervals have
at least 2 points. That is, we only defined the bounded intervals if 𝑎 < 𝑏.
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Let us say more about the cardinality of intervals and hence about the cardinality of ℝ.
We have seen that there exist irrational numbers, that is ℝ \ℚ, is nonempty. The question
is: How many irrational numbers are there? It turns out there are a lot more irrational
numbers than rational numbers. We have seen that ℚ is countable, and we will show
that ℝ is uncountable. In fact, the cardinality of ℝ is the same as the cardinality of P(ℕ),
although we will not prove this claim here.

Theorem 1.4.2 (Cantor). ℝ is uncountable.

We give a version of Cantor’s original proof from 1874 as this proof requires the least
setup. Normally this proof is stated as a contradiction, but a proof by contrapositive is
easier to understand.

Proof. Let 𝑋 ⊂ ℝ be a countably infinite subset such that for every pair of real numbers
𝑎 < 𝑏, there is an 𝑥 ∈ 𝑋 such that 𝑎 < 𝑥 < 𝑏. Were ℝ countable, we could take 𝑋 = ℝ. We
will show that 𝑋 is necessarily a proper subset, and so 𝑋 cannot equal ℝ, and ℝ must be
uncountable.

As 𝑋 is countably infinite, there is a bĳection from ℕ to 𝑋. We write 𝑋 as a sequence of
real numbers 𝑥1, 𝑥2, 𝑥3, . . ., such that each number in 𝑋 is given by 𝑥𝑛 for some 𝑛 ∈ ℕ.

We inductively construct two sequences of real numbers 𝑎1, 𝑎2, 𝑎3, . . . and 𝑏1, 𝑏2, 𝑏3, . . ..
Let 𝑎1 B 𝑥1 and 𝑏1 B 𝑥1 + 1. Note that 𝑎1 < 𝑏1 and 𝑥1 ∉ (𝑎1, 𝑏1). For some 𝑘 > 1, suppose
𝑎1, 𝑎2, . . . , 𝑎𝑘−1 and 𝑏1, 𝑏2, . . . , 𝑏𝑘−1 have been defined, suppose 𝑎1 < 𝑎2 < · · · < 𝑎𝑘−1 <
𝑏𝑘−1 < · · · < 𝑏2 < 𝑏1, and suppose for each 𝑗 = 1, 2, . . . , 𝑘 − 1, we have 𝑥ℓ ∉ (𝑎 𝑗 , 𝑏 𝑗) for
ℓ = 1, 2, . . . , 𝑗.

(i) Define 𝑎𝑘 B 𝑥𝑛 , where 𝑛 is the smallest 𝑛 ∈ ℕ such that 𝑥𝑛 ∈ (𝑎𝑘−1, 𝑏𝑘−1). Such an 𝑥𝑛
exists by our assumption on 𝑋, and 𝑛 ≥ 𝑘 by the assumption on (𝑎𝑘−1, 𝑏𝑘−1).

(ii) Next, define 𝑏𝑘 to be some real number in (𝑎𝑘 , 𝑏𝑘−1).
Notice that 𝑎𝑘−1 < 𝑎𝑘 < 𝑏𝑘 < 𝑏𝑘−1. Also notice that (𝑎𝑘 , 𝑏𝑘) does not contain 𝑥𝑘 and hence
does not contain 𝑥 𝑗 for 𝑗 = 1, 2, . . . , 𝑘. The two sequences are now defined.

Claim: 𝑎𝑛 < 𝑏𝑚 for all 𝑛 and 𝑚 in ℕ. Proof: Let us first assume 𝑛 < 𝑚. Then
𝑎𝑛 < 𝑎𝑛+1 < · · · < 𝑎𝑚−1 < 𝑎𝑚 < 𝑏𝑚 . Similarly for 𝑛 > 𝑚. The claim follows.

Let 𝐴 B {𝑎𝑛 : 𝑛 ∈ ℕ} and 𝐵 B {𝑏𝑛 : 𝑛 ∈ ℕ}. By  Proposition 1.2.7 and the claim above,

sup 𝐴 ≤ inf 𝐵.

Define 𝑦 B sup 𝐴. The number 𝑦 cannot be a member of 𝐴: If 𝑦 = 𝑎𝑛 for some 𝑛, then
𝑦 < 𝑎𝑛+1, which is impossible. Similarly, 𝑦 cannot be a member of 𝐵. Therefore, 𝑎𝑛 < 𝑦 for
all 𝑛 ∈ ℕ and 𝑦 < 𝑏𝑛 for all 𝑛 ∈ ℕ. In other words, for every 𝑛 ∈ ℕ, we have 𝑦 ∈ (𝑎𝑛 , 𝑏𝑛).
By the construction of the sequence, 𝑥𝑛 ∉ (𝑎𝑛 , 𝑏𝑛), and so 𝑦 ≠ 𝑥𝑛 . As this was true for all
𝑛 ∈ ℕ, we have that 𝑦 ∉ 𝑋.

We have constructed a real number 𝑦 that is not in 𝑋, and thus 𝑋 is a proper subset of
ℝ. The sequence 𝑥1, 𝑥2, . . . cannot contain all elements of ℝ and thus ℝ is uncountable. □
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1.4.1 Exercises
Exercise 1.4.1: For 𝑎 < 𝑏, construct an explicit bĳection from (𝑎, 𝑏] to (0, 1].
Exercise 1.4.2: Suppose 𝑓 : [0, 1] → (0, 1) is a bĳection. Using 𝑓 , construct a bĳection from [−1, 1] to ℝ.

Exercise 1.4.3: Prove  Proposition 1.4.1 . That is, suppose 𝐼 ⊂ ℝ is a subset with at least 2 elements such that
if 𝑎 < 𝑏 < 𝑐 and 𝑎, 𝑐 ∈ 𝐼, then 𝑏 ∈ 𝐼. Prove that 𝐼 is one of the nine types of intervals explicitly given in this
section. Furthermore, prove that the intervals given in this section all satisfy this property.

Exercise 1.4.4 (Hard): Construct an explicit bĳection from (0, 1] to (0, 1). Hint: One approach is as follows:
First map (1/2, 1] to (0, 1/2], then map (1/4, 1/2] to (1/2, 3/4], etc. Write down the map explicitly, that is, write
down an algorithm that tells you exactly what number goes where. Then prove that the map is a bĳection.

Exercise 1.4.5 (Hard): Construct an explicit bĳection from [0, 1] to (0, 1).
Exercise 1.4.6:

a) Show that every closed interval [𝑎, 𝑏] is the intersection of countably many open intervals.

b) Show that every open interval (𝑎, 𝑏) is a countable union of closed intervals.

c) Show that an intersection of a possibly infinite family of bounded closed intervals,
⋂
𝜆∈𝐼

[𝑎𝜆 , 𝑏𝜆], is either

empty, a single point, or a bounded closed interval.

Exercise 1.4.7: Suppose 𝑆 is a set of disjoint open intervals in ℝ. That is, if (𝑎, 𝑏) ∈ 𝑆 and (𝑐, 𝑑) ∈ 𝑆, then
either (𝑎, 𝑏) = (𝑐, 𝑑) or (𝑎, 𝑏) ∩ (𝑐, 𝑑) = ∅. Prove 𝑆 is a countable set.

Exercise 1.4.8: Prove that the cardinality of [0, 1] is the same as the cardinality of (0, 1) by showing that
|[0, 1]| ≤ |(0, 1)| and |(0, 1)| ≤ |[0, 1]|. See  Definition 0.3.28 . This proof requires the Cantor–Bernstein–
Schröder theorem, which we stated without proof. Note that this proof does not give you an explicit
bĳection.

Exercise 1.4.9 (Challenging): A number 𝑥 is algebraic if 𝑥 is a root of a polynomial with integer coefficients,
in other words, 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0 = 0 where 𝑎0 , 𝑎1 , . . . , 𝑎𝑛 ∈ ℤ.

a) Show that there are only countably many algebraic numbers.

b) Show that there exist non-algebraic (transcendental) numbers (follow in the footsteps of Cantor, use the
uncountability of ℝ).

Hint: Feel free to use the fact that a polynomial of degree 𝑛 has at most 𝑛 real roots.

Exercise 1.4.10 (Challenging): Let 𝐹 be the set of all functions 𝑓 : ℝ → ℝ. Prove |ℝ| < |𝐹| using Cantor’s
 Theorem 0.3.34 . 

‗
 

‗Interestingly, if 𝐶 is the set of continuous functions, then |ℝ| = |𝐶|.



44 CHAPTER 1. REAL NUMBERS

1.5 Decimal representation of the reals
Note: 1 lecture (optional)

We often think of real numbers as their decimal representation. By a (decimal) digit,
we mean an integer between 0 and 9. For a positive integer 𝑛, we find the digits
𝑑𝐾 , 𝑑𝐾−1, . . . , 𝑑2, 𝑑1, 𝑑0 for some 𝐾 (each 𝑑 𝑗 an integer between 0 and 9) such that

𝑛 = 𝑑𝐾10𝐾 + 𝑑𝐾−110𝐾−1 + · · · + 𝑑2102 + 𝑑110 + 𝑑0.

We often assume 𝑑𝐾 ≠ 0 (avoiding leading zeros). To represent 𝑛, we write the sequence of
digits: 𝑛 = 𝑑𝐾𝑑𝐾−1 · · · 𝑑2𝑑1𝑑0.

Similarly, we represent some rational numbers. That is, for certain numbers 𝑥, we can
find a negative integer−𝑀, a positive integer𝐾, and digits 𝑑𝐾 , 𝑑𝐾−1, . . . , 𝑑1, 𝑑0, 𝑑−1, . . . , 𝑑−𝑀 ,
such that

𝑥 = 𝑑𝐾10𝐾 + 𝑑𝐾−110𝐾−1 + · · · + 𝑑2102 + 𝑑110 + 𝑑0 + 𝑑−110−1 + 𝑑−210−2 + · · · + 𝑑−𝑀10−𝑀 .

We write 𝑥 = 𝑑𝐾𝑑𝐾−1 · · · 𝑑1𝑑0 . 𝑑−1𝑑−2 · · · 𝑑−𝑀 .
Not every real number has such a representation, even the simple rational number 1/3

does not. The irrational number
√

2 does not have such a representation either. To get a
representation for all real numbers, we must allow infinitely many digits.

Let us consider only real numbers in the interval (0, 1]. If we find a representation
for these, adding integers to them obtains a representation for all real numbers. Take an
infinite sequence of decimal digits:

0.𝑑1𝑑2𝑑3 . . . .

That is, we have a digit 𝑑 𝑗 for every 𝑗 ∈ ℕ. We renumbered the digits to avoid the negative
signs. We call the number

𝐷𝑛 B
𝑑1
10 + 𝑑2

102 + 𝑑3

103 + · · · + 𝑑𝑛
10𝑛

.

the truncation of 𝑥 to 𝑛 decimal digits. We say this sequence of digits represents a real
number 𝑥 if

𝑥 = sup
𝑛∈ℕ

(
𝑑1
10 + 𝑑2

102 + 𝑑3

103 + · · · + 𝑑𝑛
10𝑛

)
= sup

𝑛∈ℕ
𝐷𝑛 .

Proposition 1.5.1.
(i) Every infinite sequence of digits 0.𝑑1𝑑2𝑑3 . . . represents a unique real number 𝑥 ∈ [0, 1],

and
𝐷𝑛 ≤ 𝑥 ≤ 𝐷𝑛 + 1

10𝑛
for all 𝑛 ∈ ℕ.

(ii) For every 𝑥 ∈ (0, 1] there exists an infinite sequence of digits 0.𝑑1𝑑2𝑑3 . . . that represents 𝑥.
There exists a unique representation such that

𝐷𝑛 < 𝑥 ≤ 𝐷𝑛 + 1
10𝑛

for all 𝑛 ∈ ℕ.
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Proof. We start with the first item. Take an arbitrary infinite sequence of digits 0.𝑑1𝑑2𝑑3 . . ..
Use the geometric sum formula to write

𝐷𝑛 =
𝑑1
10 + 𝑑2

102 + 𝑑3

103 + · · · + 𝑑𝑛
10𝑛

≤ 9
10 + 9

102 + 9
103 + · · · + 9

10𝑛

=
9
10

(
1 + 1/10 + (1/10)2 + · · · + (1/10)𝑛−1)

=
9
10

(
1 − (1/10)𝑛

1 − 1/10

)
= 1 − (1/10)𝑛 < 1.

In particular, 𝐷𝑛 < 1 for all 𝑛. A sum of nonnegative numbers is nonnegative so 𝐷𝑛 ≥ 0,
and hence

0 ≤ sup
𝑛∈ℕ

𝐷𝑛 ≤ 1.

Therefore, 0.𝑑1𝑑2𝑑3 . . . represents a unique number 𝑥 B sup𝑛∈ℕ 𝐷𝑛 ∈ [0, 1]. As 𝑥 is a
supremum, then 𝐷𝑛 ≤ 𝑥. Take 𝑚 ∈ ℕ. If 𝑚 < 𝑛, then 𝐷𝑚 − 𝐷𝑛 ≤ 0. If 𝑚 > 𝑛, then
computing as above

𝐷𝑚 − 𝐷𝑛 =
𝑑𝑛+1

10𝑛+1 + 𝑑𝑛+2

10𝑛+2 + 𝑑𝑛+3

10𝑛+3 + · · · + 𝑑𝑚
10𝑚

≤ 1
10𝑛

(
1 − (1/10)𝑚−𝑛 ) < 1

10𝑛
.

Take the supremum over 𝑚 to find

𝑥 − 𝐷𝑛 ≤ 1
10𝑛

.

We move on to the second item. Take any 𝑥 ∈ (0, 1]. First let us tackle the existence.
For convenience, let 𝐷0 B 0. Then, 𝐷0 < 𝑥 ≤ 𝐷0 + 10−0. Suppose we defined the digits
𝑑1, 𝑑2, . . . , 𝑑𝑛 , and that 𝐷𝑘 < 𝑥 ≤ 𝐷𝑘 + 10−𝑘 , for 𝑘 = 0, 1, 2, . . . , 𝑛. We need to define 𝑑𝑛+1.

By the  Archimedean property of the real numbers, find an integer 𝑗 such that 𝑥 − 𝐷𝑛 ≤
𝑗10−(𝑛+1). Take the least such 𝑗 and obtain

(𝑗 − 1)10−(𝑛+1) < 𝑥 − 𝐷𝑛 ≤ 𝑗10−(𝑛+1). (1.3)

Let 𝑑𝑛+1 B 𝑗 − 1. As 𝐷𝑛 < 𝑥, then 𝑑𝑛+1 = 𝑗 − 1 ≥ 0. On the other hand, since 𝑥 −𝐷𝑛 ≤ 10−𝑛 ,
we have that 𝑗 is at most 10, and therefore 𝑑𝑛+1 ≤ 9. So 𝑑𝑛+1 is a decimal digit. Since
𝐷𝑛+1 = 𝐷𝑛 + 𝑑𝑛+110−(𝑛+1) add 𝐷𝑛 to the inequality ( 1.3 ) above:

𝐷𝑛+1 = 𝐷𝑛 + (𝑗 − 1)10−(𝑛+1) < 𝑥 ≤ 𝐷𝑛 + 𝑗10−(𝑛+1)

= 𝐷𝑛 + (𝑗 − 1)10−(𝑛+1) + 10−(𝑛+1) = 𝐷𝑛+1 + 10−(𝑛+1).

And so 𝐷𝑛+1 < 𝑥 ≤ 𝐷𝑛+1 + 10−(𝑛+1) holds. We inductively defined an infinite sequence of
digits 0.𝑑1𝑑2𝑑3 . . ..

Consider 𝐷𝑛 < 𝑥 ≤ 𝐷𝑛 + 10−𝑛 . As 𝐷𝑛 < 𝑥 for all 𝑛, then sup{𝐷𝑛 : 𝑛 ∈ ℕ} ≤ 𝑥. The
second inequality for 𝐷𝑛 implies

𝑥 − sup{𝐷𝑚 : 𝑚 ∈ ℕ} ≤ 𝑥 − 𝐷𝑛 ≤ 10−𝑛 .
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As the inequality holds for all 𝑛 and 10−𝑛 can be made arbitrarily small (see  Exercise 1.5.8 ),
we have 𝑥 ≤ sup{𝐷𝑚 : 𝑚 ∈ ℕ}. Therefore, sup{𝐷𝑚 : 𝑚 ∈ ℕ} = 𝑥.

What is left to show is the uniqueness. Suppose 0.𝑒1𝑒2𝑒3 . . . is another representation of
𝑥. Let 𝐸𝑛 be the 𝑛-digit truncation of 0.𝑒1𝑒2𝑒3 . . ., and suppose 𝐸𝑛 < 𝑥 ≤ 𝐸𝑛 + 10−𝑛 for all
𝑛 ∈ ℕ. Suppose for some 𝐾 ∈ ℕ, 𝑒𝑛 = 𝑑𝑛 for all 𝑛 < 𝐾, so 𝐷𝐾−1 = 𝐸𝐾−1. Then

𝐸𝐾 = 𝐷𝐾−1 + 𝑒𝐾10−𝐾 < 𝑥 ≤ 𝐸𝐾 + 10−𝐾 = 𝐷𝐾−1 + 𝑒𝐾10−𝐾 + 10−𝐾 .

Subtracting 𝐷𝐾−1 and multiplying by 10𝐾 we get

𝑒𝐾 < (𝑥 − 𝐷𝐾−1)10𝐾 ≤ 𝑒𝐾 + 1.

Similarly,
𝑑𝐾 < (𝑥 − 𝐷𝐾−1)10𝐾 ≤ 𝑑𝐾 + 1.

Hence, both 𝑒𝐾 and 𝑑𝐾 are the largest integer 𝑗 such that 𝑗 < (𝑥 − 𝐷𝐾−1)10𝐾 , and therefore
𝑒𝐾 = 𝑑𝐾 . That is, the representation is unique. □

The representation is not unique if we do not require 𝐷𝑛 < 𝑥 for all 𝑛. For example, for
the number 1/2, the method in the proof obtains the representation

0.49999 . . . .

However, 1/2 also has the representation 0.50000 . . ..
The only numbers that have nonunique representations are ones that end in an infinite

sequence of 0s or an infinite sequence of 9s, because the only representation for which
𝐷𝑛 = 𝑥 is one where all digits past the 𝑛th digit are zero. In this case, there are exactly two
representations of 𝑥 (see the exercises).

Let us give another proof of the uncountability of the reals using decimal representations.
This is Cantor’s second proof, which is probably better known. This proof may seem
shorter, but it is because we already did the hard part above and we are left with a slick
trick to prove that ℝ is uncountable. This trick is called Cantor diagonalization and finds use
in other proofs as well.

Theorem 1.5.2 (Cantor). The set (0, 1] is uncountable.

Proof. Let 𝑋 B {𝑥1, 𝑥2, 𝑥3, . . .} be any countable subset of real numbers in (0, 1]. We will
construct a real number not in 𝑋. Let

𝑥𝑛 = 0.𝑑𝑛1 𝑑
𝑛
2 𝑑

𝑛
3 . . .

be the unique representation from the proposition, that is, 𝑑𝑛𝑗 is the 𝑗th digit of the 𝑛th
number. Let

𝑒𝑛 B

{
1 if 𝑑𝑛𝑛 ≠ 1,
2 if 𝑑𝑛𝑛 = 1.
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Let 𝐸𝑛 be the 𝑛-digit truncation of 𝑦 = 0.𝑒1𝑒2𝑒3 . . .. Because all the digits are nonzero we
get 𝐸𝑛 < 𝐸𝑛+1 ≤ 𝑦. Therefore,

𝐸𝑛 < 𝑦 ≤ 𝐸𝑛 + 10−𝑛

for all 𝑛, and the representation is the unique one for 𝑦 from the proposition. For every
𝑛, the 𝑛th digit of 𝑦 is different from the 𝑛th digit of 𝑥𝑛 , so 𝑦 ≠ 𝑥𝑛 . Therefore 𝑦 ∉ 𝑋, and
as 𝑋 was an arbitrary countable subset, (0, 1] must be uncountable. See  Figure 1.5 for an
example. □

𝑥1 = 0. 1 3 2 1 0 · · ·
𝑥2 = 0. 7 9 4 1 3 · · ·
𝑥3 = 0. 3 0 1 3 4 · · ·
𝑥4 = 0. 8 9 2 5 6 · · ·
𝑥5 = 0. 1 6 0 2 4 · · ·
...

...
...

...
...

...
... . . .

Number not in the list:
𝑦 = 0.21211 . . .

Figure 1.5: Example of Cantor diagonalization, the diagonal digits 𝑑𝑛𝑛 marked.

Using decimal digits we can also find lots of numbers that are not rational. The following
proposition is true for every rational number, but we give it only for 𝑥 ∈ (0, 1] for simplicity.

Proposition 1.5.3. If 𝑥 ∈ (0, 1] is a rational number and 𝑥 = 0.𝑑1𝑑2𝑑3 . . ., then the decimal digits
eventually start repeating. That is, there are positive integers 𝑁 and 𝑃, such that for all 𝑛 ≥ 𝑁 ,
𝑑𝑛 = 𝑑𝑛+𝑃 .

Proof. Suppose 𝑥 = 𝑝/𝑞 for positive integers 𝑝 and 𝑞. Suppose also that 𝑥 is a number with
a unique representation, as otherwise we have seen above that both its representations are
repeating, see also  Exercise 1.5.3 . This also means that 𝑥 ≠ 1 so 𝑝 < 𝑞.

To compute the first digit, we take 10𝑝 and divide by 𝑞. Let 𝑑1 be the quotient, and the
remainder 𝑟1 is some integer between 0 and 𝑞 − 1. That is, 𝑑1 is the largest integer such that
𝑑1𝑞 ≤ 10𝑝 and then 𝑟1 = 10𝑝 − 𝑑1𝑞. As 𝑝 < 𝑞, then 𝑑1 < 10, so 𝑑1 is a digit. Furthermore,

𝑑1
10 ≤ 𝑝

𝑞
=
𝑑1
10 + 𝑟1

10𝑞 ≤ 𝑑1
10 + 1

10 .

The first inequality is strict since 𝑥 has a unique representation. That is, 𝑑1 really is the first
digit. What is left is 𝑟1/(10𝑞). This is the same as computing the first digit of 𝑟1/𝑞. To compute
𝑑2 divide 10𝑟1 by 𝑞, and so on. After computing 𝑛−1 digits, we have 𝑝/𝑞 = 𝐷𝑛−1+ 𝑟𝑛−1/(10𝑛−1𝑞).
To get the 𝑛th digit, divide 10𝑟𝑛−1 by 𝑞 to get quotient 𝑑𝑛 , remainder 𝑟𝑛 , and the inequalities

𝑑𝑛
10 ≤ 𝑟𝑛−1

𝑞
=
𝑑𝑛
10 + 𝑟𝑛

10𝑞 ≤ 𝑑𝑛
10 + 1

10 .
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Dividing by 10𝑛−1 and adding 𝐷𝑛−1 we find

𝐷𝑛 ≤ 𝐷𝑛−1 + 𝑟𝑛−1
10𝑛−1𝑞

=
𝑝
𝑞
≤ 𝐷𝑛 + 1

10𝑛 .

By uniqueness, we really have the 𝑛th digit 𝑑𝑛 from the construction.
The new digit depends only the remainder from the previous step. There are at most 𝑞

possible remainders. Hence, the process must start repeating itself after at most 𝑞 steps,
and so 𝑃 is at most 𝑞. □

The converse of the proposition is also true and is left as an exercise.

Example 1.5.4: The number

𝑥 = 0.101001000100001000001 . . .

is irrational. That is, the digits are 𝑛 zeros, then a one, then 𝑛 + 1 zeros, then a one, and so
on and so forth. The fact that 𝑥 is irrational follows from the proposition; the digits never
start repeating. For every 𝑃, if we go far enough, we find a 1 followed by at least 𝑃 + 1
zeros.

1.5.1 Exercises
Exercise 1.5.1 (Easy): What is the decimal representation of 1 guaranteed by  Proposition 1.5.1 ? Make sure
to show that it does satisfy the condition.

Exercise 1.5.2: Prove the converse of  Proposition 1.5.3 , that is, if the digits in the decimal representation of 𝑥
are eventually repeating, then 𝑥 must be rational.

Exercise 1.5.3: Show that real numbers 𝑥 ∈ (0, 1) with nonunique decimal representation are exactly the
rational numbers that can be written as 𝑚

10𝑛 for some integers 𝑚 and 𝑛. In this case show that there exist
exactly two representations of 𝑥.

Exercise 1.5.4: Let 𝑏 ≥ 2 be an integer. Define a representation of a real number in [0, 1] in terms of base 𝑏
rather than base 10 and prove  Proposition 1.5.1 for base 𝑏.

Exercise 1.5.5: Using the previous exercise with 𝑏 = 2 (binary), show that cardinality of ℝ is the same as the
cardinality of P(ℕ), obtaining yet another (though related) proof that ℝ is uncountable. Hint: Construct two
injections, one from [0, 1] to P(ℕ) and one from P(ℕ) to [0, 1]. Hint 2: Given a set 𝐴 ⊂ ℕ, let the 𝑛th
binary digit of 𝑥 be 1 if 𝑛 ∈ 𝐴.

Exercise 1.5.6 (Challenging): Explicitly construct an injection from [0, 1] × [0, 1] to [0, 1] (think about
why this is so surprising 

‗
 ). Then describe the set of numbers in [0, 1] not in the image of your injection

(unless, of course, you managed to construct a bĳection). Hint: Consider even and odd digits of the decimal
expansion.

‗With quite a bit more work (or by applying the Cantor–Bernstein–Schröder theorem) one can prove that
there is a bĳection. When he proved this result, Cantor apparently wrote “I see it but I don’t believe it.”
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Exercise 1.5.7: Prove that if 𝑥 = 𝑝/𝑞 ∈ (0, 1] is a rational number, 𝑞 > 1, then the period 𝑃 of repeating
digits in the decimal representation of 𝑥 is in fact less than or equal to 𝑞 − 1.

Exercise 1.5.8: Prove that if 𝑏 ∈ ℕ and 𝑏 ≥ 2, then for every 𝜖 > 0, there is an 𝑛 ∈ ℕ such that 𝑏−𝑛 < 𝜖.
Hint: One possibility is to first prove that 𝑏𝑛 > 𝑛 for all 𝑛 ∈ ℕ by induction.

Exercise 1.5.9: Explicitly construct an injection 𝑓 : ℝ → ℝ \ℚ using  Proposition 1.5.3 .
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Chapter 2

Sequences and Series

2.1 Sequences and limits
Note: 2.5 lectures

Analysis is essentially about taking limits. The most basic type of a limit is a limit of a
sequence of real numbers. We have already seen sequences used informally. Let us give
the formal definition.

Definition 2.1.1. A sequence (of real numbers) is a function 𝑥 : ℕ → ℝ. Instead of 𝑥(𝑛), we
usually denote the 𝑛th element in the sequence by 𝑥𝑛 . To denote a sequence we write 

‗
 

{𝑥𝑛}∞𝑛=1.

A sequence {𝑥𝑛}∞𝑛=1 is bounded if the underlying function is bounded. That is, if there
exists a 𝐵 ∈ ℝ such that

|𝑥𝑛| ≤ 𝐵 for all 𝑛 ∈ ℕ.

In other words, the sequence {𝑥𝑛}∞𝑛=1 is bounded whenever the set {𝑥𝑛 : 𝑛 ∈ ℕ} is bounded.
We similarly define the words bounded below and bounded above.

When we need to give a concrete sequence, we often give each term as a formula in
terms of 𝑛. For example, {1/𝑛}∞𝑛=1 stands for the sequence 1, 1/2, 1/3, 1/4, 1/5, . . .. The sequence
{1/𝑛}∞𝑛=1 is a bounded sequence (𝐵 = 1 suffices). On the other hand, the sequence {𝑛}∞𝑛=1
stands for 1, 2, 3, 4, . . ., and this sequence is not bounded (why?).

While the notation for a sequence is similar  

†
 to that of a set, the notions are distinct. For

example, the sequence
{(−1)𝑛}∞𝑛=1 is the sequence −1, 1,−1, 1,−1, 1, . . ., whereas the set of

values, the range of the sequence, is just the set {−1, 1}. We write this set as
{(−1)𝑛 : 𝑛 ∈ ℕ

}
.

Another example of a sequence is the so-called constant sequence. That is a sequence
{𝑐}∞𝑛=1 = 𝑐, 𝑐, 𝑐, 𝑐, . . . consisting of a single constant 𝑐 ∈ ℝ repeating indefinitely.

‗It is common to use {𝑥𝑛} or {𝑥𝑛}𝑛 for brevity.
†[ BS ] use (𝑥𝑛)∞𝑛=1 to denote a sequence instead of {𝑥𝑛}∞𝑛=1, which is what [ R2 ] uses. Both are common.
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Definition 2.1.2. A sequence {𝑥𝑛}∞𝑛=1 is said to converge to a number 𝑥 ∈ ℝ if for every
𝜖 > 0, there exists an 𝑀 ∈ ℕ such that |𝑥𝑛 − 𝑥| < 𝜖 for all 𝑛 ≥ 𝑀. The number 𝑥 is called a
limit of the sequence. If the limit 𝑥 is unique, we write 

‗
 

lim
𝑛→∞ 𝑥𝑛 B 𝑥.

A sequence that converges is said to be convergent. Otherwise, we say the sequence
diverges or that it is divergent.

Shortly, in  Proposition 2.1.6 we will show that the limit 𝑥 is always unique if it exists.
It makes sense to talk about the limit of a sequence and we only need to show that the
sequence converges to one number. For the next couple of examples, let us pretend we
have already proved that limits are unique.

Intuitively, the limit being 𝑥 means that eventually every number in the sequence is
close to the number 𝑥. More precisely, we get arbitrarily close to the limit, provided we go
far enough in the sequence. It does not mean we ever reach the limit. It is possible, and
quite common, that there is no 𝑥𝑛 in the sequence that equals the limit 𝑥. We illustrate
the concept in  Figure 2.1 . In the figure we first think of the sequence as a graph, as it is a
function of ℕ. Secondly, we also plot it as a sequence of labeled points on the real line.

G

G + &

G − &

1 2 3 4 5 6 7 8 9 10

· · ·

M

G G + &G − &

G1G2 G3G4G5
G6

G7G8
G9G10

Figure 2.1: Illustration of convergence. On top, we show the first ten points of the sequence as
a graph with 𝑀 and the interval around the limit 𝑥 marked. On bottom, the points of the same
sequence are marked on the number line.

‗In text, this may get rendered as lim𝑛→∞ 𝑥𝑛 .
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When we write lim𝑛→∞ 𝑥𝑛 = 𝑥 for some real number 𝑥, we are saying two things: First,
that {𝑥𝑛}∞𝑛=1 is convergent, and second, that the limit is 𝑥.

The definition above is one of the most important definitions in analysis, and it is
necessary to understand it perfectly. The key point in the definition is that given any 𝜖 > 0,
we can find an 𝑀. The 𝑀 can depend on 𝜖, so we only pick an 𝑀 once we know 𝜖. Let us
illustrate convergence on a few examples.

Example 2.1.3: The constant sequence 1, 1, 1, 1, . . . converges to 1. For every 𝜖 > 0, pick
𝑀 = 1. That is, |𝑥𝑛 − 𝑥| = |1 − 1| < 𝜖 for all 𝑛.

Example 2.1.4: Claim: The sequence {1/𝑛}∞𝑛=1 is convergent and

lim
𝑛→∞

1
𝑛
= 0.

Proof: Given an 𝜖 > 0, find an 𝑀 ∈ ℕ such that 0 < 1/𝑀 < 𝜖 ( Archimedean property  at
work). For all 𝑛 ≥ 𝑀,

|𝑥𝑛 − 𝑥| =
���� 1𝑛 − 0

���� = ���� 1𝑛 ���� = 1
𝑛
≤ 1
𝑀

< 𝜖.

Example 2.1.5: The sequence
{(−1)𝑛}∞𝑛=1 is divergent. Proof: If there were a limit 𝑥, then

for 𝜖 = 1
2 we expect an 𝑀 that satisfies the definition. Suppose such an 𝑀 exists. Then for

an even 𝑛 ≥ 𝑀, we compute

1/2 > |𝑥𝑛 − 𝑥| = |1 − 𝑥| and 1/2 > |𝑥𝑛+1 − 𝑥| = |−1 − 𝑥| .
And we obtain a contradiction

2 = |1 − 𝑥 − (−1 − 𝑥)| ≤ |1 − 𝑥| + |−1 − 𝑥| < 1/2 + 1/2 = 1.

Proposition 2.1.6. A convergent sequence has a unique limit.
The proof of this proposition exhibits a useful technique in analysis. Many proofs

follow the same general scheme. We want to show a certain quantity is zero. We write
the quantity using the triangle inequality as two quantities, and we estimate each one by
arbitrarily small numbers.

Proof. Suppose {𝑥𝑛}∞𝑛=1 has limits 𝑥 and 𝑦. Take an arbitrary 𝜖 > 0. From the definition
find an 𝑀1 such that for all 𝑛 ≥ 𝑀1, |𝑥𝑛 − 𝑥| < 𝜖/2. Similarly, find an 𝑀2 such that for all
𝑛 ≥ 𝑀2, we have

��𝑥𝑛 − 𝑦�� < 𝜖/2. Now take an 𝑛 such that 𝑛 ≥ 𝑀1 and also 𝑛 ≥ 𝑀2, and
estimate ��𝑦 − 𝑥�� = ��𝑥𝑛 − 𝑥 − (𝑥𝑛 − 𝑦)

��
≤ |𝑥𝑛 − 𝑥| +

��𝑥𝑛 − 𝑦��
<

𝜖
2 + 𝜖

2 = 𝜖.

As
��𝑦 − 𝑥�� < 𝜖 for all 𝜖 > 0, then

��𝑦 − 𝑥�� = 0 and 𝑦 = 𝑥. Hence the limit (if it exists) is
unique. □
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Proposition 2.1.7. A convergent sequence {𝑥𝑛}∞𝑛=1 is bounded.

Proof. Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑥. Thus there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀,
we have |𝑥𝑛 − 𝑥| < 1. For 𝑛 ≥ 𝑀,

|𝑥𝑛| = |𝑥𝑛 − 𝑥 + 𝑥|
≤ |𝑥𝑛 − 𝑥| + |𝑥|
< 1 + |𝑥| .

The set
{|𝑥1| , |𝑥2| , . . . , |𝑥𝑀−1| , 1 + |𝑥|} is a finite set and hence let

𝐵 B max
{|𝑥1| , |𝑥2| , . . . , |𝑥𝑀−1| , 1 + |𝑥|}.

Then for all 𝑛 ∈ ℕ,
|𝑥𝑛| ≤ 𝐵. □

The sequence
{(−1)𝑛}∞𝑛=1 shows that the converse does not hold. A bounded sequence

is not necessarily convergent.

Example 2.1.8: Let us show
{
𝑛2+1
𝑛2+𝑛

}∞
𝑛=1

converges and

lim
𝑛→∞

𝑛2 + 1
𝑛2 + 𝑛 = 1.

Given 𝜖 > 0, find 𝑀 ∈ ℕ such that 1
𝑀 < 𝜖. Then for all 𝑛 ≥ 𝑀,���� 𝑛2 + 1

𝑛2 + 𝑛 − 1
���� = ����𝑛2 + 1 − (𝑛2 + 𝑛)

𝑛2 + 𝑛
���� = ���� 1 − 𝑛

𝑛2 + 𝑛
����

=
𝑛 − 1
𝑛2 + 𝑛

≤ 𝑛
𝑛2 + 𝑛 =

1
𝑛 + 1

≤ 1
𝑛
≤ 1
𝑀

< 𝜖.

Therefore, lim𝑛→∞ 𝑛2+1
𝑛2+𝑛 = 1. This example shows that sometimes to get what you want,

you must throw away some information to get a simpler estimate.

2.1.1 Monotone sequences
The simplest type of a sequence is a monotone sequence. Checking that a monotone
sequence converges is as easy as checking that it is bounded. It is also easy to find the limit
for a convergent monotone sequence, provided we can find the supremum or infimum of a
countable set of numbers.
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Definition 2.1.9. A sequence {𝑥𝑛}∞𝑛=1 is monotone increasing if 𝑥𝑛 ≤ 𝑥𝑛+1 for all 𝑛 ∈ ℕ. A
sequence {𝑥𝑛}∞𝑛=1 is monotone decreasing if 𝑥𝑛 ≥ 𝑥𝑛+1 for all 𝑛 ∈ ℕ. If a sequence is either
monotone increasing or monotone decreasing, we can simply say the sequence is monotone.  

‗
 

For example, {𝑛}∞𝑛=1 is monotone increasing, {1/𝑛}∞𝑛=1 is monotone decreasing, the
constant sequence {1}∞𝑛=1 is both monotone increasing and monotone decreasing, and{(−1)𝑛}∞𝑛=1 is not monotone. First few terms of a sample monotone increasing sequence
are shown in  Figure 2.2 .

1 2 3 4 5 6 7 8 9 10

Figure 2.2: First few terms of a monotone increasing sequence as a graph.

Theorem 2.1.10 (Monotone convergence theorem). A monotone sequence {𝑥𝑛}∞𝑛=1 is bounded
if and only if it is convergent.

Furthermore, if {𝑥𝑛}∞𝑛=1 is monotone increasing and bounded, then

lim
𝑛→∞ 𝑥𝑛 = sup{𝑥𝑛 : 𝑛 ∈ ℕ}.

If {𝑥𝑛}∞𝑛=1 is monotone decreasing and bounded, then

lim
𝑛→∞ 𝑥𝑛 = inf{𝑥𝑛 : 𝑛 ∈ ℕ}.

Proof. Consider a monotone increasing sequence {𝑥𝑛}∞𝑛=1. Suppose first the sequence is
bounded, that is, the set {𝑥𝑛 : 𝑛 ∈ ℕ} is bounded. Let

𝑥 B sup{𝑥𝑛 : 𝑛 ∈ ℕ}.
Let 𝜖 > 0 be arbitrary. As 𝑥 is the supremum, there must be at least one 𝑀 ∈ ℕ such that
𝑥𝑀 > 𝑥 − 𝜖. As {𝑥𝑛}∞𝑛=1 is monotone increasing, then it is easy to see (by  induction ) that
𝑥𝑛 ≥ 𝑥𝑀 for all 𝑛 ≥ 𝑀. Hence for all 𝑛 ≥ 𝑀,

|𝑥𝑛 − 𝑥| = 𝑥 − 𝑥𝑛 ≤ 𝑥 − 𝑥𝑀 < 𝜖.

‗Some authors use the word monotonic.
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So {𝑥𝑛}∞𝑛=1 converges to 𝑥. Therefore, a bounded monotone increasing sequence converges.
For the other direction, we already proved that a convergent sequence is bounded.

The proof for monotone decreasing sequences is left as an exercise. □

A monotone increasing sequence {𝑥𝑛}∞𝑛=1 is always bounded from below since 𝑥1 ≤
𝑥2 ≤ · · · ≤ 𝑥𝑛 for any 𝑛, so 𝑥1 is a lower bound. So to see if a monotone increasing sequence
is bounded, it is enough to check if it is bounded above. Similarly, a monotone decreasing
sequence is always bounded from above, so it is enough to check whether it is bounded
from below.

Example 2.1.11: Take the sequence
{ 1√

𝑛

}∞
𝑛=1.

The sequence is bounded below as 1√
𝑛
> 0 for all 𝑛 ∈ ℕ. Let us show that it is monotone

decreasing. We start with
√
𝑛 + 1 ≥ √

𝑛 (why is that true?). From this inequality we obtain

1√
𝑛 + 1

≤ 1√
𝑛
.

So the sequence is monotone decreasing and bounded below (hence bounded). Via
 Theorem 2.1.10 we find that the sequence is convergent and

lim
𝑛→∞

1√
𝑛
= inf

{
1√
𝑛

: 𝑛 ∈ ℕ

}
.

We already know that the infimum is greater than or equal to 0, as 0 is a lower bound. Take
a number 𝑏 ≥ 0 such that 𝑏 ≤ 1√

𝑛
for all 𝑛. We square both sides to obtain

𝑏2 ≤ 1
𝑛

for all 𝑛 ∈ ℕ.

We have seen before that this implies that 𝑏2 ≤ 0 (a consequence of the  Archimedean
property ). As 𝑏2 ≥ 0 as well, we have 𝑏2 = 0 and so 𝑏 = 0. Hence, 𝑏 = 0 is the greatest
lower bound, and lim

𝑛→∞
1√
𝑛
= 0.

Example 2.1.12: A word of caution: Showing that a monotone sequence is bounded in
order to use  Theorem 2.1.10 may be difficult. The sequence {1 + 1/2 + · · · + 1/𝑛}∞𝑛=1 is a
monotone increasing sequence that grows slowly and in fact grows slower and slower as 𝑛
gets larger. We will see, once we get to series, that this sequence has no upper bound and
so does not converge. It is not at all obvious that this sequence has no upper bound.

A common example of where monotone sequences arise is the following proposition.
The proof is left as an exercise.

Proposition 2.1.13. Let 𝑆 ⊂ ℝ be a nonempty bounded set. Then there exist monotone sequences
{𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 such that 𝑥𝑛 , 𝑦𝑛 ∈ 𝑆 and

sup 𝑆 = lim
𝑛→∞ 𝑥𝑛 and inf 𝑆 = lim

𝑛→∞ 𝑦𝑛 .
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2.1.2 Tail of a sequence
Definition 2.1.14. For a sequence {𝑥𝑛}∞𝑛=1, the 𝐾-tail (where 𝐾 ∈ ℕ), or just the tail, of
{𝑥𝑛}∞𝑛=1 is the sequence starting at 𝐾 + 1, usually written as

{𝑥𝑛+𝐾}∞𝑛=1 or {𝑥𝑛}∞𝑛=𝐾+1.

For example, the 4-tail of {1/𝑛}∞𝑛=1 is 1/5, 1/6, 1/7, 1/8, . . .. The 0-tail of a sequence is the
sequence itself. The convergence and the limit of a sequence only depends on its tail.

Proposition 2.1.15. Let {𝑥𝑛}∞𝑛=1 be a sequence. Then the following statements are equivalent:
(i) The sequence {𝑥𝑛}∞𝑛=1 converges.
(ii) The 𝐾-tail {𝑥𝑛+𝐾}∞𝑛=1 converges for all 𝐾 ∈ ℕ.
(iii) The 𝐾-tail {𝑥𝑛+𝐾}∞𝑛=1 converges for some 𝐾 ∈ ℕ.

Furthermore, if any (and hence all) of the limits exist, then for all 𝐾 ∈ ℕ

lim
𝑛→∞ 𝑥𝑛 = lim

𝑛→∞ 𝑥𝑛+𝐾 .

Proof. It is clear that  (ii) implies  (iii) . We will therefore show first that  (i) implies  (ii) , and
then we will show that  (iii) implies  (i) . That is,

 (ii) 

 (i)  (iii) 

to prove

to prove

In the process we will also show that the limits are equal.
We start with  (i) implies  (ii) . Suppose {𝑥𝑛}∞𝑛=1 converges to some 𝑥 ∈ ℝ. Let 𝐾 ∈ ℕ be

arbitrary, and define 𝑦𝑛 B 𝑥𝑛+𝐾. We wish to show that {𝑦𝑛}∞𝑛=1 converges to 𝑥. Given an
𝜖 > 0, there exists an 𝑀 ∈ ℕ such that |𝑥 − 𝑥𝑛| < 𝜖 for all 𝑛 ≥ 𝑀. Note that 𝑛 ≥ 𝑀 implies
𝑛 + 𝐾 ≥ 𝑀. Therefore, for all 𝑛 ≥ 𝑀, we have��𝑥 − 𝑦𝑛 �� = |𝑥 − 𝑥𝑛+𝐾| < 𝜖.

Consequently, {𝑦𝑛}∞𝑛=1 converges to 𝑥.
Let us move to  (iii) implies  (i) . Let 𝐾 ∈ ℕ be given, define 𝑦𝑛 B 𝑥𝑛+𝐾, and suppose

that {𝑦𝑛}∞𝑛=1 converges to 𝑥 ∈ ℝ. That is, given an 𝜖 > 0, there exists an 𝑀′ ∈ ℕ such that��𝑥 − 𝑦𝑛 �� < 𝜖 for all 𝑛 ≥ 𝑀′. Let 𝑀 B 𝑀′ + 𝐾. Then 𝑛 ≥ 𝑀 implies 𝑛 − 𝐾 ≥ 𝑀′. Thus,
whenever 𝑛 ≥ 𝑀, we have

|𝑥 − 𝑥𝑛| =
��𝑥 − 𝑦𝑛−𝐾 �� < 𝜖.

Therefore, {𝑥𝑛}∞𝑛=1 converges to 𝑥. □

At the end of the day, the limit does not care about how the sequence begins, it only
cares about the tail of the sequence. The beginning of the sequence may be arbitrary.
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For example, the sequence defined by 𝑥𝑛 B 𝑛
𝑛2+16 is decreasing if we start at 𝑛 = 4 (it is

increasing before). That is: {𝑥𝑛}∞𝑛=1 = 1/17, 1/10, 3/25, 1/8, 5/41, 3/26, 7/65, 1/10, 9/97, 5/58, . . ., and

1/17 < 1/10 < 3/25 < 1/8 > 5/41 > 3/26 > 7/65 > 1/10 > 9/97 > 5/58 > . . . .

If we throw away the first 3 terms and look at the 3-tail, it is decreasing. The proof is left as
an exercise. Since the 3-tail is monotone and bounded below by zero, it is convergent, and
therefore the sequence is convergent.

2.1.3 Subsequences
It is useful to sometimes consider only some terms of a sequence. A subsequence of {𝑥𝑛}∞𝑛=1
is a sequence that contains only some of the numbers from {𝑥𝑛}∞𝑛=1 in the same order.

Definition 2.1.16. Let {𝑥𝑛}∞𝑛=1 be a sequence. Let {𝑛𝑖}∞𝑖=1 be a strictly increasing sequence
of natural numbers, that is, 𝑛𝑖 < 𝑛𝑖+1 for all 𝑖 ∈ ℕ (in other words 𝑛1 < 𝑛2 < 𝑛3 < · · · ). The
sequence

{𝑥𝑛𝑖}∞𝑖=1

is called a subsequence of {𝑥𝑛}∞𝑛=1.

So the subsequence is the sequence 𝑥𝑛1 , 𝑥𝑛2 , 𝑥𝑛3 , . . .. Consider the sequence {1/𝑛}∞𝑛=1.
The sequence {1/3𝑖}∞𝑖=1 = 1, 1/3, 1/6, 1/9, . . . is a subsequence. To see how these two sequences
fit in the definition, take 𝑛𝑖 B 3𝑖, that is, {𝑛𝑖}∞𝑖=1 is the sequence 3, 6, 9, 12, . . .. The numbers
𝑥𝑛𝑖 in the subsequence must come from the original sequence. So 1, 0, 1/3, 0, 1/5, . . . is
not a subsequence of {1/𝑛}∞𝑛=1. Similarly, order must be preserved. So the sequence
1, 1/3, 1/2, 1/5, . . . is not a subsequence of {1/𝑛}∞𝑛=1.

A tail of a sequence is one special type of a subsequence. For an arbitrary subsequence,
we have the following proposition about convergence.
Proposition 2.1.17. If {𝑥𝑛}∞𝑛=1 is a convergent sequence, then every subsequence {𝑥𝑛𝑖}∞𝑖=1 is also
convergent, and

lim
𝑛→∞ 𝑥𝑛 = lim

𝑖→∞
𝑥𝑛𝑖 .

Proof. Suppose lim𝑛→∞ 𝑥𝑛 = 𝑥. So for every 𝜖 > 0, there is an 𝑀 ∈ ℕ such that for all
𝑛 ≥ 𝑀,

|𝑥𝑛 − 𝑥| < 𝜖.

It is not hard to prove (do it!) by  induction that 𝑛𝑖 ≥ 𝑖 for all 𝑖 ∈ ℕ. Hence 𝑖 ≥ 𝑀 implies
𝑛𝑖 ≥ 𝑀. Thus, for all 𝑖 ≥ 𝑀, ��𝑥𝑛𝑖 − 𝑥�� < 𝜖,

and we are done. □

Example 2.1.18: Existence of a convergent subsequence does not imply convergence of
the sequence itself. Take the sequence 0, 1, 0, 1, 0, 1, . . .. That is, 𝑥𝑛 = 0 if 𝑛 is odd, and
𝑥𝑛 = 1 if 𝑛 is even. The sequence {𝑥𝑛}∞𝑛=1 is divergent; however, the subsequence {𝑥2𝑖}∞𝑖=1
converges to 1 and the subsequence {𝑥2𝑖+1}∞𝑖=1 converges to 0. Compare  Proposition 2.3.7 .
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2.1.4 Exercises
In the following exercises, feel free to use what you know from calculus to find the limit, if it exists.
But you must prove that you found the correct limit, or prove that the sequence is divergent.

Exercise 2.1.1: Is the sequence {3𝑛}∞𝑛=1 bounded? Prove or disprove.

Exercise 2.1.2: Is the sequence {𝑛}∞𝑛=1 convergent? If so, what is the limit?

Exercise 2.1.3: Is the sequence
{ (−1)𝑛

2𝑛

}∞
𝑛=1

convergent? If so, what is the limit?

Exercise 2.1.4: Is the sequence {2−𝑛}∞𝑛=1 convergent? If so, what is the limit?

Exercise 2.1.5: Is the sequence
{ 𝑛
𝑛 + 1

}∞
𝑛=1

convergent? If so, what is the limit?

Exercise 2.1.6: Is the sequence
{ 𝑛
𝑛2 + 1

}∞
𝑛=1

convergent? If so, what is the limit?

Exercise 2.1.7: Let {𝑥𝑛}∞𝑛=1 be a sequence.

a) Show that lim
𝑛→∞ 𝑥𝑛 = 0 (that is, the limit exists and is zero) if and only if lim

𝑛→∞ |𝑥𝑛| = 0.

b) Find an example such that {|𝑥𝑛|}∞𝑛=1 converges and {𝑥𝑛}∞𝑛=1 diverges.

Exercise 2.1.8: Is the sequence
{

2𝑛
𝑛!

}∞
𝑛=1

convergent? If so, what is the limit?

Exercise 2.1.9: Show that the sequence
{

1
3√𝑛

}∞
𝑛=1

is monotone and bounded. Then use  Theorem 2.1.10 to

find the limit.

Exercise 2.1.10: Show that the sequence
{
𝑛 + 1
𝑛

}∞
𝑛=1

is monotone and bounded. Then use  Theorem 2.1.10 to

find the limit.

Exercise 2.1.11: Finish the proof of  Theorem 2.1.10 for monotone decreasing sequences.

Exercise 2.1.12: Prove  Proposition 2.1.13 .

Exercise 2.1.13: Let {𝑥𝑛}∞𝑛=1 be a convergent monotone sequence. Suppose there exists a 𝑘 ∈ ℕ such that

lim
𝑛→∞ 𝑥𝑛 = 𝑥𝑘 .

Show that 𝑥𝑛 = 𝑥𝑘 for all 𝑛 ≥ 𝑘.

Exercise 2.1.14: Find a convergent subsequence of the sequence
{(−1)𝑛}∞𝑛=1.

Exercise 2.1.15: Let {𝑥𝑛}∞𝑛=1 be a sequence defined by

𝑥𝑛 B

{
𝑛 if 𝑛 is odd,
1/𝑛 if 𝑛 is even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.
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Exercise 2.1.16: Let {𝑥𝑛}∞𝑛=1 be a sequence. Suppose there are two convergent subsequences {𝑥𝑛𝑖}∞𝑖=1 and
{𝑥𝑚𝑖}∞𝑖=1. Suppose

lim
𝑖→∞

𝑥𝑛𝑖 = 𝑎 and lim
𝑖→∞

𝑥𝑚𝑖 = 𝑏,

where 𝑎 ≠ 𝑏. Prove that {𝑥𝑛}∞𝑛=1 is not convergent, without using  Proposition 2.1.17 .

Exercise 2.1.17 (Tricky): Find a sequence {𝑥𝑛}∞𝑛=1 such that for every 𝑦 ∈ ℝ, there exists a subsequence
{𝑥𝑛𝑖}∞𝑖=1 converging to 𝑦.

Exercise 2.1.18 (Easy): Let {𝑥𝑛}∞𝑛=1 be a sequence and 𝑥 ∈ ℝ. Suppose for every 𝜖 > 0, there is an 𝑀 such
that |𝑥𝑛 − 𝑥| ≤ 𝜖 for all 𝑛 ≥ 𝑀. Show that lim

𝑛→∞ 𝑥𝑛 = 𝑥.

Exercise 2.1.19 (Easy): Let {𝑥𝑛}∞𝑛=1 be a sequence and 𝑥 ∈ ℝ such that there exists a 𝑘 ∈ ℕ such that for all
𝑛 ≥ 𝑘, 𝑥𝑛 = 𝑥. Prove that {𝑥𝑛}∞𝑛=1 converges to 𝑥.

Exercise 2.1.20: Let {𝑥𝑛}∞𝑛=1 be a sequence and define a sequence {𝑦𝑛}∞𝑛=1 by 𝑦2𝑘 B 𝑥𝑘2 and 𝑦2𝑘−1 B 𝑥𝑘
for all 𝑘 ∈ ℕ. Prove that {𝑥𝑛}∞𝑛=1 converges if and only if {𝑦𝑛}∞𝑛=1 converges. Furthermore, prove that if they
converge, then lim

𝑛→∞ 𝑥𝑛 = lim
𝑛→∞ 𝑦𝑛 .

Exercise 2.1.21: Show that the 3-tail of the sequence defined by 𝑥𝑛 B 𝑛
𝑛2+16 is monotone decreasing. Hint:

Suppose 𝑛 ≥ 𝑚 ≥ 4 and consider the numerator of the expression 𝑥𝑛 − 𝑥𝑚 .

Exercise 2.1.22: Suppose that {𝑥𝑛}∞𝑛=1 is a sequence such that the subsequences {𝑥2𝑛}∞𝑛=1, {𝑥2𝑛−1}∞𝑛=1, and
{𝑥3𝑛}∞𝑛=1 all converge. Show that {𝑥𝑛}∞𝑛=1 is convergent.

Exercise 2.1.23: Suppose that {𝑥𝑛}∞𝑛=1 is a monotone increasing sequence that has a convergent subsequence.
Show that {𝑥𝑛}∞𝑛=1 is convergent. Note: So  Proposition 2.1.17 is an “if and only if” for monotone sequences.
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2.2 Facts about limits of sequences
Note: 2–2.5 lectures, recursively defined sequences can safely be skipped

In this section we go over some basic results about the limits of sequences. We start by
looking at how sequences interact with inequalities.

2.2.1 Limits and inequalities

A basic lemma about limits and inequalities is the so-called squeeze lemma. It allows us to
show convergence of sequences in difficult cases if we find two other simpler convergent
sequences that “squeeze” the original sequence.

Lemma 2.2.1 (Squeeze lemma). Let {𝑎𝑛}∞𝑛=1, {𝑏𝑛}∞𝑛=1, and {𝑥𝑛}∞𝑛=1 be sequences such that

𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 for all 𝑛 ∈ ℕ.

Suppose {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 converge and

lim
𝑛→∞ 𝑎𝑛 = lim

𝑛→∞ 𝑏𝑛 .

Then {𝑥𝑛}∞𝑛=1 converges and

lim
𝑛→∞ 𝑥𝑛 = lim

𝑛→∞ 𝑎𝑛 = lim
𝑛→∞ 𝑏𝑛 .

Proof. Let 𝑥 B lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛 . Let 𝜖 > 0 be given. Find an 𝑀1 such that for all
𝑛 ≥ 𝑀1, we have that |𝑎𝑛 − 𝑥| < 𝜖, and an 𝑀2 such that for all 𝑛 ≥ 𝑀2, we have |𝑏𝑛 − 𝑥| < 𝜖.
Set 𝑀 B max{𝑀1, 𝑀2}. Suppose 𝑛 ≥ 𝑀. In particular, 𝑥 − 𝑎𝑛 < 𝜖, or 𝑥 − 𝜖 < 𝑎𝑛 . Similarly,
𝑏𝑛 < 𝑥 + 𝜖. Putting everything together, we find

𝑥 − 𝜖 < 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 < 𝑥 + 𝜖.

In other words, −𝜖 < 𝑥𝑛 − 𝑥 < 𝜖 or |𝑥𝑛 − 𝑥| < 𝜖. So {𝑥𝑛}∞𝑛=1 converges to 𝑥. See
 Figure 2.3 . □

𝑥 𝑥𝑛 𝑏𝑛𝑥 − 𝜖 𝑎𝑛 𝑥 + 𝜖

𝜖𝜖

Figure 2.3: Squeeze lemma proof in picture.
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Example 2.2.2: One application of the  squeeze lemma is to compute limits of sequences
using limits that we already know. For example, consider the sequence

{ 1
𝑛
√
𝑛

}∞
𝑛=1. Since√

𝑛 ≥ 1 for all 𝑛 ∈ ℕ, we have
0 ≤ 1

𝑛
√
𝑛
≤ 1
𝑛

for all 𝑛 ∈ ℕ. We already know lim𝑛→∞ 1/𝑛 = 0. Hence, using the constant sequence {0}∞𝑛=1
and the sequence {1/𝑛}∞𝑛=1 in the squeeze lemma, we conclude

lim
𝑛→∞

1
𝑛
√
𝑛
= 0.

Limits, when they exist, preserve non-strict inequalities.
Lemma 2.2.3. Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be convergent sequences and

𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ ℕ.

Then
lim
𝑛→∞ 𝑥𝑛 ≤ lim

𝑛→∞ 𝑦𝑛 .

Proof. Let 𝑥 B lim𝑛→∞ 𝑥𝑛 and 𝑦 B lim𝑛→∞ 𝑦𝑛 . Let 𝜖 > 0 be given. Find an 𝑀1 such
that for all 𝑛 ≥ 𝑀1, we have |𝑥𝑛 − 𝑥| < 𝜖/2. Find an 𝑀2 such that for all 𝑛 ≥ 𝑀2, we
have

��𝑦𝑛 − 𝑦�� < 𝜖/2. In particular, for some 𝑛 ≥ max{𝑀1, 𝑀2}, we have 𝑥 − 𝑥𝑛 < 𝜖/2 and
𝑦𝑛 − 𝑦 < 𝜖/2. We add these inequalities to obtain

𝑦𝑛 − 𝑥𝑛 + 𝑥 − 𝑦 < 𝜖, or 𝑦𝑛 − 𝑥𝑛 < 𝑦 − 𝑥 + 𝜖.

Since 𝑥𝑛 ≤ 𝑦𝑛 , we have 0 ≤ 𝑦𝑛 − 𝑥𝑛 and hence 0 < 𝑦 − 𝑥 + 𝜖. In other words,

𝑥 − 𝑦 < 𝜖.

Because 𝜖 > 0 was arbitrary, we obtain 𝑥 − 𝑦 ≤ 0. Therefore, 𝑥 ≤ 𝑦. □

The next corollary follows by using constant sequences in  Lemma 2.2.3 . The proof is
left as an exercise.
Corollary 2.2.4.

(i) If {𝑥𝑛}∞𝑛=1 is a convergent sequence such that 𝑥𝑛 ≥ 0 for all 𝑛 ∈ ℕ, then

lim
𝑛→∞ 𝑥𝑛 ≥ 0.

(ii) Let 𝑎, 𝑏 ∈ ℝ and let {𝑥𝑛}∞𝑛=1 be a convergent sequence such that

𝑎 ≤ 𝑥𝑛 ≤ 𝑏 for all 𝑛 ∈ ℕ.

Then
𝑎 ≤ lim

𝑛→∞ 𝑥𝑛 ≤ 𝑏.

In  Lemma 2.2.3 and  Corollary 2.2.4 we cannot simply replace all the non-strict inequali-
ties with strict inequalities. For example, let 𝑥𝑛 B −1/𝑛 and 𝑦𝑛 B 1/𝑛. Then 𝑥𝑛 < 𝑦𝑛 , 𝑥𝑛 < 0,
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and 𝑦𝑛 > 0 for all 𝑛. However, these inequalities are not preserved by the limit operation
as lim𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑦𝑛 = 0. The moral of this example is that strict inequalities may
become non-strict inequalities when limits are applied; if we know 𝑥𝑛 < 𝑦𝑛 for all 𝑛, we
may only conclude

lim
𝑛→∞ 𝑥𝑛 ≤ lim

𝑛→∞ 𝑦𝑛 .

This issue is a common source of errors.

2.2.2 Continuity of algebraic operations
Limits interact nicely with algebraic operations.

Proposition 2.2.5. Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be convergent sequences.
(i) The sequence {𝑧𝑛}∞𝑛=1, where 𝑧𝑛 B 𝑥𝑛 + 𝑦𝑛 , converges and

lim
𝑛→∞(𝑥𝑛 + 𝑦𝑛) = lim

𝑛→∞ 𝑧𝑛 = lim
𝑛→∞ 𝑥𝑛 + lim

𝑛→∞ 𝑦𝑛 .

(ii) The sequence {𝑧𝑛}∞𝑛=1, where 𝑧𝑛 B 𝑥𝑛 − 𝑦𝑛 , converges and

lim
𝑛→∞(𝑥𝑛 − 𝑦𝑛) = lim

𝑛→∞ 𝑧𝑛 = lim
𝑛→∞ 𝑥𝑛 − lim

𝑛→∞ 𝑦𝑛 .

(iii) The sequence {𝑧𝑛}∞𝑛=1, where 𝑧𝑛 B 𝑥𝑛𝑦𝑛 , converges and

lim
𝑛→∞(𝑥𝑛𝑦𝑛) = lim

𝑛→∞ 𝑧𝑛 =
(

lim
𝑛→∞ 𝑥𝑛

) (
lim
𝑛→∞ 𝑦𝑛

)
.

(iv) If lim𝑛→∞ 𝑦𝑛 ≠ 0 and 𝑦𝑛 ≠ 0 for all 𝑛 ∈ ℕ, then the sequence {𝑧𝑛}∞𝑛=1, where 𝑧𝑛 B
𝑥𝑛
𝑦𝑛

,

converges and

lim
𝑛→∞

𝑥𝑛
𝑦𝑛

= lim
𝑛→∞ 𝑧𝑛 =

lim𝑛→∞ 𝑥𝑛
lim𝑛→∞ 𝑦𝑛

.

Proof. We start with  (i) . Suppose {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 are convergent sequences and write
𝑧𝑛 B 𝑥𝑛 + 𝑦𝑛 . Let 𝑥 B lim𝑛→∞ 𝑥𝑛 , 𝑦 B lim𝑛→∞ 𝑦𝑛 , and 𝑧 B 𝑥 + 𝑦.

Let 𝜖 > 0 be given. Find an 𝑀1 such that for all 𝑛 ≥ 𝑀1, we have |𝑥𝑛 − 𝑥| < 𝜖/2. Find
an 𝑀2 such that for all 𝑛 ≥ 𝑀2, we have

��𝑦𝑛 − 𝑦�� < 𝜖/2. Take 𝑀 B max{𝑀1, 𝑀2}. For all
𝑛 ≥ 𝑀, we have

|𝑧𝑛 − 𝑧| =
��(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦)��

=
��𝑥𝑛 − 𝑥 + 𝑦𝑛 − 𝑦��

≤ |𝑥𝑛 − 𝑥| +
��𝑦𝑛 − 𝑦��

<
𝜖
2 + 𝜖

2 = 𝜖.

Therefore  (i) is proved. Proof of  (ii) is almost identical and is left as an exercise.
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Let us tackle  (iii) . Suppose again that {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 are convergent sequences
and write 𝑧𝑛 B 𝑥𝑛𝑦𝑛 . Let 𝑥 B lim𝑛→∞ 𝑥𝑛 , 𝑦 B lim𝑛→∞ 𝑦𝑛 , and 𝑧 B 𝑥𝑦.

Let 𝜖 > 0 be given. Let 𝐾 B max{|𝑥| , ��𝑦�� , 𝜖/3, 1}. Find an 𝑀1 such that for all 𝑛 ≥ 𝑀1,
we have |𝑥𝑛 − 𝑥| < 𝜖

3𝐾 . Find an 𝑀2 such that for all 𝑛 ≥ 𝑀2, we have
��𝑦𝑛 − 𝑦�� < 𝜖

3𝐾 . Take
𝑀 B max{𝑀1, 𝑀2}. For all 𝑛 ≥ 𝑀, we have

|𝑧𝑛 − 𝑧| =
��(𝑥𝑛𝑦𝑛) − (𝑥𝑦)��

=
��(𝑥𝑛 − 𝑥 + 𝑥)(𝑦𝑛 − 𝑦 + 𝑦) − 𝑥𝑦��

=
��(𝑥𝑛 − 𝑥)𝑦 + 𝑥(𝑦𝑛 − 𝑦) + (𝑥𝑛 − 𝑥)(𝑦𝑛 − 𝑦)

��
≤ ��(𝑥𝑛 − 𝑥)𝑦�� + ��𝑥(𝑦𝑛 − 𝑦)�� + ��(𝑥𝑛 − 𝑥)(𝑦𝑛 − 𝑦)��
= |𝑥𝑛 − 𝑥|

��𝑦�� + |𝑥| ��𝑦𝑛 − 𝑦�� + |𝑥𝑛 − 𝑥|
��𝑦𝑛 − 𝑦��

<
𝜖

3𝐾𝐾 + 𝐾 𝜖
3𝐾 + 𝜖

3𝐾
𝜖

3𝐾 (now notice that 𝜖
3𝐾 ≤ 1 and 𝐾 ≥ 1)

≤ 𝜖
3 + 𝜖

3 + 𝜖
3 = 𝜖.

Finally, we examine  (iv) . Instead of proving  (iv) directly, we prove the following simpler
claim:

Claim: If {𝑦𝑛}∞𝑛=1 is a convergent sequence such that lim𝑛→∞ 𝑦𝑛 ≠ 0 and 𝑦𝑛 ≠ 0 for all 𝑛 ∈ ℕ,
then {1/𝑦𝑛}∞𝑛=1 converges and

lim
𝑛→∞

1
𝑦𝑛

=
1

lim𝑛→∞ 𝑦𝑛
.

Once the claim is proved, we take the sequence {1/𝑦𝑛}∞𝑛=1, multiply it by the sequence
{𝑥𝑛}∞𝑛=1 and apply item  (iii) .

Proof of claim: Let 𝜖 > 0 be given. Let 𝑦 B lim𝑛→∞ 𝑦𝑛 . As
��𝑦�� ≠ 0, then min

{��𝑦��2 𝜖
2 ,

|𝑦|
2

}
>

0. Find an 𝑀 such that for all 𝑛 ≥ 𝑀, we have

��𝑦𝑛 − 𝑦�� < min

{��𝑦��2 𝜖
2 ,

��𝑦��
2

}
.

For all 𝑛 ≥ 𝑀, we have
��𝑦 − 𝑦𝑛 �� < |𝑦|/2, and so

��𝑦�� = ��𝑦 − 𝑦𝑛 + 𝑦𝑛 �� ≤ ��𝑦 − 𝑦𝑛 �� + ��𝑦𝑛 �� < ��𝑦��
2 + ��𝑦𝑛 �� .

Subtracting |𝑦|/2 from both sides we obtain |𝑦|/2 <
��𝑦𝑛 ��, or in other words,

1��𝑦𝑛 �� < 2��𝑦�� .
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We finish the proof of the claim:���� 1
𝑦𝑛

− 1
𝑦

���� = ����𝑦 − 𝑦𝑛𝑦𝑦𝑛

����
=

��𝑦 − 𝑦𝑛 ����𝑦�� ��𝑦𝑛 ��
≤

��𝑦 − 𝑦𝑛 ����𝑦�� 2��𝑦��
<

��𝑦��2 𝜖
2��𝑦�� 2��𝑦�� = 𝜖.

And we are done. □

By plugging in constant sequences, we get several easy corollaries. If 𝑐 ∈ ℝ and {𝑥𝑛}∞𝑛=1
is a convergent sequence, then for example

lim
𝑛→∞ 𝑐𝑥𝑛 = 𝑐

(
lim
𝑛→∞ 𝑥𝑛

)
and lim

𝑛→∞(𝑐 + 𝑥𝑛) = 𝑐 + lim
𝑛→∞ 𝑥𝑛 .

Similarly, we find such equalities for constant subtraction and division.
As we can take limits past multiplication we can show (exercise) that lim𝑛→∞ 𝑥𝑘𝑛 =

(lim𝑛→∞ 𝑥𝑛)𝑘 for all 𝑘 ∈ ℕ. That is, we can take limits past powers. Let us see if we can do
the same with roots.
Proposition 2.2.6. Let {𝑥𝑛}∞𝑛=1 be a convergent sequence such that 𝑥𝑛 ≥ 0 for all 𝑛 ∈ ℕ. Then

lim
𝑛→∞

√
𝑥𝑛 =

√
lim
𝑛→∞ 𝑥𝑛 .

Of course, to even make this statement, we need to apply  Corollary 2.2.4 to show that
lim𝑛→∞ 𝑥𝑛 ≥ 0, so that we can take the square root without worry.

Proof. Let {𝑥𝑛}∞𝑛=1 be a convergent sequence and let 𝑥 B lim𝑛→∞ 𝑥𝑛 . As we just mentioned,
𝑥 ≥ 0.

First suppose 𝑥 = 0. Let 𝜖 > 0 be given. Then there is an 𝑀 such that for all 𝑛 ≥ 𝑀, we
have 𝑥𝑛 = |𝑥𝑛| < 𝜖2, or in other words,

√
𝑥𝑛 < 𝜖. Hence,��√𝑥𝑛 − √
𝑥
�� = √

𝑥𝑛 < 𝜖.

Now suppose 𝑥 > 0 (and hence
√
𝑥 > 0).��√𝑥𝑛 − √
𝑥
�� = ���� 𝑥𝑛 − 𝑥√

𝑥𝑛 +
√
𝑥

����
=

1√
𝑥𝑛 +

√
𝑥
|𝑥𝑛 − 𝑥|

≤ 1√
𝑥
|𝑥𝑛 − 𝑥| .

We leave the rest of the proof to the reader. □
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A similar proof works for the 𝑘th root. That is, we also obtain lim𝑛→∞ 𝑥
1/𝑘
𝑛 =

(lim𝑛→∞ 𝑥𝑛)1/𝑘 . We leave this to the reader as a challenging exercise.
We may also want to take the limit past the absolute value sign. The converse of this

proposition is not true, see  Exercise 2.1.7 part b).

Proposition 2.2.7. If {𝑥𝑛}∞𝑛=1 is a convergent sequence, then {|𝑥𝑛|}∞𝑛=1 is convergent and

lim
𝑛→∞ |𝑥𝑛| =

��� lim
𝑛→∞ 𝑥𝑛

��� .
Proof. We simply note the reverse triangle inequality�� |𝑥𝑛| − |𝑥| �� ≤ |𝑥𝑛 − 𝑥| .
Hence if |𝑥𝑛 − 𝑥| can be made arbitrarily small, so can

�� |𝑥𝑛| − |𝑥| ��. Details are left to the
reader. □

Let us see an example putting the propositions above together. Since lim𝑛→∞ 1/𝑛 = 0,
then

lim
𝑛→∞

���√1 + 1/𝑛 − 100/𝑛2

��� = �����√1 +
(

lim
𝑛→∞

1/𝑛
)
− 100

(
lim
𝑛→∞

1/𝑛
) (

lim
𝑛→∞

1/𝑛
)����� = 1.

That is, the limit on the left-hand side exists because the right-hand side exists. You really
should read the equality above from right to left.

On the other hand you must apply the propositions carefully. For example, by rewriting
the expression with common denominator first we find

lim
𝑛→∞

(
𝑛2

𝑛 + 1 − 𝑛
)
= −1.

However,
{
𝑛2

𝑛+1
}∞
𝑛=1 and {𝑛}∞𝑛=1 are not convergent, so

(
lim
𝑛→∞

𝑛2

𝑛+1

)
−

(
lim
𝑛→∞ 𝑛

)
is nonsense.

2.2.3 Recursively defined sequences
Now that we know we can interchange limits and algebraic operations, we can compute
the limits of many sequences. One such class are recursively defined sequences, that is,
sequences where the next number in the sequence is computed using a formula from a
fixed number of preceding elements in the sequence.

Example 2.2.8: Let {𝑥𝑛}∞𝑛=1 be defined by 𝑥1 B 2 and

𝑥𝑛+1 B 𝑥𝑛 − 𝑥2
𝑛 − 2
2𝑥𝑛

.

We must first find out if this sequence is well-defined; we must show we never divide by
zero. Then we must find out if the sequence converges. Only then can we attempt to find
the limit.
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So let us prove that for all 𝑛 𝑥𝑛 exists and 𝑥𝑛 > 0 (so the sequence is well-defined
and bounded below). Let us show this by  induction . We know that 𝑥1 = 2 > 0. For the
induction step, suppose 𝑥𝑛 exists and 𝑥𝑛 > 0. Then

𝑥𝑛+1 = 𝑥𝑛 − 𝑥2
𝑛 − 2
2𝑥𝑛

=
2𝑥2

𝑛 − 𝑥2
𝑛 + 2

2𝑥𝑛
=
𝑥2
𝑛 + 2
2𝑥𝑛

.

It is always true that 𝑥2
𝑛 + 2 > 0, and as 𝑥𝑛 > 0, then 𝑥𝑛+1 = 𝑥2

𝑛+2
2𝑥𝑛 > 0.

Next let us show that the sequence is monotone decreasing. If we show that 𝑥2
𝑛 − 2 ≥ 0

for all 𝑛, then 𝑥𝑛+1 ≤ 𝑥𝑛 for all 𝑛. Obviously 𝑥2
1 − 2 = 4 − 2 = 2 > 0. For an arbitrary 𝑛, we

have

𝑥2
𝑛+1 − 2 =

(
𝑥2
𝑛 + 2
2𝑥𝑛

)2

− 2 =
𝑥4
𝑛 + 4𝑥2

𝑛 + 4 − 8𝑥2
𝑛

4𝑥2
𝑛

=
𝑥4
𝑛 − 4𝑥2

𝑛 + 4
4𝑥2

𝑛
=

(
𝑥2
𝑛 − 2

)2

4𝑥2
𝑛

.

Since squares are nonnegative, 𝑥2
𝑛+1 − 2 ≥ 0 for all 𝑛. Therefore, {𝑥𝑛}∞𝑛=1 is monotone

decreasing and bounded (𝑥𝑛 > 0 for all 𝑛), and so the limit exists. It remains to find the
limit.

Write
2𝑥𝑛𝑥𝑛+1 = 𝑥2

𝑛 + 2.
Since {𝑥𝑛+1}∞𝑛=1 is the 1-tail of {𝑥𝑛}∞𝑛=1, it converges to the same limit. Let us define
𝑥 B lim𝑛→∞ 𝑥𝑛 . Take the limit of both sides to obtain

2𝑥2 = 𝑥2 + 2,

or 𝑥2 = 2. As 𝑥𝑛 > 0 for all 𝑛 we get 𝑥 ≥ 0, and therefore 𝑥 =
√

2.

You may have seen the sequence above before. It is Newton’s method 

‗
 for finding the

square root of 2. This method comes up often in practice and converges very rapidly. We
used the fact that 𝑥2

1 − 2 > 0, although it was not strictly needed to show convergence by
considering a tail of the sequence. The sequence converges as long as 𝑥1 ≠ 0, although
with a negative 𝑥1 we would arrive at 𝑥 = −√2. By replacing the 2 in the numerator we
obtain the square root of any positive number. These statements are left as an exercise.

You should, however, be careful. Before taking any limits, you must make sure the
sequence converges. Let us see an example.

Example 2.2.9: Suppose 𝑥1 B 1 and 𝑥𝑛+1 B 𝑥2
𝑛 + 𝑥𝑛 . If we blindly assumed that the limit

exists (call it 𝑥), then we would get the equation 𝑥 = 𝑥2 + 𝑥, from which we might conclude
𝑥 = 0. However, it is not hard to show that {𝑥𝑛}∞𝑛=1 is unbounded and therefore does not
converge.

The thing to notice in this example is that the method still works, but it depends on
the initial value 𝑥1. If we set 𝑥1 B 0, then the sequence converges and the limit really is 0.
An entire branch of mathematics, called dynamics, deals precisely with these issues. See

 Exercise 2.2.14 .
‗Named after the English physicist and mathematician  Isaac Newton (1642–1726/7).

https://en.wikipedia.org/wiki/Isaac_Newton
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2.2.4 Some convergence tests
It is not always necessary to go back to the definition of convergence to prove that a
sequence is convergent. We first give a simple convergence test. The main idea is that
{𝑥𝑛}∞𝑛=1 converges to 𝑥 if and only if {|𝑥𝑛 − 𝑥|}∞𝑛=1 converges to zero.
Proposition 2.2.10. Let {𝑥𝑛}∞𝑛=1 be a sequence. Suppose there is an 𝑥 ∈ ℝ and a convergent
sequence {𝑎𝑛}∞𝑛=1 such that

lim
𝑛→∞ 𝑎𝑛 = 0

and
|𝑥𝑛 − 𝑥| ≤ 𝑎𝑛 for all 𝑛 ∈ ℕ.

Then {𝑥𝑛}∞𝑛=1 converges and lim
𝑛→∞ 𝑥𝑛 = 𝑥.

Proof. Let 𝜖 > 0 be given. Note that 𝑎𝑛 ≥ 0 for all 𝑛. Find an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀,
we have 𝑎𝑛 = |𝑎𝑛 − 0| < 𝜖. Then, for all 𝑛 ≥ 𝑀, we have

|𝑥𝑛 − 𝑥| ≤ 𝑎𝑛 < 𝜖. □

As the proposition shows, to study when a sequence has a limit is the same as studying
when another sequence goes to zero. In general, it may be hard to decide if a sequence
converges, but for certain sequences there exist easy to apply tests that tell us if the sequence
converges or not. Let us see one such test. First, let us compute the limit of a certain specific
sequence.
Proposition 2.2.11. Let 𝑐 > 0.

(i) If 𝑐 < 1, then
lim
𝑛→∞ 𝑐

𝑛 = 0.

(ii) If 𝑐 > 1, then {𝑐𝑛}∞𝑛=1 is unbounded.

Proof. First consider 𝑐 < 1. As 𝑐 > 0, then 𝑐𝑛 > 0 for all 𝑛 ∈ ℕ by  induction . As 𝑐 < 1, then
𝑐𝑛+1 < 𝑐𝑛 for all 𝑛. So {𝑐𝑛}∞𝑛=1 is a decreasing sequence that is bounded below. Hence, it is
convergent. Let 𝑥 B lim𝑛→∞ 𝑐𝑛 . The 1-tail {𝑐𝑛+1}∞𝑛=1 also converges to 𝑥. Taking the limit
of both sides of 𝑐𝑛+1 = 𝑐 · 𝑐𝑛 , we obtain 𝑥 = 𝑐𝑥, or (1− 𝑐)𝑥 = 0. It follows that 𝑥 = 0 as 𝑐 ≠ 1.

Now consider 𝑐 > 1. Let 𝐵 > 0 be arbitrary. As 1/𝑐 < 1, then
{(1/𝑐)𝑛}∞𝑛=1 converges to 0.

Hence for some large enough 𝑛, we get

1
𝑐𝑛

=

(
1
𝑐

)𝑛
<

1
𝐵
.

In other words, 𝑐𝑛 > 𝐵, and 𝐵 is not an upper bound for {𝑐𝑛}∞𝑛=1. As 𝐵 was arbitrary,
{𝑐𝑛}∞𝑛=1 is unbounded. □

In the proposition above, the ratio of the (𝑛 + 1)th term and the 𝑛th term is 𝑐. We
generalize this simple result to a larger class of sequences. The following lemma will come
up again once we get to series.
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Lemma 2.2.12 (Ratio test for sequences). Let {𝑥𝑛}∞𝑛=1 be a sequence such that 𝑥𝑛 ≠ 0 for all 𝑛
and such that the limit

𝐿 B lim
𝑛→∞

|𝑥𝑛+1|
|𝑥𝑛| exists.

(i) If 𝐿 < 1, then {𝑥𝑛}∞𝑛=1 converges and lim
𝑛→∞ 𝑥𝑛 = 0.

(ii) If 𝐿 > 1, then {𝑥𝑛}∞𝑛=1 is unbounded (hence diverges).

If 𝐿 exists, but 𝐿 = 1, the lemma says nothing. We cannot make any conclusion based
on that information alone. For example, the sequence {1/𝑛}∞𝑛=1 converges to zero, but 𝐿 = 1.
The constant sequence {1}∞𝑛=1 converges to 1, not zero, and 𝐿 = 1. The sequence

{(−1)𝑛}∞𝑛=1
does not converge at all, and 𝐿 = 1 as well. Finally, the sequence {𝑛}∞𝑛=1 is unbounded, yet
again 𝐿 = 1. The statement of the lemma may be strengthened somewhat, see exercises

 2.2.13 and  2.3.15 .

Proof. Suppose 𝐿 < 1. As |𝑥𝑛+1|
|𝑥𝑛 | ≥ 0 for all 𝑛, then 𝐿 ≥ 0. Pick 𝑟 such that 𝐿 < 𝑟 < 1. We

wish to compare the sequence {𝑥𝑛}∞𝑛=1 to the sequence {𝑟𝑛}∞𝑛=1. The idea is that while the
ratio |𝑥𝑛+1|

|𝑥𝑛 | is not going to be less than 𝐿 eventually, it will eventually be less than 𝑟, which
is still less than 1. The intuitive idea of the proof is illustrated in  Figure 2.4 .

1𝐿 𝑟

Figure 2.4: The short lines represent the ratios |𝑥𝑛+1|
|𝑥𝑛 | approaching 𝐿 < 1.

As 𝑟 − 𝐿 > 0, there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀, we have���� |𝑥𝑛+1|
|𝑥𝑛| − 𝐿

���� < 𝑟 − 𝐿.

Therefore, for 𝑛 ≥ 𝑀,

|𝑥𝑛+1|
|𝑥𝑛| − 𝐿 < 𝑟 − 𝐿 or |𝑥𝑛+1|

|𝑥𝑛| < 𝑟.

For 𝑛 > 𝑀 (that is for 𝑛 ≥ 𝑀 + 1) write

|𝑥𝑛| = |𝑥𝑀| |𝑥𝑀+1|
|𝑥𝑀|

|𝑥𝑀+2|
|𝑥𝑀+1| · · ·

|𝑥𝑛|
|𝑥𝑛−1| < |𝑥𝑀| 𝑟𝑟 · · · 𝑟 = |𝑥𝑀| 𝑟𝑛−𝑀 = (|𝑥𝑀| 𝑟−𝑀)𝑟𝑛 .

The sequence {𝑟𝑛}∞𝑛=1 converges to zero and hence |𝑥𝑀| 𝑟−𝑀𝑟𝑛 converges to zero. By
 Proposition 2.2.10 , the 𝑀-tail {𝑥𝑛}∞𝑛=𝑀+1 converges to zero and therefore {𝑥𝑛}∞𝑛=1 converges
to zero.
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Now suppose 𝐿 > 1. Pick 𝑟 such that 1 < 𝑟 < 𝐿. As 𝐿 − 𝑟 > 0, there exists an 𝑀 ∈ ℕ

such that for all 𝑛 ≥ 𝑀 ���� |𝑥𝑛+1|
|𝑥𝑛| − 𝐿

���� < 𝐿 − 𝑟.

Therefore,
|𝑥𝑛+1|
|𝑥𝑛| > 𝑟.

Again for 𝑛 > 𝑀, write

|𝑥𝑛| = |𝑥𝑀| |𝑥𝑀+1|
|𝑥𝑀|

|𝑥𝑀+2|
|𝑥𝑀+1| · · ·

|𝑥𝑛|
|𝑥𝑛−1| > |𝑥𝑀| 𝑟𝑟 · · · 𝑟 = |𝑥𝑀| 𝑟𝑛−𝑀 = (|𝑥𝑀| 𝑟−𝑀)𝑟𝑛 .

The sequence {𝑟𝑛}∞𝑛=1 is unbounded (since 𝑟 > 1), and so {𝑥𝑛}∞𝑛=1 cannot be bounded (if
|𝑥𝑛| ≤ 𝐵 for all 𝑛, then 𝑟𝑛 < 𝐵

|𝑥𝑀 | 𝑟
𝑀 for all 𝑛 > 𝑀, which is impossible). Consequently,

{𝑥𝑛}∞𝑛=1 cannot converge. □

Example 2.2.13: A simple application of the lemma above is to prove

lim
𝑛→∞

2𝑛
𝑛! = 0.

Proof: Compute
2𝑛+1/(𝑛 + 1)!

2𝑛/𝑛!
=

2𝑛+1

2𝑛
𝑛!

(𝑛 + 1)! =
2

𝑛 + 1 .

It is not hard to see that
{ 2
𝑛+1

}∞
𝑛=1 converges to zero. The conclusion follows by the lemma.

Example 2.2.14: A more complicated (and useful) application of the ratio test is to prove

lim
𝑛→∞ 𝑛

1/𝑛 = 1.

Proof: Let 𝜖 > 0 be given. Consider the sequence
{

𝑛
(1+𝜖)𝑛

}∞
𝑛=1. Compute

(𝑛 + 1)/(1 + 𝜖)𝑛+1

𝑛/(1 + 𝜖)𝑛 =
𝑛 + 1
𝑛

1
1 + 𝜖

.

The limit of 𝑛+1
𝑛 = 1 + 1

𝑛 as 𝑛 → ∞ is 1, and so

lim
𝑛→∞

(𝑛 + 1)/(1 + 𝜖)𝑛+1

𝑛/(1 + 𝜖)𝑛 =
1

1 + 𝜖
< 1.

Therefore,
{

𝑛
(1+𝜖)𝑛

}∞
𝑛=1 converges to 0. In particular, there exists an 𝑀 such that for 𝑛 ≥ 𝑀,

we have 𝑛
(1+𝜖)𝑛 < 1, or 𝑛 < (1 + 𝜖)𝑛 , or 𝑛1/𝑛 < 1 + 𝜖. As 𝑛 ≥ 1, then 𝑛1/𝑛 ≥ 1, and so

0 ≤ 𝑛1/𝑛 − 1 < 𝜖. Consequently, lim
𝑛→∞ 𝑛

1/𝑛 = 1.
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2.2.5 Exercises
Exercise 2.2.1: Prove  Corollary 2.2.4 . Hint: Use constant sequences and  Lemma 2.2.3 .

Exercise 2.2.2: Prove part  (ii) of  Proposition 2.2.5 .

Exercise 2.2.3: Prove that if {𝑥𝑛}∞𝑛=1 is a convergent sequence, 𝑘 ∈ ℕ, then

lim
𝑛→∞ 𝑥

𝑘
𝑛 =

(
lim
𝑛→∞ 𝑥𝑛

) 𝑘
.

Hint: Use  induction .

Exercise 2.2.4: Suppose 𝑥1 B
1
2 and 𝑥𝑛+1 B 𝑥2

𝑛 . Show that {𝑥𝑛}∞𝑛=1 converges and find lim𝑛→∞ 𝑥𝑛 . Hint:
You cannot divide by zero!

Exercise 2.2.5: Let 𝑥𝑛 B 𝑛−cos(𝑛)
𝑛 . Use the  squeeze lemma to show that {𝑥𝑛}∞𝑛=1 converges and find the

limit.

Exercise 2.2.6: Let 𝑥𝑛 B 1
𝑛2 and 𝑦𝑛 B 1

𝑛 . Define 𝑧𝑛 B 𝑥𝑛
𝑦𝑛

and 𝑤𝑛 B
𝑦𝑛
𝑥𝑛

. Do {𝑧𝑛}∞𝑛=1 and {𝑤𝑛}∞𝑛=1
converge? What are the limits? Can you apply  Proposition 2.2.5 ? Why or why not?

Exercise 2.2.7: True or false, prove or find a counterexample. If {𝑥𝑛}∞𝑛=1 is a sequence such that {𝑥2
𝑛}∞𝑛=1

converges, then {𝑥𝑛}∞𝑛=1 converges.

Exercise 2.2.8: Show that

lim
𝑛→∞

𝑛2

2𝑛 = 0.

Exercise 2.2.9: Suppose {𝑥𝑛}∞𝑛=1 is a sequence, 𝑥 ∈ ℝ, and 𝑥𝑛 ≠ 𝑥 for all 𝑛 ∈ ℕ. Suppose the limit

𝐿 B lim
𝑛→∞

|𝑥𝑛+1 − 𝑥|
|𝑥𝑛 − 𝑥|

exists and 𝐿 < 1. Show that {𝑥𝑛}∞𝑛=1 converges to 𝑥.

Exercise 2.2.10 (Challenging): Let {𝑥𝑛}∞𝑛=1 be a convergent sequence such that 𝑥𝑛 ≥ 0 and 𝑘 ∈ ℕ. Then

lim
𝑛→∞ 𝑥

1/𝑘
𝑛 =

(
lim
𝑛→∞ 𝑥𝑛

)1/𝑘
.

Hint: Find an expression 𝑞 such that 𝑥1/𝑘
𝑛 −𝑥1/𝑘
𝑥𝑛−𝑥 = 1

𝑞 .

Exercise 2.2.11: Let 𝑟 > 0. Show that starting with an arbitrary 𝑥1 ≠ 0, the sequence defined by

𝑥𝑛+1 B 𝑥𝑛 − 𝑥2
𝑛 − 𝑟
2𝑥𝑛

converges to
√
𝑟 if 𝑥1 > 0 and −√𝑟 if 𝑥1 < 0.
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Exercise 2.2.12: Let {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 be sequences.

a) Suppose {𝑎𝑛}∞𝑛=1 is bounded and {𝑏𝑛}∞𝑛=1 converges to 0. Show that {𝑎𝑛𝑏𝑛}∞𝑛=1 converges to 0.

b) Find an example where {𝑎𝑛}∞𝑛=1 is unbounded, {𝑏𝑛}∞𝑛=1 converges to 0, and {𝑎𝑛𝑏𝑛}∞𝑛=1 is not convergent.

c) Find an example where {𝑎𝑛}∞𝑛=1 is bounded, {𝑏𝑛}∞𝑛=1 converges to some 𝑥 ≠ 0, and {𝑎𝑛𝑏𝑛}∞𝑛=1 is not
convergent.

Exercise 2.2.13 (Easy): Prove the following stronger version of  Lemma 2.2.12 , the ratio test. Suppose
{𝑥𝑛}∞𝑛=1 is a sequence such that 𝑥𝑛 ≠ 0 for all 𝑛.

a) Prove that if there exists an 𝑟 < 1 and 𝑀 ∈ ℕ such that

|𝑥𝑛+1|
|𝑥𝑛| ≤ 𝑟 for all 𝑛 ≥ 𝑀,

then {𝑥𝑛}∞𝑛=1 converges to 0.

b) Prove that if there exists an 𝑟 > 1 and 𝑀 ∈ ℕ such that

|𝑥𝑛+1|
|𝑥𝑛| ≥ 𝑟 for all 𝑛 ≥ 𝑀,

then {𝑥𝑛}∞𝑛=1 is unbounded.

Exercise 2.2.14: Suppose 𝑥1 B 𝑐 and 𝑥𝑛+1 B 𝑥2
𝑛 + 𝑥𝑛 . Show that {𝑥𝑛}∞𝑛=1 converges if and only if

−1 ≤ 𝑐 ≤ 0, in which case it converges to 0.

Exercise 2.2.15: Prove lim
𝑛→∞ (𝑛2 + 1)1/𝑛 = 1.

Exercise 2.2.16: Prove that
{(𝑛!)1/𝑛}∞𝑛=1 is unbounded. Hint: Show that for every 𝐶 > 0,

{
𝐶𝑛
𝑛!

}∞
𝑛=1

converges to zero.
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2.3 Limit superior, limit inferior, and Bolzano–Weierstrass
Note: 1–2 lectures, alternative proof of BW optional

In this section we study bounded sequences and their subsequences. In particular,
we define the so-called limit superior and limit inferior of a bounded sequence and talk
about limits of subsequences. Furthermore, we prove the Bolzano–Weierstrass theorem  

‗
 ,

an indispensable tool in analysis, showing the existence of convergent subsequences.
We proved that every convergent sequence is bounded; nevertheless, there exist many

bounded divergent sequences. For instance, the sequence
{(−1)𝑛}∞𝑛=1 is bounded, but

divergent. All is not lost, however, and we can still compute certain limits with a bounded
divergent sequence.

2.3.1 Upper and lower limits
There are ways of creating monotone sequences out of any sequence, and in this fashion
we get the so-called limit superior and limit inferior. These limits always exist for bounded
sequences.

If a sequence {𝑥𝑛}∞𝑛=1 is bounded, then the set {𝑥𝑘 : 𝑘 ∈ ℕ} is bounded. For every 𝑛, the
set {𝑥𝑘 : 𝑘 ≥ 𝑛} is also bounded (as it is a subset), so we take its supremum and infimum.

Definition 2.3.1. Let {𝑥𝑛}∞𝑛=1 be a bounded sequence. Define the sequences {𝑎𝑛}∞𝑛=1 and
{𝑏𝑛}∞𝑛=1 by 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛} and 𝑏𝑛 B inf{𝑥𝑘 : 𝑘 ≥ 𝑛}. Define, if the limits exist,

lim sup
𝑛→∞

𝑥𝑛 B lim
𝑛→∞ 𝑎𝑛 , lim inf

𝑛→∞ 𝑥𝑛 B lim
𝑛→∞ 𝑏𝑛 .

For a bounded sequence, liminf and limsup always exist (see below). It is possible to
define liminf and limsup for unbounded sequences if we allow ∞ and −∞, and we do so
later in this section. It is not hard to generalize the following results to include unbounded
sequences; however, we first restrict our attention to bounded ones.

Proposition 2.3.2. Let {𝑥𝑛}∞𝑛=1 be a bounded sequence. Let 𝑎𝑛 and 𝑏𝑛 be as in the definition above.
(i) The sequence {𝑎𝑛}∞𝑛=1 is bounded monotone decreasing and {𝑏𝑛}∞𝑛=1 is bounded monotone

increasing. In particular, lim inf
𝑛→∞ 𝑥𝑛 and lim sup

𝑛→∞
𝑥𝑛 exist.

(ii) lim sup
𝑛→∞

𝑥𝑛 = inf{𝑎𝑛 : 𝑛 ∈ ℕ} and lim inf
𝑛→∞ 𝑥𝑛 = sup{𝑏𝑛 : 𝑛 ∈ ℕ}.

(iii) lim inf
𝑛→∞ 𝑥𝑛 ≤ lim sup

𝑛→∞
𝑥𝑛 .

Proof. Let us see why {𝑎𝑛}∞𝑛=1 is a decreasing sequence. As 𝑎𝑛 is the least upper bound
for {𝑥𝑘 : 𝑘 ≥ 𝑛}, it is also an upper bound for the subset {𝑥𝑘 : 𝑘 ≥ 𝑛 + 1}. Therefore 𝑎𝑛+1,
the least upper bound for {𝑥𝑘 : 𝑘 ≥ 𝑛 + 1}, has to be less than or equal to 𝑎𝑛 , the least

‗Named after the Czech mathematician  Bernhard Placidus Johann Nepomuk Bolzano  (1781–1848), and
the German mathematician  Karl Theodor Wilhelm Weierstrass (1815–1897).

https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Karl_Weierstrass


74 CHAPTER 2. SEQUENCES AND SERIES

upper bound for {𝑥𝑘 : 𝑘 ≥ 𝑛}. That is, 𝑎𝑛 ≥ 𝑎𝑛+1 for all 𝑛. Similarly (an exercise), {𝑏𝑛}∞𝑛=1
is an increasing sequence. It is left as an exercise to show that if {𝑥𝑛}∞𝑛=1 is bounded, then
{𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 must be bounded.

The second item follows as the sequences {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 are monotone and
bounded.

For the third item, note that 𝑏𝑛 ≤ 𝑎𝑛 , as the inf of a nonempty set is less than or equal
to its sup. The sequences {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 converge to the limsup and the liminf
respectively. Apply  Lemma 2.2.3 to obtain

lim
𝑛→∞ 𝑏𝑛 ≤ lim

𝑛→∞ 𝑎𝑛 . □

lim sup
=→∞

G=

lim inf
=→∞ G=

⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

Figure 2.5: First 50 terms of an example sequence. Terms 𝑥𝑛 of the sequence are marked with
dots (•), 𝑎𝑛 are marked with circles (◦), and 𝑏𝑛 are marked with diamonds (⋄).

Example 2.3.3: Let {𝑥𝑛}∞𝑛=1 be defined by

𝑥𝑛 B

{
𝑛+1
𝑛 if 𝑛 is odd,

0 if 𝑛 is even.

Let us compute the lim inf and lim sup of this sequence. See also  Figure 2.6 . First the limit
inferior:

lim inf
𝑛→∞ 𝑥𝑛 = lim

𝑛→∞
(
inf{𝑥𝑘 : 𝑘 ≥ 𝑛}) = lim

𝑛→∞ 0 = 0.

For the limit superior, we write

lim sup
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

(
sup{𝑥𝑘 : 𝑘 ≥ 𝑛}) .
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It is not hard to see that

sup{𝑥𝑘 : 𝑘 ≥ 𝑛} =

{
𝑛+1
𝑛 if 𝑛 is odd,
𝑛+2
𝑛+1 if 𝑛 is even.

We leave it to the reader to show that the limit is 1. That is,

lim sup
𝑛→∞

𝑥𝑛 = 1.

Do note that the sequence {𝑥𝑛}∞𝑛=1 is not a convergent sequence.

lim sup
=→∞

G=

lim inf
=→∞ G= ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

Figure 2.6: First 20 terms of the sequence in  Example 2.3.3 . The marking is as in  Figure 2.5 .

We associate certain subsequences with lim sup and lim inf. It is important to notice
that {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 are not subsequences of {𝑥𝑛}∞𝑛=1, nor do they have to even consist
of the same numbers. For example, if the sequence is {1/𝑛}∞𝑛=1, then 𝑏𝑛 = 0 for all 𝑛 ∈ ℕ.
Theorem 2.3.4. If {𝑥𝑛}∞𝑛=1 is a bounded sequence, then there exists a subsequence {𝑥𝑛𝑘}∞𝑘=1 such
that

lim
𝑘→∞

𝑥𝑛𝑘 = lim sup
𝑛→∞

𝑥𝑛 .

Similarly, there exists a (perhaps different) subsequence {𝑥𝑚𝑘}∞𝑘=1 such that

lim
𝑘→∞

𝑥𝑚𝑘 = lim inf
𝑛→∞ 𝑥𝑛 .

Proof. Define 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛}. Write 𝑥 B lim sup𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑎𝑛 . We define
the subsequence inductively. Let 𝑛1 B 1, and suppose 𝑛1, 𝑛2, . . . , 𝑛𝑘−1 are already defined
for some 𝑘 ≥ 2. Pick an 𝑚 ≥ 𝑛𝑘−1 + 1 such that

𝑎(𝑛𝑘−1+1) − 𝑥𝑚 <
1
𝑘
.
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Such an 𝑚 exists as 𝑎(𝑛𝑘−1+1) is a supremum of the set {𝑥ℓ : ℓ ≥ 𝑛𝑘−1 + 1} and hence there are
elements of the sequence arbitrarily close (or even possibly equal) to the supremum. Set
𝑛𝑘 B 𝑚. The subsequence {𝑥𝑛𝑘}∞𝑘=1 is defined. Next, we must prove that it converges to 𝑥.

For all 𝑘 ≥ 2, we have 𝑎(𝑛𝑘−1+1) ≥ 𝑎𝑛𝑘 (why?) and 𝑎𝑛𝑘 ≥ 𝑥𝑛𝑘 . Therefore, for every 𝑘 ≥ 2,��𝑎𝑛𝑘 − 𝑥𝑛𝑘 �� = 𝑎𝑛𝑘 − 𝑥𝑛𝑘
≤ 𝑎(𝑛𝑘−1+1) − 𝑥𝑛𝑘
<

1
𝑘
.

Let us show that {𝑥𝑛𝑘}∞𝑘=1 converges to 𝑥. Note that the subsequence need not be
monotone. Let 𝜖 > 0 be given. As {𝑎𝑛}∞𝑛=1 converges to 𝑥, the subsequence {𝑎𝑛𝑘}∞𝑘=1
converges to 𝑥. Thus there exists an 𝑀1 ∈ ℕ such that for all 𝑘 ≥ 𝑀1, we have��𝑎𝑛𝑘 − 𝑥�� < 𝜖

2 .

Find an 𝑀2 ∈ ℕ such that
1
𝑀2

≤ 𝜖
2 .

Take 𝑀 B max{𝑀1, 𝑀2, 2}. For all 𝑘 ≥ 𝑀,��𝑥 − 𝑥𝑛𝑘 �� = ��𝑎𝑛𝑘 − 𝑥𝑛𝑘 + 𝑥 − 𝑎𝑛𝑘 ��
≤ ��𝑎𝑛𝑘 − 𝑥𝑛𝑘 �� + ��𝑥 − 𝑎𝑛𝑘 ��
<

1
𝑘
+ 𝜖

2
≤ 1
𝑀2

+ 𝜖
2 ≤ 𝜖

2 + 𝜖
2 = 𝜖.

We leave the statement for lim inf as an exercise. □

2.3.2 Using limit inferior and limit superior
The advantage of lim inf and lim sup is that we can always write them down for any
(bounded) sequence. If we could somehow compute them, we could also compute the
limit of the sequence if it exists, or show that the sequence diverges. Working with lim inf
and lim sup is a little bit like working with limits, although there are subtle differences.

Proposition 2.3.5. Let {𝑥𝑛}∞𝑛=1 be a bounded sequence. Then {𝑥𝑛}∞𝑛=1 converges if and only if

lim inf
𝑛→∞ 𝑥𝑛 = lim sup

𝑛→∞
𝑥𝑛 .

Furthermore, if {𝑥𝑛}∞𝑛=1 converges, then

lim
𝑛→∞ 𝑥𝑛 = lim inf

𝑛→∞ 𝑥𝑛 = lim sup
𝑛→∞

𝑥𝑛 .
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Proof. Let 𝑎𝑛 and 𝑏𝑛 be as in  Definition 2.3.1 . In particular, for all 𝑛 ∈ ℕ,

𝑏𝑛 ≤ 𝑥𝑛 ≤ 𝑎𝑛 .

First suppose lim inf𝑛→∞ 𝑥𝑛 = lim sup𝑛→∞ 𝑥𝑛 . Then {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 both converge to
the same limit. By the squeeze lemma ( Lemma 2.2.1 ), {𝑥𝑛}∞𝑛=1 converges and

lim
𝑛→∞ 𝑏𝑛 = lim

𝑛→∞ 𝑥𝑛 = lim
𝑛→∞ 𝑎𝑛 .

Now suppose {𝑥𝑛}∞𝑛=1 converges to 𝑥. By  Theorem 2.3.4 , there exists a subsequence
{𝑥𝑛𝑘}∞𝑘=1 converging to lim sup𝑛→∞ 𝑥𝑛 . As {𝑥𝑛}∞𝑛=1 converges to 𝑥, every subsequence
converges to 𝑥 and so lim sup𝑛→∞ 𝑥𝑛 = lim𝑘→∞ 𝑥𝑛𝑘 = 𝑥. Similarly, lim inf𝑛→∞ 𝑥𝑛 = 𝑥. □

Limit superior and limit inferior behave nicely with subsequences.

Proposition 2.3.6. Suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence and {𝑥𝑛𝑘}∞𝑘=1 is a subsequence. Then

lim inf
𝑛→∞ 𝑥𝑛 ≤ lim inf

𝑘→∞
𝑥𝑛𝑘 ≤ lim sup

𝑘→∞
𝑥𝑛𝑘 ≤ lim sup

𝑛→∞
𝑥𝑛 .

Proof. The middle inequality has been proved already. We will prove the third inequality,
and leave the first inequality as an exercise.

We want to prove that lim sup𝑘→∞ 𝑥𝑛𝑘 ≤ lim sup𝑛→∞ 𝑥𝑛 . Define 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛}
as usual. Also define 𝑐𝑛 B sup{𝑥𝑛𝑘 : 𝑘 ≥ 𝑛}. It is not true that {𝑐𝑛}∞𝑛=1 is necessarily a
subsequence of {𝑎𝑛}∞𝑛=1. However, as 𝑛𝑘 ≥ 𝑘 for all 𝑘, we have {𝑥𝑛𝑘 : 𝑘 ≥ 𝑛} ⊂ {𝑥𝑘 : 𝑘 ≥ 𝑛}.
A supremum of a subset is less than or equal to the supremum of the set, and therefore

𝑐𝑛 ≤ 𝑎𝑛 for all 𝑛.

 Lemma 2.2.3 gives
lim
𝑛→∞ 𝑐𝑛 ≤ lim

𝑛→∞ 𝑎𝑛 ,

which is the desired conclusion. □

Limit superior and limit inferior are the largest and smallest subsequential limits. If
the subsequence {𝑥𝑛𝑘}∞𝑘=1 in the previous proposition is convergent, then lim inf𝑘→∞ 𝑥𝑛𝑘 =
lim𝑘→∞ 𝑥𝑛𝑘 = lim sup𝑘→∞ 𝑥𝑛𝑘 . Therefore,

lim inf
𝑛→∞ 𝑥𝑛 ≤ lim

𝑘→∞
𝑥𝑛𝑘 ≤ lim sup

𝑛→∞
𝑥𝑛 .

Similarly, we get the following useful test for convergence of a bounded sequence. We
leave the proof as an exercise.

Proposition 2.3.7. A bounded sequence {𝑥𝑛}∞𝑛=1 is convergent and converges to 𝑥 if and only if
every convergent subsequence {𝑥𝑛𝑘}∞𝑘=1 converges to 𝑥.
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2.3.3 Bolzano–Weierstrass theorem
While it is not true that a bounded sequence is convergent, the Bolzano–Weierstrass
theorem tells us that we can at least find a convergent subsequence. The version of
Bolzano–Weierstrass we present in this section is the Bolzano–Weierstrass for sequences of
real numbers.
Theorem 2.3.8 (Bolzano–Weierstrass). Suppose a sequence {𝑥𝑛}∞𝑛=1 of real numbers is bounded.
Then there exists a convergent subsequence {𝑥𝑛𝑖}∞𝑖=1.

Proof.  Theorem 2.3.4 says that there exists a subsequence whose limit is lim sup𝑛→∞ 𝑥𝑛 . □

The reader might complain right now that  Theorem 2.3.4 is strictly stronger than the
Bolzano–Weierstrass theorem as presented above. That is true. However,  Theorem 2.3.4 

only applies to the real line, but Bolzano–Weierstrass applies in more general contexts (that
is, in ℝ𝑛) with pretty much the exact same statement.

As the theorem is so important to analysis, we present an explicit proof. The idea of the
following proof also generalizes to different contexts.

Alternate proof of Bolzano–Weierstrass. As the sequence is bounded, there exist two numbers
𝑎1 < 𝑏1 such that 𝑎1 ≤ 𝑥𝑛 ≤ 𝑏1 for all 𝑛 ∈ ℕ. We will define a subsequence {𝑥𝑛𝑖}∞𝑖=1 and two
sequences {𝑎𝑖}∞𝑖=1 and {𝑏𝑖}∞𝑖=1, such that {𝑎𝑖}∞𝑖=1 is monotone increasing, {𝑏𝑖}∞𝑖=1 is monotone
decreasing, 𝑎𝑖 ≤ 𝑥𝑛𝑖 ≤ 𝑏𝑖 and such that lim𝑖→∞ 𝑎𝑖 = lim𝑖→∞ 𝑏𝑖 . That {𝑥𝑛𝑖}∞𝑖=1 converges
then follows by the  squeeze lemma .

We define the sequences inductively. We will define the sequences so that for all 𝑖, we
have 𝑎𝑖 < 𝑏𝑖 , and that 𝑥𝑛 ∈ [𝑎𝑖 , 𝑏𝑖] for infinitely many 𝑛 ∈ ℕ. We have already defined 𝑎1
and 𝑏1. We take 𝑛1 B 1, that is 𝑥𝑛1 = 𝑥1. Suppose that up to some 𝑘 ∈ ℕ, we have defined
the subsequence 𝑥𝑛1 , 𝑥𝑛2 , . . . , 𝑥𝑛𝑘 , and the sequences 𝑎1, 𝑎2, . . . , 𝑎𝑘 and 𝑏1, 𝑏2, . . . , 𝑏𝑘 . Let
𝑦 B 𝑎𝑘+𝑏𝑘

2 . Clearly 𝑎𝑘 < 𝑦 < 𝑏𝑘 . If there exist infinitely many 𝑗 ∈ ℕ such that 𝑥 𝑗 ∈ [𝑎𝑘 , 𝑦],
then set 𝑎𝑘+1 B 𝑎𝑘 , 𝑏𝑘+1 B 𝑦, and pick 𝑛𝑘+1 > 𝑛𝑘 such that 𝑥𝑛𝑘+1 ∈ [𝑎𝑘 , 𝑦]. If there are not
infinitely many 𝑗 such that 𝑥 𝑗 ∈ [𝑎𝑘 , 𝑦], then it must be true that there are infinitely many
𝑗 ∈ ℕ such that 𝑥 𝑗 ∈ [𝑦, 𝑏𝑘]. In this case pick 𝑎𝑘+1 B 𝑦, 𝑏𝑘+1 B 𝑏𝑘 , and pick 𝑛𝑘+1 > 𝑛𝑘 such
that 𝑥𝑛𝑘+1 ∈ [𝑦, 𝑏𝑘].

We now have the sequences defined. What is left to prove is that lim𝑖→∞ 𝑎𝑖 = lim𝑖→∞ 𝑏𝑖 .
The limits exist as the sequences are monotone. In the construction, 𝑏𝑖 − 𝑎𝑖 is cut in half in
each step. Therefore, 𝑏𝑖+1 − 𝑎𝑖+1 = 𝑏𝑖−𝑎𝑖

2 . By  induction ,

𝑏𝑖 − 𝑎𝑖 = 𝑏1 − 𝑎1

2𝑖−1 .

Let 𝑥 B lim𝑖→∞ 𝑎𝑖 . As {𝑎𝑖}∞𝑖=1 is monotone,

𝑥 = sup{𝑎𝑖 : 𝑖 ∈ ℕ}.
Let 𝑦 B lim𝑖→∞ 𝑏𝑖 = inf{𝑏𝑖 : 𝑖 ∈ ℕ}. Since 𝑎𝑖 < 𝑏𝑖 for all 𝑖, then 𝑥 ≤ 𝑦. As the sequences
are monotone, then for all 𝑖, we have (why?)

𝑦 − 𝑥 ≤ 𝑏𝑖 − 𝑎𝑖 = 𝑏1 − 𝑎1

2𝑖−1 .
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Because 𝑏1−𝑎1
2𝑖−1 is arbitrarily small and 𝑦 − 𝑥 ≥ 0, we have 𝑦 − 𝑥 = 0. Finish by the  squeeze

lemma . □

Yet another proof of the Bolzano–Weierstrass theorem is to show the following claim,
which is left as a challenging exercise. Claim: Every sequence has a monotone subsequence.

2.3.4 Infinite limits
Just as for infima and suprema, it is possible to allow certain limits to be infinite. That is,
we write lim𝑛→∞ 𝑥𝑛 = ∞ or lim𝑛→∞ 𝑥𝑛 = −∞ for certain divergent sequences.

Definition 2.3.9. We say {𝑥𝑛}∞𝑛=1 diverges to infinity 

‗
 if for every 𝐾 ∈ ℝ, there exists an

𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀, we have 𝑥𝑛 > 𝐾. In this case we write

lim
𝑛→∞ 𝑥𝑛 B ∞.

Similarly, if for every 𝐾 ∈ ℝ there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀, we have 𝑥𝑛 < 𝐾,
we say {𝑥𝑛}∞𝑛=1 diverges to minus infinity and we write

lim
𝑛→∞ 𝑥𝑛 B −∞.

With this definition and allowing ∞ and −∞, we can write lim𝑛→∞ 𝑥𝑛 for any monotone
sequence.
Proposition 2.3.10. Suppose {𝑥𝑛}∞𝑛=1 is a monotone unbounded sequence. Then

lim
𝑛→∞ 𝑥𝑛 =

{
∞ if {𝑥𝑛}∞𝑛=1 is increasing,
−∞ if {𝑥𝑛}∞𝑛=1 is decreasing.

Proof. The case of monotone increasing follows from  Exercise 2.3.14 part c) below. Suppose
{𝑥𝑛}∞𝑛=1 is decreasing and unbounded. That the sequence is unbounded means that for
every 𝐾 ∈ ℝ, there is an 𝑀 ∈ ℕ such that 𝑥𝑀 < 𝐾. By monotonicity, 𝑥𝑛 ≤ 𝑥𝑀 < 𝐾 for all
𝑛 ≥ 𝑀. Therefore, lim𝑛→∞ 𝑥𝑛 = −∞. □

Example 2.3.11:

lim
𝑛→∞ 𝑛 = ∞, lim

𝑛→∞ 𝑛
2 = ∞, lim

𝑛→∞−𝑛 = −∞.

We leave verification to the reader.

We may also allow lim inf and lim sup to take on the values ∞ and −∞, so that we can
apply lim inf and lim sup to absolutely any sequence, not just a bounded one. Unfortunately,
the sequences {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 are not sequences of real numbers but of extended real
numbers. In particular, 𝑎𝑛 can equal ∞ for some 𝑛, and 𝑏𝑛 can equal −∞. So we have no
definition for the limits. But since the extended real numbers are still an ordered set, we
can take suprema and infima.

‗Sometimes it is said that {𝑥𝑛}∞𝑛=1 converges to infinity.
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Definition 2.3.12. Let {𝑥𝑛}∞𝑛=1 be an unbounded sequence of real numbers. Define
sequences of extended real numbers by 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛} and 𝑏𝑛 B inf{𝑥𝑘 : 𝑘 ≥ 𝑛}.
Define

lim sup
𝑛→∞

𝑥𝑛 B inf{𝑎𝑛 : 𝑛 ∈ ℕ}, and lim inf
𝑛→∞ 𝑥𝑛 B sup{𝑏𝑛 : 𝑛 ∈ ℕ}.

This definition agrees with the definition for bounded sequences.

Proposition 2.3.13. Let {𝑥𝑛}∞𝑛=1 be an unbounded sequence. Define {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 as
above. Then {𝑎𝑛}∞𝑛=1 is decreasing, and {𝑏𝑛}∞𝑛=1 is increasing. If 𝑎𝑛 is a real number for every
𝑛, then lim sup𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑎𝑛 . If 𝑏𝑛 is a real number for every 𝑛, then lim inf𝑛→∞ 𝑥𝑛 =
lim𝑛→∞ 𝑏𝑛 .

Proof. As before, 𝑎𝑛 = sup{𝑥𝑘 : 𝑘 ≥ 𝑛} ≥ sup{𝑥𝑘 : 𝑘 ≥ 𝑛 + 1} = 𝑎𝑛+1. So {𝑎𝑛}∞𝑛=1 is
decreasing. Similarly, {𝑏𝑛}∞𝑛=1 is increasing.

If the sequence {𝑎𝑛}∞𝑛=1 is a sequence of real numbers, then lim𝑛→∞ 𝑎𝑛 = inf{𝑎𝑛 : 𝑛 ∈ ℕ}.
This follows from  Theorem 2.1.10 if {𝑎𝑛}∞𝑛=1 is bounded and  Proposition 2.3.10  if {𝑎𝑛}∞𝑛=1 is
unbounded. We proceed similarly with {𝑏𝑛}∞𝑛=1. □

The definition behaves as expected with lim sup and lim inf, see exercises  2.3.13 and
 2.3.14 .

Example 2.3.14: Suppose 𝑥𝑛 B 0 for odd 𝑛 and 𝑥𝑛 B 𝑛 for even 𝑛. Then 𝑎𝑛 = ∞ for all 𝑛,
since for every 𝑀, there exists an even 𝑘 such that 𝑥𝑘 = 𝑘 ≥ 𝑀. On the other hand, 𝑏𝑛 = 0
for all 𝑛, as for every 𝑛, the set {𝑏𝑘 : 𝑘 ≥ 𝑛} consists of 0 and positive numbers. So,

lim
𝑛→∞ 𝑥𝑛 does not exist, lim sup

𝑛→∞
𝑥𝑛 = ∞, lim inf

𝑛→∞ 𝑥𝑛 = 0.

2.3.5 Exercises
Exercise 2.3.1: Suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence. Define 𝑎𝑛 and 𝑏𝑛 as in  Definition 2.3.1 . Show that
{𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 are bounded.

Exercise 2.3.2: Suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence. Define 𝑏𝑛 as in  Definition 2.3.1 . Show that {𝑏𝑛}∞𝑛=1
is an increasing sequence.

Exercise 2.3.3: Finish the proof of  Proposition 2.3.6 . That is, suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence and
{𝑥𝑛𝑘}∞𝑘=1 is a subsequence. Prove lim inf

𝑛→∞ 𝑥𝑛 ≤ lim inf
𝑘→∞

𝑥𝑛𝑘 .

Exercise 2.3.4: Prove  Proposition 2.3.7 .

Exercise 2.3.5:

a) Let 𝑥𝑛 B
(−1)𝑛
𝑛

. Find lim sup
𝑛→∞

𝑥𝑛 and lim inf
𝑛→∞ 𝑥𝑛 .

b) Let 𝑥𝑛 B
(𝑛 − 1)(−1)𝑛

𝑛
. Find lim sup

𝑛→∞
𝑥𝑛 and lim inf

𝑛→∞ 𝑥𝑛 .
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Exercise 2.3.6: Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be bounded sequences such that 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛. Show

lim sup
𝑛→∞

𝑥𝑛 ≤ lim sup
𝑛→∞

𝑦𝑛 and lim inf
𝑛→∞ 𝑥𝑛 ≤ lim inf

𝑛→∞ 𝑦𝑛 .

Exercise 2.3.7: Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be bounded sequences.

a) Show that {𝑥𝑛 + 𝑦𝑛}∞𝑛=1 is bounded.

b) Show that (
lim inf
𝑛→∞ 𝑥𝑛

)
+

(
lim inf
𝑛→∞ 𝑦𝑛

)
≤ lim inf

𝑛→∞ (𝑥𝑛 + 𝑦𝑛).

Hint: One proof is to find a subsequence {𝑥𝑛𝑚 + 𝑦𝑛𝑚}∞𝑚=1 of {𝑥𝑛 + 𝑦𝑛}∞𝑛=1 that converges. Then find a
subsequence {𝑥𝑛𝑚𝑖 }∞𝑖=1 of {𝑥𝑛𝑚}∞𝑚=1 that converges.

c) Find an explicit {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 such that(
lim inf
𝑛→∞ 𝑥𝑛

)
+

(
lim inf
𝑛→∞ 𝑦𝑛

)
< lim inf

𝑛→∞ (𝑥𝑛 + 𝑦𝑛).

Hint: Look for examples that do not have a limit.

Exercise 2.3.8: Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be bounded sequences (by the previous exercise, {𝑥𝑛 + 𝑦𝑛}∞𝑛=1 is
bounded).

a) Show that (
lim sup
𝑛→∞

𝑥𝑛
)
+

(
lim sup
𝑛→∞

𝑦𝑛
)
≥ lim sup

𝑛→∞
(𝑥𝑛 + 𝑦𝑛).

Hint: See previous exercise.

b) Find an explicit {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 such that(
lim sup
𝑛→∞

𝑥𝑛
)
+

(
lim sup
𝑛→∞

𝑦𝑛
)
> lim sup

𝑛→∞
(𝑥𝑛 + 𝑦𝑛).

Hint: See previous exercise.

Exercise 2.3.9: If 𝑆 ⊂ ℝ is a set, then 𝑥 ∈ ℝ is a cluster point if for every 𝜖 > 0, the set (𝑥−𝜖, 𝑥+𝜖)∩𝑆\{𝑥}
is not empty. That is, if there are points of 𝑆 arbitrarily close to 𝑥. For example, 𝑆 B {1/𝑛 : 𝑛 ∈ ℕ} has a
unique (only one) cluster point 0, but 0 ∉ 𝑆. Prove the following version of the Bolzano–Weierstrass theorem:

Theorem. Let 𝑆 ⊂ ℝ be a bounded infinite set, then there exists at least one cluster point of 𝑆.

Hint: If 𝑆 is infinite, then 𝑆 contains a countably infinite subset. That is, there is a sequence {𝑥𝑛}∞𝑛=1 of
distinct numbers in 𝑆.

Exercise 2.3.10 (Challenging):

a) Prove that every sequence contains a monotone subsequence. Hint: Call 𝑛 ∈ ℕ a peak of the sequence
{𝑥𝑛}∞𝑛=1 if 𝑥𝑚 ≤ 𝑥𝑛 for all 𝑚 ≥ 𝑛. There are two possibilities: Either the sequence has at most finitely
many peaks, or it has infinitely many peaks.

b) Conclude the Bolzano–Weierstrass theorem.
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Exercise 2.3.11: Prove a stronger version of  Proposition 2.3.7 . Suppose {𝑥𝑛}∞𝑛=1 is a sequence such that
every subsequence {𝑥𝑛𝑚}∞𝑚=1 has a subsequence {𝑥𝑛𝑚𝑖 }∞𝑖=1 that converges to 𝑥.

a) First show that {𝑥𝑛}∞𝑛=1 is bounded.

b) Now show that {𝑥𝑛}∞𝑛=1 converges to 𝑥.

Exercise 2.3.12: Let {𝑥𝑛}∞𝑛=1 be a bounded sequence.

a) Prove that there exists an 𝑠 such that for every 𝑟 > 𝑠, there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀, we
have 𝑥𝑛 < 𝑟.

b) If 𝑠 is a number as in a), then prove lim sup
𝑛→∞

𝑥𝑛 ≤ 𝑠.

c) Show that if 𝑆 is the set of all 𝑠 as in a), then lim sup
𝑛→∞

𝑥𝑛 = inf 𝑆.

Exercise 2.3.13 (Easy): Suppose {𝑥𝑛}∞𝑛=1 is such that lim inf
𝑛→∞ 𝑥𝑛 = −∞, lim sup

𝑛→∞
𝑥𝑛 = ∞.

a) Show that {𝑥𝑛}∞𝑛=1 is not convergent, and also that neither lim
𝑛→∞ 𝑥𝑛 = ∞ nor lim

𝑛→∞ 𝑥𝑛 = −∞ is true.

b) Find an example of such a sequence.

Exercise 2.3.14: Let {𝑥𝑛}∞𝑛=1 be a sequence.

a) Show that lim
𝑛→∞ 𝑥𝑛 = ∞ if and only if lim inf

𝑛→∞ 𝑥𝑛 = ∞.

b) Then show that lim
𝑛→∞ 𝑥𝑛 = −∞ if and only if lim sup

𝑛→∞
𝑥𝑛 = −∞.

c) If {𝑥𝑛}∞𝑛=1 is monotone increasing, show that either lim𝑛→∞ 𝑥𝑛 exists and is finite or lim𝑛→∞ 𝑥𝑛 = ∞.
In either case, lim𝑛→∞ 𝑥𝑛 = sup{𝑥𝑛 : 𝑛 ∈ ℕ}.

Exercise 2.3.15: Prove the following stronger version of  Lemma 2.2.12 , the ratio test. Suppose {𝑥𝑛}∞𝑛=1 is a
sequence such that 𝑥𝑛 ≠ 0 for all 𝑛.

a) Prove that if

lim sup
𝑛→∞

|𝑥𝑛+1|
|𝑥𝑛| < 1,

then {𝑥𝑛}∞𝑛=1 converges to 0.

b) Prove that if

lim inf
𝑛→∞

|𝑥𝑛+1|
|𝑥𝑛| > 1,

then {𝑥𝑛}∞𝑛=1 is unbounded.

Exercise 2.3.16: Suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence, 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛} as before. Suppose that
for some ℓ ∈ ℕ, 𝑎ℓ ∉ {𝑥𝑘 : 𝑘 ≥ ℓ}. Then show that 𝑎 𝑗 = 𝑎ℓ for all 𝑗 ≥ ℓ , and hence lim sup

𝑛→∞
𝑥𝑛 = 𝑎ℓ .

Exercise 2.3.17: Suppose {𝑥𝑛}∞𝑛=1 is a sequence, and 𝑎𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛} and 𝑏𝑛 B sup{𝑥𝑘 : 𝑘 ≥ 𝑛}
as before.

a) Prove that if 𝑎ℓ = ∞ for some ℓ ∈ ℕ, then lim sup
𝑛→∞

𝑥𝑛 = ∞.

b) Prove that if 𝑏ℓ = −∞ for some ℓ ∈ ℕ, then lim inf
𝑛→∞ 𝑥𝑛 = −∞.
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Exercise 2.3.18: Suppose {𝑥𝑛}∞𝑛=1 is a sequence such that both lim inf𝑛→∞ 𝑥𝑛 and lim sup𝑛→∞ 𝑥𝑛 are finite.
Prove that {𝑥𝑛}∞𝑛=1 is bounded.

Exercise 2.3.19: Suppose {𝑥𝑛}∞𝑛=1 is a bounded sequence, and 𝜖 > 0 is given. Prove that there exists an 𝑀
such that for all 𝑘 ≥ 𝑀,

𝑥𝑘 −
(
lim sup
𝑛→∞

𝑥𝑛
)
< 𝜖 and

(
lim inf
𝑛→∞ 𝑥𝑛

)
− 𝑥𝑘 < 𝜖.

Exercise 2.3.20: Extend  Theorem 2.3.4 to unbounded sequences: Suppose that {𝑥𝑛}∞𝑛=1 is a sequence. If
lim sup𝑛→∞ 𝑥𝑛 = ∞, then prove that there exists a subsequence {𝑥𝑛𝑖}∞𝑖=1 converging to ∞. Then prove the
same result for −∞, and then prove both statements for lim inf.
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2.4 Cauchy sequences
Note: less than a lecture

Often we wish to describe a certain number by a sequence that converges to it. In this
case, it is impossible to use the number itself in the proof that the sequence converges. It
would be nice if we could check for convergence without knowing the limit.

Definition 2.4.1. A sequence {𝑥𝑛}∞𝑛=1 is a Cauchy sequence 

‗
 if for every 𝜖 > 0 there exists an

𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀 and all 𝑘 ≥ 𝑀, we have

|𝑥𝑛 − 𝑥𝑘| < 𝜖.

Informally, being Cauchy means that the terms of the sequence are eventually all
arbitrarily close to each other. We might expect such a sequence to be convergent, and we
would be correct due to ℝ having the  least-upper-bound property . Before we prove this
fact, we look at some examples.

Example 2.4.2: The sequence {1/𝑛}∞𝑛=1 is a Cauchy sequence.
Proof: Given 𝜖 > 0, find 𝑀 such that 𝑀 > 2/𝜖. Then for 𝑛, 𝑘 ≥ 𝑀, we have 1/𝑛 < 𝜖/2 and

1/𝑘 < 𝜖/2. Therefore, for 𝑛, 𝑘 ≥ 𝑀, we have���� 1𝑛 − 1
𝑘

���� ≤ ���� 1𝑛 ���� + ����1𝑘 ���� < 𝜖
2 + 𝜖

2 = 𝜖.

Example 2.4.3: The sequence
{(−1)𝑛}∞𝑛=1 is not a Cauchy sequence.

Proof: Given any 𝑀 ∈ ℕ, take 𝑛 ≥ 𝑀 to be any even number, and let 𝑘 B 𝑛 + 1. Then���(−1)𝑛 − (−1)𝑘
��� = ���(−1)𝑛 − (−1)𝑛+1

���
= |1 − (−1)| = 2.

Therefore, for any 𝜖 ≤ 2 the definition cannot be satisfied, and the sequence is not Cauchy.

Proposition 2.4.4. If a sequence is Cauchy, then it is bounded.

Proof. Suppose {𝑥𝑛}∞𝑛=1 is Cauchy. Pick an 𝑀 such that for all 𝑛, 𝑘 ≥ 𝑀, we have
|𝑥𝑛 − 𝑥𝑘| < 1. In particular, for all 𝑛 ≥ 𝑀,

|𝑥𝑛 − 𝑥𝑀| < 1.

By the reverse triangle inequality, |𝑥𝑛| − |𝑥𝑀| ≤ |𝑥𝑛 − 𝑥𝑀| < 1. Hence for 𝑛 ≥ 𝑀,

|𝑥𝑛| < 1 + |𝑥𝑀| .
Let

𝐵 B max
{|𝑥1| , |𝑥2| , . . . , |𝑥𝑀−1| , 1 + |𝑥𝑀|}.

Then |𝑥𝑛| ≤ 𝐵 for all 𝑛 ∈ ℕ. □
‗Named after the French mathematician  Augustin-Louis Cauchy (1789–1857).

https://en.wikipedia.org/wiki/Cauchy
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Theorem 2.4.5. A sequence of real numbers is Cauchy if and only if it converges.

Proof. Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑥, and let 𝜖 > 0 be given. Then there exists an 𝑀 such
that for 𝑛 ≥ 𝑀,

|𝑥𝑛 − 𝑥| < 𝜖
2 .

Hence for 𝑛 ≥ 𝑀 and 𝑘 ≥ 𝑀,

|𝑥𝑛 − 𝑥𝑘| = |𝑥𝑛 − 𝑥 + 𝑥 − 𝑥𝑘| ≤ |𝑥𝑛 − 𝑥| + |𝑥 − 𝑥𝑘| < 𝜖
2 + 𝜖

2 = 𝜖.

Alright, that direction was easy. Now suppose {𝑥𝑛}∞𝑛=1 is Cauchy. We have shown that
{𝑥𝑛}∞𝑛=1 is bounded. For a bounded sequence, liminf and limsup exist, and this is where
we use the  least-upper-bound property . If we show that

lim inf
𝑛→∞ 𝑥𝑛 = lim sup

𝑛→∞
𝑥𝑛 ,

then {𝑥𝑛}∞𝑛=1 must be convergent by  Proposition 2.3.5 .
Define 𝑎 B lim sup𝑛→∞ 𝑥𝑛 and 𝑏 B lim inf𝑛→∞ 𝑥𝑛 . By  Theorem 2.3.4 , there exist

subsequences {𝑥𝑛𝑖}∞𝑖=1 and {𝑥𝑚𝑖}∞𝑖=1, such that

lim
𝑖→∞

𝑥𝑛𝑖 = 𝑎 and lim
𝑖→∞

𝑥𝑚𝑖 = 𝑏.

Given an 𝜖 > 0, there exists an 𝑀1 such that
��𝑥𝑛𝑖 − 𝑎�� < 𝜖/3 for all 𝑖 ≥ 𝑀1 and an 𝑀2 such

that
��𝑥𝑚𝑖 − 𝑏

�� < 𝜖/3 for all 𝑖 ≥ 𝑀2. There also exists an 𝑀3 such that |𝑥𝑛 − 𝑥𝑘| < 𝜖/3 for all
𝑛, 𝑘 ≥ 𝑀3. Let 𝑀 B max{𝑀1, 𝑀2, 𝑀3}. If 𝑖 ≥ 𝑀, then 𝑛𝑖 ≥ 𝑀 and 𝑚𝑖 ≥ 𝑀. Hence,

|𝑎 − 𝑏| = ��𝑎 − 𝑥𝑛𝑖 + 𝑥𝑛𝑖 − 𝑥𝑚𝑖 + 𝑥𝑚𝑖 − 𝑏
��

≤ ��𝑎 − 𝑥𝑛𝑖 �� + ��𝑥𝑛𝑖 − 𝑥𝑚𝑖

�� + ��𝑥𝑚𝑖 − 𝑏
��

<
𝜖
3 + 𝜖

3 + 𝜖
3 = 𝜖.

As |𝑎 − 𝑏| < 𝜖 for all 𝜖 > 0, then 𝑎 = 𝑏 and the sequence converges. □

Remark 2.4.6. The statement of this theorem is sometimes used to define the completeness
property of the real numbers. We say a set is Cauchy-complete (or sometimes just complete)
if every Cauchy sequence converges to something in the set. Above, we proved that
as ℝ has the  least-upper-bound property , ℝ is Cauchy-complete. One can construct ℝ
via “completing” ℚ by “throwing in” just enough points to make all Cauchy sequences
converge (we omit the details). The resulting field has the least-upper-bound property. The
advantage of defining completeness via Cauchy sequences is that it generalizes to more
abstract settings such as metric spaces, see  chapter 7 .

The Cauchy criterion is stronger than |𝑥𝑛+1 − 𝑥𝑛| (or
��𝑥𝑛+𝑗 − 𝑥𝑛 �� for a fixed 𝑗) going to

zero as 𝑛 goes to infinity. When we get to the partial sums of the harmonic series (see
 Example 2.5.11 in the next section), we will have a sequence such that 𝑥𝑛+1 − 𝑥𝑛 = 1/𝑛,
yet {𝑥𝑛}∞𝑛=1 is divergent. In fact, for that sequence, lim𝑛→∞

��𝑥𝑛+𝑗 − 𝑥𝑛 �� = 0 for every 𝑗 ∈ ℕ

(compare  Exercise 2.5.12 ). The key point in the definition of Cauchy is that 𝑛 and 𝑘 vary
independently and can be arbitrarily far apart.
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2.4.1 Exercises
Exercise 2.4.1: Prove that

{
𝑛2−1
𝑛2

}∞
𝑛=1 is Cauchy using directly the definition of Cauchy sequences.

Exercise 2.4.2: Let {𝑥𝑛}∞𝑛=1 be a sequence such that there exists a positive 𝐶 < 1 and for all 𝑛,

|𝑥𝑛+1 − 𝑥𝑛| ≤ 𝐶 |𝑥𝑛 − 𝑥𝑛−1| .

Prove that {𝑥𝑛}∞𝑛=1 is Cauchy. Hint: You can freely use the formula (for 𝐶 ≠ 1)

1 + 𝐶 + 𝐶2 + · · · + 𝐶𝑛 =
1 − 𝐶𝑛+1

1 − 𝐶 .

Exercise 2.4.3 (Challenging): Suppose 𝐹 is an ordered field that contains the rational numbers ℚ, such that
ℚ is dense, that is: Whenever 𝑥, 𝑦 ∈ 𝐹 are such that 𝑥 < 𝑦, then there exists a 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Say a sequence {𝑥𝑛}∞𝑛=1 of rational numbers is Cauchy if given every 𝜖 ∈ ℚ with 𝜖 > 0, there exists an 𝑀
such that for all 𝑛, 𝑘 ≥ 𝑀, we have |𝑥𝑛 − 𝑥𝑘| < 𝜖. Suppose every Cauchy sequence of rational numbers has
a limit in 𝐹. Prove that 𝐹 has the  least-upper-bound property .

Exercise 2.4.4: Let {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 be sequences such that lim𝑛→∞ 𝑦𝑛 = 0. Suppose that for all 𝑘 ∈ ℕ

and for all 𝑚 ≥ 𝑘, we have
|𝑥𝑚 − 𝑥𝑘| ≤ 𝑦𝑘 .

Show that {𝑥𝑛}∞𝑛=1 is Cauchy.

Exercise 2.4.5: Suppose a Cauchy sequence {𝑥𝑛}∞𝑛=1 is such that for every 𝑀 ∈ ℕ, there exists a 𝑘 ≥ 𝑀
and an 𝑛 ≥ 𝑀 such that 𝑥𝑘 < 0 and 𝑥𝑛 > 0. Using simply the definition of a Cauchy sequence and of a
convergent sequence, show that the sequence converges to 0.

Exercise 2.4.6: Suppose |𝑥𝑛 − 𝑥𝑘| ≤ 𝑛/𝑘2 for all 𝑛 and 𝑘. Show that {𝑥𝑛}∞𝑛=1 is Cauchy.

Exercise 2.4.7: Suppose {𝑥𝑛}∞𝑛=1 is a Cauchy sequence such that for infinitely many 𝑛, 𝑥𝑛 = 𝑐. Using only
the definition of Cauchy sequence prove that lim

𝑛→∞ 𝑥𝑛 = 𝑐.

Exercise 2.4.8: True or false, prove or find a counterexample: If {𝑥𝑛}∞𝑛=1 is a Cauchy sequence, then there
exists an 𝑀 such that for all 𝑛 ≥ 𝑀, we have |𝑥𝑛+1 − 𝑥𝑛| ≤ |𝑥𝑛 − 𝑥𝑛−1|.
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2.5 Series
Note: 2 lectures

A fundamental object in mathematics is that of a series. In fact, when the foundations
of analysis were being developed, the motivation was to understand series. Understanding
series is important in applications of analysis. For example, solutions to differential
equations are often given as series, and differential equations are the basis for understanding
almost all of modern science.

2.5.1 Definition
Definition 2.5.1. Given a sequence {𝑥𝑛}∞𝑛=1, we write the formal object

∞∑
𝑛=1

𝑥𝑛

and call it a series. A series converges if the sequence {𝑠𝑘}∞𝑘=1 defined by

𝑠𝑘 B
𝑘∑
𝑛=1

𝑥𝑛 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑘

converges. The numbers 𝑠𝑘 are called partial sums. If the series converges, we write
∞∑
𝑛=1

𝑥𝑛 = lim
𝑘→∞

𝑠𝑘 .

In this case, we cheat a little and treat
∑∞
𝑛=1 𝑥𝑛 as a number.

If the sequence {𝑠𝑘}∞𝑘=1 diverges, we say the series is divergent. In this case,
∑∞
𝑛=1 𝑥𝑛 is

simply a formal object and not a number.

In other words, for a convergent series, we have
∞∑
𝑛=1

𝑥𝑛 = lim
𝑘→∞

𝑘∑
𝑛=1

𝑥𝑛 .

We only have this equality if the limit on the right actually exists. If the series does not
converge, the right-hand side does not make sense (the limit does not exist). Therefore, be
careful as

∑∞
𝑛=1 𝑥𝑛 means two different things (a notation for the series itself or the limit of

the partial sums), and you must use context to distinguish.
Remark 2.5.2. It is sometimes convenient to start the series at an index different from 1. For
instance, we can write

∞∑
𝑛=0

𝑟𝑛 =
∞∑
𝑛=1

𝑟𝑛−1.

The left-hand side is more convenient to write.
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Remark 2.5.3. It is common to write the series
∑∞
𝑛=1 𝑥𝑛 as

𝑥1 + 𝑥2 + 𝑥3 + · · ·
with the understanding that the ellipsis indicates a series and not a simple sum. We do not
use this notation as it is the sort of informal notation that leads to mistakes in proofs.

Example 2.5.4: The series
∞∑
𝑛=1

1
2𝑛

converges and the limit is 1. That is,

∞∑
𝑛=1

1
2𝑛 = lim

𝑘→∞

𝑘∑
𝑛=1

1
2𝑛 = 1.

Proof: We need the equality (
𝑘∑
𝑛=1

1
2𝑛

)
+ 1

2𝑘
= 1.

The equality is immediate when 𝑘 = 1. The proof for general 𝑘 follows by  induction , which
we leave to the reader. See  Figure 2.7 for an illustration.

1/2 1/81/4 1/8

1/2 + 1/4 + 1/80 1

Figure 2.7: The equality
(∑𝑘

𝑛=1
1
2𝑛

)
+ 1

2𝑘 = 1 illustrated for 𝑘 = 3.

Let 𝑠𝑘 be the partial sum. We write

|1 − 𝑠𝑘| =
�����1 −

𝑘∑
𝑛=1

1
2𝑛

����� = ���� 1
2𝑘

���� = 1
2𝑘
.

The sequence
{ 1

2𝑘
}∞
𝑘=1, and therefore

{|1 − 𝑠𝑘|
}∞
𝑘=1, converges to zero. So, {𝑠𝑘}∞𝑘=1 converges

to 1.

Proposition 2.5.5. Suppose −1 < 𝑟 < 1. Then the geometric series
∑∞
𝑛=0 𝑟

𝑛 converges, and

∞∑
𝑛=0

𝑟𝑛 =
1

1 − 𝑟 .
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Details of the proof are left as an exercise. The proof consists of showing

𝑘−1∑
𝑛=0

𝑟𝑛 =
1 − 𝑟𝑘
1 − 𝑟 ,

and then taking the limit as 𝑘 goes to ∞. Geometric series is one of the most important
series, and in fact it is one of the few series for which we can so explicitly find the limit.

As for sequences we can talk about a tail of a series.
Proposition 2.5.6. Let

∑∞
𝑛=1 𝑥𝑛 be a series. Let 𝑀 ∈ ℕ. Then

∞∑
𝑛=1

𝑥𝑛 converges if and only if
∞∑

𝑛=𝑀

𝑥𝑛 converges.

Proof. We look at partial sums of the two series (for 𝑘 ≥ 𝑀)

𝑘∑
𝑛=1

𝑥𝑛 =

(
𝑀−1∑
𝑛=1

𝑥𝑛

)
+

𝑘∑
𝑛=𝑀

𝑥𝑛 .

Note that
∑𝑀−1
𝑛=1 𝑥𝑛 is a fixed number. Use  Proposition 2.2.5 to finish the proof. □

2.5.2 Cauchy series
Definition 2.5.7. A series

∑∞
𝑛=1 𝑥𝑛 is said to be Cauchy or a Cauchy series if the sequence of

partial sums {𝑠𝑛}∞𝑛=1 is a Cauchy sequence.

A sequence of real numbers converges if and only if it is Cauchy. Therefore, a series is
convergent if and only if it is Cauchy. The series

∑∞
𝑛=1 𝑥𝑛 is Cauchy if and only if for every

𝜖 > 0, there exists an 𝑀 ∈ ℕ, such that for every 𝑛 ≥ 𝑀 and 𝑘 ≥ 𝑀, we have�����
(
𝑘∑
𝑖=1

𝑥𝑖

)
−

(
𝑛∑
𝑖=1

𝑥𝑖

)����� < 𝜖.

Without loss of generality we assume 𝑛 < 𝑘. Then we write�����
(
𝑘∑
𝑖=1

𝑥𝑖

)
−

(
𝑛∑
𝑖=1

𝑥𝑖

)����� =
����� 𝑘∑
𝑖=𝑛+1

𝑥𝑖

����� < 𝜖.

We have proved the following simple proposition.
Proposition 2.5.8. The series

∑∞
𝑛=1 𝑥𝑛 is Cauchy if and only if for every 𝜖 > 0, there exists an

𝑀 ∈ ℕ such that for every 𝑛 ≥ 𝑀 and every 𝑘 > 𝑛,����� 𝑘∑
𝑖=𝑛+1

𝑥𝑖

����� < 𝜖.
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2.5.3 Basic properties
Proposition 2.5.9. Let

∑∞
𝑛=1 𝑥𝑛 be a convergent series. Then the sequence {𝑥𝑛}∞𝑛=1 is convergent

and
lim
𝑛→∞ 𝑥𝑛 = 0.

Proof. Let 𝜖 > 0 be given. As
∑∞
𝑛=1 𝑥𝑛 is convergent, it is Cauchy. Thus we find an 𝑀 such

that for every 𝑛 ≥ 𝑀,

𝜖 >

����� 𝑛+1∑
𝑖=𝑛+1

𝑥𝑖

����� = |𝑥𝑛+1| .

Hence for every 𝑛 ≥ 𝑀 + 1, we have |𝑥𝑛| < 𝜖. □

Example 2.5.10: If 𝑟 ≥ 1 or 𝑟 ≤ −1, then the geometric series
∑∞
𝑛=0 𝑟

𝑛 diverges.
Proof: |𝑟𝑛| = |𝑟|𝑛 ≥ 1𝑛 = 1. The terms do not go to zero and the series cannot converge.

So if a series converges, the terms of the series go to zero. The implication, however,
goes only one way. Let us give an example.

Example 2.5.11: The series
∑∞
𝑛=1 1/𝑛 diverges (despite the fact that lim𝑛→∞ 1/𝑛 = 0). This is

the famous harmonic series 

‗
 .

Proof: We will show that the sequence of partial sums is unbounded, and hence cannot
converge. Write the partial sums 𝑠𝑛 for 𝑛 = 2𝑘 as:

𝑠1 = 1,

𝑠2 = (1) +
(
1
2

)
,

𝑠4 = (1) +
(
1
2

)
+

(
1
3 + 1

4

)
,

𝑠8 = (1) +
(
1
2

)
+

(
1
3 + 1

4

)
+

(
1
5 + 1

6 + 1
7 + 1

8

)
,

...

𝑠2𝑘 = 1 +
𝑘∑
𝑖=1

©«
2𝑖∑

𝑚=2𝑖−1+1

1
𝑚

ª®¬ .
Notice 1/3 + 1/4 ≥ 1/4 + 1/4 = 1/2 and 1/5 + 1/6 + 1/7 + 1/8 ≥ 1/8 + 1/8 + 1/8 + 1/8 = 1/2. More
generally

2𝑘∑
𝑚=2𝑘−1+1

1
𝑚

≥
2𝑘∑

𝑚=2𝑘−1+1

1
2𝑘

= (2𝑘−1) 1
2𝑘

=
1
2 .

‗The divergence of the harmonic series was known long before the theory of series was made rigorous.
The proof we give is the earliest proof and was given by  Nicole Oresme (1323?–1382).

https://en.wikipedia.org/wiki/Oresme
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Therefore,

𝑠2𝑘 = 1 +
𝑘∑
𝑖=1

©«
2𝑖∑

𝑚=2𝑖−1+1

1
𝑚

ª®¬ ≥ 1 +
𝑘∑
𝑖=1

1
2 = 1 + 𝑘

2 .

As {𝑘/2}∞𝑘=1 is unbounded by the  Archimedean property , that means that {𝑠2𝑘}∞𝑘=1 is un-
bounded, and therefore {𝑠𝑛}∞𝑛=1 is unbounded. Hence {𝑠𝑛}∞𝑛=1 diverges, and consequently∑∞
𝑛=1 1/𝑛 diverges.

Like finite sums, convergent series behave linearly. That is, we can multiply them by
constants and add them and these operations are done term by term.

Proposition 2.5.12 (Linearity of series). Let 𝛼 ∈ ℝ and
∑∞
𝑛=1 𝑥𝑛 and

∑∞
𝑛=1 𝑦𝑛 be convergent

series. Then
(i)

∑∞
𝑛=1 𝛼𝑥𝑛 is a convergent series and

∞∑
𝑛=1

𝛼𝑥𝑛 = 𝛼
∞∑
𝑛=1

𝑥𝑛 .

(ii)
∑∞
𝑛=1(𝑥𝑛 + 𝑦𝑛) is a convergent series and

∞∑
𝑛=1

(𝑥𝑛 + 𝑦𝑛) =
( ∞∑
𝑛=1

𝑥𝑛

)
+

( ∞∑
𝑛=1

𝑦𝑛

)
.

Proof. For the first item, we simply write the 𝑘th partial sum

𝑘∑
𝑛=1

𝛼𝑥𝑛 = 𝛼

(
𝑘∑
𝑛=1

𝑥𝑛

)
.

We look at the right-hand side and note that the constant multiple of a convergent sequence
is convergent. Hence, we take the limit of both sides to obtain the result.

For the second item we also look at the 𝑘th partial sum

𝑘∑
𝑛=1

(𝑥𝑛 + 𝑦𝑛) =
(
𝑘∑
𝑛=1

𝑥𝑛

)
+

(
𝑘∑
𝑛=1

𝑦𝑛

)
.

We look at the right-hand side and note that the sum of convergent sequences is convergent.
Hence, we take the limit of both sides to obtain the proposition. □

An example of a useful application of the first item is the following formula. If |𝑟| < 1
and 𝑖 ∈ ℕ, then

∞∑
𝑛=𝑖

𝑟𝑛 =
𝑟 𝑖

1 − 𝑟 .
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The formula follows by using the geometric series and multiplying by 𝑟 𝑖 :

𝑟 𝑖
∞∑
𝑛=0

𝑟𝑛 =
∞∑
𝑛=0

𝑟𝑛+𝑖 =
∞∑
𝑛=𝑖

𝑟𝑛 .

Multiplying series is not as simple as adding, see the next section. It is not true, of
course, that we multiply term by term. That strategy does not work even for finite sums:
(𝑎 + 𝑏)(𝑐 + 𝑑) ≠ 𝑎𝑐 + 𝑏𝑑.

2.5.4 Absolute convergence
As monotone sequences are easier to work with than arbitrary sequences, it is usually
easier to work with series

∑∞
𝑛=1 𝑥𝑛 , where 𝑥𝑛 ≥ 0 for all 𝑛. The sequence of partial sums

is then monotone increasing and converges if it is bounded above. Let us formalize this
statement as a proposition.

Proposition 2.5.13. If 𝑥𝑛 ≥ 0 for all 𝑛, then
∑∞
𝑛=1 𝑥𝑛 converges if and only if the sequence of

partial sums is bounded above.

As the limit of a monotone increasing sequence is the supremum, then when 𝑥𝑛 ≥ 0 for
all 𝑛, we have the inequality

𝑘∑
𝑛=1

𝑥𝑛 ≤
∞∑
𝑛=1

𝑥𝑛 .

If we allow infinite limits, the inequality still holds even when the series diverges to infinity,
although in that case it is not terribly useful.

We will see that the following common criterion for convergence of series has big
implications for how the series can be manipulated.

Definition 2.5.14. A series
∑∞
𝑛=1 𝑥𝑛 converges absolutely if the series

∑∞
𝑛=1 |𝑥𝑛| converges. If a

series converges, but does not converge absolutely, we say it converges conditionally.

Proposition 2.5.15. If the series
∑∞
𝑛=1 𝑥𝑛 converges absolutely, then it converges.

Proof. A series is convergent if and only if it is Cauchy. Hence suppose
∑∞
𝑛=1 |𝑥𝑛| is Cauchy.

That is, for every 𝜖 > 0, there exists an 𝑀 such that for all 𝑘 ≥ 𝑀 and all 𝑛 > 𝑘, we have

𝑛∑
𝑖=𝑘+1

|𝑥𝑖| =
����� 𝑛∑
𝑖=𝑘+1

|𝑥𝑖|
����� < 𝜖.

We apply the triangle inequality for a finite sum to obtain����� 𝑛∑
𝑖=𝑘+1

𝑥𝑖

����� ≤ 𝑛∑
𝑖=𝑘+1

|𝑥𝑖| < 𝜖.

Hence
∑∞
𝑛=1 𝑥𝑛 is Cauchy, and therefore it converges. □
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If
∑∞
𝑛=1 𝑥𝑛 converges absolutely, the limits of

∑∞
𝑛=1 𝑥𝑛 and

∑∞
𝑛=1 |𝑥𝑛| are generally

different. Computing one does not help us compute the other. However, the computation
above leads to a useful inequality for absolutely convergent series, a series version of the
triangle inequality, a proof of which we leave as an exercise:����� ∞∑

𝑖=1
𝑥𝑖

����� ≤ ∞∑
𝑖=1

|𝑥𝑖| .

Absolutely convergent series have many wonderful properties. For example, absolutely
convergent series can be rearranged arbitrarily, or we can multiply such series together
easily. Conditionally convergent series on the other hand often do not behave as one would
expect. See the next section.

We leave as an exercise to show that
∞∑
𝑛=1

(−1)𝑛
𝑛

converges, although the reader should finish this section before trying. On the other hand,
we proved

∞∑
𝑛=1

1
𝑛

diverges. Therefore,
∑∞
𝑛=1

(−1)𝑛
𝑛 is a conditionally convergent series.

2.5.5 Comparison test and the 𝑝-series

We noted above that for a series with positive terms to converge the terms not only have to
go to zero, but they have to go to zero “fast enough.” If we know about convergence of a
certain series, we can use the following comparison test to see if the terms of another series
go to zero “fast enough.”

Proposition 2.5.16 (Comparison test). Let
∑∞
𝑛=1 𝑥𝑛 and

∑∞
𝑛=1 𝑦𝑛 be series such that 0 ≤ 𝑥𝑛 ≤ 𝑦𝑛

for all 𝑛 ∈ ℕ.

(i) If
∑∞
𝑛=1 𝑦𝑛 converges, then so does

∑∞
𝑛=1 𝑥𝑛 .

(ii) If
∑∞
𝑛=1 𝑥𝑛 diverges, then so does

∑∞
𝑛=1 𝑦𝑛 .

Proof. As the terms of the series are all nonnegative, the sequences of partial sums are both
monotone increasing. Since 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛, the partial sums satisfy for all 𝑘

𝑘∑
𝑛=1

𝑥𝑛 ≤
𝑘∑
𝑛=1

𝑦𝑛 . (2.1)
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If the series
∑∞
𝑛=1 𝑦𝑛 converges, the partial sums for the series are bounded. Therefore, the

right-hand side of ( 2.1 ) is bounded for all 𝑘; there exists some 𝐵 ∈ ℝ such that
∑𝑘
𝑛=1 𝑦𝑛 ≤ 𝐵

for all 𝑘, and so
𝑘∑
𝑛=1

𝑥𝑛 ≤
𝑘∑
𝑛=1

𝑦𝑛 ≤ 𝐵.

Hence the partial sums for
∑∞
𝑛=1 𝑥𝑛 are also bounded. Since the partial sums are a monotone

increasing sequence they are convergent. The first item is thus proved.
On the other hand if

∑∞
𝑛=1 𝑥𝑛 diverges, the sequence of partial sums must be unbounded

since it is monotone increasing. That is, the partial sums for
∑∞
𝑛=1 𝑥𝑛 are eventually bigger

than any real number. Putting this together with ( 2.1 ) we see that for every 𝐵 ∈ ℝ, there is
a 𝑘 such that

𝐵 ≤
𝑘∑
𝑛=1

𝑥𝑛 ≤
𝑘∑
𝑛=1

𝑦𝑛 .

Hence the partial sums for
∑∞
𝑛=1 𝑦𝑛 are also unbounded, and

∑∞
𝑛=1 𝑦𝑛 also diverges. □

A useful series to use with the comparison test is the 𝑝-series 

‗
 .

Proposition 2.5.17 (𝑝-series or the 𝑝-test). For 𝑝 ∈ ℝ, the series
∞∑
𝑛=1

1
𝑛𝑝

converges if and only if 𝑝 > 1.

Proof. First suppose 𝑝 ≤ 1. As 𝑛 ≥ 1, we have 1
𝑛𝑝 ≥ 1

𝑛 . Since
∑∞
𝑛=1

1
𝑛 diverges,

∑∞
𝑛=1

1
𝑛𝑝 must

diverge for all 𝑝 ≤ 1 by the comparison test.
Now suppose 𝑝 > 1. We proceed as we did for the harmonic series, but instead of

showing that the sequence of partial sums is unbounded, we show that it is bounded. The
terms of the series are positive, so the sequence of partial sums is monotone increasing and
converges if it is bounded above. Let 𝑠𝑛 denote the 𝑛th partial sum.

𝑠1 = 1,

𝑠3 = (1) +
(

1
2𝑝 + 1

3𝑝

)
,

𝑠7 = (1) +
(

1
2𝑝 + 1

3𝑝

)
+

(
1
4𝑝 + 1

5𝑝 + 1
6𝑝 + 1

7𝑝

)
,

...

𝑠2𝑘−1 = 1 +
𝑘−1∑
𝑖=1

©«
2𝑖+1−1∑
𝑚=2𝑖

1
𝑚𝑝

ª®¬ .
‗We have not yet defined 𝑥𝑝 for 𝑥 > 0 and an arbitrary 𝑝 ∈ ℝ. The definition is 𝑥𝑝 B exp(𝑝 ln 𝑥). We

will define the logarithm and the exponential in  §5.4 . For now you can just think of rational 𝑝 where
𝑥𝑘/𝑚 = (𝑥1/𝑚)𝑘 . See also  Exercise 1.2.17 .
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Instead of estimating from below, we estimate from above. As 𝑝 is positive, then 2𝑝 < 3𝑝 ,
and hence 1

2𝑝 + 1
3𝑝 < 1

2𝑝 + 1
2𝑝 . Similarly, 1

4𝑝 + 1
5𝑝 + 1

6𝑝 + 1
7𝑝 < 1

4𝑝 + 1
4𝑝 + 1

4𝑝 + 1
4𝑝 . Therefore, for

all 𝑘 ≥ 2,

𝑠2𝑘−1 = 1 +
𝑘−1∑
𝑖=1

©«
2𝑖+1−1∑
𝑚=2𝑖

1
𝑚𝑝

ª®¬
< 1 +

𝑘−1∑
𝑖=1

©«
2𝑖+1−1∑
𝑚=2𝑖

1
(2𝑖)𝑝

ª®¬
= 1 +

𝑘−1∑
𝑖=1

(
2𝑖

(2𝑖)𝑝
)

= 1 +
𝑘−1∑
𝑖=1

(
1

2𝑝−1

) 𝑖
.

As 𝑝 > 1, then 1
2𝑝−1 < 1.  Proposition 2.5.5 says that

∞∑
𝑖=1

(
1

2𝑝−1

) 𝑖
converges. Thus,

𝑠2𝑘−1 < 1 +
𝑘−1∑
𝑖=1

(
1

2𝑝−1

) 𝑖
≤ 1 +

∞∑
𝑖=1

(
1

2𝑝−1

) 𝑖
.

For every 𝑛 there is a 𝑘 ≥ 2 such that 𝑛 ≤ 2𝑘 − 1, and as {𝑠𝑛}∞𝑛=1 is a monotone sequence,
𝑠𝑛 ≤ 𝑠2𝑘−1. So for all 𝑛,

𝑠𝑛 < 1 +
∞∑
𝑖=1

(
1

2𝑝−1

) 𝑖
Thus the sequence of partial sums is bounded, and the series converges. □

Neither the 𝑝-series test nor the comparison test tell us what the sum converges to.
They only tell us that a limit of the partial sums exists. For instance, while we know that∑∞
𝑛=1 1/𝑛2 converges, it is far harder to find 

‗
 that the limit is 𝜋2/6. If we treat

∑∞
𝑛=1 1/𝑛𝑝 as a

function of 𝑝, we get the so-called Riemann 𝜁 (zeta) function. Understanding the behavior
of this function contains one of the most famous unsolved problems in mathematics today
and has applications in seemingly unrelated areas such as modern cryptography.

Example 2.5.18: The series
∑∞
𝑛=1

1
𝑛2+1 converges.

Proof: First, 1
𝑛2+1 < 1

𝑛2 for all 𝑛 ∈ ℕ. The series
∑∞
𝑛=1

1
𝑛2 converges by the 𝑝-series test.

Therefore, by the comparison test,
∑∞
𝑛=1

1
𝑛2+1 converges.

‗Demonstration of this fact is what made the Swiss mathematician  Leonhard Paul Euler (1707–1783)
famous.

https://en.wikipedia.org/wiki/Leonhard_Euler
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2.5.6 Ratio test
Suppose 𝑟 > 0. The ratio of two subsequent terms in the geometric series

∑∞
𝑛=0 𝑟

𝑛 is 𝑟𝑛+1

𝑟𝑛 = 𝑟,
and the series converges whenever 𝑟 < 1. Just as for sequences, this fact can be generalized
to more arbitrary series as long as we have such a ratio “in the limit.” We then compare the
tail of a series to the geometric series.

Proposition 2.5.19 (Ratio test). Let
∑∞
𝑛=1 𝑥𝑛 be a series, 𝑥𝑛 ≠ 0 for all 𝑛, and such that

𝐿 B lim
𝑛→∞

|𝑥𝑛+1|
|𝑥𝑛| exists.

(i) If 𝐿 < 1, then
∑∞
𝑛=1 𝑥𝑛 converges absolutely.

(ii) If 𝐿 > 1, then
∑∞
𝑛=1 𝑥𝑛 diverges.

Although the test as stated is often sufficient, it can be strengthened a bit, see
 Exercise 2.5.6 .

Proof. If 𝐿 > 1, then  Lemma 2.2.12  says that the sequence {𝑥𝑛}∞𝑛=1 diverges. Since it is a
necessary condition for the convergence of series that the terms go to zero, we know that∑∞
𝑛=1 𝑥𝑛 must diverge.

Thus suppose 𝐿 < 1. We will argue that
∑∞
𝑛=1 |𝑥𝑛| must converge. The proof is similar

to that of  Lemma 2.2.12 . Of course 𝐿 ≥ 0. Pick 𝑟 such that 𝐿 < 𝑟 < 1. As 𝑟 − 𝐿 > 0, there
exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀,���� |𝑥𝑛+1|

|𝑥𝑛| − 𝐿
���� < 𝑟 − 𝐿.

Therefore,
|𝑥𝑛+1|
|𝑥𝑛| < 𝑟.

For 𝑛 > 𝑀 (that is for 𝑛 ≥ 𝑀 + 1), write

|𝑥𝑛| = |𝑥𝑀| |𝑥𝑀+1|
|𝑥𝑀|

|𝑥𝑀+2|
|𝑥𝑀+1| · · ·

|𝑥𝑛|
|𝑥𝑛−1| < |𝑥𝑀| 𝑟𝑟 · · · 𝑟 = |𝑥𝑀| 𝑟𝑛−𝑀 = (|𝑥𝑀| 𝑟−𝑀)𝑟𝑛 .

For 𝑘 > 𝑀, write the partial sum as

𝑘∑
𝑛=1

|𝑥𝑛| =
(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+

(
𝑘∑

𝑛=𝑀+1
|𝑥𝑛|

)
<

(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+

(
𝑘∑

𝑛=𝑀+1
(|𝑥𝑀| 𝑟−𝑀)𝑟𝑛

)
=

(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+ (|𝑥𝑀| 𝑟−𝑀 ) (

𝑘∑
𝑛=𝑀+1

𝑟𝑛
)
.



2.5. SERIES 97

As 0 < 𝑟 < 1, the geometric series
∑∞
𝑛=0 𝑟

𝑛 converges, so
∑∞
𝑛=𝑀+1 𝑟

𝑛 converges as well. We
take the limit as 𝑘 goes to infinity on the right-hand side above to obtain

𝑘∑
𝑛=1

|𝑥𝑛| <
(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+ (|𝑥𝑀| 𝑟−𝑀 ) (

𝑘∑
𝑛=𝑀+1

𝑟𝑛
)

≤
(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+ (|𝑥𝑀| 𝑟−𝑀 ) ( ∞∑

𝑛=𝑀+1
𝑟𝑛

)
.

The right-hand side is a number that does not depend on 𝑘. Hence the sequence of partial
sums of

∑∞
𝑛=1 |𝑥𝑛| is bounded and

∑∞
𝑛=1 |𝑥𝑛| is convergent. Thus

∑∞
𝑛=1 𝑥𝑛 is absolutely

convergent. □

Example 2.5.20: The series
∞∑
𝑛=1

2𝑛
𝑛!

converges absolutely.
Proof: We write

lim
𝑛→∞

2(𝑛+1)/(𝑛 + 1)!
2𝑛/𝑛!

= lim
𝑛→∞

2
𝑛 + 1 = 0.

Therefore, the series converges absolutely by the ratio test.

2.5.7 Exercises

Exercise 2.5.1: Suppose the 𝑘th partial sum of
∞∑
𝑛=1

𝑥𝑛 is 𝑠𝑘 = 𝑘
𝑘+1 . Find the series, that is, find 𝑥𝑛 , prove that

the series converges, and then find the limit.

Exercise 2.5.2: Prove  Proposition 2.5.5 , that is, for −1 < 𝑟 < 1, prove

∞∑
𝑛=0

𝑟𝑛 =
1

1 − 𝑟 .

Hint: See  Example 0.3.8 .

Exercise 2.5.3: Decide the convergence or divergence of the following series.

a)
∞∑
𝑛=1

3
9𝑛 + 1 b)

∞∑
𝑛=1

1
2𝑛 − 1 c)

∞∑
𝑛=1

(−1)𝑛
𝑛2 d)

∞∑
𝑛=1

1
𝑛(𝑛 + 1) e)

∞∑
𝑛=1

𝑛𝑒−𝑛
2

Exercise 2.5.4:

a) Prove that if
∞∑
𝑛=1

𝑥𝑛 converges, then
∞∑
𝑛=1

(𝑥2𝑛 + 𝑥2𝑛+1) also converges.

b) Find an explicit example where the converse does not hold.
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Exercise 2.5.5: For 𝑖 = 1, 2, . . . , 𝑛, let {𝑥𝑖 ,𝑘}∞𝑘=1 denote 𝑛 sequences. Suppose that for each 𝑖 ∈ ℕ,
∞∑
𝑘=1

𝑥𝑖 ,𝑘

is convergent. Prove
𝑛∑
𝑖=1

( ∞∑
𝑘=1

𝑥𝑖 ,𝑘

)
=

∞∑
𝑘=1

(
𝑛∑
𝑖=1

𝑥𝑖 ,𝑘

)
.

Exercise 2.5.6: Prove the following stronger version of the ratio test: Let
∑∞
𝑛=1 𝑥𝑛 be a series.

a) If there is an 𝑁 and a 𝜌 < 1 such that |𝑥𝑛+1|
|𝑥𝑛 | < 𝜌 for all 𝑛 ≥ 𝑁 , then the series converges absolutely.

(Remark: Equivalently the condition can be stated as lim sup
𝑛→∞

|𝑥𝑛+1|
|𝑥𝑛 | < 1.)

b) If there is an 𝑁 such that |𝑥𝑛+1|
|𝑥𝑛 | ≥ 1 for all 𝑛 ≥ 𝑁 , then the series diverges.

Exercise 2.5.7 (Challenging): Suppose {𝑥𝑛}∞𝑛=1 is a decreasing sequence and
∑∞
𝑛=1 𝑥𝑛 converges. Prove

lim
𝑛→∞ 𝑛𝑥𝑛 = 0.

Exercise 2.5.8: Show that
∞∑
𝑛=1

(−1)𝑛
𝑛

converges. Hint: Consider the sum of two subsequent entries.

Exercise 2.5.9:

a) Prove that if
∑∞
𝑛=1 𝑥𝑛 and

∑∞
𝑛=1 𝑦𝑛 converge absolutely, then

∑∞
𝑛=1 𝑥𝑛𝑦𝑛 converges absolutely.

b) Find an explicit example where the converse does not hold.

c) Find an explicit example where all three series are absolutely convergent, are not just finite sums, and(∑∞
𝑛=1 𝑥𝑛

) (∑∞
𝑛=1 𝑦𝑛

)
≠

∑∞
𝑛=1 𝑥𝑛𝑦𝑛 . That is, show that series are not multiplied term-by-term.

Exercise 2.5.10: Prove the triangle inequality for series: If
∑∞
𝑛=1 𝑥𝑛 converges absolutely, then����� ∞∑

𝑛=1
𝑥𝑛

����� ≤ ∞∑
𝑛=1

|𝑥𝑛| .

Exercise 2.5.11: Prove the limit comparison test. That is, prove that if 𝑎𝑛 > 0 and 𝑏𝑛 > 0 for all 𝑛, and

0 < lim
𝑛→∞

𝑎𝑛
𝑏𝑛

< ∞,

then either
∑∞
𝑛=1 𝑎𝑛 and

∑∞
𝑛=1 𝑏𝑛 both converge or both diverge.

Exercise 2.5.12: Let 𝑥𝑛 B
∑𝑛
𝑖=1 1/𝑖. Show that for every 𝑘, we get lim

𝑛→∞ |𝑥𝑛+𝑘 − 𝑥𝑛| = 0, yet {𝑥𝑛}∞𝑛=1 is not
Cauchy.

Exercise 2.5.13: Let 𝑠𝑘 be the 𝑘th partial sum of
∑∞
𝑛=1 𝑥𝑛 .

a) Suppose there exists an 𝑚 ∈ ℕ such that lim
𝑘→∞

𝑠𝑚𝑘 exists and lim
𝑛→∞ 𝑥𝑛 = 0. Show that

∑∞
𝑛=1 𝑥𝑛 converges.

b) Find an example where lim
𝑘→∞

𝑠2𝑘 exists and lim
𝑛→∞ 𝑥𝑛 ≠ 0 (and therefore

∑∞
𝑛=1 𝑥𝑛 diverges).

c) (Challenging) Find an example where lim𝑛→∞ 𝑥𝑛 = 0, and there exists a subsequence {𝑠𝑘𝑖}∞𝑖=1 such that
lim
𝑖→∞

𝑠𝑘𝑖 exists, but
∑∞
𝑛=1 𝑥𝑛 still diverges.
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Exercise 2.5.14: Suppose
∑∞
𝑛=1 𝑥𝑛 converges and 𝑥𝑛 ≥ 0 for all 𝑛. Prove that

∑∞
𝑛=1 𝑥

2
𝑛 converges.

Exercise 2.5.15 (Challenging): Suppose {𝑥𝑛}∞𝑛=1 is a decreasing sequence of positive numbers. The proof of
convergence/divergence for the 𝑝-series generalizes. Prove the so-called Cauchy condensation principle:

∞∑
𝑛=1

𝑥𝑛 converges if and only if
∞∑
𝑛=1

2𝑛𝑥2𝑛 converges.

Exercise 2.5.16: Use the Cauchy condensation principle (see  Exercise 2.5.15 ) to decide the convergence of

a)
∞∑
𝑛=1

ln 𝑛
𝑛2 b)

∞∑
𝑛=2

1
𝑛 ln 𝑛 c)

∞∑
𝑛=2

1
𝑛(ln 𝑛)2

d)
∞∑
𝑛=2

1
𝑛(ln 𝑛)(ln ln 𝑛)2

Note that only the tails of some of these series satisfy the hypotheses of the principle; you should argue why
that is sufficient.
Hint: Feel free to use the identity ln(2𝑛) = 𝑛 ln 2.

Exercise 2.5.17 (Challenging): Prove Abel’s theorem:

Theorem. Suppose
∑∞
𝑛=1 𝑥𝑛 is a series whose sequence of partial sums is bounded, {𝜆𝑛}∞𝑛=1 is a

sequence with lim𝑛→∞ 𝜆𝑛 = 0, and
∑∞
𝑛=1 |𝜆𝑛+1 − 𝜆𝑛| is convergent. Then

∑∞
𝑛=1 𝜆𝑛𝑥𝑛 is convergent.
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2.6 More on series
Note: up to 2–3 lectures (optional, can safely be skipped or covered partially)

2.6.1 Root test
A test similar to the ratio test is the so-called root test. The proof of this test is similar. Again,
the idea is to generalize what happens for the geometric series.

Proposition 2.6.1 (Root test). Let
∑∞
𝑛=1 𝑥𝑛 be a series and let

𝐿 B lim sup
𝑛→∞

|𝑥𝑛|1/𝑛 .

(i) If 𝐿 < 1, then
∑∞
𝑛=1 𝑥𝑛 converges absolutely.

(ii) If 𝐿 > 1, then
∑∞
𝑛=1 𝑥𝑛 diverges.

Proof. If 𝐿 > 1, then there exists  

‗
 a subsequence {𝑥𝑛𝑘}∞𝑘=1 such that 𝐿 = lim𝑘→∞ |𝑥𝑛𝑘 |1/𝑛𝑘 .

Let 𝑟 be such that 𝐿 > 𝑟 > 1. There exists an 𝑀 such that for all 𝑘 ≥ 𝑀, we have
|𝑥𝑛𝑘 |1/𝑛𝑘 > 𝑟 > 1, or in other words |𝑥𝑛𝑘 | > 𝑟𝑛𝑘 > 1. The subsequence {|𝑥𝑛𝑘 |}∞𝑘=1, and
therefore also {|𝑥𝑛|}∞𝑛=1, cannot possibly converge to zero, and so the series diverges.

Now suppose 𝐿 < 1. Pick 𝑟 such that 𝐿 < 𝑟 < 1. By definition of limit supremum, there
is an 𝑀 such that for all 𝑛 ≥ 𝑀,

sup
{|𝑥𝑘|1/𝑘 : 𝑘 ≥ 𝑛

}
< 𝑟.

Therefore, for all 𝑛 ≥ 𝑀,

|𝑥𝑛|1/𝑛 < 𝑟, or in other words |𝑥𝑛| < 𝑟𝑛 .

Let 𝑘 > 𝑀, and estimate the 𝑘th partial sum:

𝑘∑
𝑛=1

|𝑥𝑛| =
(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+

(
𝑘∑

𝑛=𝑀+1
|𝑥𝑛|

)
≤

(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+

(
𝑘∑

𝑛=𝑀+1
𝑟𝑛

)
.

As 0 < 𝑟 < 1, the geometric series
∑∞
𝑛=𝑀+1 𝑟

𝑛 converges to 𝑟𝑀+1

1−𝑟 . As everything is positive,

𝑘∑
𝑛=1

|𝑥𝑛| ≤
(
𝑀∑
𝑛=1

|𝑥𝑛|
)
+ 𝑟𝑀+1

1 − 𝑟 .

Thus the sequence of partial sums of
∑∞
𝑛=1 |𝑥𝑛| is bounded, and the series converges.

Therefore,
∑∞
𝑛=1 𝑥𝑛 converges absolutely. □

‗In case 𝐿 = ∞, see  Exercise 2.3.20 . Alternatively, note that if 𝐿 = ∞, then
{|𝑥𝑛|1/𝑛}∞𝑛=1 is unbounded, and

thus so is {𝑥𝑛}∞𝑛=1.
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2.6.2 Alternating series test
The tests we have seen so far only addressed absolute convergence. The following test
gives a large supply of conditionally convergent series.
Proposition 2.6.2 (Alternating series). Let {𝑥𝑛}∞𝑛=1 be a monotone decreasing sequence of
positive real numbers such that lim

𝑛→∞ 𝑥𝑛 = 0. Then

∞∑
𝑛=1

(−1)𝑛𝑥𝑛 converges.

Proof. Let 𝑠𝑚 B
∑𝑚
𝑘=1 (−1)𝑛𝑥𝑛 be the 𝑚th partial sum. Then

𝑠2𝑘 =
2𝑘∑
𝑛=1

(−1)𝑛𝑥𝑛 = (−𝑥1 + 𝑥2) + · · · + (−𝑥2𝑘−1 + 𝑥2𝑘) =
𝑘∑
ℓ=1

(−𝑥2ℓ−1 + 𝑥2ℓ ).

The sequence {𝑥𝑛}∞𝑛=1 is decreasing, so (−𝑥2ℓ−1 + 𝑥2ℓ ) ≤ 0 for all ℓ . Thus, the subsequence
{𝑠2𝑘}∞𝑘=1 of partial sums is a decreasing sequence. Similarly, (𝑥2ℓ − 𝑥2ℓ+1) ≥ 0, and so

𝑠2𝑘 = −𝑥1 + (𝑥2 − 𝑥3) + · · · + (𝑥2𝑘−2 − 𝑥2𝑘−1) + 𝑥2𝑘 ≥ −𝑥1.

The intuition behind the bound 0 ≥ 𝑠2𝑘 ≥ −𝑥1 is illustrated in  Figure 2.8 .

−G1

−G3

−G5

−G7

−G1 + G2
−G2

G2

−G3 + G4
−G4

G4

−G5 + G6
−G6

G6

−G7 + G8 −G8

G8

Figure 2.8: Showing that 0 ≥ 𝑠2𝑘 ≥ −𝑥1 where 𝑘 = 4 for an alternating series.

As {𝑠2𝑘}∞𝑘=1 is decreasing and bounded below, it converges. Let 𝑎 B lim𝑘→∞ 𝑠2𝑘 . We
wish to show that lim𝑚→∞ 𝑠𝑚 = 𝑎 (and not just for the subsequence). Given 𝜖 > 0, pick 𝑀
such that |𝑠2𝑘 − 𝑎| < 𝜖/2 whenever 𝑘 ≥ 𝑀. Since lim𝑛→∞ 𝑥𝑛 = 0, we also make 𝑀 possibly
larger to obtain 𝑥2𝑘+1 < 𝜖/2 whenever 𝑘 ≥ 𝑀. Suppose 𝑚 ≥ 2𝑀 + 1. If 𝑚 = 2𝑘, then
𝑘 ≥ 𝑀 + 1/2 ≥ 𝑀 and |𝑠𝑚 − 𝑎| = |𝑠2𝑘 − 𝑎| < 𝜖/2 < 𝜖. If 𝑚 = 2𝑘 + 1, then also 𝑘 ≥ 𝑀. Notice
𝑠2𝑘+1 = 𝑠2𝑘 − 𝑥2𝑘+1. Thus

|𝑠𝑚 − 𝑎| = |𝑠2𝑘+1 − 𝑎| = |𝑠2𝑘 − 𝑎 − 𝑥2𝑘+1| ≤ |𝑠2𝑘 − 𝑎| + 𝑥2𝑘+1 < 𝜖/2 + 𝜖/2 = 𝜖. □
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Notably, there exist conditionally convergent series where the absolute values of the
terms go to zero arbitrarily slowly. The series

∞∑
𝑛=1

(−1)𝑛
𝑛𝑝

converges for arbitrarily small 𝑝 > 0, but it does not converge absolutely when 𝑝 ≤ 1.

2.6.3 Rearrangements

Absolutely convergent series behave as we imagine they should. For example, absolutely
convergent series can be summed in any order whatsoever. Nothing of the sort holds for
conditionally convergent series (see  Example 2.6.4 and  Exercise 2.6.3 ).

Consider a series
∞∑
𝑛=1

𝑥𝑛 .

Given a bĳective function 𝜎 : ℕ → ℕ, the corresponding rearrangement is the series:

∞∑
𝑘=1

𝑥𝜎(𝑘).

We simply sum the series in a different order.

Proposition 2.6.3. Let
∑∞
𝑛=1 𝑥𝑛 be an absolutely convergent series converging to a number 𝑥. Let

𝜎 : ℕ → ℕ be a bĳection. Then
∑∞
𝑛=1 𝑥𝜎(𝑛) is absolutely convergent and converges to 𝑥.

In other words, a rearrangement of an absolutely convergent series converges (absolutely)
to the same number.

Proof. Let 𝜖 > 0 be given. As
∑∞
𝑛=1 𝑥𝑛 is absolutely convergent, take 𝑀 such that�����

(
𝑀∑
𝑛=1

𝑥𝑛

)
− 𝑥

����� < 𝜖
2 and

∞∑
𝑛=𝑀+1

|𝑥𝑛| < 𝜖
2 .

As 𝜎 is a bĳection, there exists a number 𝐾 such that for each 𝑛 ≤ 𝑀, there exists 𝑘 ≤ 𝐾
such that 𝜎(𝑘) = 𝑛. In other words {1, 2, . . . , 𝑀} ⊂ 𝜎

({1, 2, . . . , 𝐾}) .
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For 𝑁 ≥ 𝐾, let 𝑄 B max 𝜎
({1, 2, . . . , 𝑁}) . Compute

�����
(
𝑁∑
𝑛=1

𝑥𝜎(𝑛)

)
− 𝑥

����� =
��������
©«
𝑀∑
𝑛=1

𝑥𝑛 +
𝑁∑
𝑛=1

𝜎(𝑛)>𝑀

𝑥𝜎(𝑛)
ª®®®¬ − 𝑥

��������
≤

�����
(
𝑀∑
𝑛=1

𝑥𝑛

)
− 𝑥

����� + 𝑁∑
𝑛=1

𝜎(𝑛)>𝑀

��𝑥𝜎(𝑛)��
≤

�����
(
𝑀∑
𝑛=1

𝑥𝑛

)
− 𝑥

����� + 𝑄∑
𝑛=𝑀+1

|𝑥𝑛|

< 𝜖/2 + 𝜖/2 = 𝜖.

So
∑∞
𝑛=1 𝑥𝜎(𝑛) converges to 𝑥. To see that the convergence is absolute, we apply the argument

above to
∑∞
𝑛=1 |𝑥𝑛| to show that

∑∞
𝑛=1

��𝑥𝜎(𝑛)�� converges. □

Example 2.6.4: Let us show that the alternating harmonic series
∑∞
𝑛=1

(−1)𝑛+1

𝑛 , which does
not converge absolutely, can be rearranged to converge to anything. The odd terms and the
even terms diverge to plus infinity and minus infinity respectively (prove this!):

∞∑
𝑚=1

1
2𝑚 − 1 = ∞, and

∞∑
𝑚=1

−1
2𝑚 = −∞.

Let 𝑎𝑛 B (−1)𝑛+1

𝑛 for simplicity, let an arbitrary number 𝐿 ∈ ℝ be given, and set 𝜎(1) B 1.
Suppose we have defined 𝜎(𝑛) for all 𝑛 ≤ 𝑁 . If

𝑁∑
𝑛=1

𝑎𝜎(𝑛) ≤ 𝐿,

then let 𝜎(𝑁 + 1) B 𝑘 be the smallest odd 𝑘 ∈ ℕ that we have not used yet, that is, 𝜎(𝑛) ≠ 𝑘
for all 𝑛 ≤ 𝑁 . Otherwise, let 𝜎(𝑁 + 1) B 𝑘 be the smallest even 𝑘 that we have not yet used.

By construction, 𝜎 : ℕ → ℕ is one-to-one. It is also onto, because if we keep adding
either odd (resp. even) terms, eventually we pass 𝐿 and switch to the evens (resp. odds).
So we switch infinitely many times.

Finally, let 𝑁 be the 𝑁 where we just pass 𝐿 and switch. For example, suppose we have
just switched from odd to even (so we start subtracting), and let 𝑁 ′ > 𝑁 be where we first
switch back from even to odd. Then

𝐿 + 1
𝜎(𝑁) ≥

𝑁−1∑
𝑛=1

𝑎𝜎(𝑛) >
𝑁 ′−1∑
𝑛=1

𝑎𝜎(𝑛) > 𝐿 − 1
𝜎(𝑁 ′) .
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Similarly for switching in the other direction. Therefore, the sum up to 𝑁 ′ − 1 is within
1

min{𝜎(𝑁),𝜎(𝑁 ′)} of 𝐿. As we switch infinitely many times, 𝜎(𝑁) → ∞ and 𝜎(𝑁 ′) → ∞. Hence

∞∑
𝑛=1

𝑎𝜎(𝑛) =
∞∑
𝑛=1

(−1)𝜎(𝑛)+1

𝜎(𝑛) = 𝐿.

Here is an example to illustrate the proof. Suppose 𝐿 = 1.2, then the order is

1 + 1/3 − 1/2 + 1/5 + 1/7 + 1/9 − 1/4 + 1/11 + 1/13 − 1/6 + 1/15 + 1/17 + 1/19 − 1/8 + · · · .

At this point we are no more than 1/8 from the limit. See  Figure 2.9 .

Figure 2.9: The first 14 partial sums of the rearrangement converging to 1.2.

2.6.4 Multiplication of series
As we have already mentioned, multiplication of series is somewhat harder than addition.
If at least one of the series converges absolutely, then we can use the following theorem.
For this result, it is convenient to start the series at 0, rather than at 1.

Theorem 2.6.5 (Mertens’ theorem 

‗
 ). Suppose

∑∞
𝑛=0 𝑎𝑛 and

∑∞
𝑛=0 𝑏𝑛 are two convergent series,

converging to 𝐴 and 𝐵 respectively. Suppose at least one of the series converges absolutely. Define

𝑐𝑛 B 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + · · · + 𝑎𝑛𝑏0 =
𝑛∑
𝑖=0

𝑎𝑖𝑏𝑛−𝑖 .

Then the series
∑∞
𝑛=0 𝑐𝑛 converges to 𝐴𝐵.

The series
∑∞
𝑛=0 𝑐𝑛 is called the Cauchy product of

∑∞
𝑛=0 𝑎𝑛 and

∑∞
𝑛=0 𝑏𝑛 .

‗Proved by the German mathematician  Franz Mertens (1840–1927).

https://en.wikipedia.org/wiki/Franz_Mertens
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Proof. Suppose
∑∞
𝑛=0 𝑎𝑛 converges absolutely, and let 𝜖 > 0 be given. In this proof instead

of picking complicated estimates just to make the final estimate come out as less than 𝜖, let
us simply obtain an estimate that depends on 𝜖 and can be made arbitrarily small.

Write

𝐴𝑚 B
𝑚∑
𝑛=0

𝑎𝑛 , 𝐵𝑚 B
𝑚∑
𝑛=0

𝑏𝑛 .

We rearrange the 𝑚th partial sum of
∑∞
𝑛=0 𝑐𝑛 :�����

(
𝑚∑
𝑛=0

𝑐𝑛

)
− 𝐴𝐵

����� =
�����
(
𝑚∑
𝑛=0

𝑛∑
𝑖=0

𝑎𝑖𝑏𝑛−𝑖

)
− 𝐴𝐵

�����
=

�����
(
𝑚∑
𝑛=0

𝐵𝑛𝑎𝑚−𝑛

)
− 𝐴𝐵

�����
=

�����
(
𝑚∑
𝑛=0

(𝐵𝑛 − 𝐵)𝑎𝑚−𝑛

)
+ 𝐵𝐴𝑚 − 𝐴𝐵

�����
≤

(
𝑚∑
𝑛=0

|𝐵𝑛 − 𝐵| |𝑎𝑚−𝑛|
)
+ |𝐵| |𝐴𝑚 − 𝐴|

We can surely make the second term on the right-hand side small. The trick is to handle
the first term. Pick 𝐾 such that for all 𝑚 ≥ 𝐾, we have |𝐴𝑚 − 𝐴| < 𝜖 and also |𝐵𝑚 − 𝐵| < 𝜖.
As

∑∞
𝑛=0 𝑎𝑛 converges absolutely, make sure that 𝐾 is large enough such that for all 𝑚 ≥ 𝐾,

𝑚∑
𝑛=𝐾

|𝑎𝑛| < 𝜖.

As
∑∞
𝑛=0 𝑏𝑛 converges, then 𝐵max B sup

{|𝐵𝑛 − 𝐵| : 𝑛 = 0, 1, 2, . . .
}

is finite. Take 𝑚 ≥ 2𝐾.
In particular 𝑚 − 𝐾 + 1 > 𝐾. So

𝑚∑
𝑛=0

|𝐵𝑛 − 𝐵| |𝑎𝑚−𝑛| =
(
𝑚−𝐾∑
𝑛=0

|𝐵𝑛 − 𝐵| |𝑎𝑚−𝑛|
)
+

(
𝑚∑

𝑛=𝑚−𝐾+1
|𝐵𝑛 − 𝐵| |𝑎𝑚−𝑛|

)
≤

(
𝑚∑
𝑛=𝐾

|𝑎𝑛|
)
𝐵max +

(
𝐾−1∑
𝑛=0

𝜖 |𝑎𝑛|
)

≤ 𝜖𝐵max + 𝜖

( ∞∑
𝑛=0

|𝑎𝑛|
)
.

Therefore, for 𝑚 ≥ 2𝐾, we have�����
(
𝑚∑
𝑛=0

𝑐𝑛

)
− 𝐴𝐵

����� ≤
(
𝑚∑
𝑛=0

|𝐵𝑛 − 𝐵| |𝑎𝑚−𝑛|
)
+ |𝐵| |𝐴𝑚 − 𝐴|

≤ 𝜖𝐵max + 𝜖

( ∞∑
𝑛=0

|𝑎𝑛|
)
+ |𝐵| 𝜖 = 𝜖

(
𝐵max +

( ∞∑
𝑛=0

|𝑎𝑛|
)
+ |𝐵|

)
.
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The expression in the parenthesis on the right-hand side is a fixed number. Hence, we can
make the right-hand side arbitrarily small by picking a small enough 𝜖 > 0. So

∑∞
𝑛=0 𝑐𝑛

converges to 𝐴𝐵. □

Example 2.6.6: If both series are only conditionally convergent, the Cauchy product
series need not even converge. Suppose we take 𝑎𝑛 = 𝑏𝑛 = (−1)𝑛 1√

𝑛+1
. The series∑∞

𝑛=0 𝑎𝑛 =
∑∞
𝑛=0 𝑏𝑛 converges by the alternating series test; however, it does not converge

absolutely as can be seen from the 𝑝-test. Let us look at the Cauchy product.

𝑐𝑛 = (−1)𝑛
(

1√
𝑛 + 1

+ 1√
2𝑛

+ 1√
3(𝑛 − 1)

+ · · · + 1√
𝑛 + 1

)
= (−1)𝑛

𝑛∑
𝑖=0

1√
(𝑖 + 1)(𝑛 − 𝑖 + 1)

.

Therefore,

|𝑐𝑛| =
𝑛∑
𝑖=0

1√
(𝑖 + 1)(𝑛 − 𝑖 + 1)

≥
𝑛∑
𝑖=0

1√
(𝑛 + 1)(𝑛 + 1)

= 1.

The terms do not go to zero and hence
∑∞
𝑛=0 𝑐𝑛 cannot converge.

2.6.5 Power series
Fix 𝑥0 ∈ ℝ. A power series about 𝑥0 is a series of the form

∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 .

A power series is really a function of 𝑥, and many important functions in analysis can be
written as a power series. We use the convention that 00 = 1 (that is, if 𝑥 = 𝑥0 and 𝑛 = 0).

A power series is said to be convergent if there is at least one 𝑥 ≠ 𝑥0 that makes the series
converge. If 𝑥 = 𝑥0, then the series always converges since all terms except the first are
zero. If the series does not converge for any point 𝑥 ≠ 𝑥0, we say that the series is divergent.

Example 2.6.7: The series
∞∑
𝑛=0

1
𝑛!𝑥

𝑛

is absolutely convergent for all 𝑥 ∈ ℝ using the ratio test: For any 𝑥 ∈ ℝ

lim
𝑛→∞

(
1/(𝑛 + 1)!) 𝑥𝑛+1

(1/𝑛!) 𝑥𝑛 = lim
𝑛→∞

𝑥
𝑛 + 1 = 0.

Recall from calculus that this series converges to 𝑒𝑥 .

Example 2.6.8: The series
∞∑
𝑛=1

1
𝑛
𝑥𝑛
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converges absolutely for all 𝑥 ∈ (−1, 1) via the ratio test:

lim
𝑛→∞

���� (1/(𝑛 + 1)) 𝑥𝑛+1

(1/𝑛) 𝑥𝑛
���� = lim

𝑛→∞ |𝑥| 𝑛
𝑛 + 1 = |𝑥| < 1.

The series converges at 𝑥 = −1, as
∑∞
𝑛=1

(−1)𝑛
𝑛 converges by the alternating series test. But

the power series does not converge absolutely at 𝑥 = −1, because
∑∞
𝑛=1

1
𝑛 does not converge.

The series diverges at 𝑥 = 1. When |𝑥| > 1, then the series diverges via the ratio test.

Example 2.6.9: The series
∞∑
𝑛=1

𝑛𝑛𝑥𝑛

diverges for all 𝑥 ≠ 0. Let us apply the root test

lim sup
𝑛→∞

|𝑛𝑛𝑥𝑛|1/𝑛 = lim sup
𝑛→∞

𝑛 |𝑥| = ∞.

Therefore, the series diverges for all 𝑥 ≠ 0.

Convergence of power series in general works analogously to the three examples above.

Proposition 2.6.10. Let
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 be a power series. If the series is convergent, then

either it converges absolutely at all 𝑥 ∈ ℝ, or there exists a number 𝜌, such that the series converges
absolutely on the interval (𝑥0 − 𝜌, 𝑥0 + 𝜌) and diverges when 𝑥 < 𝑥0 − 𝜌 or 𝑥 > 𝑥0 + 𝜌.

The number 𝜌 is called the radius of convergence of the power series. We write 𝜌 = ∞ if
the series converges for all 𝑥, and we write 𝜌 = 0 if the series is divergent. At the endpoints,
that is, if 𝑥 = 𝑥0 + 𝜌 or 𝑥 = 𝑥0 − 𝜌, the proposition says nothing, and the series might or
might not converge. See  Figure 2.10 . In  Example 2.6.8 , the radius of convergence is 𝜌 = 1,
in  Example 2.6.7 , the radius of convergence is 𝜌 = ∞, and in  Example 2.6.9 , the radius of
convergence is 𝜌 = 0.

converges absolutely diverges

𝑥0 − 𝜌 𝑥0 𝑥0 + 𝜌

diverges ? ?

Figure 2.10: Convergence of a power series.

Proof. Write
𝑅 B lim sup

𝑛→∞
|𝑎𝑛|1/𝑛 .
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We apply the root test,

𝐿 = lim sup
𝑛→∞

��𝑎𝑛(𝑥 − 𝑥0)𝑛
��1/𝑛 = |𝑥 − 𝑥0| lim sup

𝑛→∞
|𝑎𝑛|1/𝑛 = |𝑥 − 𝑥0|𝑅.

If 𝑅 = ∞, then 𝐿 = ∞ for every 𝑥 ≠ 𝑥0, and the series diverges by the root test. On the other
hand, if 𝑅 = 0, then 𝐿 = 0 for every 𝑥, and the series converges absolutely for all 𝑥.

Suppose 0 < 𝑅 < ∞. The series converges absolutely if 1 > 𝐿 = 𝑅 |𝑥 − 𝑥0|, that is,

|𝑥 − 𝑥0| < 1/𝑅.

The series diverges when 1 < 𝐿 = 𝑅 |𝑥 − 𝑥0|, or

|𝑥 − 𝑥0| > 1/𝑅.

Letting 𝜌 B 1/𝑅 completes the proof. □

It may be useful to restate what we have learned in the proof as a separate proposition.

Proposition 2.6.11. Let
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 be a power series, and let

𝑅 B lim sup
𝑛→∞

|𝑎𝑛|1/𝑛 .

If 𝑅 = ∞, the power series is divergent. If 𝑅 = 0, then the power series converges everywhere.
Otherwise, the radius of convergence 𝜌 = 1/𝑅.

Often, the radius of convergence is written as 𝜌 = 1/𝑅 in all three cases, with the
understanding of what 𝜌 should be if 𝑅 = 0 or 𝑅 = ∞.

Convergent power series can be added and multiplied together, and multiplied by
constants. The proposition has a straightforward proof using what we know about series
in general, and power series in particular. We leave the proof to the reader.

Proposition 2.6.12. Let
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 and

∑∞
𝑛=0 𝑏𝑛(𝑥 − 𝑥0)𝑛 be two convergent power series

with radius of convergence at least 𝜌 > 0 and 𝛼 ∈ ℝ. Then for all 𝑥 such that |𝑥 − 𝑥0| < 𝜌, we
have ( ∞∑

𝑛=0
𝑎𝑛(𝑥 − 𝑥0)𝑛

)
+

( ∞∑
𝑛=0

𝑏𝑛(𝑥 − 𝑥0)𝑛
)
=

∞∑
𝑛=0

(𝑎𝑛 + 𝑏𝑛)(𝑥 − 𝑥0)𝑛 ,

𝛼

( ∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛
)
=

∞∑
𝑛=0

𝛼𝑎𝑛(𝑥 − 𝑥0)𝑛 ,

and ( ∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛
) ( ∞∑

𝑛=0
𝑏𝑛(𝑥 − 𝑥0)𝑛

)
=

∞∑
𝑛=0

𝑐𝑛(𝑥 − 𝑥0)𝑛 ,

where 𝑐𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + · · · + 𝑎𝑛𝑏0.
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For all 𝑥 with |𝑥 − 𝑥0| < 𝜌, we have two convergent series so their term-by-term addition
and multiplication by constants follows by the previous section. As for such 𝑥 the series
converges absolutely, we can apply Merten’s theorem to find the product of two series.
Consequently, after performing the algebraic operations, the radius of convergence of the
resulting series is at least 𝜌. The radius of convergence of the result could be strictly larger
than the radius of convergence of either of the series we started with. See the exercises.

Let us look at some examples of power series. Polynomials are simply finite power
series: A polynomial is a power series where the 𝑎𝑛 are zero for all 𝑛 large enough. We
expand a polynomial as a power series about any point 𝑥0 by writing the polynomial as a
polynomial in (𝑥 − 𝑥0). For example, 2𝑥2 − 3𝑥 + 4 as a power series around 𝑥0 = 1 is

2𝑥2 − 3𝑥 + 4 = 3 + (𝑥 − 1) + 2(𝑥 − 1)2.

We can also expand rational functions (that is, ratios of polynomials) as power series,
although we will not completely prove this fact here. Notice that a series for a rational
function only defines the function on an interval even if the function is defined elsewhere.
For example, for the geometric series, we have that for 𝑥 ∈ (−1, 1),

1
1 − 𝑥 =

∞∑
𝑛=0

𝑥𝑛 .

The series diverges when |𝑥| > 1, even though 1
1−𝑥 is defined for all 𝑥 ≠ 1.

We can use the geometric series together with rules for addition and multiplication
of power series to expand rational functions as power series around 𝑥0, as long as the
denominator is not zero at 𝑥0. We state without proof that this is always possible, and we
give an example of such a computation using the geometric series.

Example 2.6.13: Let us expand 𝑥
1+2𝑥+𝑥2 as a power series around the origin (𝑥0 = 0) and

find the radius of convergence.
Write 1 + 2𝑥 + 𝑥2 = (1 + 𝑥)2 =

(
1 − (−𝑥))2, and suppose |𝑥| < 1. Compute

𝑥
1 + 2𝑥 + 𝑥2 = 𝑥

(
1

1 − (−𝑥)
)2

= 𝑥

( ∞∑
𝑛=0

(−1)𝑛𝑥𝑛
)2

= 𝑥

( ∞∑
𝑛=0

𝑐𝑛𝑥𝑛
)

=
∞∑
𝑛=0

𝑐𝑛𝑥𝑛+1.
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Using the formula for the product of series, we obtain 𝑐0 = 1, 𝑐1 = −1 − 1 = −2, 𝑐2 =
1 + 1 + 1 = 3, etc. Hence, for |𝑥| < 1,

𝑥
1 + 2𝑥 + 𝑥2 =

∞∑
𝑛=1

(−1)𝑛+1𝑛𝑥𝑛 .

The radius of convergence is at least 1. We leave it to the reader to verify that the radius of
convergence is exactly equal to 1.

You can use the method of partial fractions you know from calculus. For example, to
find the power series for 𝑥3+𝑥

𝑥2−1 at 0, write

𝑥3 + 𝑥
𝑥2 − 1

= 𝑥 + 1
1 + 𝑥 − 1

1 − 𝑥 = 𝑥 +
∞∑
𝑛=0

(−1)𝑛𝑥𝑛 −
∞∑
𝑛=0

𝑥𝑛 .

2.6.6 Exercises
Exercise 2.6.1: Decide the convergence or divergence of the following series.

a)
∞∑
𝑛=1

1
22𝑛+1 b)

∞∑
𝑛=1

(−1)𝑛(𝑛 − 1)
𝑛

c)
∞∑
𝑛=1

(−1)𝑛
𝑛1/10 d)

∞∑
𝑛=1

𝑛𝑛

(𝑛 + 1)2𝑛

Exercise 2.6.2: Suppose both
∑∞
𝑛=0 𝑎𝑛 and

∑∞
𝑛=0 𝑏𝑛 converge absolutely. Show that the product series,∑∞

𝑛=0 𝑐𝑛 where 𝑐𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + · · · + 𝑎𝑛𝑏0, also converges absolutely.

Exercise 2.6.3 (Challenging): Let
∑∞
𝑛=1 𝑎𝑛 be conditionally convergent. Show that given an arbitrary

𝑥 ∈ ℝ there exists a rearrangement of
∑∞
𝑛=1 𝑎𝑛 such that the rearranged series converges to 𝑥. Hint: See

 Example 2.6.4 .

Exercise 2.6.4:

a) Show that the alternating harmonic series
∑∞
𝑛=1

(−1)𝑛+1

𝑛 has a rearrangement such that for every interval
(𝑥, 𝑦), there exists a partial sum 𝑠𝑛 of the rearranged series such that 𝑠𝑛 ∈ (𝑥, 𝑦).

b) Show that the rearrangement you found does not converge. See  Example 2.6.4 .

c) Show that for every 𝑥 ∈ ℝ, there exists a subsequence of partial sums {𝑠𝑛𝑘}∞𝑘=1 of your rearrangement
such that lim

𝑘→∞
𝑠𝑛𝑘 = 𝑥.

Exercise 2.6.5: For the following power series, find if they are convergent or not, and if so find their radius of
convergence.

a)
∞∑
𝑛=0

2𝑛𝑥𝑛 b)
∞∑
𝑛=0

𝑛𝑥𝑛 c)
∞∑
𝑛=0

𝑛! 𝑥𝑛 d)
∞∑
𝑛=0

1
(2𝑛)! (𝑥 − 10)𝑛 e)

∞∑
𝑛=0

𝑥2𝑛 f)
∞∑
𝑛=0

𝑛! 𝑥𝑛!

Exercise 2.6.6: Suppose
∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 converges for 𝑥 = 1.

a) What can you say about the radius of convergence?

b) If you further know that at 𝑥 = 1 the convergence is not absolute, what can you say?
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Exercise 2.6.7: Expand 𝑥
4 − 𝑥2 as a power series around 𝑥0 = 0, and compute its radius of convergence.

Exercise 2.6.8:

a) Find an example where the radii of convergence of
∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑥

𝑛 are both 1, but the radius
of convergence of the sum of the two series is infinite.

b) (Trickier) Find an example where the radii of convergence of
∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 and
∑∞
𝑛=0 𝑏𝑛𝑥

𝑛 are both 1, but
the radius of convergence of the product of the two series is infinite.

Exercise 2.6.9: Figure out how to compute the radius of convergence using the ratio test. That is, suppose∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 is a power series and 𝑅 B lim𝑛→∞ |𝑎𝑛+1|
|𝑎𝑛 | exists or is ∞. Find the radius of convergence and prove

your claim.

Exercise 2.6.10:

a) Prove that lim𝑛→∞ 𝑛1/𝑛 = 1 using the following procedure: Write 𝑛1/𝑛 = 1 + 𝑏𝑛 and note 𝑏𝑛 > 0. Then
show that (1 + 𝑏𝑛)𝑛 ≥ 𝑛(𝑛−1)

2 𝑏2
𝑛 and use this to show that lim

𝑛→∞ 𝑏𝑛 = 0.

b) Use the result of part a) to show that if
∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 is a convergent power series with radius of convergence
𝑅, then

∑∞
𝑛=0 𝑛𝑎𝑛𝑥

𝑛 is also convergent with the same radius of convergence.

There are different notions of summability (convergence) of a series than just the one we have
seen. A common one is Cesàro summability 

‗
 . Let

∑∞
𝑛=1 𝑎𝑛 be a series and let 𝑠𝑛 be the 𝑛th partial

sum. The series is said to be Cesàro summable to 𝑎 if

𝑎 = lim
𝑛→∞

𝑠1 + 𝑠2 + · · · + 𝑠𝑛
𝑛

.

Exercise 2.6.11 (Challenging):
a) If

∑∞
𝑛=1 𝑎𝑛 is convergent to 𝑎 (in the usual sense), show that

∑∞
𝑛=1 𝑎𝑛 is Cesàro summable (see above) to 𝑎.

b) Show that in the sense of Cesàro
∑∞
𝑛=1 (−1)𝑛 is summable to 1/2.

c) Let 𝑎𝑛 B 𝑘 when 𝑛 = 𝑘3 for some 𝑘 ∈ ℕ, 𝑎𝑛 B −𝑘 when 𝑛 = 𝑘3 + 1 for some 𝑘 ∈ ℕ, otherwise let
𝑎𝑛 B 0. Show that

∑∞
𝑛=1 𝑎𝑛 diverges in the usual sense (in fact, both the sequence of terms and the partial

sums are unbounded), but it is Cesàro summable to 0 (seems a little paradoxical at first sight).

Exercise 2.6.12 (Challenging): Show that the monotonicity in the alternating series test is necessary. That
is, find a sequence of positive real numbers {𝑥𝑛}∞𝑛=1 with lim𝑛→∞ 𝑥𝑛 = 0 but such that

∑∞
𝑛=1 (−1)𝑛𝑥𝑛

diverges.

Exercise 2.6.13: Find a series
∑∞
𝑛=1 𝑥𝑛 that converges, but

∑∞
𝑛=1 𝑥

2
𝑛 diverges. Hint: Compare  Exercise 2.5.14 .

Exercise 2.6.14: Suppose {𝑐𝑛}∞𝑛=1 is a sequence. Prove that for every 𝑟 ∈ (0, 1), there exists a strictly
increasing sequence {𝑛𝑘}∞𝑘=1 of natural numbers (𝑛𝑘+1 > 𝑛𝑘) such that

∞∑
𝑘=1

𝑐𝑘𝑥𝑛𝑘

converges absolutely for all 𝑥 ∈ [−𝑟, 𝑟].
‗Named for the Italian mathematician  Ernesto Cesàro (1859–1906).

https://en.wikipedia.org/wiki/Ernesto_Ces%C3%A0ro
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Exercise 2.6.15 (Tonelli/Fubini for sums, challenging): Suppose let {𝑥𝑘,ℓ}∞𝑘=1,ℓ=1 denote a doubly indexed
sequence and let 𝜎 : ℕ → ℕ2 be a bĳection. Consider the series

i)
∞∑
𝑖=1

𝑥𝜎(𝑖) , ii)
∞∑
𝑘=1

( ∞∑
ℓ=1

𝑥𝑘,ℓ

)
, iii)

∞∑
ℓ=1

( ∞∑
𝑘=1

𝑥𝑘,ℓ

)
.

The expressions ii) and iii) are series of series and so we say they converge if the inner series always converges
and the outer series then also converges.

a) (Tonelli) Suppose 𝑥𝑘,ℓ ≥ 0 for all 𝑘, ℓ . Show that the three series i), ii), iii) either all diverge (to ∞) or they
all converge to the same number. In the case of divergence, some of the “inner” series might be infinity in
which case we consider the entire sum to diverge.

b) (Fubini) Suppose i) converges absolutely. Show that ii) and iii) converge and they both converge to the
same number as i).



Chapter 3

Continuous Functions

3.1 Limits of functions

Note: 2–3 lectures

Before we define continuity of functions, we visit a somewhat more general notion of a
limit than that of a sequence. Given a function 𝑓 : 𝑆 → ℝ, we want to see how 𝑓 (𝑥) behaves
as 𝑥 tends to a certain point.

3.1.1 Cluster points

First, we return to a concept we have seen previously in an exercise. When moving within
the set 𝑆, we can only approach points that have elements of 𝑆 arbitrarily near.

Definition 3.1.1. Let 𝑆 ⊂ ℝ be a set. A number 𝑥 ∈ ℝ is called a cluster point of 𝑆 if for
every 𝜖 > 0, the set (𝑥 − 𝜖, 𝑥 + 𝜖) ∩ 𝑆 \ {𝑥} is not empty.

That is, 𝑥 is a cluster point of 𝑆 if there are points of 𝑆 arbitrarily close to 𝑥. Another way
to phrase the definition is to say that 𝑥 is a cluster point of 𝑆 if for every 𝜖 > 0, there exists
a 𝑦 ∈ 𝑆 such that 𝑦 ≠ 𝑥 and

��𝑥 − 𝑦�� < 𝜖. Note that a cluster point of 𝑆 need not lie in 𝑆.
Let us see some examples.

(i) The set {1/𝑛 : 𝑛 ∈ ℕ} has a unique cluster point zero.
(ii) The cluster points of the open interval (0, 1) are all points in the closed interval [0, 1].

(iii) The set of cluster points of ℚ is the whole real line ℝ.
(iv) The set of cluster points of [0, 1) ∪ {2} is the interval [0, 1].
(v) The set ℕ has no cluster points in ℝ.

Proposition 3.1.2. Let 𝑆 ⊂ ℝ. Then 𝑥 ∈ ℝ is a cluster point of 𝑆 if and only if there exists a
convergent sequence of numbers {𝑥𝑛}∞𝑛=1 such that 𝑥𝑛 ≠ 𝑥 and 𝑥𝑛 ∈ 𝑆 for all 𝑛, and lim

𝑛→∞ 𝑥𝑛 = 𝑥.
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Proof. First suppose 𝑥 is a cluster point of 𝑆. For every 𝑛 ∈ ℕ, pick 𝑥𝑛 to be an arbitrary
point of (𝑥 − 1/𝑛, 𝑥 + 1/𝑛) ∩ 𝑆 \ {𝑥}, which is nonempty because 𝑥 is a cluster point of 𝑆.
Then 𝑥𝑛 is within 1/𝑛 of 𝑥, that is,

|𝑥 − 𝑥𝑛| < 1/𝑛.
As {1/𝑛}∞𝑛=1 converges to zero, {𝑥𝑛}∞𝑛=1 converges to 𝑥.

On the other hand, if we start with a sequence of numbers {𝑥𝑛}∞𝑛=1 in 𝑆 converging
to 𝑥 such that 𝑥𝑛 ≠ 𝑥 for all 𝑛, then for every 𝜖 > 0 there is an 𝑀 such that, in particular,
|𝑥𝑀 − 𝑥| < 𝜖. That is, 𝑥𝑀 ∈ (𝑥 − 𝜖, 𝑥 + 𝜖) ∩ 𝑆 \ {𝑥}. □

3.1.2 Limits of functions
If a function 𝑓 is defined on a set 𝑆 and 𝑐 is a cluster point of 𝑆, then we define the limit of
𝑓 (𝑥) as 𝑥 approaches 𝑐. It is irrelevant for the definition whether 𝑓 is defined at 𝑐 or not.
Even if the function is defined at 𝑐, the limit of the function as 𝑥 goes to 𝑐 can very well be
different from 𝑓 (𝑐).
Definition 3.1.3. Let 𝑓 : 𝑆 → ℝ be a function and 𝑐 a cluster point of 𝑆 ⊂ ℝ. Suppose there
exists an 𝐿 ∈ ℝ and for every 𝜖 > 0, there exists a 𝛿 > 0 such that whenever 𝑥 ∈ 𝑆 \ {𝑐} and
|𝑥 − 𝑐| < 𝛿, we have �� 𝑓 (𝑥) − 𝐿�� < 𝜖.

We then say 𝑓 (𝑥) converges to 𝐿 as 𝑥 goes to 𝑐, and we write

𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐.

We say 𝐿 is a limit of 𝑓 (𝑥) as 𝑥 goes to 𝑐, and if 𝐿 is unique (it is), we write

lim
𝑥→𝑐

𝑓 (𝑥) B 𝐿.

If no such 𝐿 exists, then we say that the limit does not exist or that 𝑓 diverges at 𝑐.

Again the notation and language we are using above assumes the limit 𝐿, if it exists, is
unique, which needs to be proved. Note that the fact that 𝑐 is a cluster point is important
to prove uniqueness.
Proposition 3.1.4. Let 𝑐 be a cluster point of 𝑆 ⊂ ℝ and let 𝑓 : 𝑆 → ℝ be a function such that
𝑓 (𝑥) converges as 𝑥 goes to 𝑐. Then the limit of 𝑓 (𝑥) as 𝑥 goes to 𝑐 is unique.

Proof. Let 𝐿1 and 𝐿2 be two numbers that both satisfy the definition. Take an 𝜖 > 0 and
find a 𝛿1 > 0 such that

�� 𝑓 (𝑥) − 𝐿1
�� < 𝜖/2 for all 𝑥 ∈ 𝑆 \ {𝑐} with |𝑥 − 𝑐| < 𝛿1. Also find

𝛿2 > 0 such that
�� 𝑓 (𝑥) − 𝐿2

�� < 𝜖/2 for all 𝑥 ∈ 𝑆 \ {𝑐} with |𝑥 − 𝑐| < 𝛿2. Put 𝛿 B min{𝛿1, 𝛿2}.
Suppose 𝑥 ∈ 𝑆, |𝑥 − 𝑐| < 𝛿, and 𝑥 ≠ 𝑐. As 𝛿 > 0 and 𝑐 is a cluster point, such an 𝑥 exists.
Then

|𝐿1 − 𝐿2| =
��𝐿1 − 𝑓 (𝑥) + 𝑓 (𝑥) − 𝐿2

�� ≤ ��𝐿1 − 𝑓 (𝑥)�� + �� 𝑓 (𝑥) − 𝐿2
�� < 𝜖

2 + 𝜖
2 = 𝜖.

As |𝐿1 − 𝐿2| < 𝜖 for arbitrary 𝜖 > 0, then 𝐿1 = 𝐿2. □



3.1. LIMITS OF FUNCTIONS 115

Example 3.1.5: Consider 𝑓 : ℝ → ℝ defined by 𝑓 (𝑥) B 𝑥2. Then for any 𝑐 ∈ ℝ,

lim
𝑥→𝑐

𝑓 (𝑥) = lim
𝑥→𝑐

𝑥2 = 𝑐2.

Proof: Let 𝑐 ∈ ℝ be fixed, and suppose 𝜖 > 0 is given. Write

𝛿 B min
{
1, 𝜖

2 |𝑐| + 1

}
.

Take 𝑥 ≠ 𝑐 such that |𝑥 − 𝑐| < 𝛿. In particular, |𝑥 − 𝑐| < 1. By reverse triangle inequality,

|𝑥| − |𝑐| ≤ |𝑥 − 𝑐| < 1.

Adding 2 |𝑐| to both sides, we obtain |𝑥| + |𝑐| < 2 |𝑐| + 1. Estimate�� 𝑓 (𝑥) − 𝑐2�� = ��𝑥2 − 𝑐2��
= |(𝑥 + 𝑐)(𝑥 − 𝑐)|
= |𝑥 + 𝑐| |𝑥 − 𝑐|
≤ (|𝑥| + |𝑐|) |𝑥 − 𝑐|
< (2 |𝑐| + 1) |𝑥 − 𝑐|
< (2 |𝑐| + 1) 𝜖

2 |𝑐| + 1
= 𝜖.

Example 3.1.6: Define 𝑓 : [0, 1) → ℝ by

𝑓 (𝑥) B
{
𝑥 if 𝑥 > 0,
1 if 𝑥 = 0.

Then lim
𝑥→0

𝑓 (𝑥) = 0, even though 𝑓 (0) = 1. See  Figure 3.1 .

Figure 3.1: Function with a different limit and value at 0.

Proof: Let 𝜖 > 0 be given. Let 𝛿 B 𝜖. For 𝑥 ∈ [0, 1), 𝑥 ≠ 0, and |𝑥 − 0| < 𝛿, we get�� 𝑓 (𝑥) − 0
�� = |𝑥| < 𝛿 = 𝜖.
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3.1.3 Sequential limits
Let us connect the limit as defined above with limits of sequences.

Lemma 3.1.7. Let 𝑆 ⊂ ℝ, let 𝑐 be a cluster point of 𝑆, let 𝑓 : 𝑆 → ℝ be a function, and let 𝐿 ∈ ℝ.
Then 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐 if and only if for every sequence {𝑥𝑛}∞𝑛=1 such that 𝑥𝑛 ∈ 𝑆 \ {𝑐} for

all 𝑛, and such that lim𝑛→∞ 𝑥𝑛 = 𝑐, we have that the sequence
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝐿.

Proof. Suppose 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐, and {𝑥𝑛}∞𝑛=1 is a sequence such that 𝑥𝑛 ∈ 𝑆 \ {𝑐} and
lim𝑛→∞ 𝑥𝑛 = 𝑐. We wish to show that

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝐿. Let 𝜖 > 0 be given. Find

a 𝛿 > 0 such that if 𝑥 ∈ 𝑆 \ {𝑐} and |𝑥 − 𝑐| < 𝛿, then
�� 𝑓 (𝑥) − 𝐿�� < 𝜖. As {𝑥𝑛}∞𝑛=1 converges

to 𝑐, find an 𝑀 such that for 𝑛 ≥ 𝑀, we have that |𝑥𝑛 − 𝑐| < 𝛿. Therefore, for 𝑛 ≥ 𝑀,�� 𝑓 (𝑥𝑛) − 𝐿�� < 𝜖.

Thus
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝐿.

For the other direction, we use proof by contrapositive. Suppose it is not true that
𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐. The negation of the definition is that there exists an 𝜖 > 0 such that for
every 𝛿 > 0 there exists an 𝑥 ∈ 𝑆 \ {𝑐}, where |𝑥 − 𝑐| < 𝛿 and

�� 𝑓 (𝑥) − 𝐿�� ≥ 𝜖.
Let us use 1/𝑛 for 𝛿 in the statement above to construct a sequence {𝑥𝑛}∞𝑛=1. We have

that there exists an 𝜖 > 0 such that for every 𝑛, there exists a point 𝑥𝑛 ∈ 𝑆 \ {𝑐}, where
|𝑥𝑛 − 𝑐| < 1/𝑛 and

�� 𝑓 (𝑥𝑛) − 𝐿�� ≥ 𝜖. The sequence {𝑥𝑛}∞𝑛=1 just constructed converges to 𝑐,
but the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 does not converge to 𝐿. And we are done. □

It is possible to strengthen the reverse direction of the lemma by simply stating that
“
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges,” without requiring a specific limit. See  Exercise 3.1.11 .

Example 3.1.8: lim
𝑥→0

sin(1/𝑥) does not exist, but lim
𝑥→0

𝑥 sin(1/𝑥) = 0. See  Figure 3.2 .

Figure 3.2: Graphs of sin(1/𝑥) and 𝑥 sin(1/𝑥). Note that the computer cannot properly graph
sin(1/𝑥) near zero as it oscillates too fast.
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Proof: We start with sin(1/𝑥). Define a sequence by 𝑥𝑛 B 1
𝜋𝑛+𝜋/2 . It is not hard to see

that lim𝑛→∞ 𝑥𝑛 = 0. Furthermore,

sin(1/𝑥𝑛) = sin(𝜋𝑛 + 𝜋/2) = (−1)𝑛 .

Therefore,
{
sin(1/𝑥𝑛)

}∞
𝑛=1 does not converge. By  Lemma 3.1.7 , lim

𝑥→0
sin(1/𝑥) does not exist.

Now consider 𝑥 sin(1/𝑥). Let {𝑥𝑛}∞𝑛=1 be a sequence such that 𝑥𝑛 ≠ 0 for all 𝑛, and such
that lim𝑛→∞ 𝑥𝑛 = 0. Notice that |sin(𝑡)| ≤ 1 for all 𝑡 ∈ ℝ. Therefore,

|𝑥𝑛 sin(1/𝑥𝑛) − 0| = |𝑥𝑛| |sin(1/𝑥𝑛)| ≤ |𝑥𝑛| .

As 𝑥𝑛 goes to 0, then |𝑥𝑛| goes to zero, and hence
{
𝑥𝑛 sin(1/𝑥𝑛)

}∞
𝑛=1 converges to zero. By

 Lemma 3.1.7 , lim
𝑥→0

𝑥 sin(1/𝑥) = 0.

Keep in mind the phrase “for every sequence” in the lemma. For example, take sin(1/𝑥)
and the sequence given by 𝑥𝑛 B 1/𝜋𝑛. Then

{
sin(1/𝑥𝑛)

}∞
𝑛=1 is the constant zero sequence,

and therefore converges to zero, but the limit of sin(1/𝑥) as 𝑥 → 0 does not exist.
Using  Lemma 3.1.7 , we can start applying everything we know about sequential limits

to limits of functions. Let us give a few important examples.

Corollary 3.1.9. Let 𝑆 ⊂ ℝ and let 𝑐 be a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ

are functions such that the limits of 𝑓 (𝑥) and 𝑔(𝑥) as 𝑥 goes to 𝑐 both exist, and

𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑆 \ {𝑐}.

Then
lim
𝑥→𝑐

𝑓 (𝑥) ≤ lim
𝑥→𝑐

𝑔(𝑥).

Proof. Take {𝑥𝑛}∞𝑛=1 be a sequence of numbers in 𝑆 \ {𝑐} that converges to 𝑐. Let

𝐿1 B lim
𝑥→𝑐

𝑓 (𝑥), and 𝐿2 B lim
𝑥→𝑐

𝑔(𝑥).

 Lemma 3.1.7 says that
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝐿1 and

{
𝑔(𝑥𝑛)

}∞
𝑛=1 converges to 𝐿2. We also

have 𝑓 (𝑥𝑛) ≤ 𝑔(𝑥𝑛) for all 𝑛. We obtain 𝐿1 ≤ 𝐿2 using  Lemma 2.2.3 . □

By applying constant functions, we get the following corollary. The proof is left as an
exercise.

Corollary 3.1.10. Let 𝑆 ⊂ ℝ and let 𝑐 be a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ is a function
such that the limit of 𝑓 (𝑥) as 𝑥 goes to 𝑐 exists. Suppose there are two real numbers 𝑎 and 𝑏 such
that

𝑎 ≤ 𝑓 (𝑥) ≤ 𝑏 for all 𝑥 ∈ 𝑆 \ {𝑐}.
Then

𝑎 ≤ lim
𝑥→𝑐

𝑓 (𝑥) ≤ 𝑏.



118 CHAPTER 3. CONTINUOUS FUNCTIONS

Using  Lemma 3.1.7 in the same way as above, we also get the following corollaries,
whose proofs are again left as exercises.
Corollary 3.1.11. Let 𝑆 ⊂ ℝ and let 𝑐 be a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ, 𝑔 : 𝑆 → ℝ,
and ℎ : 𝑆 → ℝ are functions such that

𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ 𝑆 \ {𝑐}.
Suppose the limits of 𝑓 (𝑥) and ℎ(𝑥) as 𝑥 goes to 𝑐 both exist, and

lim
𝑥→𝑐

𝑓 (𝑥) = lim
𝑥→𝑐

ℎ(𝑥).

Then the limit of 𝑔(𝑥) as 𝑥 goes to 𝑐 exists and

lim
𝑥→𝑐

𝑔(𝑥) = lim
𝑥→𝑐

𝑓 (𝑥) = lim
𝑥→𝑐

ℎ(𝑥).

Corollary 3.1.12. Let 𝑆 ⊂ ℝ and let 𝑐 be a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ

are functions such that the limits of 𝑓 (𝑥) and 𝑔(𝑥) as 𝑥 goes to 𝑐 both exist. Then

(i) lim
𝑥→𝑐

(
𝑓 (𝑥) + 𝑔(𝑥)) = (

lim
𝑥→𝑐

𝑓 (𝑥)
)
+

(
lim
𝑥→𝑐

𝑔(𝑥)
)
.

(ii) lim
𝑥→𝑐

(
𝑓 (𝑥) − 𝑔(𝑥)) = (

lim
𝑥→𝑐

𝑓 (𝑥)
)
−

(
lim
𝑥→𝑐

𝑔(𝑥)
)
.

(iii) lim
𝑥→𝑐

(
𝑓 (𝑥)𝑔(𝑥)) = (

lim
𝑥→𝑐

𝑓 (𝑥)
) (

lim
𝑥→𝑐

𝑔(𝑥)
)
.

(iv) If lim
𝑥→𝑐

𝑔(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ 𝑆 \ {𝑐}, then

lim
𝑥→𝑐

𝑓 (𝑥)
𝑔(𝑥) =

lim𝑥→𝑐 𝑓 (𝑥)
lim𝑥→𝑐 𝑔(𝑥) .

Corollary 3.1.13. Let 𝑆 ⊂ ℝ and let 𝑐 be a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ is a function
such that the limit of 𝑓 (𝑥) as 𝑥 goes to 𝑐 exists. Then

lim
𝑥→𝑐

�� 𝑓 (𝑥)�� = ���lim
𝑥→𝑐

𝑓 (𝑥)
��� .

3.1.4 Limits of restrictions and one-sided limits
Sometimes we work with the function defined on a subset.

Definition 3.1.14. Let 𝑓 : 𝑆 → ℝ be a function and 𝐴 ⊂ 𝑆. Define the function 𝑓 |𝐴 : 𝐴→ ℝ

by
𝑓 |𝐴(𝑥) B 𝑓 (𝑥) for 𝑥 ∈ 𝐴.

We call 𝑓 |𝐴 the restriction of 𝑓 to 𝐴.

The function 𝑓 |𝐴 is simply the function 𝑓 taken on a smaller domain. The following
proposition is the analogue of taking a tail of a sequence. It says that the limit is “local”:
The limit only depends on points arbitrarily near 𝑐.



3.1. LIMITS OF FUNCTIONS 119

Proposition 3.1.15. Let 𝑆 ⊂ ℝ, 𝑐 ∈ ℝ, and let 𝑓 : 𝑆 → ℝ be a function. Suppose 𝐴 ⊂ 𝑆 is such
that there is some 𝛼 > 0 such that (𝐴 \ {𝑐}) ∩ (𝑐 − 𝛼, 𝑐 + 𝛼) = (𝑆 \ {𝑐}) ∩ (𝑐 − 𝛼, 𝑐 + 𝛼).

(i) The point 𝑐 is a cluster point of 𝐴 if and only if 𝑐 is a cluster point of 𝑆.
(ii) Supposing 𝑐 is a cluster point of 𝑆, then 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐 if and only if 𝑓 |𝐴(𝑥) → 𝐿 as

𝑥 → 𝑐.

Proof. First, let 𝑐 be a cluster point of 𝐴. Since 𝐴 ⊂ 𝑆, then if (𝐴 \ {𝑐}) ∩ (𝑐 − 𝜖, 𝑐 + 𝜖) is
nonempty for every 𝜖 > 0, then (𝑆 \ {𝑐}) ∩ (𝑐 − 𝜖, 𝑐 + 𝜖) is nonempty for every 𝜖 > 0. Thus
𝑐 is a cluster point of 𝑆. Second, suppose 𝑐 is a cluster point of 𝑆. Then for 𝜖 > 0 such that
𝜖 < 𝛼 we get that (𝐴 \ {𝑐}) ∩ (𝑐 − 𝜖, 𝑐 + 𝜖) = (𝑆 \ {𝑐}) ∩ (𝑐 − 𝜖, 𝑐 + 𝜖), which is nonempty.
This is true for all 𝜖 < 𝛼 and hence (𝐴 \ {𝑐}) ∩ (𝑐 − 𝜖, 𝑐 + 𝜖) must be nonempty for all 𝜖 > 0.
Thus 𝑐 is a cluster point of 𝐴.

Now suppose 𝑐 is a cluster point of 𝑆 and 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐. That is, for every 𝜖 > 0
there is a 𝛿 > 0 such that if 𝑥 ∈ 𝑆 \ {𝑐} and |𝑥 − 𝑐| < 𝛿, then

�� 𝑓 (𝑥) − 𝐿�� < 𝜖. Because 𝐴 ⊂ 𝑆,
if 𝑥 ∈ 𝐴 \ {𝑐}, then 𝑥 ∈ 𝑆 \ {𝑐}, and hence 𝑓 |𝐴(𝑥) → 𝐿 as 𝑥 → 𝑐.

Finally, suppose 𝑓 |𝐴(𝑥) → 𝐿 as 𝑥 → 𝑐 and let 𝜖 > 0 be given. There is a 𝛿′ > 0 such that
if 𝑥 ∈ 𝐴 \ {𝑐} and |𝑥 − 𝑐| < 𝛿′, then

�� 𝑓 |𝐴(𝑥) − 𝐿�� < 𝜖. Take 𝛿 B min{𝛿′, 𝛼}. Now suppose
𝑥 ∈ 𝑆 \ {𝑐} and |𝑥 − 𝑐| < 𝛿. As |𝑥 − 𝑐| < 𝛼, we find 𝑥 ∈ 𝐴 \ {𝑐}, and as |𝑥 − 𝑐| < 𝛿′, we get�� 𝑓 (𝑥) − 𝐿�� = �� 𝑓 |𝐴(𝑥) − 𝐿�� < 𝜖. □

The hypothesis on 𝐴 in the proposition is necessary. For an arbitrary restriction we
generally get an implication in only one direction, see  Exercise 3.1.6 . The usual notation for
the limit is

lim
𝑥→𝑐
𝑥∈𝐴

𝑓 (𝑥) B lim
𝑥→𝑐

𝑓 |𝐴(𝑥).

A common use of restriction with respect to limits, which does not satisfy the hypothesis
in the proposition, is the so-called one-sided limit 

‗
 

Definition 3.1.16. Let 𝑓 : 𝑆 → ℝ be function and let 𝑐 ∈ ℝ. If 𝑐 is a cluster point of 𝑆∩(𝑐,∞)
and the limit of the restriction of 𝑓 to 𝑆 ∩ (𝑐,∞) as 𝑥 → 𝑐 exists, define

lim
𝑥→𝑐+

𝑓 (𝑥) B lim
𝑥→𝑐

𝑓 |𝑆∩(𝑐,∞)(𝑥).
Similarly, if 𝑐 is a cluster point of 𝑆 ∩ (−∞, 𝑐) and the limit of the restriction as 𝑥 → 𝑐 exists,
define

lim
𝑥→𝑐−

𝑓 (𝑥) B lim
𝑥→𝑐

𝑓 |𝑆∩(−∞,𝑐)(𝑥).
 Proposition 3.1.15 does not apply to one-sided limits. It is possible to have one-sided

limits, but no limit at a point. For example, define 𝑓 : ℝ → ℝ by 𝑓 (𝑥) B 1 for 𝑥 < 0 and
𝑓 (𝑥) B 0 for 𝑥 ≥ 0. We leave it to the reader to verify that

lim
𝑥→0−

𝑓 (𝑥) = 1, lim
𝑥→0+

𝑓 (𝑥) = 0, lim
𝑥→0

𝑓 (𝑥) does not exist.

All is not lost, however, for we have the following replacement.
‗One sees a plethora of one-sided limit notations. E.g., lim

𝑥→𝑐
𝑥<𝑐

𝑓 (𝑥), lim
𝑥↑𝑐

𝑓 (𝑥), or lim
𝑥↗𝑐

𝑓 (𝑥) for lim
𝑥→𝑐−

𝑓 (𝑥).
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Proposition 3.1.17. Let 𝑆 ⊂ ℝ be such that 𝑐 is a cluster point of both 𝑆∩(−∞, 𝑐) and 𝑆∩(𝑐,∞),
let 𝑓 : 𝑆 → ℝ be a function, and let 𝐿 ∈ ℝ. Then 𝑐 is a cluster point of 𝑆 and

lim
𝑥→𝑐

𝑓 (𝑥) = 𝐿 if and only if lim
𝑥→𝑐−

𝑓 (𝑥) = lim
𝑥→𝑐+

𝑓 (𝑥) = 𝐿.

That is, a limit at 𝑐 exists if and only if both one-sided limits exist and are equal. The
proof is a straightforward application of the definition of limit and is left as an exercise.
The key point is that

(
𝑆 ∩ (−∞, 𝑐)) ∪ (

𝑆 ∩ (𝑐,∞)) = 𝑆 \ {𝑐}.

3.1.5 Exercises
Exercise 3.1.1: Find the limit (and prove it of course) or prove that the limit does not exist

a) lim
𝑥→𝑐

√
𝑥, for 𝑐 ≥ 0 b) lim

𝑥→𝑐
𝑥2 + 𝑥 + 1, for 𝑐 ∈ ℝ c) lim

𝑥→0
𝑥2 cos(1/𝑥)

d) lim
𝑥→0

sin(1/𝑥) cos(1/𝑥) e) lim
𝑥→0

sin(𝑥) cos(1/𝑥)

Exercise 3.1.2: Prove  Corollary 3.1.10 .

Exercise 3.1.3: Prove  Corollary 3.1.11 .

Exercise 3.1.4: Prove  Corollary 3.1.12 .

Exercise 3.1.5: Let 𝐴 ⊂ 𝑆. Show that if 𝑐 is a cluster point of 𝐴, then 𝑐 is a cluster point of 𝑆. Note the
difference from  Proposition 3.1.15 .

Exercise 3.1.6: Let 𝐴 ⊂ 𝑆. Suppose 𝑐 is a cluster point of 𝐴 and it is also a cluster point of 𝑆. Let 𝑓 : 𝑆 → ℝ

be a function. Show that if 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐, then 𝑓 |𝐴(𝑥) → 𝐿 as 𝑥 → 𝑐. Note the difference from
 Proposition 3.1.15 .

Exercise 3.1.7: Find an example of a function 𝑓 : [−1, 1] → ℝ, where for 𝐴 B [0, 1], we have 𝑓 |𝐴(𝑥) → 0
as 𝑥 → 0, but the limit of 𝑓 (𝑥) as 𝑥 → 0 does not exist. Note why you cannot apply  Proposition 3.1.15 .

Exercise 3.1.8: Find example functions 𝑓 and 𝑔 such that the limit of neither 𝑓 (𝑥) nor 𝑔(𝑥) exists as 𝑥 → 0,
but such that the limit of 𝑓 (𝑥) + 𝑔(𝑥) exists as 𝑥 → 0.

Exercise 3.1.9: Let 𝑐1 be a cluster point of 𝐴 ⊂ ℝ and 𝑐2 be a cluster point of 𝐵 ⊂ ℝ. Suppose 𝑓 : 𝐴→ 𝐵
and 𝑔 : 𝐵 → ℝ are functions such that 𝑓 (𝑥) → 𝑐2 as 𝑥 → 𝑐1 and 𝑔(𝑦) → 𝐿 as 𝑦 → 𝑐2. If 𝑐2 ∈ 𝐵, also
suppose that 𝑔(𝑐2) = 𝐿. Let ℎ(𝑥) B 𝑔

(
𝑓 (𝑥)) and show ℎ(𝑥) → 𝐿 as 𝑥 → 𝑐1. Hint: Note that 𝑓 (𝑥) could

equal 𝑐2 for many 𝑥 ∈ 𝐴, see also  Exercise 3.1.14 .

Exercise 3.1.10: Suppose that 𝑓 : ℝ → ℝ be a function such that for every sequence {𝑥𝑛}∞𝑛=1 in ℝ, the
sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges. Prove that 𝑓 is constant, that is, 𝑓 (𝑥) = 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ ℝ.

Exercise 3.1.11: Prove the following stronger version of one direction of  Lemma 3.1.7 : Let 𝑆 ⊂ ℝ, 𝑐 be a
cluster point of 𝑆, and 𝑓 : 𝑆 → ℝ be a function. Suppose that for every sequence {𝑥𝑛}∞𝑛=1 in 𝑆 \ {𝑐} such that
lim𝑛→∞ 𝑥𝑛 = 𝑐 the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 is convergent. Then show that the limit of 𝑓 (𝑥) as 𝑥 → 𝑐 exists.

Exercise 3.1.12: Prove  Proposition 3.1.17 .
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Exercise 3.1.13: Suppose 𝑆 ⊂ ℝ and 𝑐 is a cluster point of 𝑆. Suppose 𝑓 : 𝑆 → ℝ is bounded. Show that
there exists a sequence {𝑥𝑛}∞𝑛=1 with 𝑥𝑛 ∈ 𝑆 \ {𝑐} and lim𝑛→∞ 𝑥𝑛 = 𝑐 such that

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges.

Exercise 3.1.14 (Challenging): Show that the hypothesis that 𝑔(𝑐2) = 𝐿 in  Exercise 3.1.9 is necessary. That
is, find 𝑓 and 𝑔 such that 𝑓 (𝑥) → 𝑐2 as 𝑥 → 𝑐1 and 𝑔(𝑦) → 𝐿 as 𝑦 → 𝑐2, but 𝑔

(
𝑓 (𝑥)) does not go to 𝐿 as

𝑥 → 𝑐1.

Exercise 3.1.15: Show that the condition of being a cluster point is necessary to have a reasonable definition
of a limit. That is, suppose 𝑐 is not a cluster point of 𝑆 ⊂ ℝ, and 𝑓 : 𝑆 → ℝ is a function. Show that every 𝐿
would satisfy the definition of limit at 𝑐 without the condition on 𝑐 being a cluster point.

Exercise 3.1.16:

a) Prove  Corollary 3.1.13 .

b) Find an example showing that the converse of the corollary does not hold.
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3.2 Continuous functions
Note: 2–2.5 lectures

A high-school criterion for the concept of continuity is that a function is continuous if
we can draw its graph without lifting the pen from the paper. While that intuitive concept
may be useful in simple situations, we require rigor. The following definition took three
great mathematicians (Bolzano, Cauchy, and finally Weierstrass) to get correctly and its
final form dates only to the late 1800s.

3.2.1 Definition and basic properties
Definition 3.2.1. Suppose 𝑆 ⊂ ℝ and 𝑐 ∈ 𝑆. We say 𝑓 : 𝑆 → ℝ is continuous at 𝑐 if for every
𝜖 > 0 there is a 𝛿 > 0 such that whenever 𝑥 ∈ 𝑆 and |𝑥 − 𝑐| < 𝛿, we have

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖.
When 𝑓 : 𝑆 → ℝ is continuous at all 𝑐 ∈ 𝑆, then we simply say 𝑓 is a continuous function.

𝑦 = 𝑓 (𝑥)

𝑐

𝑓 (𝑐)
𝜖

𝜖

𝛿 𝛿

Figure 3.3: For |𝑥 − 𝑐| < 𝛿, the graph of 𝑓 (𝑥) should be within the gray region.

If 𝑓 is continuous for all 𝑐 ∈ 𝐴, we say 𝑓 is continuous on 𝐴 ⊂ 𝑆. A straightforward
exercise ( Exercise 3.2.7 ) shows that this implies that 𝑓 |𝐴 is continuous, although the
converse does not hold (as we will see in  Example 3.2.13 ).

Continuity may be the most important definition to understand in analysis, and it is not
an easy one. See  Figure 3.3 . Note that 𝛿 not only depends on 𝜖, but also on 𝑐; we need not
pick one 𝛿 for all 𝑐 ∈ 𝑆. It is no accident that the definition of continuity is similar to the
definition of a limit of a function. The main feature of continuous functions is that these
are precisely the functions that behave nicely with limits.
Proposition 3.2.2. Consider a function 𝑓 : 𝑆 → ℝ defined on a set 𝑆 ⊂ ℝ and let 𝑐 ∈ 𝑆. Then:

(i) If 𝑐 is not a cluster point of 𝑆, then 𝑓 is continuous at 𝑐.
(ii) If 𝑐 is a cluster point of 𝑆, then 𝑓 is continuous at 𝑐 if and only if the limit of 𝑓 (𝑥) as 𝑥 → 𝑐

exists and
lim
𝑥→𝑐

𝑓 (𝑥) = 𝑓 (𝑐).
(iii) The function 𝑓 is continuous at 𝑐 if and only if for every sequence {𝑥𝑛}∞𝑛=1 where 𝑥𝑛 ∈ 𝑆

and lim
𝑛→∞ 𝑥𝑛 = 𝑐, the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝑓 (𝑐).
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Proof. We start with  (i) . Suppose 𝑐 is not a cluster point of 𝑆. Then there exists a 𝛿 > 0 such
that 𝑆 ∩ (𝑐 − 𝛿, 𝑐 + 𝛿) = {𝑐}. For any 𝜖 > 0, simply pick this given 𝛿. The only 𝑥 ∈ 𝑆 such
that |𝑥 − 𝑐| < 𝛿 is 𝑥 = 𝑐. Then

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� = �� 𝑓 (𝑐) − 𝑓 (𝑐)�� = 0 < 𝜖.
Let us move to  (ii) . Suppose 𝑐 is a cluster point of 𝑆. Let us first suppose that

lim𝑥→𝑐 𝑓 (𝑥) = 𝑓 (𝑐). Then for every 𝜖 > 0, there is a 𝛿 > 0 such that if 𝑥 ∈ 𝑆 \ {𝑐} and
|𝑥 − 𝑐| < 𝛿, then

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖. Also
�� 𝑓 (𝑐) − 𝑓 (𝑐)�� = 0 < 𝜖, so the definition of continuity

at 𝑐 is satisfied. On the other hand, suppose 𝑓 is continuous at 𝑐. For every 𝜖 > 0, there
exists a 𝛿 > 0 such that for 𝑥 ∈ 𝑆 where |𝑥 − 𝑐| < 𝛿, we have

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖. Then the
statement is, of course, still true if 𝑥 ∈ 𝑆 \ {𝑐} ⊂ 𝑆. Therefore, lim𝑥→𝑐 𝑓 (𝑥) = 𝑓 (𝑐).

For  (iii) , first suppose 𝑓 is continuous at 𝑐. Let {𝑥𝑛}∞𝑛=1 be a sequence such that 𝑥𝑛 ∈ 𝑆
and lim𝑛→∞ 𝑥𝑛 = 𝑐. Let 𝜖 > 0 be given. Find a 𝛿 > 0 such that

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖 for all
𝑥 ∈ 𝑆 where |𝑥 − 𝑐| < 𝛿. Find an 𝑀 ∈ ℕ such that for 𝑛 ≥ 𝑀, we have |𝑥𝑛 − 𝑐| < 𝛿. Then
for 𝑛 ≥ 𝑀, we have that

�� 𝑓 (𝑥𝑛) − 𝑓 (𝑐)�� < 𝜖, so
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝑓 (𝑐).

We prove the other direction of  (iii) by contrapositive. Suppose 𝑓 is not continuous
at 𝑐. Then there exists an 𝜖 > 0 such that for every 𝛿 > 0, there exists an 𝑥 ∈ 𝑆 such that
|𝑥 − 𝑐| < 𝛿 and

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� ≥ 𝜖. Define a sequence {𝑥𝑛}∞𝑛=1 as follows. Let 𝑥𝑛 ∈ 𝑆 be
such that |𝑥𝑛 − 𝑐| < 1/𝑛 and

�� 𝑓 (𝑥𝑛) − 𝑓 (𝑐)�� ≥ 𝜖. Now {𝑥𝑛}∞𝑛=1 is a sequence in 𝑆 such that
lim𝑛→∞ 𝑥𝑛 = 𝑐 and such that

�� 𝑓 (𝑥𝑛) − 𝑓 (𝑐)�� ≥ 𝜖 for all 𝑛 ∈ ℕ. Thus
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 does not

converge to 𝑓 (𝑐). It may or may not converge, but it definitely does not converge to 𝑓 (𝑐). □

The last item in the proposition is particularly powerful. It allows us to quickly apply
what we know about limits of sequences to continuous functions and even to prove that
certain functions are continuous. It can also be strengthened, see  Exercise 3.2.13 .

Example 3.2.3: The function 𝑓 : (0,∞) → ℝ defined by 𝑓 (𝑥) B 1/𝑥 is continuous.
Proof: Fix 𝑐 ∈ (0,∞). Let {𝑥𝑛}∞𝑛=1 be a sequence in (0,∞) such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Then

𝑓 (𝑐) = 1
𝑐
=

1
lim𝑛→∞ 𝑥𝑛

= lim
𝑛→∞

1
𝑥𝑛

= lim
𝑛→∞ 𝑓 (𝑥𝑛).

Thus 𝑓 is continuous at 𝑐. As 𝑓 is continuous at all 𝑐 ∈ (0,∞), 𝑓 is continuous.

We have previously shown lim𝑥→𝑐 𝑥2 = 𝑐2 directly. Therefore the function 𝑥2 is
continuous. The last item of  Proposition 3.2.2 and the continuity of algebraic operations
with respect to limits of sequences,  Proposition 2.2.5 , gives a quick proof of a much more
general result.

Proposition 3.2.4. Let 𝑓 : ℝ → ℝ be a polynomial. That is,

𝑓 (𝑥) = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + · · · + 𝑎1𝑥 + 𝑎0,

for some constants 𝑎0, 𝑎1, . . . , 𝑎𝑑. Then 𝑓 is continuous.
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Proof. Fix 𝑐 ∈ ℝ. Let {𝑥𝑛}∞𝑛=1 be a sequence such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Then

𝑓 (𝑐) = 𝑎𝑑𝑐𝑑 + 𝑎𝑑−1𝑐𝑑−1 + · · · + 𝑎1𝑐 + 𝑎0

= 𝑎𝑑
(

lim
𝑛→∞ 𝑥𝑛

)𝑑
+ 𝑎𝑑−1

(
lim
𝑛→∞ 𝑥𝑛

)𝑑−1
+ · · · + 𝑎1

(
lim
𝑛→∞ 𝑥𝑛

)
+ 𝑎0

= lim
𝑛→∞

(
𝑎𝑑𝑥𝑑𝑛 + 𝑎𝑑−1𝑥𝑑−1

𝑛 + · · · + 𝑎1𝑥𝑛 + 𝑎0

)
= lim
𝑛→∞ 𝑓 (𝑥𝑛).

Thus 𝑓 is continuous at 𝑐. As 𝑓 is continuous at all 𝑐 ∈ ℝ, 𝑓 is continuous. □

By similar reasoning, or by appealing to  Corollary 3.1.12 , we can prove the following
proposition. The proof is left as an exercise.

Proposition 3.2.5. Let 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ be functions continuous at 𝑐 ∈ 𝑆.

(i) The function ℎ : 𝑆 → ℝ defined by ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥) is continuous at 𝑐.
(ii) The function ℎ : 𝑆 → ℝ defined by ℎ(𝑥) B 𝑓 (𝑥) − 𝑔(𝑥) is continuous at 𝑐.
(iii) The function ℎ : 𝑆 → ℝ defined by ℎ(𝑥) B 𝑓 (𝑥)𝑔(𝑥) is continuous at 𝑐.

(iv) If 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ 𝑆, the function ℎ : 𝑆 → ℝ given by ℎ(𝑥) B 𝑓 (𝑥)
𝑔(𝑥) is continuous at 𝑐.

Example 3.2.6: The functions sin(𝑥) and cos(𝑥) are continuous. In the following computa-
tions we use the sum-to-product trigonometric identities. We also use the simple facts that
|sin(𝑥)| ≤ |𝑥|, |cos(𝑥)| ≤ 1, and |sin(𝑥)| ≤ 1.

|sin(𝑥) − sin(𝑐)| =
���2 sin

( 𝑥 − 𝑐
2

)
cos

( 𝑥 + 𝑐
2

)���
= 2

���sin
( 𝑥 − 𝑐

2

)��� ���cos
( 𝑥 + 𝑐

2

)���
≤ 2

���sin
( 𝑥 − 𝑐

2

)���
≤ 2

���𝑥 − 𝑐2

��� = |𝑥 − 𝑐|

|cos(𝑥) − cos(𝑐)| =
���−2 sin

( 𝑥 − 𝑐
2

)
sin

( 𝑥 + 𝑐
2

)���
= 2

���sin
( 𝑥 − 𝑐

2

)��� ���sin
( 𝑥 + 𝑐

2

)���
≤ 2

���sin
( 𝑥 − 𝑐

2

)���
≤ 2

���𝑥 − 𝑐2

��� = |𝑥 − 𝑐|

The claim that sin and cos are continuous follows by taking an arbitrary sequence
{𝑥𝑛}∞𝑛=1 converging to 𝑐, or by applying the definition of continuity directly. Details are
left to the reader.
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3.2.2 Composition of continuous functions
You probably already realized that one of the basic tools in constructing complicated
functions out of simple ones is composition. Recall that for two functions 𝑓 and 𝑔, the
composition 𝑓 ◦𝑔 is defined by ( 𝑓 ◦𝑔)(𝑥) B 𝑓

(
𝑔(𝑥)) . A composition of continuous functions

is again continuous.

Proposition 3.2.7. Let 𝐴, 𝐵 ⊂ ℝ and 𝑓 : 𝐵 → ℝ and 𝑔 : 𝐴→ 𝐵 be functions. If 𝑔 is continuous
at 𝑐 ∈ 𝐴 and 𝑓 is continuous at 𝑔(𝑐), then 𝑓 ◦ 𝑔 : 𝐴→ ℝ is continuous at 𝑐.

Proof. Let {𝑥𝑛}∞𝑛=1 be a sequence in 𝐴 such that lim𝑛→∞ 𝑥𝑛 = 𝑐. As 𝑔 is continuous at 𝑐,
we have

{
𝑔(𝑥𝑛)

}∞
𝑛=1 converges to 𝑔(𝑐). As 𝑓 is continuous at 𝑔(𝑐), we have

{
𝑓
(
𝑔(𝑥𝑛)

)}∞
𝑛=1

converges to 𝑓
(
𝑔(𝑐)) . Thus 𝑓 ◦ 𝑔 is continuous at 𝑐. □

Example 3.2.8: Claim:
(
sin(1/𝑥))2 is a continuous function on (0,∞).

Proof: The function 1/𝑥 is continuous on (0,∞) and sin(𝑥) is continuous on (0,∞)
(actually on ℝ, but (0,∞) is the range for 1/𝑥). Hence the composition sin(1/𝑥) is continuous.
Also, 𝑥2 is continuous on the interval [−1, 1] (the range of sin). Thus the composition(
sin(1/𝑥))2 is continuous on (0,∞).

3.2.3 Discontinuous functions
When 𝑓 is not continuous at 𝑐, we say 𝑓 is discontinuous at 𝑐, or that it has a discontinuity
at 𝑐. The following proposition is a useful test and follows immediately from third item of

 Proposition 3.2.2 .

Proposition 3.2.9. Let 𝑓 : 𝑆 → ℝ be a function and 𝑐 ∈ 𝑆. Suppose there exists a sequence
{𝑥𝑛}∞𝑛=1, 𝑥𝑛 ∈ 𝑆 for all 𝑛, and lim𝑛→∞ 𝑥𝑛 = 𝑐 such that

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 does not converge to 𝑓 (𝑐).

Then 𝑓 is discontinuous at 𝑐.

Again, saying that
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 does not converge to 𝑓 (𝑐) means that it either does not

converge at all, or it converges to something other than 𝑓 (𝑐).
Example 3.2.10: The function 𝑓 : ℝ → ℝ defined by

𝑓 (𝑥) B
{
−1 if 𝑥 < 0,
1 if 𝑥 ≥ 0

is not continuous at 0.
Proof: Consider {−1/𝑛}∞𝑛=1, which converges to 0. Then 𝑓 (−1/𝑛) = −1 for every 𝑛, and so

lim𝑛→∞ 𝑓 (−1/𝑛) = −1, but 𝑓 (0) = 1. Thus the function is not continuous at 0. See  Figure 3.4 .
Notice that 𝑓 (1/𝑛) = 1 for all 𝑛 ∈ ℕ. Hence, lim𝑛→∞ 𝑓 (1/𝑛) = 𝑓 (0) = 1. So

{
𝑓 (𝑥𝑛)

}∞
𝑛=1

may converge to 𝑓 (0) for some specific sequence {𝑥𝑛}∞𝑛=1 going to 0, despite the function
being discontinuous at 0.

Finally, consider 𝑓
( (−1)𝑛

𝑛

)
= (−1)𝑛 . This sequence diverges.
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−1
4

−1
3

−1
2−1 · · ·

Figure 3.4: Jump discontinuity. The values of 𝑓 (−1/𝑛) and 𝑓 (0) are marked as black dots.

Example 3.2.11: For an extreme example, take the so-called Dirichlet function 

‗
 .

𝑓 (𝑥) B
{

1 if 𝑥 is rational,
0 if 𝑥 is irrational.

The function 𝑓 is discontinuous at all 𝑐 ∈ ℝ.
Proof: If 𝑐 is rational, take a sequence {𝑥𝑛}∞𝑛=1 of irrational numbers such that

lim𝑛→∞ 𝑥𝑛 = 𝑐 (why can we?). Then 𝑓 (𝑥𝑛) = 0 and so lim𝑛→∞ 𝑓 (𝑥𝑛) = 0, but 𝑓 (𝑐) = 1. If
𝑐 is irrational, take a sequence of rational numbers {𝑥𝑛}∞𝑛=1 that converges to 𝑐 (why can
we?). Then lim𝑛→∞ 𝑓 (𝑥𝑛) = 1, but 𝑓 (𝑐) = 0.

Let us test the limits of our intuition. Can there exist a function continuous at all
irrational numbers, but discontinuous at all rational numbers? There are rational numbers
arbitrarily close to any irrational number. Perhaps strangely, the answer is yes, such a
function exists. The following example is called the Thomae function 

†
 or the popcorn function.

Example 3.2.12: Define 𝑓 : (0, 1) → ℝ as

𝑓 (𝑥) B
{

1/𝑘 if 𝑥 = 𝑚/𝑘, where 𝑚, 𝑘 ∈ ℕ and have no common divisors (lowest terms),
0 if 𝑥 is irrational.

See the graph of 𝑓 in  Figure 3.5 . We claim that 𝑓 is continuous at all irrational 𝑐 and
discontinuous at all rational 𝑐.

Proof: Let 𝑐 = 𝑚/𝑘 be rational and in lowest terms. Take a sequence of irrational numbers
{𝑥𝑛}∞𝑛=1 such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Then lim𝑛→∞ 𝑓 (𝑥𝑛) = lim𝑛→∞ 0 = 0, but 𝑓 (𝑐) = 1/𝑘 ≠ 0.
So 𝑓 is discontinuous at 𝑐.

Now let 𝑐 be irrational, so 𝑓 (𝑐) = 0. Take a sequence {𝑥𝑛}∞𝑛=1 in (0, 1) such that
lim𝑛→∞ 𝑥𝑛 = 𝑐. Given 𝜖 > 0, find 𝐾 ∈ ℕ such that 1/𝐾 < 𝜖 by the  Archimedean property  . If
𝑚/𝑘 ∈ (0, 1) and 𝑚, 𝑘 ∈ ℕ, then 0 < 𝑚 < 𝑘. So there are only finitely many rational numbers
in (0, 1) whose denominator 𝑘 in lowest terms is less than 𝐾. As lim𝑛→∞ 𝑥𝑛 = 𝑐, every
number not equal to 𝑐 can appear at most finitely many times in {𝑥𝑛}∞𝑛=1. Hence, there is

‗Named after the German mathematician  Johann Peter Gustav Lejeune Dirichlet (1805–1859).
†Named after the German mathematician  Carl Johannes Thomae (1840–1921).

https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://en.wikipedia.org/wiki/Carl_Johannes_Thomae
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Figure 3.5: Graph of the “popcorn function.”

an 𝑀 such that for 𝑛 ≥ 𝑀, all the numbers 𝑥𝑛 that are rational have a denominator larger
than or equal to 𝐾. Thus for 𝑛 ≥ 𝑀,�� 𝑓 (𝑥𝑛) − 0

�� = 𝑓 (𝑥𝑛) ≤ 1/𝐾 < 𝜖.

Therefore, 𝑓 is continuous at irrational 𝑐.

Let us end on an easier example.

Example 3.2.13: Define 𝑔 : ℝ → ℝ by 𝑔(𝑥) B 0 if 𝑥 ≠ 0 and 𝑔(0) B 1. Then 𝑔 is not
continuous at zero, but continuous everywhere else (why?). The point 𝑥 = 0 is called a
removable discontinuity. That is because if we would change the definition of 𝑔, by insisting
that 𝑔(0) be 0, we would obtain a continuous function. On the other hand, let 𝑓 be the
function of  Example 3.2.10  . Then 𝑓 does not have a removable discontinuity at 0. No matter
how we would define 𝑓 (0) the function would still fail to be continuous. The difference is
that lim𝑥→0 𝑔(𝑥) exists while lim𝑥→0 𝑓 (𝑥) does not.

We stay with this example to show another phenomenon. Let 𝐴 B {0}, then 𝑔|𝐴 is
continuous (why?), while 𝑔 is not continuous on 𝐴. Similarly, if 𝐵 B ℝ \ {0}, then 𝑔|𝐵 is
also continuous, and 𝑔 is in fact continuous on 𝐵.

3.2.4 Exercises
Exercise 3.2.1: Using the definition of continuity directly prove that 𝑓 : ℝ → ℝ defined by 𝑓 (𝑥) B 𝑥2 is
continuous.

Exercise 3.2.2: Using the definition of continuity directly prove that 𝑓 : (0,∞) → ℝ defined by 𝑓 (𝑥) B 1/𝑥
is continuous.

Exercise 3.2.3: Define 𝑓 : ℝ → ℝ by

𝑓 (𝑥) B
{
𝑥 if 𝑥 is rational,
𝑥2 if 𝑥 is irrational.

Using the definition of continuity directly prove that 𝑓 is continuous at 1 and discontinuous at 2.
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Exercise 3.2.4: Define 𝑓 : ℝ → ℝ by

𝑓 (𝑥) B
{

sin(1/𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0.

Is 𝑓 continuous? Prove your assertion.

Exercise 3.2.5: Define 𝑓 : ℝ → ℝ by

𝑓 (𝑥) B
{
𝑥 sin(1/𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0.

Is 𝑓 continuous? Prove your assertion.

Exercise 3.2.6: Prove  Proposition 3.2.5 .

Exercise 3.2.7: Let 𝑆 ⊂ ℝ and 𝐴 ⊂ 𝑆. Let 𝑓 : 𝑆 → ℝ be a continuous function. Prove that the restriction
𝑓 |𝐴 is continuous.

Exercise 3.2.8: Suppose 𝑆 ⊂ ℝ, such that (𝑐 − 𝛼, 𝑐 + 𝛼) ⊂ 𝑆 for some 𝑐 ∈ ℝ and 𝛼 > 0. Let 𝑓 : 𝑆 → ℝ be
a function and 𝐴 B (𝑐 − 𝛼, 𝑐 + 𝛼). Prove that if 𝑓 |𝐴 is continuous at 𝑐, then 𝑓 is continuous at 𝑐.

Exercise 3.2.9: Give an example of functions 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ such that the function ℎ, defined
by ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥), is continuous, but 𝑓 and 𝑔 are not continuous. Can you find 𝑓 and 𝑔 that are
nowhere continuous, but ℎ is a continuous function?

Exercise 3.2.10: Let 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ be continuous functions. Suppose that 𝑓 (𝑟) = 𝑔(𝑟) for all
𝑟 ∈ ℚ. Show that 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ ℝ.

Exercise 3.2.11: Let 𝑓 : ℝ → ℝ be continuous. Suppose 𝑓 (𝑐) > 0. Show that there exists an 𝛼 > 0 such
that for all 𝑥 ∈ (𝑐 − 𝛼, 𝑐 + 𝛼), we have 𝑓 (𝑥) > 0.

Exercise 3.2.12: Let 𝑓 : ℤ → ℝ be a function. Show that 𝑓 is continuous.

Exercise 3.2.13: Let 𝑓 : 𝑆 → ℝ be a function and 𝑐 ∈ 𝑆, such that for every sequence {𝑥𝑛}∞𝑛=1 in 𝑆 with
lim𝑛→∞ 𝑥𝑛 = 𝑐, the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges. Show that 𝑓 is continuous at 𝑐.

Exercise 3.2.14: Suppose 𝑓 : [−1, 0] → ℝ and 𝑔 : [0, 1] → ℝ are continuous and 𝑓 (0) = 𝑔(0). Define
ℎ : [−1, 1] → ℝ by ℎ(𝑥) B 𝑓 (𝑥) if 𝑥 ≤ 0 and ℎ(𝑥) B 𝑔(𝑥) if 𝑥 > 0. Show that ℎ is continuous.

Exercise 3.2.15: Suppose 𝑔 : ℝ → ℝ is a continuous function such that 𝑔(0) = 0, and suppose 𝑓 : ℝ → ℝ

is such that
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝑔(𝑥 − 𝑦) for all 𝑥 and 𝑦. Show that 𝑓 is continuous.

Exercise 3.2.16 (Challenging): Suppose 𝑓 : ℝ → ℝ is continuous at 0 and such that 𝑓 (𝑥+𝑦) = 𝑓 (𝑥)+ 𝑓 (𝑦)
for every 𝑥 and 𝑦. Show that 𝑓 (𝑥) = 𝑎𝑥 for some 𝑎 ∈ ℝ. Hint: Show that 𝑓 (𝑛𝑥) = 𝑛 𝑓 (𝑥), then show 𝑓 is
continuous on ℝ. Then show that 𝑓 (𝑥)/𝑥 = 𝑓 (1) for all rational 𝑥.

Exercise 3.2.17: Suppose 𝑆 ⊂ ℝ and let 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ be continuous functions. Define
𝑝 : 𝑆 → ℝ by 𝑝(𝑥) B max

{
𝑓 (𝑥), 𝑔(𝑥)} and 𝑞 : 𝑆 → ℝ by 𝑞(𝑥) B min

{
𝑓 (𝑥), 𝑔(𝑥)}. Prove that 𝑝 and 𝑞

are continuous.
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Exercise 3.2.18: Suppose 𝑓 : [−1, 1] → ℝ is a function continuous at all 𝑥 ∈ [−1, 1] \ {0}. Show that for
every 𝜖 such that 0 < 𝜖 < 1, there exists a function 𝑔 : [−1, 1] → ℝ continuous on all of [−1, 1], such that
𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ [−1,−𝜖] ∪ [𝜖, 1], and

��𝑔(𝑥)�� ≤ �� 𝑓 (𝑥)�� for all 𝑥 ∈ [−1, 1].
Exercise 3.2.19 (Challenging): A function 𝑓 : 𝐼 → ℝ is convex if whenever 𝑎 ≤ 𝑥 ≤ 𝑏 for 𝑎, 𝑥, 𝑏 in 𝐼, we
have 𝑓 (𝑥) ≤ 𝑓 (𝑎) 𝑏−𝑥𝑏−𝑎 + 𝑓 (𝑏) 𝑥−𝑎𝑏−𝑎 . In other words, if the line drawn between

(
𝑎, 𝑓 (𝑎)) and

(
𝑏, 𝑓 (𝑏)) is above

the graph of 𝑓 .

a) Prove that if 𝐼 = (𝛼, 𝛽) an open interval and 𝑓 : 𝐼 → ℝ is convex, then 𝑓 is continuous.

b) Find an example of a convex 𝑓 : [0, 1] → ℝ that is not continuous.
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3.3 Extreme and intermediate value theorems
Note: 1.5 lectures

Continuous functions on closed and bounded intervals are quite well behaved.

3.3.1 Min-max or extreme value theorem
Recall that 𝑓 : [𝑎, 𝑏] → ℝ is bounded if there exists a 𝐵 ∈ ℝ such that

�� 𝑓 (𝑥)�� ≤ 𝐵 for all
𝑥 ∈ [𝑎, 𝑏]. For a continuous function on a closed and bounded interval, we have the
following lemma.

Lemma 3.3.1. A continuous function 𝑓 : [𝑎, 𝑏] → ℝ is bounded.

Proof. We prove the claim by contrapositive. Suppose 𝑓 is not bounded. Then for each
𝑛 ∈ ℕ, there is an 𝑥𝑛 ∈ [𝑎, 𝑏], such that �� 𝑓 (𝑥𝑛)�� ≥ 𝑛.

The sequence {𝑥𝑛}∞𝑛=1 is bounded as 𝑎 ≤ 𝑥𝑛 ≤ 𝑏. By the  Bolzano–Weierstrass theorem ,
there is a convergent subsequence {𝑥𝑛𝑖}∞𝑖=1. Let 𝑥 B lim𝑖→∞ 𝑥𝑛𝑖 . Since 𝑎 ≤ 𝑥𝑛𝑖 ≤ 𝑏 for all 𝑖,
then 𝑎 ≤ 𝑥 ≤ 𝑏. The sequence

{
𝑓 (𝑥𝑛𝑖 )

}∞
𝑖=1 is not bounded as

�� 𝑓 (𝑥𝑛𝑖 )�� ≥ 𝑛𝑖 ≥ 𝑖. Thus 𝑓 is not
continuous at 𝑥 as

𝑓 (𝑥) = 𝑓
(
lim
𝑖→∞

𝑥𝑛𝑖
)
, but lim

𝑖→∞
𝑓 (𝑥𝑛𝑖 ) does not exist. □

Notice a key point of the proof. Boundedness of [𝑎, 𝑏] allows us to use Bolzano–
Weierstrass, while the fact that it is closed gives us that the limit is back in [𝑎, 𝑏]. The
technique is a common one: Find a sequence with a certain property, then use Bolzano–
Weierstrass to make such a sequence that also converges.

Recall from calculus that 𝑓 : 𝑆 → ℝ achieves an absolute minimum at 𝑐 ∈ 𝑆 if

𝑓 (𝑥) ≥ 𝑓 (𝑐) for all 𝑥 ∈ 𝑆.
On the other hand, 𝑓 achieves an absolute maximum at 𝑐 ∈ 𝑆 if

𝑓 (𝑥) ≤ 𝑓 (𝑐) for all 𝑥 ∈ 𝑆.
If such a 𝑐 ∈ 𝑆 exists, then we say 𝑓 achieves an absolute minimum (resp. absolute maximum) on
𝑆, and we call 𝑓 (𝑐) the absolute minimum (resp. absolute maximum).

If 𝑆 is a closed and bounded interval, then a continuous 𝑓 is not just bounded, it must
achieve an absolute minimum and an absolute maximum on 𝑆.

Theorem 3.3.2 (Minimum-maximum theorem / Extreme value theorem). A continuous
function 𝑓 : [𝑎, 𝑏] → ℝ achieves both an absolute minimum and an absolute maximum on [𝑎, 𝑏].

Again, we remark that is important that the domain of 𝑓 is a closed and bounded
interval [𝑎, 𝑏].
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absolute maximum of 5 = 5 (2)

absolute minimum of 5 = 5 (3)
0 1

3
2

Figure 3.6: 𝑓 : [𝑎, 𝑏] → ℝ achieves an absolute maximum 𝑓 (𝑐) at 𝑐, and an absolute minimum
𝑓 (𝑑) at 𝑑.

Proof. The lemma says that 𝑓 is bounded, so the set 𝑓
([𝑎, 𝑏]) =

{
𝑓 (𝑥) : 𝑥 ∈ [𝑎, 𝑏]} has

a supremum and an infimum. There exist sequences in the set 𝑓
([𝑎, 𝑏]) that approach

its supremum and its infimum. That is, there are sequences
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 and

{
𝑓 (𝑦𝑛)

}∞
𝑛=1,

where 𝑥𝑛 and 𝑦𝑛 are in [𝑎, 𝑏], such that

lim
𝑛→∞ 𝑓 (𝑥𝑛) = inf 𝑓

([𝑎, 𝑏]) and lim
𝑛→∞ 𝑓 (𝑦𝑛) = sup 𝑓

([𝑎, 𝑏]) .
We are not done yet; we need to find where the minima and the maxima are. The problem
is that the sequences {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 need not converge. We know {𝑥𝑛}∞𝑛=1 and
{𝑦𝑛}∞𝑛=1 are bounded (their elements belong to a bounded interval [𝑎, 𝑏]). Apply the

 Bolzano–Weierstrass theorem to find convergent subsequences {𝑥𝑛𝑖}∞𝑖=1 and {𝑦𝑚𝑖}∞𝑖=1. Let

𝑥 B lim
𝑖→∞

𝑥𝑛𝑖 and 𝑦 B lim
𝑖→∞

𝑦𝑚𝑖 .

As 𝑎 ≤ 𝑥𝑛𝑖 ≤ 𝑏 for all 𝑖, we have 𝑎 ≤ 𝑥 ≤ 𝑏. Similarly, 𝑎 ≤ 𝑦 ≤ 𝑏. So 𝑥 and 𝑦 are in [𝑎, 𝑏]. A
limit of a subsequence is the same as the limit of the sequence, and we can take a limit past
the continuous function 𝑓 :

inf 𝑓
([𝑎, 𝑏]) = lim

𝑛→∞ 𝑓 (𝑥𝑛) = lim
𝑖→∞

𝑓 (𝑥𝑛𝑖 ) = 𝑓
(
lim
𝑖→∞

𝑥𝑛𝑖
)
= 𝑓 (𝑥).

Similarly,
sup 𝑓

([𝑎, 𝑏]) = lim
𝑛→∞ 𝑓 (𝑦𝑛) = lim

𝑖→∞
𝑓 (𝑦𝑚𝑖 ) = 𝑓

(
lim
𝑖→∞

𝑦𝑚𝑖

)
= 𝑓 (𝑦).

Hence, 𝑓 achieves an absolute minimum at 𝑥 and an absolute maximum at 𝑦. □

Example 3.3.3: The function 𝑓 (𝑥) B 𝑥2 + 1 defined on the interval [−1, 2] achieves a
minimum at 𝑥 = 0 when 𝑓 (0) = 1. It achieves a maximum at 𝑥 = 2 where 𝑓 (2) = 5. Do note
that the domain of definition matters. If we instead took the domain to be [−10, 10], then 𝑓
would no longer have a maximum at 𝑥 = 2. Instead, the maximum would be achieved at
either 𝑥 = 10 or 𝑥 = −10.

We show by examples that the different hypotheses of the theorem are truly needed.
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Example 3.3.4: The function 𝑓 : ℝ → ℝ defined by 𝑓 (𝑥) B 𝑥 achieves neither a minimum,
nor a maximum. So it is important that we are looking at a bounded interval.

Example 3.3.5: The function 𝑓 : (0, 1) → ℝ defined by 𝑓 (𝑥) B 1/𝑥 achieves neither a
minimum, nor a maximum. It is continuous, but (0, 1) is not closed. The values of the
function are unbounded as we approach 0. Also as we approach 𝑥 = 1, the values of the
function approach 1, but 𝑓 (𝑥) > 1 for all 𝑥 ∈ (0, 1). There is no 𝑥 ∈ (0, 1) such that 𝑓 (𝑥) = 1.
So it is important that we are looking at a closed interval.

Example 3.3.6: Continuity is important. Define 𝑓 : [0, 1] → ℝ by 𝑓 (𝑥) B 1/𝑥 for 𝑥 > 0 and
let 𝑓 (0) B 0. The function does not achieve a maximum. The domain [0, 1] is closed and
bounded, but the problem is that the function is not continuous at 0.

3.3.2 Bolzano’s intermediate value theorem
Bolzano’s intermediate value theorem is one of the cornerstones of analysis. It is sometimes
only called the intermediate value theorem, or just Bolzano’s theorem. To prove Bolzano’s
theorem we prove the following simpler lemma.

Lemma 3.3.7. Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function. Suppose 𝑓 (𝑎) < 0 and 𝑓 (𝑏) > 0.
Then there exists a number 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 0.

Proof. We define two sequences {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 inductively:
(i) Let 𝑎1 B 𝑎 and 𝑏1 B 𝑏.

(ii) If 𝑓
(
𝑎𝑛+𝑏𝑛

2

)
≥ 0, let 𝑎𝑛+1 B 𝑎𝑛 and 𝑏𝑛+1 B

𝑎𝑛+𝑏𝑛
2 .

(iii) If 𝑓
(
𝑎𝑛+𝑏𝑛

2

)
< 0, let 𝑎𝑛+1 B

𝑎𝑛+𝑏𝑛
2 and 𝑏𝑛+1 B 𝑏𝑛 .

See  Figure 3.7 for an example defining the first five steps. If 𝑎𝑛 < 𝑏𝑛 , then 𝑎𝑛 < 𝑎𝑛+𝑏𝑛
2 < 𝑏𝑛 .

So 𝑎𝑛+1 < 𝑏𝑛+1. Thus by  induction 𝑎𝑛 < 𝑏𝑛 for all 𝑛. Furthermore, 𝑎𝑛 ≤ 𝑎𝑛+1 and
𝑏𝑛 ≥ 𝑏𝑛+1 for all 𝑛, that is, the sequences are monotone. As 𝑎𝑛 < 𝑏𝑛 ≤ 𝑏1 = 𝑏 and
𝑏𝑛 > 𝑎𝑛 ≥ 𝑎1 = 𝑎 for all 𝑛, the sequences are also bounded. Therefore, the sequences
converge. Let 𝑐 B lim𝑛→∞ 𝑎𝑛 and 𝑑 B lim𝑛→∞ 𝑏𝑛 , where also 𝑎 ≤ 𝑐 ≤ 𝑑 ≤ 𝑏. We need to
show that 𝑐 = 𝑑. Notice

𝑏𝑛+1 − 𝑎𝑛+1 =
𝑏𝑛 − 𝑎𝑛

2 .

By  induction ,

𝑏𝑛 − 𝑎𝑛 =
𝑏1 − 𝑎1
2𝑛−1 = 21−𝑛(𝑏 − 𝑎).

As 21−𝑛(𝑏 − 𝑎) converges to zero, we take the limit as 𝑛 goes to infinity to get

𝑑 − 𝑐 = lim
𝑛→∞(𝑏𝑛 − 𝑎𝑛) = lim

𝑛→∞ 21−𝑛(𝑏 − 𝑎) = 0.

In other words, 𝑑 = 𝑐.
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Figure 3.7: Finding roots (bisection method).

By construction, for all 𝑛,

𝑓 (𝑎𝑛) < 0 and 𝑓 (𝑏𝑛) ≥ 0.

Since lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛 = 𝑐 and 𝑓 is continuous at 𝑐, we may take limits in those
inequalities:

𝑓 (𝑐) = lim
𝑛→∞ 𝑓 (𝑎𝑛) ≤ 0 and 𝑓 (𝑐) = lim

𝑛→∞ 𝑓 (𝑏𝑛) ≥ 0.

As 𝑓 (𝑐) ≥ 0 and 𝑓 (𝑐) ≤ 0, we conclude 𝑓 (𝑐) = 0. Thus also 𝑐 ≠ 𝑎 and 𝑐 ≠ 𝑏, so 𝑎 < 𝑐 < 𝑏. □

Theorem 3.3.8 (Bolzano’s intermediate value theorem). Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous
function. Suppose 𝑦 ∈ ℝ is such that 𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏) or 𝑓 (𝑎) > 𝑦 > 𝑓 (𝑏). Then there exists a
𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑦.

The theorem says that a continuous function on a closed interval achieves all the values
between the values at the endpoints.

Proof. If 𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏), then define 𝑔(𝑥) B 𝑓 (𝑥) − 𝑦. Then 𝑔(𝑎) < 0 and 𝑔(𝑏) > 0, and we
apply  Lemma 3.3.7 to 𝑔 to find 𝑐. If 𝑔(𝑐) = 0, then 𝑓 (𝑐) = 𝑦.

Similarly, if 𝑓 (𝑎) > 𝑦 > 𝑓 (𝑏), then define 𝑔(𝑥) B 𝑦 − 𝑓 (𝑥). Again, 𝑔(𝑎) < 0 and 𝑔(𝑏) > 0,
and we apply  Lemma 3.3.7 to find 𝑐. As before, if 𝑔(𝑐) = 0, then 𝑓 (𝑐) = 𝑦. □

If a function is continuous, then the restriction to a subset is continuous; if 𝑓 : 𝑆 → ℝ is
continuous and [𝑎, 𝑏] ⊂ 𝑆, then 𝑓 |[𝑎,𝑏] is also continuous. We generally apply the theorem
to a function continuous on some large set 𝑆, but we restrict our attention to an interval.

The proof of the lemma tells us how to find the root 𝑐. The proof is not only useful for
us pure mathematicians, it is a useful idea in applied mathematics, where it is called the
bisection method.
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Example 3.3.9 (Bisection method): The polynomial 𝑓 (𝑥) B 𝑥3 − 2𝑥2 + 𝑥 − 1 has a real root
in (1, 2). We simply notice that 𝑓 (1) = −1 and 𝑓 (2) = 1. Hence there must exist a point
𝑐 ∈ (1, 2) such that 𝑓 (𝑐) = 0. To find a better approximation of the root we follow the proof
of  Lemma 3.3.7  . We look at 1.5 and find that 𝑓 (1.5) = −0.625. Therefore, there is a root
of the polynomial in (1.5, 2). Next we look at 1.75 and note that 𝑓 (1.75) ≈ −0.016. Hence
there is a root of 𝑓 in (1.75, 2). Next we look at 1.875 and find that 𝑓 (1.875) ≈ 0.44, thus
there is a root in (1.75, 1.875). We follow this procedure until we gain sufficient precision.
In fact, the root is at 𝑐 ≈ 1.7549.

The technique is the simplest method of finding roots of polynomials, a common
problem in applied mathematics. In general, finding roots is hard to do quickly, precisely,
and automatically. There are other, faster methods of finding roots of polynomials, such as
Newton’s method. One advantage of the method above is its simplicity. The moment we
find an interval where the intermediate value theorem applies, we are guaranteed to find a
root up to a desired precision in finitely many steps. Furthermore, the bisection method
finds roots of any continuous function, not just a polynomial.

The theorem guarantees one 𝑐 such that 𝑓 (𝑐) = 𝑦, but there may be other roots of the
equation 𝑓 (𝑐) = 𝑦. If we follow the procedure of the proof, we are guaranteed to find
approximations to one such root. We need to work harder to find any other roots.

Polynomials of even degree may not have any real roots. There is no real number 𝑥 such
that 𝑥2 + 1 = 0. Odd polynomials, on the other hand, always have at least one real root.
Proposition 3.3.10. Let 𝑓 (𝑥) be a polynomial of odd degree. Then 𝑓 has a real root.

Proof. Suppose 𝑓 is a polynomial of odd degree 𝑑. We write

𝑓 (𝑥) = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + · · · + 𝑎1𝑥 + 𝑎0,

where 𝑎𝑑 ≠ 0. We divide by 𝑎𝑑 to obtain a monic polynomial 

‗
 

𝑔(𝑥) B 𝑥𝑑 + 𝑏𝑑−1𝑥𝑑−1 + · · · + 𝑏1𝑥 + 𝑏0,

where 𝑏𝑘 = 𝑎𝑘/𝑎𝑑. Let us show that 𝑔(𝑛) is positive for some large 𝑛 ∈ ℕ. We first compare
the highest order term with the rest:����𝑏𝑑−1𝑛𝑑−1 + · · · + 𝑏1𝑛 + 𝑏0

𝑛𝑑

���� = ��𝑏𝑑−1𝑛𝑑−1 + · · · + 𝑏1𝑛 + 𝑏0
��

𝑛𝑑

≤ |𝑏𝑑−1| 𝑛𝑑−1 + · · · + |𝑏1| 𝑛 + |𝑏0|
𝑛𝑑

≤ |𝑏𝑑−1| 𝑛𝑑−1 + · · · + |𝑏1| 𝑛𝑑−1 + |𝑏0| 𝑛𝑑−1

𝑛𝑑

=
𝑛𝑑−1 (|𝑏𝑑−1| + · · · + |𝑏1| + |𝑏0|

)
𝑛𝑑

=
1
𝑛

(|𝑏𝑑−1| + · · · + |𝑏1| + |𝑏0|
)
.

‗The word monic means that the coefficient of 𝑥𝑑 is 1.
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Therefore,

lim
𝑛→∞

𝑏𝑑−1𝑛𝑑−1 + · · · + 𝑏1𝑛 + 𝑏0

𝑛𝑑
= 0.

Thus there exists an 𝑀 ∈ ℕ such that����𝑏𝑑−1𝑀𝑑−1 + · · · + 𝑏1𝑀 + 𝑏0

𝑀𝑑

���� < 1,

which implies
−(𝑏𝑑−1𝑀𝑑−1 + · · · + 𝑏1𝑀 + 𝑏0) < 𝑀𝑑 .

Therefore, 𝑔(𝑀) > 0.
Next, consider 𝑔(−𝑛) for 𝑛 ∈ ℕ. By a similar argument, there exists a 𝐾 ∈ ℕ such that

𝑏𝑑−1(−𝐾)𝑑−1 + · · · + 𝑏1(−𝐾) + 𝑏0 < 𝐾𝑑 and therefore 𝑔(−𝐾) < 0 (see  Exercise 3.3.5  ). In the
proof, make sure you use the fact that 𝑑 is odd. In particular, if 𝑑 is odd, then (−𝑛)𝑑 = −(𝑛𝑑).

We appeal to the intermediate value theorem to find a 𝑐 ∈ (−𝐾, 𝑀), such that 𝑔(𝑐) = 0.
As 𝑔(𝑥) = 𝑓 (𝑥)

𝑎𝑑
, then 𝑓 (𝑐) = 0, and the proof is done. □

Example 3.3.11: You may recall how hard we worked in  Example 1.2.3 to show that
√

2
exists. With Bolzano’s theorem, we can prove the existence 𝑘th root of any positive number
𝑦 > 0 without any effort. We claim that for any 𝑘 ∈ ℕ and any 𝑦 > 0, there exists a number
𝑥 > 0 such that 𝑥𝑘 = 𝑦.

Proof: If 𝑦 = 1, then it is clear, so assume 𝑦 ≠ 1. Let 𝑓 (𝑥) B 𝑥𝑘 − 𝑦. We notice
𝑓 (0) = −𝑦 < 0. If 𝑦 < 1, then 𝑓 (1) = 1𝑘−𝑦 > 0. If 𝑦 > 1, then 𝑓 (𝑦) = 𝑦𝑘−𝑦 = 𝑦(𝑦𝑘−1−1) > 0.
In either case, apply Bolzano’s theorem to find an 𝑥 > 0 such that 𝑓 (𝑥) = 0, or in other
words 𝑥𝑘 = 𝑦.

Example 3.3.12: Interestingly, there exist discontinuous functions with the intermediate
value property. The function

𝑓 (𝑥) B
{

sin(1/𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0,

is not continuous at 0; however, 𝑓 has the intermediate value property: Whenever 𝑎 < 𝑏
and 𝑦 is such that 𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏) or 𝑓 (𝑎) > 𝑦 > 𝑓 (𝑏), there exists a 𝑐 ∈ (𝑎, 𝑏) such that
𝑓 (𝑐) = 𝑦. See  Figure 3.2 for a graph of sin(1/𝑥). Proof is left as  Exercise 3.3.4 .

The intermediate value theorem says that if 𝑓 : [𝑎, 𝑏] → ℝ is continuous, then 𝑓
([𝑎, 𝑏])

contains all the values between 𝑓 (𝑎) and 𝑓 (𝑏). In fact, more is true. Combining all the
results of this section one can prove the following useful corollary whose proof is left as an
exercise. Hint: See  Figure 3.8 and notice what the endpoints of the image interval are.

Corollary 3.3.13. If 𝑓 : [𝑎, 𝑏] → ℝ is continuous, then the direct image 𝑓
([𝑎, 𝑏]) is a closed and

bounded interval or a single number.
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𝑎 𝑏

𝑦 = 𝑓 (𝑥)
𝑓
([𝑎, 𝑏])

Figure 3.8: The image of a continuous 𝑓 : [𝑎, 𝑏] → ℝ.

3.3.3 Exercises
Exercise 3.3.1: Find an example of a discontinuous function 𝑓 : [0, 1] → ℝ where the conclusion of the
intermediate value theorem fails.

Exercise 3.3.2: Find an example of a bounded discontinuous function 𝑓 : [0, 1] → ℝ that has neither an
absolute minimum nor an absolute maximum.

Exercise 3.3.3: Let 𝑓 : (0, 1) → ℝ be a continuous function such that lim
𝑥→0

𝑓 (𝑥) = lim
𝑥→1

𝑓 (𝑥) = 0. Show that
𝑓 achieves either an absolute minimum or an absolute maximum on (0, 1) (but perhaps not both).

Exercise 3.3.4: Let

𝑓 (𝑥) B
{

sin(1/𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0.

Show that 𝑓 has the intermediate value property. That is, whenever 𝑎 < 𝑏, if there exists a 𝑦 such that
𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏) or 𝑓 (𝑎) > 𝑦 > 𝑓 (𝑏), then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑦.

Exercise 3.3.5: Suppose 𝑔(𝑥) is a monic polynomial of odd degree 𝑑, that is,

𝑔(𝑥) = 𝑥𝑑 + 𝑏𝑑−1𝑥𝑑−1 + · · · + 𝑏1𝑥 + 𝑏0 ,

for some real numbers 𝑏0 , 𝑏1 , . . . , 𝑏𝑑−1. Show that there exists a 𝐾 ∈ ℕ such that 𝑔(−𝐾) < 0. Hint: Make
sure to use the fact that 𝑑 is odd. You will have to use that (−𝑛)𝑑 = −(𝑛𝑑).

Exercise 3.3.6: Suppose 𝑔(𝑥) is a monic polynomial of positive even degree 𝑑, that is,

𝑔(𝑥) = 𝑥𝑑 + 𝑏𝑑−1𝑥𝑑−1 + · · · + 𝑏1𝑥 + 𝑏0 ,

for some real numbers 𝑏0 , 𝑏1 , . . . , 𝑏𝑑−1. Suppose 𝑔(0) < 0. Show that 𝑔 has at least two distinct real roots.

Exercise 3.3.7: Prove  Corollary 3.3.13 : Suppose 𝑓 : [𝑎, 𝑏] → ℝ is a continuous function. Prove that the
direct image 𝑓

([𝑎, 𝑏]) is a closed and bounded interval or a single number.

Exercise 3.3.8: Suppose 𝑓 : ℝ → ℝ is continuous and periodic with period 𝑃 > 0. That is, 𝑓 (𝑥 + 𝑃) = 𝑓 (𝑥)
for all 𝑥 ∈ ℝ. Show that 𝑓 achieves an absolute minimum and an absolute maximum.
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Exercise 3.3.9 (Challenging): Suppose 𝑓 (𝑥) is a bounded polynomial, in other words, there is an 𝑀 such
that

�� 𝑓 (𝑥)�� ≤ 𝑀 for all 𝑥 ∈ ℝ. Prove that 𝑓 must be a constant.

Exercise 3.3.10: Suppose 𝑓 : [0, 1] → [0, 1] is continuous. Show that 𝑓 has a fixed point, in other words,
show that there exists an 𝑥 ∈ [0, 1] such that 𝑓 (𝑥) = 𝑥.

Exercise 3.3.11: Find an example of a continuous bounded function 𝑓 : ℝ → ℝ that does not achieve an
absolute minimum nor an absolute maximum on ℝ.

Exercise 3.3.12: Suppose 𝑓 : ℝ → ℝ is continuous such that 𝑥 ≤ 𝑓 (𝑥) ≤ 𝑥 + 1 for all 𝑥 ∈ ℝ. Find 𝑓 (ℝ).
Exercise 3.3.13: True/False, prove or find a counterexample. If 𝑓 : ℝ → ℝ is a continuous function such
that 𝑓 |ℤ is bounded, then 𝑓 is bounded.

Exercise 3.3.14: Suppose 𝑓 : [0, 1] → (0, 1) is a bĳection. Prove that 𝑓 is not continuous.

Exercise 3.3.15: Suppose 𝑓 : ℝ → ℝ is continuous.

a) Prove that if there is a 𝑐 such that 𝑓 (𝑐) 𝑓 (−𝑐) < 0, then there is a 𝑑 ∈ ℝ such that 𝑓 (𝑑) = 0.

b) Find a continuous function 𝑓 such that 𝑓 (ℝ) = ℝ, but 𝑓 (𝑥) 𝑓 (−𝑥) ≥ 0 for all 𝑥 ∈ ℝ.

Exercise 3.3.16: Suppose 𝑔(𝑥) is a monic polynomial of even degree 𝑑, that is,

𝑔(𝑥) = 𝑥𝑑 + 𝑏𝑑−1𝑥𝑑−1 + · · · + 𝑏1𝑥 + 𝑏0 ,

for some real numbers 𝑏0 , 𝑏1 , . . . , 𝑏𝑑−1. Show that 𝑔 achieves an absolute minimum on ℝ.

Exercise 3.3.17: Suppose 𝑓 (𝑥) is a polynomial of degree 𝑑 and 𝑓 (ℝ) = ℝ. Show that 𝑑 is odd.
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3.4 Uniform continuity
Note: 1.5–2 lectures (continuous extension can be optional)

3.4.1 Uniform continuity
We made a fuss of saying that the 𝛿 in the definition of continuity depended on the point
𝑐. There are situations when it is advantageous to be able to pick a 𝛿 independent of any
point, and so we give a name to this concept.
Definition 3.4.1. Let 𝑆 ⊂ ℝ, and let 𝑓 : 𝑆 → ℝ be a function. Suppose for every 𝜖 > 0 there
exists a 𝛿 > 0 such that whenever 𝑥, 𝑐 ∈ 𝑆 and |𝑥 − 𝑐| < 𝛿, then

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖. Then we
say 𝑓 is uniformly continuous.

A uniformly continuous function must be continuous. The only difference in the
definitions is that in uniform continuity, for a given 𝜖 > 0 we pick a 𝛿 > 0 that works for all
𝑐 ∈ 𝑆. That is, 𝛿 can no longer depend on 𝑐, it only depends on 𝜖. The domain of definition
of the function makes a difference now. A function that is not uniformly continuous on a
larger set, may be uniformly continuous when restricted to a smaller set. Note that 𝑥 and 𝑐
are not treated any differently in this definition.
Example 3.4.2: 𝑓 : [0, 1] → ℝ defined by 𝑓 (𝑥) B 𝑥2 is uniformly continuous.

Proof: Note that 0 ≤ 𝑥, 𝑐 ≤ 1. Then

|𝑥2 − 𝑐2| = |𝑥 + 𝑐||𝑥 − 𝑐| ≤ (|𝑥| + |𝑐|)|𝑥 − 𝑐| ≤ (1 + 1)|𝑥 − 𝑐|.
Therefore, given 𝜖 > 0, let 𝛿 B 𝜖/2. If |𝑥 − 𝑐| < 𝛿, then |𝑥2 − 𝑐2| ≤ 2|𝑥 − 𝑐| < 𝜖.

On the other hand, 𝑔 : ℝ → ℝ defined by 𝑔(𝑥) B 𝑥2 is not uniformly continuous.
Proof: Suppose it is uniformly continuous, then for every 𝜖 > 0, there would exist a

𝛿 > 0 such that if |𝑥 − 𝑐| < 𝛿, then |𝑥2 − 𝑐2| < 𝜖. Take 𝑥 > 0 and let 𝑐 B 𝑥 + 𝛿/2. Write

𝜖 > |𝑥2 − 𝑐2| = |𝑥 + 𝑐||𝑥 − 𝑐| = (2𝑥 + 𝛿/2)𝛿/2 ≥ 𝛿𝑥.

Therefore, 𝑥 < 𝜖/𝛿 for all 𝑥 > 0, which is a contradiction.
Example 3.4.3: The function 𝑓 : (0, 1) → ℝ defined by 𝑓 (𝑥) B 1/𝑥 is not uniformly continu-
ous.

Proof: Given 𝜖 > 0, then 𝜖 > |1/𝑥 − 1/𝑦| holds if and only if

𝜖 > |1/𝑥 − 1/𝑦| =
��𝑦 − 𝑥����𝑥𝑦�� =

��𝑦 − 𝑥��
𝑥𝑦

,

or ��𝑥 − 𝑦�� < 𝑥𝑦𝜖.

Suppose 𝜖 < 1, and we wish to see if a small 𝛿 > 0 would work. If 𝑥 ∈ (0, 1) and
𝑦 = 𝑥 + 𝛿/2 ∈ (0, 1), then

��𝑥 − 𝑦�� = 𝛿/2 < 𝛿. We plug 𝑦 into the inequality above to get
𝛿/2 < 𝑥

(
𝑥 + 𝛿/2

)
𝜖 < 𝑥. If the definition of uniform continuity is satisfied, then the inequality

𝛿/2 < 𝑥 holds for all 𝑥 > 0. But then 𝛿 ≤ 0. Therefore, no single 𝛿 > 0 works for all points.
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The examples show that if 𝑓 is defined on an interval that is either not closed or not
bounded, then 𝑓 can be continuous, but not uniformly continuous. For a closed and
bounded interval [𝑎, 𝑏], we can, however, make the following statement.

Theorem 3.4.4. Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function. Then 𝑓 is uniformly continuous.

Proof. We prove the statement by contrapositive. Suppose 𝑓 is not uniformly continuous.
We will prove that there is some 𝑐 ∈ [𝑎, 𝑏] where 𝑓 is not continuous. Let us negate the
definition of uniformly continuous. There exists an 𝜖 > 0 such that for every 𝛿 > 0, there
exist points 𝑥, 𝑦 in [𝑎, 𝑏] with

��𝑥 − 𝑦�� < 𝛿 and
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≥ 𝜖.

So for the 𝜖 > 0 above, we find sequences {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 such that
��𝑥𝑛 − 𝑦𝑛 �� < 1/𝑛

and such that
�� 𝑓 (𝑥𝑛) − 𝑓 (𝑦𝑛)

�� ≥ 𝜖. By  Bolzano–Weierstrass , there exists a convergent
subsequence {𝑥𝑛𝑘}∞𝑘=1. Let 𝑐 B lim𝑘→∞ 𝑥𝑛𝑘 . As 𝑎 ≤ 𝑥𝑛𝑘 ≤ 𝑏 for all 𝑘, we have 𝑎 ≤ 𝑐 ≤ 𝑏.
Estimate

|𝑦𝑛𝑘 − 𝑐| = |𝑦𝑛𝑘 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑐| ≤ |𝑦𝑛𝑘 − 𝑥𝑛𝑘 | + |𝑥𝑛𝑘 − 𝑐| < 1/𝑛𝑘 + |𝑥𝑛𝑘 − 𝑐|.

As 1/𝑛𝑘 and
��𝑥𝑛𝑘 − 𝑐�� both go to zero when 𝑘 goes to infinity, {𝑦𝑛𝑘}∞𝑘=1 converges and the

limit is 𝑐. We now show that 𝑓 is not continuous at 𝑐. Estimate�� 𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑐)�� = �� 𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑦𝑛𝑘 ) + 𝑓 (𝑦𝑛𝑘 ) − 𝑓 (𝑐)��
≥ �� 𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑦𝑛𝑘 )

�� − �� 𝑓 (𝑦𝑛𝑘 ) − 𝑓 (𝑐)��
≥ 𝜖 − �� 𝑓 (𝑦𝑛𝑘 ) − 𝑓 (𝑐)�� .

Or in other words, �� 𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑐)�� + �� 𝑓 (𝑦𝑛𝑘 ) − 𝑓 (𝑐)�� ≥ 𝜖.

At least one of the sequences
{
𝑓 (𝑥𝑛𝑘 )

}∞
𝑘=1 or

{
𝑓 (𝑦𝑛𝑘 )

}∞
𝑘=1 cannot converge to 𝑓 (𝑐), otherwise

the left-hand side of the inequality would go to zero while the right-hand side is positive.
Thus 𝑓 cannot be continuous at 𝑐. □

As before, note what is key in the proof: We can apply Bolzano–Weierstrass because
the interval [𝑎, 𝑏] is bounded, and the limit of the subsequence is back in [𝑎, 𝑏] because the
interval is closed.

3.4.2 Continuous extension
Uniformly continuous functions on open intervals extend continuously to the endpoints.
The key is the following lemma, which also has many other uses. It says that uniformly
continuous functions preserve Cauchy sequences. The new issue here is that for a Cauchy
sequence, the limit may not end up in the domain of the function.

Lemma 3.4.5. Let 𝑆 ⊂ ℝ and let 𝑓 : 𝑆 → ℝ be a uniformly continuous function. Let {𝑥𝑛}∞𝑛=1 be
a Cauchy sequence in 𝑆. Then

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 is Cauchy.
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Proof. Let 𝜖 > 0 be given. There is a 𝛿 > 0 such that
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� < 𝜖 whenever 𝑥, 𝑦 ∈ 𝑆

and
��𝑥 − 𝑦�� < 𝛿. Find an 𝑀 ∈ ℕ such that for all 𝑛, 𝑘 ≥ 𝑀, we have |𝑥𝑛 − 𝑥𝑘| < 𝛿. Then for

all 𝑛, 𝑘 ≥ 𝑀, we have
�� 𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑘)

�� < 𝜖. □

An application of the lemma above is the following extension result. It says that a
function on an open interval is uniformly continuous if and only if it can be extended to a
continuous function on the closed interval.
Proposition 3.4.6. A function 𝑓 : (𝑎, 𝑏) → ℝ is uniformly continuous if and only if the limits

𝐿𝑎 B lim
𝑥→𝑎

𝑓 (𝑥) and 𝐿𝑏 B lim
𝑥→𝑏

𝑓 (𝑥)

exist and the function �̃� : [𝑎, 𝑏] → ℝ defined by

�̃� (𝑥) B

𝑓 (𝑥) if 𝑥 ∈ (𝑎, 𝑏),
𝐿𝑎 if 𝑥 = 𝑎,

𝐿𝑏 if 𝑥 = 𝑏

is continuous.

Proof. One direction is quick. If �̃� is continuous, then it is uniformly continuous by
 Theorem 3.4.4 . As 𝑓 is the restriction of �̃� to (𝑎, 𝑏), 𝑓 is also uniformly continuous (exercise).

Now suppose 𝑓 is uniformly continuous. We must first show that the limits 𝐿𝑎 and
𝐿𝑏 exist. Let us concentrate on 𝐿𝑎 . Take {𝑥𝑛}∞𝑛=1 in (𝑎, 𝑏) such that lim𝑛→∞ 𝑥𝑛 = 𝑎. The
sequence {𝑥𝑛}∞𝑛=1 is Cauchy, so by  Lemma 3.4.5 the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 is Cauchy and

thus convergent. Let 𝐿1 B lim𝑛→∞ 𝑓 (𝑥𝑛). Take another sequence {𝑦𝑛}∞𝑛=1 in (𝑎, 𝑏) such
that lim𝑛→∞ 𝑦𝑛 = 𝑎. By the same reasoning we get 𝐿2 B lim𝑛→∞ 𝑓 (𝑦𝑛). If we show that
𝐿1 = 𝐿2, then the limit 𝐿𝑎 = lim𝑥→𝑎 𝑓 (𝑥) exists. Let 𝜖 > 0 be given. Find 𝛿 > 0 such
that

��𝑥 − 𝑦�� < 𝛿 implies
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� < 𝜖/3. Find 𝑀 ∈ ℕ such that for 𝑛 ≥ 𝑀, we have

|𝑎 − 𝑥𝑛| < 𝛿/2,
��𝑎 − 𝑦𝑛 �� < 𝛿/2,

�� 𝑓 (𝑥𝑛) − 𝐿1
�� < 𝜖/3, and

�� 𝑓 (𝑦𝑛) − 𝐿2
�� < 𝜖/3. Then for 𝑛 ≥ 𝑀,��𝑥𝑛 − 𝑦𝑛 �� = ��𝑥𝑛 − 𝑎 + 𝑎 − 𝑦𝑛 �� ≤ |𝑥𝑛 − 𝑎| +

��𝑎 − 𝑦𝑛 �� < 𝛿/2 + 𝛿/2 = 𝛿.

So
|𝐿1 − 𝐿2| =

��𝐿1 − 𝑓 (𝑥𝑛) + 𝑓 (𝑥𝑛) − 𝑓 (𝑦𝑛) + 𝑓 (𝑦𝑛) − 𝐿2
��

≤ ��𝐿1 − 𝑓 (𝑥𝑛)
�� + �� 𝑓 (𝑥𝑛) − 𝑓 (𝑦𝑛)

�� + �� 𝑓 (𝑦𝑛) − 𝐿2
��

≤ 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.

Therefore, 𝐿1 = 𝐿2. Thus 𝐿𝑎 exists. To show that 𝐿𝑏 exists is left as an exercise.
If 𝐿𝑎 = lim𝑥→𝑎 𝑓 (𝑥) exists, then lim𝑥→𝑎 �̃� (𝑥) exists and equals 𝐿𝑎 (see  Proposition 3.1.15 ).

Similarly for 𝐿𝑏 . Hence �̃� is continuous at 𝑎 and 𝑏. And since 𝑓 is continuous at 𝑐 ∈ (𝑎, 𝑏),
then �̃� is continuous at 𝑐 ∈ (𝑎, 𝑏) ( Proposition 3.1.15 again). □

A typical application of this proposition (together with  Proposition 3.1.17 ) is the
following. Suppose 𝑓 : (−1, 0) ∪ (0, 1) → ℝ is uniformly continuous, then lim𝑥→0 𝑓 (𝑥)
exists and the function has a removable singularity, that is, we can extend the function to a
continuous function on (−1, 1).
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3.4.3 Lipschitz continuous functions

Definition 3.4.7. A function 𝑓 : 𝑆 → ℝ is Lipschitz continuous 

‗
 , if there exists a 𝐾 ∈ ℝ, such

that �� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾
��𝑥 − 𝑦�� for all 𝑥 and 𝑦 in 𝑆.

A large class of functions is Lipschitz continuous. Be careful, just as for uniformly
continuous functions, the domain of definition of the function is important. See the
examples below and the exercises. First, we justify the use of the word continuous.

Proposition 3.4.8. A Lipschitz continuous function is uniformly continuous.

Proof. Let 𝑓 : 𝑆 → ℝ be a function and let 𝐾 be a constant such that
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾

��𝑥 − 𝑦��
for all 𝑥, 𝑦 in 𝑆. Let 𝜖 > 0 be given. Take 𝛿 B 𝜖/𝐾. For all 𝑥 and 𝑦 in 𝑆 such that

��𝑥 − 𝑦�� < 𝛿,�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾
��𝑥 − 𝑦�� < 𝐾𝛿 = 𝐾

𝜖
𝐾

= 𝜖.

Therefore, 𝑓 is uniformly continuous. □

We interpret Lipschitz continuity geometrically. Let 𝑓 be a Lipschitz continuous
function with some constant 𝐾. We rewrite the inequality to say that for 𝑥 ≠ 𝑦, we have���� 𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦
���� ≤ 𝐾.

The quantity 𝑓 (𝑥)− 𝑓 (𝑦)
𝑥−𝑦 is the slope of the line between the points

(
𝑥, 𝑓 (𝑥)) and

(
𝑦, 𝑓 (𝑦)) , that

is, a secant line. Therefore, 𝑓 is Lipschitz continuous if and only if every line that intersects
the graph of 𝑓 in at least two distinct points has slope in absolute value less than or equal
to 𝐾. See  Figure 3.9 .

G H

slope = 5 (G)− 5 (H)
G−H

Figure 3.9: The slope of a secant line. A function is Lipschitz if
��� 𝑓 (𝑥)− 𝑓 (𝑦)𝑥−𝑦

��� ≤ 𝐾 for all 𝑥 and 𝑦.

‗Named after the German mathematician  Rudolf Otto Sigismund Lipschitz (1832–1903).

https://en.wikipedia.org/wiki/Rudolf_Lipschitz
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Example 3.4.9: The functions sin(𝑥) and cos(𝑥) are Lipschitz continuous. In  Example 3.2.6  

we have seen the following two inequalities.��sin(𝑥) − sin(𝑦)�� ≤ ��𝑥 − 𝑦�� and
��cos(𝑥) − cos(𝑦)�� ≤ ��𝑥 − 𝑦�� .

Hence sine and cosine are Lipschitz continuous with 𝐾 = 1.

Example 3.4.10: The function 𝑓 : [1,∞) → ℝ defined by 𝑓 (𝑥) B √
𝑥 is Lipschitz continuous.

Proof: ��√𝑥 − √
𝑦
�� = ����� 𝑥 − 𝑦√

𝑥 + √
𝑦

����� =
��𝑥 − 𝑦��√
𝑥 + √

𝑦
.

As 𝑥 ≥ 1 and 𝑦 ≥ 1, we see that 1√
𝑥+√𝑦 ≤ 1

2 . Therefore,

��√𝑥 − √
𝑦
�� = ����� 𝑥 − 𝑦√

𝑥 + √
𝑦

����� ≤ 1
2
��𝑥 − 𝑦�� .

On the other hand, 𝑔 : [0,∞) → ℝ defined by 𝑔(𝑥) B √
𝑥 is not Lipschitz continuous.

Proof: Suppose for all 𝑥, 𝑦 ∈ [0,∞),��√𝑥 − √
𝑦
�� ≤ 𝐾

��𝑥 − 𝑦�� ,
for some 𝐾. Set 𝑦 = 0 to obtain

√
𝑥 ≤ 𝐾𝑥. If 𝐾 > 0, then for 𝑥 > 0 we get 1/𝐾 ≤ √

𝑥 or
1/𝐾2 ≤ 𝑥. This cannot possibly be true for all 𝑥 > 0. Thus no such 𝐾 > 0 exists and 𝑔 is not
Lipschitz continuous. See  Figure 3.10  and note how secant lines would be more and more
vertical as we get closer to 𝑥 = 0.

Figure 3.10: Graph of
√
𝑥 and some secant lines through (0, 0) and (𝑥,√𝑥).

The last example 𝑔 is a function that is uniformly continuous but not Lipschitz
continuous. To see that

√
𝑥 is uniformly continuous as a function on [0,∞), note that it is

uniformly continuous when restricted to [0, 1] by  Theorem 3.4.4  . It is also Lipschitz (and
so uniformly continuous) when restricted to [1,∞). It is not hard (exercise) to show that
this means that

√
𝑥 is a uniformly continuous function on [0,∞).
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3.4.4 Exercises
Exercise 3.4.1: Let 𝑓 : 𝑆 → ℝ be uniformly continuous. Let 𝐴 ⊂ 𝑆. Then the restriction 𝑓 |𝐴 is uniformly
continuous.

Exercise 3.4.2: Let 𝑓 : (𝑎, 𝑏) → ℝ be a uniformly continuous function. Finish the proof of  Proposition 3.4.6 

by showing that the limit lim
𝑥→𝑏

𝑓 (𝑥) exists.

Exercise 3.4.3: Show that 𝑓 : (𝑐,∞) → ℝ for some 𝑐 > 0 and defined by 𝑓 (𝑥) B 1/𝑥 is Lipschitz continuous.

Exercise 3.4.4: Show that 𝑓 : (0,∞) → ℝ defined by 𝑓 (𝑥) B 1/𝑥 is not Lipschitz continuous.

Exercise 3.4.5: Let 𝐴, 𝐵 be intervals. Let 𝑓 : 𝐴 → ℝ and 𝑔 : 𝐵 → ℝ be uniformly continuous functions
such that 𝑓 (𝑥) = 𝑔(𝑥) for 𝑥 ∈ 𝐴 ∩ 𝐵. Define the function ℎ : 𝐴 ∪ 𝐵 → ℝ by ℎ(𝑥) B 𝑓 (𝑥) if 𝑥 ∈ 𝐴 and
ℎ(𝑥) B 𝑔(𝑥) if 𝑥 ∈ 𝐵 \ 𝐴.

a) Prove that if 𝐴 ∩ 𝐵 ≠ ∅, then ℎ is uniformly continuous.

b) Find an example where 𝐴 ∩ 𝐵 = ∅ and ℎ is not even continuous.

Exercise 3.4.6 (Challenging): Let 𝑓 : ℝ → ℝ be a polynomial of degree 𝑑 ≥ 2. Show that 𝑓 is not Lipschitz
continuous.

Exercise 3.4.7: Let 𝑓 : (0, 1) → ℝ be a bounded continuous function. Show that the function 𝑔(𝑥) B
𝑥(1 − 𝑥) 𝑓 (𝑥) is uniformly continuous.

Exercise 3.4.8: Show that 𝑓 : (0,∞) → ℝ defined by 𝑓 (𝑥) B sin(1/𝑥) is not uniformly continuous.

Exercise 3.4.9 (Challenging): Let 𝑓 : ℚ → ℝ be a uniformly continuous function. Show that there exists a
uniformly continuous function �̃� : ℝ → ℝ such that 𝑓 (𝑥) = �̃� (𝑥) for all 𝑥 ∈ ℚ.

Exercise 3.4.10:

a) Find a continuous 𝑓 : (0, 1) → ℝ and a sequence {𝑥𝑛}∞𝑛=1 in (0, 1) that is Cauchy, but such that{
𝑓 (𝑥𝑛)

}∞
𝑛=1 is not Cauchy.

b) Prove that if 𝑓 : ℝ → ℝ is continuous, and {𝑥𝑛}∞𝑛=1 is Cauchy, then
{
𝑓 (𝑥𝑛)

}∞
𝑛=1 is Cauchy.

Exercise 3.4.11: Prove:

a) If 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ are uniformly continuous, then ℎ : 𝑆 → ℝ given by ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥)
is uniformly continuous.

b) If 𝑓 : 𝑆 → ℝ is uniformly continuous and 𝑎 ∈ ℝ, then ℎ : 𝑆 → ℝ given by ℎ(𝑥) B 𝑎 𝑓 (𝑥) is uniformly
continuous.

Exercise 3.4.12: Prove:

a) If 𝑓 : 𝑆 → ℝ and 𝑔 : 𝑆 → ℝ are Lipschitz, then ℎ : 𝑆 → ℝ given by ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥) is Lipschitz.

b) If 𝑓 : 𝑆 → ℝ is Lipschitz and 𝑎 ∈ ℝ, then ℎ : 𝑆 → ℝ given by ℎ(𝑥) B 𝑎 𝑓 (𝑥) is Lipschitz.
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Exercise 3.4.13:

a) If 𝑓 : [0, 1] → ℝ is given by 𝑓 (𝑥) B 𝑥𝑚 for an integer 𝑚 ≥ 0, show 𝑓 is Lipschitz and find the best (the
smallest) Lipschitz constant 𝐾 (depending on 𝑚 of course). Hint: (𝑥 − 𝑦)(𝑥𝑚−1 + 𝑥𝑚−2𝑦 + 𝑥𝑚−3𝑦2 +
· · · + 𝑥𝑦𝑚−2 + 𝑦𝑚−1) = 𝑥𝑚 − 𝑦𝑚 .

b) Using the previous exercise, show that if 𝑓 : [0, 1] → ℝ is a polynomial, that is, 𝑓 (𝑥) B 𝑎𝑚𝑥𝑚 +
𝑎𝑚−1𝑥𝑚−1 + · · · + 𝑎0, then 𝑓 is Lipschitz.

Exercise 3.4.14: Suppose for 𝑓 : [0, 1] → ℝ, we have
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾

��𝑥 − 𝑦�� for all 𝑥, 𝑦 in [0, 1], and
𝑓 (0) = 𝑓 (1) = 0. Prove that

�� 𝑓 (𝑥)�� ≤ 𝐾/2 for all 𝑥 ∈ [0, 1]. Further show by example that 𝐾/2 is the best
possible, that is, there exists such a continuous function for which

�� 𝑓 (𝑥)�� = 𝐾/2 for some 𝑥 ∈ [0, 1].
Exercise 3.4.15: Suppose 𝑓 : ℝ → ℝ is continuous and periodic with period 𝑃 > 0. That is, 𝑓 (𝑥+𝑃) = 𝑓 (𝑥)
for all 𝑥 ∈ ℝ. Show that 𝑓 is uniformly continuous.

Exercise 3.4.16: Suppose 𝑓 : 𝑆 → ℝ and 𝑔 : [0,∞) → [0,∞) are functions, 𝑔 is continuous at 0, 𝑔(0) = 0,
and whenever 𝑥 and 𝑦 are in 𝑆, we have

�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝑔
(��𝑥 − 𝑦��) . Prove that 𝑓 is uniformly continuous.

Exercise 3.4.17: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is a function such that for every 𝑐 ∈ [𝑎, 𝑏] there is a 𝐾𝑐 > 0 and an
𝜖𝑐 > 0 for which

�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾𝑐
��𝑥 − 𝑦�� for all 𝑥 and 𝑦 in (𝑐 − 𝜖𝑐 , 𝑐 + 𝜖𝑐) ∩ [𝑎, 𝑏]. In other words, 𝑓 is

“locally Lipschitz.”

a) Prove that there exists a single 𝐾 > 0 such that
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ 𝐾

��𝑥 − 𝑦�� for all 𝑥, 𝑦 in [𝑎, 𝑏].
b) Find a counterexample to the above if the interval is open, that is, find an 𝑓 : (𝑎, 𝑏) → ℝ that is locally

Lipschitz, but not Lipschitz.
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3.5 Limits at infinity
Note: less than 1 lecture (optional, can safely be omitted unless  §3.6 or  §5.5 is also covered)

3.5.1 Limits at infinity
As for sequences, a continuous variable can also approach infinity.

Definition 3.5.1. We say ∞ is a cluster point of 𝑆 ⊂ ℝ if for every 𝑀 ∈ ℝ, there exists an
𝑥 ∈ 𝑆 such that 𝑥 ≥ 𝑀. Similarly, −∞ is a cluster point of 𝑆 ⊂ ℝ if for every 𝑀 ∈ ℝ, there
exists an 𝑥 ∈ 𝑆 such that 𝑥 ≤ 𝑀.

Let 𝑓 : 𝑆 → ℝ be a function, where ∞ is a cluster point of 𝑆. If there exists an 𝐿 ∈ ℝ

such that for every 𝜖 > 0, there is an 𝑀 ∈ ℝ such that�� 𝑓 (𝑥) − 𝐿�� < 𝜖

whenever 𝑥 ∈ 𝑆 and 𝑥 ≥ 𝑀, then we say 𝑓 (𝑥) converges to 𝐿 as 𝑥 goes to ∞. We call 𝐿 the
limit and write

lim
𝑥→∞ 𝑓 (𝑥) B 𝐿.

Alternatively we write 𝑓 (𝑥) → 𝐿 as 𝑥 → ∞.
Similarly, if −∞ is a cluster point of 𝑆 and there exists an 𝐿 ∈ ℝ such that for every 𝜖 > 0,

there is an 𝑀 ∈ ℝ such that �� 𝑓 (𝑥) − 𝐿�� < 𝜖

whenever 𝑥 ∈ 𝑆 and 𝑥 ≤ 𝑀, then we say 𝑓 (𝑥) converges to 𝐿 as 𝑥 goes to −∞. Alternatively,
we write 𝑓 (𝑥) → 𝐿 as 𝑥 → −∞. We call 𝐿 a limit and, if unique, write

lim
𝑥→−∞ 𝑓 (𝑥) B 𝐿.

The first thing to do, as usual, is to prove that the limit, if it exists, is unique. We leave it
as an exercise for the reader.

Proposition 3.5.2. The limit at ∞ or −∞ as defined above is unique if it exists.

Example 3.5.3: Let 𝑓 (𝑥) B 1
|𝑥|+1 . Then

lim
𝑥→∞ 𝑓 (𝑥) = 0 and lim

𝑥→−∞ 𝑓 (𝑥) = 0.

Proof: Let 𝜖 > 0 be given. Find 𝑀 > 0 large enough so that 1
𝑀+1 < 𝜖. If 𝑥 ≥ 𝑀, then

0 < 1
|𝑥|+1 = 1

𝑥+1 ≤ 1
𝑀+1 < 𝜖. The first limit follows. The proof for −∞ is left to the reader.

Example 3.5.4: Let 𝑓 (𝑥) B sin(𝜋𝑥). Then lim𝑥→∞ 𝑓 (𝑥) does not exist. To prove this fact
note that if 𝑥 = 2𝑛 + 1/2 for some 𝑛 ∈ ℕ, then 𝑓 (𝑥) = 1, while if 𝑥 = 2𝑛 + 3/2, then 𝑓 (𝑥) = −1.
So they cannot both be within a small 𝜖 of a single real number.
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Be careful not to confuse continuous limits with limits of sequences. We could say

lim
𝑛→∞ sin(𝜋𝑛) = 0, but lim

𝑥→∞ sin(𝜋𝑥) does not exist.

Of course the notation is ambiguous: Are we thinking of the sequence
{
sin(𝜋𝑛)}∞𝑛=1 or the

function sin(𝜋𝑥) of a real variable? We are simply using the convention that 𝑛 ∈ ℕ, while
𝑥 ∈ ℝ. When the notation is not clear, it is good to explicitly mention where the variable
lives, or what kind of limit are you using. If there is possibility of confusion, one can write,
for example,

lim
𝑛→∞
𝑛∈ℕ

sin(𝜋𝑛).

There is a connection of continuous limits to limits of sequences, but we must take all
sequences going to infinity, just as before in  Lemma 3.1.7 .

Lemma 3.5.5. Suppose 𝑓 : 𝑆 → ℝ is a function, ∞ is a cluster point of 𝑆 ⊂ ℝ, and 𝐿 ∈ ℝ. Then

lim
𝑥→∞ 𝑓 (𝑥) = 𝐿 if and only if lim

𝑛→∞ 𝑓 (𝑥𝑛) = 𝐿

for all sequences {𝑥𝑛}∞𝑛=1 in 𝑆 such that lim
𝑛→∞ 𝑥𝑛 = ∞.

The lemma also holds for the limit as 𝑥 → −∞. Its proof is almost identical and is left
as an exercise.

Proof. First suppose 𝑓 (𝑥) → 𝐿 as 𝑥 → ∞. Given an 𝜖 > 0, there exists an 𝑀 such that for
all 𝑥 ≥ 𝑀, we have

�� 𝑓 (𝑥) − 𝐿�� < 𝜖. Let {𝑥𝑛}∞𝑛=1 be a sequence in 𝑆 such that lim𝑛→∞ 𝑥𝑛 = ∞.
Then there exists an 𝑁 such that for all 𝑛 ≥ 𝑁 , we have 𝑥𝑛 ≥ 𝑀. And thus

�� 𝑓 (𝑥𝑛) − 𝐿�� < 𝜖.
We prove the converse by contrapositive. Suppose 𝑓 (𝑥) does not go to 𝐿 as 𝑥 → ∞. This

means that there exists an 𝜖 > 0, such that for every 𝑛 ∈ ℕ, there exists an 𝑥 ∈ 𝑆, 𝑥 ≥ 𝑛, let
us call it 𝑥𝑛 , such that

�� 𝑓 (𝑥𝑛) − 𝐿�� ≥ 𝜖. Consider the sequence {𝑥𝑛}∞𝑛=1. Clearly
{
𝑓 (𝑥𝑛)

}∞
𝑛=1

does not converge to 𝐿. It remains to note that lim𝑛→∞ 𝑥𝑛 = ∞, because 𝑥𝑛 ≥ 𝑛 for all 𝑛. □

Using the lemma, we again translate results about sequential limits into results about
continuous limits as 𝑥 goes to infinity. That is, we have almost immediate analogues of the
corollaries in  §3.1.3 . We simply allow the cluster point 𝑐 to be either ∞ or −∞, in addition
to a real number. We leave it to the student to verify these statements.

3.5.2 Infinite limit
Just as for sequences, it is often convenient to distinguish certain divergent sequences, and
talk about limits being infinite almost as if the limits existed.

Definition 3.5.6. Let 𝑓 : 𝑆 → ℝ be a function and suppose 𝑆 has ∞ as a cluster point. We
say 𝑓 (𝑥) diverges to infinity as 𝑥 goes to ∞ if for every 𝑁 ∈ ℝ there exists an 𝑀 ∈ ℝ such that

𝑓 (𝑥) > 𝑁
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whenever 𝑥 ∈ 𝑆 and 𝑥 ≥ 𝑀. We write

lim
𝑥→∞ 𝑓 (𝑥) B ∞,

or we say that 𝑓 (𝑥) → ∞ as 𝑥 → ∞.

A similar definition can be made for limits as 𝑥 → −∞ or as 𝑥 → 𝑐 for a finite 𝑐. Also
similar definitions can be made for limits being −∞. Stating these definitions is left as an
exercise. Note that sometimes converges to infinity is used. We can again use sequential
limits, and an analogue of  Lemma 3.1.7 is left as an exercise.

Example 3.5.7: Let us show that lim
𝑥→∞

1+𝑥2

1+𝑥 = ∞.
Proof: For 𝑥 ≥ 1, we have

1 + 𝑥2

1 + 𝑥 ≥ 𝑥2

𝑥 + 𝑥 =
𝑥
2 .

Given 𝑁 ∈ ℝ, take 𝑀 = max{2𝑁 + 1, 1}. If 𝑥 ≥ 𝑀, then 𝑥 ≥ 1 and 𝑥/2 > 𝑁 . So

1 + 𝑥2

1 + 𝑥 ≥ 𝑥
2 > 𝑁.

3.5.3 Compositions
Finally, just as for limits at finite numbers we can compose functions easily.
Proposition 3.5.8. Suppose 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → ℝ, 𝐴, 𝐵 ⊂ ℝ, 𝑎 ∈ ℝ ∪ {−∞,∞} is a cluster
point of 𝐴, and 𝑏 ∈ ℝ ∪ {−∞,∞} is a cluster point of 𝐵. Suppose

lim
𝑥→𝑎

𝑓 (𝑥) = 𝑏 and lim
𝑦→𝑏

𝑔(𝑦) = 𝑐

for some 𝑐 ∈ ℝ ∪ {−∞,∞}. If 𝑏 ∈ 𝐵, then suppose 𝑔(𝑏) = 𝑐. Then

lim
𝑥→𝑎

𝑔
(
𝑓 (𝑥)) = 𝑐.

The proof is straightforward, and left as an exercise. We already know the proposition
when 𝑎, 𝑏, 𝑐 ∈ ℝ, see Exercises  3.1.9 and  3.1.14 . Again the requirement that 𝑔 is continuous
at 𝑏, if 𝑏 ∈ 𝐵, is necessary.

Example 3.5.9: Let ℎ(𝑥) B 𝑒−𝑥2+𝑥 . Then

lim
𝑥→∞ ℎ(𝑥) = 0.

Proof: The claim follows once we know

lim
𝑥→∞−𝑥2 + 𝑥 = −∞

and
lim
𝑦→−∞ 𝑒

𝑦 = 0,

which is usually proved when the exponential function is defined.
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3.5.4 Exercises
Exercise 3.5.1: Prove  Proposition 3.5.2 .

Exercise 3.5.2: Let 𝑓 : [1,∞) → ℝ be a function. Define 𝑔 : (0, 1] → ℝ via 𝑔(𝑥) B 𝑓 (1/𝑥). Using the
definitions of limits directly, show that lim𝑥→0+ 𝑔(𝑥) exists if and only if lim𝑥→∞ 𝑓 (𝑥) exists, in which case
they are equal.

Exercise 3.5.3: Prove  Proposition 3.5.8 .

Exercise 3.5.4: Let us justify terminology. Let 𝑓 : ℝ → ℝ be a function such that lim𝑥→∞ 𝑓 (𝑥) = ∞
(diverges to infinity). Show that 𝑓 (𝑥) diverges (i.e. does not converge) as 𝑥 → ∞.

Exercise 3.5.5: Come up with the definitions for limits of 𝑓 (𝑥) going to −∞ as 𝑥 → ∞, 𝑥 → −∞, and as
𝑥 → 𝑐 for a finite 𝑐 ∈ ℝ. Then state the definitions for limits of 𝑓 (𝑥) going to ∞ as 𝑥 → −∞, and as 𝑥 → 𝑐
for a finite 𝑐 ∈ ℝ.

Exercise 3.5.6: Suppose 𝑃(𝑥) B 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0 is a monic polynomial of degree 𝑛 ≥ 1
(monic means that the coefficient of 𝑥𝑛 is 1).

a) Show that if 𝑛 is even, then lim
𝑥→∞𝑃(𝑥) = lim

𝑥→−∞𝑃(𝑥) = ∞.

b) Show that if 𝑛 is odd, then lim
𝑥→∞𝑃(𝑥) = ∞ and lim

𝑥→−∞𝑃(𝑥) = −∞ (see previous exercise).

Exercise 3.5.7: Let {𝑥𝑛}∞𝑛=1 be a sequence. Consider 𝑆 B ℕ ⊂ ℝ, and 𝑓 : 𝑆 → ℝ defined by 𝑓 (𝑛) B 𝑥𝑛 .
Show that the two notions of limit,

lim
𝑛→∞ 𝑥𝑛 and lim

𝑥→∞ 𝑓 (𝑥)

are equivalent. That is, show that if one exists so does the other one, and in this case they are equal.

Exercise 3.5.8: Extend  Lemma 3.5.5 as follows. Suppose 𝑆 ⊂ ℝ has a cluster point 𝑐 ∈ ℝ, 𝑐 = ∞, or
𝑐 = −∞. Let 𝑓 : 𝑆 → ℝ be a function and suppose 𝐿 = ∞ or 𝐿 = −∞. Show that

lim
𝑥→𝑐

𝑓 (𝑥) = 𝐿 if and only if lim
𝑛→∞ 𝑓 (𝑥𝑛) = 𝐿 for all sequences {𝑥𝑛}∞𝑛=1 such that lim

𝑛→∞ 𝑥𝑛 = 𝑐.

Exercise 3.5.9: Suppose 𝑓 : ℝ → ℝ is a 2-periodic function, that is 𝑓 (𝑥 + 2) = 𝑓 (𝑥) for all 𝑥. Define
𝑔 : ℝ → ℝ by

𝑔(𝑥) B 𝑓

(√
𝑥2 + 1 − 1

𝑥

)
a) Find the function 𝜑 : (−1, 1) → ℝ such that 𝑔

(
𝜑(𝑡)) = 𝑓 (𝑡), that is 𝜑−1(𝑥) =

√
𝑥2+1−1
𝑥 .

b) Show that 𝑓 is continuous if and only if 𝑔 is continuous and

lim
𝑥→∞ 𝑔(𝑥) = lim

𝑥→−∞ 𝑔(𝑥) = 𝑓 (1) = 𝑓 (−1).
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3.6 Monotone functions and continuity
Note: 1 lecture (optional, can safely be omitted unless  §4.4 is also covered, requires  §3.5 )

Definition 3.6.1. Let 𝑆 ⊂ ℝ. We say 𝑓 : 𝑆 → ℝ is increasing (resp. strictly increasing) if
𝑥, 𝑦 ∈ 𝑆 with 𝑥 < 𝑦 implies 𝑓 (𝑥) ≤ 𝑓 (𝑦) (resp. 𝑓 (𝑥) < 𝑓 (𝑦)). We define decreasing and
strictly decreasing in the same way by switching the inequalities for 𝑓 .

If a function is either increasing or decreasing, we say it is monotone. If it is strictly
increasing or strictly decreasing, we say it is strictly monotone.

Sometimes nondecreasing (resp. nonincreasing) is used for increasing (resp. decreasing)
function to emphasize it is not strictly increasing (resp. strictly decreasing).

If 𝑓 is increasing, then − 𝑓 is decreasing and vice versa. Therefore, many results about
monotone functions can just be proved for, say, increasing functions, and the results follow
easily for decreasing functions.

3.6.1 Continuity of monotone functions
One-sided limits for monotone functions are computed by computing infima and suprema.

Proposition 3.6.2. Let 𝑆 ⊂ ℝ, 𝑐 ∈ ℝ, 𝑓 : 𝑆 → ℝ be increasing, and 𝑔 : 𝑆 → ℝ be decreasing. If
𝑐 is a cluster point of 𝑆 ∩ (−∞, 𝑐), then

lim
𝑥→𝑐−

𝑓 (𝑥) = sup{ 𝑓 (𝑥) : 𝑥 < 𝑐, 𝑥 ∈ 𝑆} and lim
𝑥→𝑐−

𝑔(𝑥) = inf{𝑔(𝑥) : 𝑥 < 𝑐, 𝑥 ∈ 𝑆}.

If 𝑐 is a cluster point of 𝑆 ∩ (𝑐,∞), then

lim
𝑥→𝑐+

𝑓 (𝑥) = inf{ 𝑓 (𝑥) : 𝑥 > 𝑐, 𝑥 ∈ 𝑆} and lim
𝑥→𝑐+

𝑔(𝑥) = sup{𝑔(𝑥) : 𝑥 > 𝑐, 𝑥 ∈ 𝑆}.

If ∞ is a cluster point of 𝑆, then

lim
𝑥→∞ 𝑓 (𝑥) = sup{ 𝑓 (𝑥) : 𝑥 ∈ 𝑆} and lim

𝑥→∞ 𝑔(𝑥) = inf{𝑔(𝑥) : 𝑥 ∈ 𝑆}.

If −∞ is a cluster point of 𝑆, then

lim
𝑥→−∞ 𝑓 (𝑥) = inf{ 𝑓 (𝑥) : 𝑥 ∈ 𝑆} and lim

𝑥→−∞ 𝑔(𝑥) = sup{𝑔(𝑥) : 𝑥 ∈ 𝑆}.

Namely, all the one-sided limits exist whenever they make sense. For monotone
functions therefore, when we say the left-hand limit 𝑥 → 𝑐− exists, we mean that 𝑐 is a
cluster point of 𝑆 ∩ (−∞, 𝑐), and same for the right-hand limit.

Proof. Let us assume 𝑓 is increasing, and we will show the first equality. The rest of the
proof is very similar and is left as an exercise.

Let 𝑎 B sup{ 𝑓 (𝑥) : 𝑥 < 𝑐, 𝑥 ∈ 𝑆}. If 𝑎 = ∞, then given an 𝑀 ∈ ℝ, there exists an 𝑥𝑀 ∈ 𝑆,
𝑥𝑀 < 𝑐, such that 𝑓 (𝑥𝑀) > 𝑀. As 𝑓 is increasing, 𝑓 (𝑥) ≥ 𝑓 (𝑥𝑀) > 𝑀 for all 𝑥 ∈ 𝑆 with
𝑥 > 𝑥𝑀 . Take 𝛿 B 𝑐 − 𝑥𝑀 > 0 to obtain the definition of the limit going to infinity.
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Next suppose 𝑎 < ∞. Let 𝜖 > 0 be given. Because 𝑎 is the supremum and 𝑆 ∩ (−∞, 𝑐)
is nonempty, 𝑎 ∈ ℝ and there exists an 𝑥𝜖 ∈ 𝑆, 𝑥𝜖 < 𝑐, such that 𝑓 (𝑥𝜖) > 𝑎 − 𝜖. As 𝑓 is
increasing, if 𝑥 ∈ 𝑆 and 𝑥𝜖 < 𝑥 < 𝑐, we have 𝑎 − 𝜖 < 𝑓 (𝑥𝜖) ≤ 𝑓 (𝑥) ≤ 𝑎. Let 𝛿 B 𝑐 − 𝑥𝜖. Then
for 𝑥 ∈ 𝑆 ∩ (−∞, 𝑐) with |𝑥 − 𝑐| < 𝛿, we have

�� 𝑓 (𝑥) − 𝑎�� < 𝜖. □

Suppose 𝑓 : 𝑆 → ℝ is increasing, 𝑐 ∈ 𝑆, and that both one-sided limits exist. Since
𝑓 (𝑥) ≤ 𝑓 (𝑐) ≤ 𝑓 (𝑦) whenever 𝑥 < 𝑐 < 𝑦, taking the limits we obtain

lim
𝑥→𝑐−

𝑓 (𝑥) ≤ 𝑓 (𝑐) ≤ lim
𝑥→𝑐+

𝑓 (𝑥).

Then 𝑓 is continuous at 𝑐 if and only if both limits are equal to each other (and hence equal
to 𝑓 (𝑐)). See also  Proposition 3.1.17 . See  Figure 3.11 to get an idea of what a discontinuity
looks like.
Corollary 3.6.3. If 𝐼 ⊂ ℝ is an interval and 𝑓 : 𝐼 → ℝ is monotone and not constant, then 𝑓 (𝐼) is
an interval if and only if 𝑓 is continuous.

Assuming 𝑓 is not constant is to avoid the technicality that 𝑓 (𝐼) is a single point: 𝑓 (𝐼) is
a single point if and only if 𝑓 is constant. A constant function is continuous.

Proof. Without loss of generality, suppose 𝑓 is increasing.
First suppose 𝑓 is continuous. Take two points 𝑓 (𝑥1), 𝑓 (𝑥2) in 𝑓 (𝐼) and suppose

𝑓 (𝑥1) < 𝑓 (𝑥2). As 𝑓 is increasing, then 𝑥1 < 𝑥2. By the  intermediate value theorem , given
𝑦 with 𝑓 (𝑥1) < 𝑦 < 𝑓 (𝑥2), we find a 𝑐 ∈ (𝑥1, 𝑥2) ⊂ 𝐼 such that 𝑓 (𝑐) = 𝑦, so 𝑦 ∈ 𝑓 (𝐼). Hence,
𝑓 (𝐼) is an interval.

Let us prove the reverse direction by contrapositive. Suppose 𝑓 is not continuous at
𝑐 ∈ 𝐼, and that 𝑐 is not an endpoint of 𝐼. Let

𝑎 B lim
𝑥→𝑐−

𝑓 (𝑥) = sup
{
𝑓 (𝑥) : 𝑥 ∈ 𝐼 , 𝑥 < 𝑐

}
, 𝑏 B lim

𝑥→𝑐+
𝑓 (𝑥) = inf

{
𝑓 (𝑥) : 𝑥 ∈ 𝐼 , 𝑥 > 𝑐

}
.

As 𝑐 is a discontinuity, 𝑎 < 𝑏. If 𝑥 < 𝑐, then 𝑓 (𝑥) ≤ 𝑎, and if 𝑥 > 𝑐, then 𝑓 (𝑥) ≥ 𝑏. Therefore
no point in (𝑎, 𝑏) \ {

𝑓 (𝑐)} is in 𝑓 (𝐼). There exists 𝑥1 ∈ 𝐼 with 𝑥1 < 𝑐, so 𝑓 (𝑥1) ≤ 𝑎, and there
exists 𝑥2 ∈ 𝐼 with 𝑥2 > 𝑐, so 𝑓 (𝑥2) ≥ 𝑏. Both 𝑓 (𝑥1) and 𝑓 (𝑥2) are in 𝑓 (𝐼), but there are points
in between them that are not in 𝑓 (𝐼). So 𝑓 (𝐼) is not an interval. See  Figure 3.11 .

When 𝑐 ∈ 𝐼 is an endpoint, the proof is similar and is left as an exercise. □

A striking property of monotone functions is that they cannot have too many disconti-
nuities.
Corollary 3.6.4. Let 𝐼 ⊂ ℝ be an interval and 𝑓 : 𝐼 → ℝ be monotone. Then 𝑓 has at most
countably many discontinuities.

Proof. Let 𝐸 ⊂ 𝐼 be the set of all discontinuities that are not endpoints of 𝐼. As there are
only two endpoints, it is enough to show that 𝐸 is countable. Without loss of generality,
suppose 𝑓 is increasing. We will define an injection ℎ : 𝐸 → ℚ. For each 𝑐 ∈ 𝐸, both
one-sided limits of 𝑓 exist as 𝑐 is not an endpoint. Let

𝑎 B lim
𝑥→𝑐−

𝑓 (𝑥) = sup
{
𝑓 (𝑥) : 𝑥 ∈ 𝐼 , 𝑥 < 𝑐

}
, 𝑏 B lim

𝑥→𝑐+
𝑓 (𝑥) = inf

{
𝑓 (𝑥) : 𝑥 ∈ 𝐼 , 𝑥 > 𝑐

}
.
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𝑓 (𝑐)

𝑐

𝐼

𝑓 (𝑥1)

𝑓 (𝐼)

𝑥1 𝑥2

lim
𝑥→𝑐+

𝑓 (𝑥) = 𝑏

lim
𝑥→𝑐−

𝑓 (𝑥) = 𝑎

𝑓 (𝑥2) 𝑦 = 𝑓 (𝑥)

Figure 3.11: Increasing function 𝑓 : 𝐼 → ℝ discontinuity at 𝑐.

As 𝑐 is a discontinuity, 𝑎 < 𝑏. There exists a rational number 𝑞 ∈ (𝑎, 𝑏), so let ℎ(𝑐) B 𝑞.
Suppose 𝑑 ∈ 𝐸 is another discontinuity. If 𝑑 > 𝑐, there exist an 𝑥 ∈ 𝐼 with 𝑐 < 𝑥 < 𝑑, and so
lim𝑥→𝑑− 𝑓 (𝑥) ≥ 𝑏. Hence the rational number we choose for ℎ(𝑑) is different from 𝑞, since
𝑞 = ℎ(𝑐) < 𝑏 and ℎ(𝑑) > 𝑏. Similarly if 𝑑 < 𝑐. After making such a choice for every element
of 𝐸, we have a one-to-one (injective) function into ℚ. Therefore, 𝐸 is countable. □

Example 3.6.5: By ⌊𝑥⌋denote the largest integer less than or equal to 𝑥. Define 𝑓 : [0, 1] → ℝ

by

𝑓 (𝑥) B 𝑥 +
⌊1/(1−𝑥)⌋∑
𝑛=0

2−𝑛 ,

for 𝑥 < 1 and 𝑓 (1) B 3. It is an exercise to show that 𝑓 is strictly increasing, bounded, and
has a discontinuity at all points 1 − 1/𝑘 for 𝑘 ∈ ℕ. In particular, there are countably many
discontinuities, but the function is bounded and defined on a closed bounded interval. See

 Figure 3.12 .

1.5

2

2.5

3

0 1

Figure 3.12: Strictly increasing function on [0, 1] with countably many discontinuities.

Similarly, one can find an example of a monotone function discontinuous on a dense set
such as the rational numbers. See the exercises.
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3.6.2 Continuity of inverse functions
A strictly monotone function 𝑓 is one-to-one (injective). To see this fact, notice that if 𝑥 ≠ 𝑦,
then we can assume 𝑥 < 𝑦. Either 𝑓 (𝑥) < 𝑓 (𝑦) if 𝑓 is strictly increasing or 𝑓 (𝑥) > 𝑓 (𝑦) if 𝑓 is
strictly decreasing, so 𝑓 (𝑥) ≠ 𝑓 (𝑦). Hence, 𝑓 must have an inverse 𝑓 −1 defined on its range.

Proposition 3.6.6. If 𝐼 ⊂ ℝ is an interval and 𝑓 : 𝐼 → ℝ is strictly monotone, then the inverse
𝑓 −1 : 𝑓 (𝐼) → 𝐼 is continuous.

Proof. Suppose 𝑓 is strictly increasing. The proof is almost identical for a strictly decreasing
function. Since 𝑓 is strictly increasing, so is 𝑓 −1. That is, if 𝑓 (𝑥) < 𝑓 (𝑦), then we must have
𝑥 < 𝑦 and therefore 𝑓 −1 ( 𝑓 (𝑥)) < 𝑓 −1 ( 𝑓 (𝑦)) .

Take 𝑐 ∈ 𝑓 (𝐼). If 𝑐 is not a cluster point of 𝑓 (𝐼), then 𝑓 −1 is continuous at 𝑐 automatically.
So let 𝑐 be a cluster point of 𝑓 (𝐼). Suppose both of the following one-sided limits exist:

𝑥0 B lim
𝑦→𝑐−

𝑓 −1(𝑦) = sup
{
𝑓 −1(𝑦) : 𝑦 < 𝑐, 𝑦 ∈ 𝑓 (𝐼)} = sup

{
𝑥 ∈ 𝐼 : 𝑓 (𝑥) < 𝑐

}
,

𝑥1 B lim
𝑦→𝑐+

𝑓 −1(𝑦) = inf
{
𝑓 −1(𝑦) : 𝑦 > 𝑐, 𝑦 ∈ 𝑓 (𝐼)} = inf

{
𝑥 ∈ 𝐼 : 𝑓 (𝑥) > 𝑐

}
.

We have 𝑥0 ≤ 𝑥1 as 𝑓 −1 is increasing. For all 𝑥 ∈ 𝐼 where 𝑥 > 𝑥0, we have 𝑓 (𝑥) ≥ 𝑐. As 𝑓 is
strictly increasing, we must have 𝑓 (𝑥) > 𝑐 for all 𝑥 ∈ 𝐼 where 𝑥 > 𝑥0. Therefore,

{𝑥 ∈ 𝐼 : 𝑥 > 𝑥0} ⊂ {
𝑥 ∈ 𝐼 : 𝑓 (𝑥) > 𝑐

}
.

The infimum of the left-hand set is 𝑥0, and the infimum of the right-hand set is 𝑥1, so we
obtain 𝑥0 ≥ 𝑥1. So 𝑥1 = 𝑥0, and 𝑓 −1 is continuous at 𝑐.

If one of the one-sided limits does not exist, the argument is similar and is left as an
exercise. □

Example 3.6.7: The proposition does not require 𝑓 itself to be continuous. Let 𝑓 : ℝ → ℝ

be defined by

𝑓 (𝑥) B
{
𝑥 if 𝑥 < 0,
𝑥 + 1 if 𝑥 ≥ 0.

The function 𝑓 is not continuous at 0. The image of 𝐼 = ℝ is the set (−∞, 0) ∪ [1,∞), not an
interval. Then 𝑓 −1 : (−∞, 0) ∪ [1,∞) → ℝ can be written as

𝑓 −1(𝑦) =
{
𝑦 if 𝑦 < 0,
𝑦 − 1 if 𝑦 ≥ 1.

It is not difficult to see that 𝑓 −1 is a continuous function. See  Figure 3.13 for the graphs.

Notice what happens with the proposition if 𝑓 (𝐼) is an interval. In that case, we
could simply apply  Corollary 3.6.3 to both 𝑓 and 𝑓 −1. That is, if 𝑓 : 𝐼 → 𝐽 is an onto
strictly monotone function and 𝐼 and 𝐽 are intervals, then both 𝑓 and 𝑓 −1 are continuous.
Furthermore, 𝑓 (𝐼) is an interval precisely when 𝑓 is continuous.
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Figure 3.13: Graph of 𝑓 on the left and 𝑓 −1 on the right.

3.6.3 Exercises
Exercise 3.6.1: Suppose 𝑓 : [0, 1] → ℝ is monotone. Prove 𝑓 is bounded.

Exercise 3.6.2: Finish the proof of  Proposition 3.6.2  . Hint: You can halve your work by noticing that if 𝑔 is
decreasing, then −𝑔 is increasing.

Exercise 3.6.3: Finish the proof of  Corollary 3.6.3 .

Exercise 3.6.4: Prove the claims in  Example 3.6.5 .

Exercise 3.6.5: Finish the proof of  Proposition 3.6.6 .

Exercise 3.6.6: Suppose 𝑆 ⊂ ℝ, and 𝑓 : 𝑆 → ℝ is an increasing function. Prove:

a) If 𝑐 is a cluster point of 𝑆 ∩ (𝑐,∞), then lim
𝑥→𝑐+

𝑓 (𝑥) < ∞.

b) If 𝑐 is a cluster point of 𝑆 ∩ (−∞, 𝑐) and lim
𝑥→𝑐−

𝑓 (𝑥) = ∞, then 𝑆 ⊂ (−∞, 𝑐).

Exercise 3.6.7: Let 𝐼 ⊂ ℝ be an interval and 𝑓 : 𝐼 → ℝ a function. Suppose that for each 𝑐 ∈ 𝐼, there exist
𝑎, 𝑏 ∈ ℝ with 𝑎 > 0 such that 𝑓 (𝑥) ≥ 𝑎𝑥 + 𝑏 for all 𝑥 ∈ 𝐼 and 𝑓 (𝑐) = 𝑎𝑐 + 𝑏. Show that 𝑓 is strictly
increasing.

Exercise 3.6.8: Suppose 𝐼 and 𝐽 are intervals and 𝑓 : 𝐼 → 𝐽 is a continuous, bĳective (one-to-one and onto)
function. Show that 𝑓 is strictly monotone.

Exercise 3.6.9: Consider a monotone function 𝑓 : 𝐼 → ℝ on an interval 𝐼. Prove that there exists a function
𝑔 : 𝐼 → ℝ such that lim

𝑥→𝑐−
𝑔(𝑥) = 𝑔(𝑐) for all 𝑐 in 𝐼 except the smaller (left) endpoint of 𝐼, and such that

𝑔(𝑥) = 𝑓 (𝑥) for all but countably many 𝑥 ∈ 𝐼.
Exercise 3.6.10:

a) Let 𝑆 ⊂ ℝ be a subset. If 𝑓 : 𝑆 → ℝ is increasing and bounded, then show that there exists an increasing
𝐹 : ℝ → ℝ such that 𝑓 (𝑥) = 𝐹(𝑥) for all 𝑥 ∈ 𝑆.

b) Find an example of a strictly increasing bounded 𝑓 : 𝑆 → ℝ such that an increasing 𝐹 as above is never
strictly increasing.
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Exercise 3.6.11 (Challenging): Find an example of an increasing function 𝑓 : [0, 1] → ℝ that has a
discontinuity at each rational number. Then show that the image 𝑓

([0, 1]) contains no interval. Hint:
Enumerate the rational numbers and define the function with a series.

Exercise 3.6.12: Suppose 𝐼 is an interval and 𝑓 : 𝐼 → ℝ is monotone. Show that ℝ \ 𝑓 (𝐼) is a countable
union of disjoint intervals.

Exercise 3.6.13: Suppose 𝑓 : [0, 1] → (0, 1) is increasing. Show that for every 𝜖 > 0, there exists a strictly
increasing 𝑔 : [0, 1] → (0, 1) such that 𝑔(0) = 𝑓 (0), 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥, and 𝑔(1) − 𝑓 (1) < 𝜖.

Exercise 3.6.14: Prove that the Dirichlet function 𝑓 : [0, 1] → ℝ, defined by 𝑓 (𝑥) B 1 if 𝑥 is rational and
𝑓 (𝑥) B 0 otherwise, cannot be written as a difference of two increasing functions. That is, there do not exist
increasing 𝑔 and ℎ such that, 𝑓 (𝑥) = 𝑔(𝑥) − ℎ(𝑥).
Exercise 3.6.15: Suppose 𝑓 : (𝑎, 𝑏) → (𝑐, 𝑑) is a strictly increasing onto function. Prove that there exists a
𝑔 : (𝑎, 𝑏) → (𝑐, 𝑑), which is also strictly increasing and onto, and 𝑔(𝑥) < 𝑓 (𝑥) for all 𝑥 ∈ (𝑎, 𝑏).



Chapter 4

The Derivative

4.1 The derivative
Note: 1 lecture

The idea of a derivative is the following. If the graph of a function looks locally like
a straight line, then we can talk about the slope of this line. The slope tells us the rate at
which the value of the function is changing at that particular point. Of course, we are
leaving out any function that has corners or discontinuities. Let us be precise.

4.1.1 Definition and basic properties
Definition 4.1.1. Let 𝐼 be an interval, let 𝑓 : 𝐼 → ℝ be a function, and let 𝑐 ∈ 𝐼. If the limit

𝐿 B lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

exists, then we say 𝑓 is differentiable at 𝑐, we call 𝐿 the derivative of 𝑓 at 𝑐, and we write
𝑓 ′(𝑐) B 𝐿.

If 𝑓 is differentiable at all 𝑐 ∈ 𝐼, then we simply say that 𝑓 is differentiable, and then we
obtain a function 𝑓 ′ : 𝐼 → ℝ. The derivative is sometimes written as 𝑑𝑓

𝑑𝑥 or 𝑑
𝑑𝑥

(
𝑓 (𝑥)) .

The expression 𝑓 (𝑥)− 𝑓 (𝑐)
𝑥−𝑐 is called the difference quotient.

The graphical interpretation of the derivative is depicted in  Figure 4.1 . The left-hand
plot gives the line through

(
𝑐, 𝑓 (𝑐)) and

(
𝑥, 𝑓 (𝑥)) with slope 𝑓 (𝑥)− 𝑓 (𝑐)

𝑥−𝑐 , that is, the so-called
secant line. When we take the limit as 𝑥 goes to 𝑐, we get the right-hand plot, where we see
that the derivative of the function at the point 𝑐 is the slope of the line tangent to the graph
of 𝑓 at the point

(
𝑐, 𝑓 (𝑐)) .

We allow 𝐼 to be a closed interval and we allow 𝑐 to be an endpoint of 𝐼. Some calculus
books do not allow 𝑐 to be an endpoint of an interval, but all the theory still works by
allowing it, and it makes our work easier.
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2 G

slope = 5 (G)− 5 (2)
G−2

2

slope = 5 ′(2)

Figure 4.1: Graphical interpretation of the derivative.

Example 4.1.2: Let 𝑓 (𝑥) B 𝑥2 defined on the whole real line. Let 𝑐 ∈ ℝ be arbitrary. We
find that if 𝑥 ≠ 𝑐,

𝑥2 − 𝑐2

𝑥 − 𝑐 =
(𝑥 + 𝑐)(𝑥 − 𝑐)

𝑥 − 𝑐 = (𝑥 + 𝑐).
Therefore,

𝑓 ′(𝑐) = lim
𝑥→𝑐

𝑥2 − 𝑐2

𝑥 − 𝑐 = lim
𝑥→𝑐

(𝑥 + 𝑐) = 2𝑐.

Example 4.1.3: Let 𝑓 (𝑥) B 𝑎𝑥 + 𝑏 for numbers 𝑎, 𝑏 ∈ ℝ. Let 𝑐 ∈ ℝ be arbitrary. For 𝑥 ≠ 𝑐,

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 =

𝑎(𝑥 − 𝑐)
𝑥 − 𝑐 = 𝑎.

Therefore,

𝑓 ′(𝑐) = lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = lim

𝑥→𝑐
𝑎 = 𝑎.

In fact, every differentiable function “infinitesimally” behaves like the affine function 𝑎𝑥+ 𝑏.
You can guess many results and formulas for derivatives if you work them out for affine
functions first.

Example 4.1.4: The function 𝑓 (𝑥) B √
𝑥 is differentiable for 𝑥 > 0. To see this fact, fix 𝑐 > 0,

and suppose 𝑥 ≠ 𝑐 and 𝑥 > 0. Compute
√
𝑥 − √

𝑐
𝑥 − 𝑐 =

√
𝑥 − √

𝑐

(√𝑥 − √
𝑐)(√𝑥 + √

𝑐) =
1√

𝑥 + √
𝑐
.

Therefore,

𝑓 ′(𝑐) = lim
𝑥→𝑐

√
𝑥 − √

𝑐
𝑥 − 𝑐 = lim

𝑥→𝑐

1√
𝑥 + √

𝑐
=

1
2
√
𝑐
.
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Example 4.1.5: The function 𝑓 (𝑥) B |𝑥| is not differentiable at the origin. When 𝑥 > 0,

|𝑥| − |0|
𝑥 − 0 =

𝑥 − 0
𝑥 − 0 = 1.

When 𝑥 < 0,
|𝑥| − |0|
𝑥 − 0 =

−𝑥 − 0
𝑥 − 0 = −1.

A famous example of Weierstrass shows that there exists a continuous function that is
not differentiable at any point. The construction of this function is beyond the scope of this
chapter. On the other hand, a differentiable function is always continuous.
Proposition 4.1.6. Let 𝑓 : 𝐼 → ℝ be differentiable at 𝑐 ∈ 𝐼, then it is continuous at 𝑐.

Proof. We know the limits

lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = 𝑓 ′(𝑐) and lim

𝑥→𝑐
(𝑥 − 𝑐) = 0

exist. Furthermore,

𝑓 (𝑥) − 𝑓 (𝑐) =
(
𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

)
(𝑥 − 𝑐).

Therefore, the limit of 𝑓 (𝑥) − 𝑓 (𝑐) exists and

lim
𝑥→𝑐

(
𝑓 (𝑥) − 𝑓 (𝑐)) = (

lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

) (
lim
𝑥→𝑐

(𝑥 − 𝑐)
)
= 𝑓 ′(𝑐) · 0 = 0.

Hence lim
𝑥→𝑐

𝑓 (𝑥) = 𝑓 (𝑐), and 𝑓 is continuous at 𝑐. □

An important property of the derivative is linearity. The derivative is the approximation
of a function by a straight line. The slope of a line through two points changes linearly
when the 𝑦-coordinates are changed linearly. Taking the limit, it makes sense that the
derivative is linear.
Proposition 4.1.7 (Linearity). Let 𝐼 be an interval, let 𝑓 : 𝐼 → ℝ and 𝑔 : 𝐼 → ℝ be differentiable
at 𝑐 ∈ 𝐼, and let 𝛼 ∈ ℝ.

(i) Define ℎ : 𝐼 → ℝ by ℎ(𝑥) B 𝛼 𝑓 (𝑥). Then ℎ is differentiable at 𝑐 and ℎ′(𝑐) = 𝛼 𝑓 ′(𝑐).
(ii) Define ℎ : 𝐼 → ℝ by ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥). Then ℎ is differentiable at 𝑐 and ℎ′(𝑐) =

𝑓 ′(𝑐) + 𝑔′(𝑐).
Proof. First, let ℎ(𝑥) B 𝛼 𝑓 (𝑥). For 𝑥 ∈ 𝐼, 𝑥 ≠ 𝑐,

ℎ(𝑥) − ℎ(𝑐)
𝑥 − 𝑐 =

𝛼 𝑓 (𝑥) − 𝛼 𝑓 (𝑐)
𝑥 − 𝑐 = 𝛼

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 .

The limit as 𝑥 goes to 𝑐 exists on the right-hand side by  Corollary 3.1.12 . We get

lim
𝑥→𝑐

ℎ(𝑥) − ℎ(𝑐)
𝑥 − 𝑐 = 𝛼 lim

𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 .
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Therefore, ℎ is differentiable at 𝑐, and the derivative is computed as given.
Next, define ℎ(𝑥) B 𝑓 (𝑥) + 𝑔(𝑥). For 𝑥 ∈ 𝐼, 𝑥 ≠ 𝑐, we have

ℎ(𝑥) − ℎ(𝑐)
𝑥 − 𝑐 =

(
𝑓 (𝑥) + 𝑔(𝑥)) − (

𝑓 (𝑐) + 𝑔(𝑐))
𝑥 − 𝑐 =

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 + 𝑔(𝑥) − 𝑔(𝑐)

𝑥 − 𝑐 .

The limit as 𝑥 goes to 𝑐 exists on the right-hand side by  Corollary 3.1.12 . We get

lim
𝑥→𝑐

ℎ(𝑥) − ℎ(𝑐)
𝑥 − 𝑐 = lim

𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 + lim

𝑥→𝑐

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐 .

Therefore, ℎ is differentiable at 𝑐, and the derivative is computed as given. □

It is not true that the derivative of a product of two functions is the product of the
derivatives. Instead we get the so-called product rule or the Leibniz rule 

‗
 .

Proposition 4.1.8 (Product rule). Let 𝐼 be an interval, let 𝑓 : 𝐼 → ℝ and 𝑔 : 𝐼 → ℝ be functions
differentiable at 𝑐. If ℎ : 𝐼 → ℝ is defined by

ℎ(𝑥) B 𝑓 (𝑥)𝑔(𝑥),

then ℎ is differentiable at 𝑐 and

ℎ′(𝑐) = 𝑓 (𝑐)𝑔′(𝑐) + 𝑓 ′(𝑐)𝑔(𝑐).

The proof of the product rule is left as an exercise. The key to the proof is the identity
𝑓 (𝑥)𝑔(𝑥)− 𝑓 (𝑐)𝑔(𝑐) = 𝑓 (𝑥)(𝑔(𝑥)− 𝑔(𝑐)) + (

𝑓 (𝑥)− 𝑓 (𝑐)) 𝑔(𝑐), which is illustrated in  Figure 4.2 .

𝑓 (𝑐)𝑔(𝑐)

𝑔(𝑥)
𝑔(𝑐) (𝑓(𝑥)−

𝑓(𝑐) )𝑔(𝑐)

𝑓 (𝑥)(𝑔(𝑥) − 𝑔(𝑐))

𝑓 (𝑥)𝑓 (𝑐)0
0

Figure 4.2: The idea of product rule. The area of the entire rectangle 𝑓 (𝑥)𝑔(𝑥) differs from the
area of the white rectangle 𝑓 (𝑐)𝑔(𝑐) by the area of the lightly shaded rectangle 𝑓 (𝑥)(𝑔(𝑥) − 𝑔(𝑐))
plus the darker rectangle

(
𝑓 (𝑥) − 𝑓 (𝑐)) 𝑔(𝑐). In other words, Δ( 𝑓 · 𝑔) = 𝑓 · Δ𝑔 + Δ 𝑓 · 𝑔.

‗Named for the German mathematician  Gottfried Wilhelm Leibniz (1646–1716).

https://en.wikipedia.org/wiki/Leibniz


4.1. THE DERIVATIVE 159

Proposition 4.1.9 (Quotient rule). Let 𝐼 be an interval, let 𝑓 : 𝐼 → ℝ and 𝑔 : 𝐼 → ℝ be
differentiable at 𝑐 and 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ 𝐼. If ℎ : 𝐼 → ℝ is defined by

ℎ(𝑥) B 𝑓 (𝑥)
𝑔(𝑥) ,

then ℎ is differentiable at 𝑐 and

ℎ′(𝑐) = 𝑓 ′(𝑐)𝑔(𝑐) − 𝑓 (𝑐)𝑔′(𝑐)(
𝑔(𝑐))2 .

Again, the proof is left as an exercise.

4.1.2 Chain rule
More complicated functions are often obtained by composition, which is differentiated via
the chain rule. The rule also tells us how a derivative changes if we change variables.

Proposition 4.1.10 (Chain rule). Let 𝐼1, 𝐼2 be intervals, let 𝑔 : 𝐼1 → 𝐼2 be differentiable at 𝑐 ∈ 𝐼1,
and 𝑓 : 𝐼2 → ℝ be differentiable at 𝑔(𝑐). If ℎ : 𝐼1 → ℝ is defined by

ℎ(𝑥) B ( 𝑓 ◦ 𝑔)(𝑥) = 𝑓
(
𝑔(𝑥)) ,

then ℎ is differentiable at 𝑐 and
ℎ′(𝑐) = 𝑓 ′

(
𝑔(𝑐)) 𝑔′(𝑐).

Proof. Let 𝑑 B 𝑔(𝑐). Define 𝑢 : 𝐼2 → ℝ and 𝑣 : 𝐼1 → ℝ by

𝑢(𝑦) B
{
𝑓 (𝑦)− 𝑓 (𝑑)
𝑦−𝑑 if 𝑦 ≠ 𝑑,

𝑓 ′(𝑑) if 𝑦 = 𝑑,
𝑣(𝑥) B

{
𝑔(𝑥)−𝑔(𝑐)
𝑥−𝑐 if 𝑥 ≠ 𝑐,

𝑔′(𝑐) if 𝑥 = 𝑐.

Because 𝑓 is differentiable at 𝑑 = 𝑔(𝑐), we find that 𝑢 is continuous at 𝑑. Similarly, 𝑣 is
continuous at 𝑐. For any 𝑥 and 𝑦,

𝑓 (𝑦) − 𝑓 (𝑑) = 𝑢(𝑦)(𝑦 − 𝑑) and 𝑔(𝑥) − 𝑔(𝑐) = 𝑣(𝑥)(𝑥 − 𝑐).
Plug in to obtain

ℎ(𝑥) − ℎ(𝑐) = 𝑓
(
𝑔(𝑥)) − 𝑓

(
𝑔(𝑐)) = 𝑢 (

𝑔(𝑥)) (𝑔(𝑥) − 𝑔(𝑐)) = 𝑢 (
𝑔(𝑥)) (𝑣(𝑥)(𝑥 − 𝑐)) .

Therefore, if 𝑥 ≠ 𝑐,
ℎ(𝑥) − ℎ(𝑐)
𝑥 − 𝑐 = 𝑢

(
𝑔(𝑥))𝑣(𝑥). (4.1)

By continuity of 𝑢 and 𝑣 at 𝑑 and 𝑐 respectively, we find lim𝑦→𝑑 𝑢(𝑦) = 𝑓 ′(𝑑) = 𝑓 ′
(
𝑔(𝑐)) and

lim𝑥→𝑐 𝑣(𝑥) = 𝑔′(𝑐). The function 𝑔 is continuous at 𝑐, and so lim𝑥→𝑐 𝑔(𝑥) = 𝑔(𝑐). Hence
the limit of the right-hand side of ( 4.1 ) as 𝑥 goes to 𝑐 exists and is equal to 𝑓 ′

(
𝑔(𝑐)) 𝑔′(𝑐).

Thus ℎ is differentiable at 𝑐 and ℎ′(𝑐) = 𝑓 ′
(
𝑔(𝑐)) 𝑔′(𝑐). □
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4.1.3 Exercises
Exercise 4.1.1: Prove the product rule. Hint: Prove and use 𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑐)𝑔(𝑐) = 𝑓 (𝑥)(𝑔(𝑥) − 𝑔(𝑐)) +(
𝑓 (𝑥) − 𝑓 (𝑐)) 𝑔(𝑐).

Exercise 4.1.2: Prove the quotient rule. Hint: You can do this directly, but it may be easier to find the
derivative of 1/𝑥 and then use the chain rule and the product rule.

Exercise 4.1.3: For 𝑛 ∈ ℤ, prove that 𝑥𝑛 is differentiable and find the derivative, unless, of course, 𝑛 < 0
and 𝑥 = 0. Hint: Use the product rule.

Exercise 4.1.4: Prove that a polynomial is differentiable, and find the derivative. Hint: Use the previous
exercise.

Exercise 4.1.5: Define 𝑓 : ℝ → ℝ by

𝑓 (𝑥) B
{
𝑥2 if 𝑥 ∈ ℚ,

0 otherwise.

Prove that 𝑓 is differentiable at 0, but discontinuous at all points except 0.

Exercise 4.1.6: Assume the inequality |𝑥 − sin(𝑥)| ≤ 𝑥2. Prove that sin is differentiable at 0, and find the
derivative at 0.

Exercise 4.1.7: Using the previous exercise, prove that sin is differentiable at all 𝑥 and that the derivative is
cos(𝑥). Hint: Use the sum-to-product trigonometric identity as we did before.

Exercise 4.1.8: Let 𝑓 : 𝐼 → ℝ be differentiable. For 𝑛 ∈ ℤ, let 𝑓 𝑛 be the function defined by 𝑓 𝑛(𝑥) B (
𝑓 (𝑥))𝑛 .

If 𝑛 < 0, assume 𝑓 (𝑥) ≠ 0 for all 𝑥 ∈ 𝐼. Prove that ( 𝑓 𝑛)′(𝑥) = 𝑛
(
𝑓 (𝑥))𝑛−1 𝑓 ′(𝑥).

Exercise 4.1.9: Suppose 𝑓 : ℝ → ℝ is a differentiable Lipschitz continuous function. Prove that 𝑓 ′ is a
bounded function.

Exercise 4.1.10: Let 𝐼1 , 𝐼2 be intervals. Let 𝑓 : 𝐼1 → 𝐼2 be a bĳective function and 𝑔 : 𝐼2 → 𝐼1 be the inverse.
Suppose that both 𝑓 is differentiable at 𝑐 ∈ 𝐼1 and 𝑓 ′(𝑐) ≠ 0 and 𝑔 is differentiable at 𝑓 (𝑐). Use the chain rule
to find a formula for 𝑔′

(
𝑓 (𝑐)) (in terms of 𝑓 ′(𝑐)).

Exercise 4.1.11: Suppose 𝑓 : 𝐼 → ℝ is bounded, 𝑔 : 𝐼 → ℝ is differentiable at 𝑐 ∈ 𝐼, and 𝑔(𝑐) = 𝑔′(𝑐) = 0.
Show that ℎ(𝑥) B 𝑓 (𝑥)𝑔(𝑥) is differentiable at 𝑐. Hint: You cannot apply the product rule.

Exercise 4.1.12: Suppose 𝑓 : 𝐼 → ℝ, 𝑔 : 𝐼 → ℝ, and ℎ : 𝐼 → ℝ, are functions. Suppose 𝑐 ∈ 𝐼 is
such that 𝑓 (𝑐) = 𝑔(𝑐) = ℎ(𝑐), 𝑔 and ℎ are differentiable at 𝑐, and 𝑔′(𝑐) = ℎ′(𝑐). Furthermore, suppose
ℎ(𝑥) ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐼. Prove 𝑓 is differentiable at 𝑐 and 𝑓 ′(𝑐) = 𝑔′(𝑐) = ℎ′(𝑐).
Exercise 4.1.13: Suppose 𝑓 : (−1, 1) → ℝ is a function such that 𝑓 (𝑥) = 𝑥ℎ(𝑥) for a bounded function ℎ.

a) Show that 𝑔(𝑥) B (
𝑓 (𝑥))2 is differentiable at the origin and 𝑔′(0) = 0.

b) Find an example of a continuous function 𝑓 : (−1, 1) → ℝ with 𝑓 (0) = 0, but such that 𝑔(𝑥) B (
𝑓 (𝑥))2

is not differentiable at the origin.
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Exercise 4.1.14: Suppose 𝑓 : 𝐼 → ℝ is differentiable at 𝑐 ∈ 𝐼. Prove that there exist numbers 𝑎 and 𝑏 with the
property that for every 𝜖 > 0, there is a 𝛿 > 0, such that

��𝑎 + 𝑏(𝑥 − 𝑐) − 𝑓 (𝑥)�� ≤ 𝜖 |𝑥 − 𝑐|, whenever 𝑥 ∈ 𝐼
and |𝑥 − 𝑐| < 𝛿. In other words, show that there exists a function 𝑔 : 𝐼 → ℝ such that lim𝑥→𝑐 𝑔(𝑥) = 0 and��𝑎 + 𝑏(𝑥 − 𝑐) − 𝑓 (𝑥)�� = 𝑔(𝑥) |𝑥 − 𝑐|.
Exercise 4.1.15: Prove the following simple version of L’Hôpital’s rule. Suppose 𝑓 : (𝑎, 𝑏) → ℝ and
𝑔 : (𝑎, 𝑏) → ℝ are differentiable functions whose derivatives 𝑓 ′ and 𝑔′ are continuous functions. Suppose
that at 𝑐 ∈ (𝑎, 𝑏), 𝑓 (𝑐) = 0, 𝑔(𝑐) = 0, 𝑔′(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏), and 𝑔(𝑥) ≠ 0 whenever 𝑥 ≠ 𝑐. Note that
the limit of 𝑓 ′(𝑥)/𝑔′(𝑥) as 𝑥 goes to 𝑐 exists. Show that

lim
𝑥→𝑐

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→𝑐

𝑓 ′(𝑥)
𝑔′(𝑥) .

Exercise 4.1.16: Suppose 𝑓 : (𝑎, 𝑏) → ℝ is differentiable at 𝑐 ∈ (𝑎, 𝑏), 𝑓 (𝑐) = 0, and 𝑓 ′(𝑐) > 0. Prove that
there is a 𝛿 > 0 such that 𝑓 (𝑥) < 0 whenever 𝑐 − 𝛿 < 𝑥 < 𝑐 and 𝑓 (𝑥) > 0 whenever 𝑐 < 𝑥 < 𝑐 + 𝛿.
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4.2 Mean value theorem
Note: 2 lectures (some applications may be skipped)

4.2.1 Relative minima and maxima
We previously talked about absolute maxima and minima. These are the tallest peaks and
the lowest valleys in the entire mountain range. What about peaks of individual mountains
and bottoms of individual valleys? The derivative, being a local concept, is like walking
around in a fog; it cannot tell you if you are on the highest peak, but it can tell you whether
you are at the top of some peak.

Definition 4.2.1. Let 𝑆 ⊂ ℝ be a set and let 𝑓 : 𝑆 → ℝ be a function. The function 𝑓 is said
to have a relative maximum at 𝑐 ∈ 𝑆 if there exists a 𝛿 > 0 such that for all 𝑥 ∈ 𝑆 where
|𝑥 − 𝑐| < 𝛿, we have 𝑓 (𝑥) ≤ 𝑓 (𝑐). The definition of relative minimum is analogous.

Lemma 4.2.2. Suppose 𝑓 : (𝑎, 𝑏) → ℝ is differentiable at 𝑐 ∈ (𝑎, 𝑏), and 𝑓 has a relative minimum
or a relative maximum at 𝑐. Then 𝑓 ′(𝑐) = 0.

Proof. Suppose 𝑐 is a relative maximum of 𝑓 . That is, there is a 𝛿 > 0 such that for every
𝑥 ∈ (𝑎, 𝑏) where |𝑥 − 𝑐| < 𝛿, we have 𝑓 (𝑥) − 𝑓 (𝑐) ≤ 0. Consider the difference quotient. If
𝑐 < 𝑥 < 𝑐 + 𝛿, then

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≤ 0,

and if 𝑐 − 𝛿 < 𝑦 < 𝑐, then
𝑓 (𝑦) − 𝑓 (𝑐)
𝑦 − 𝑐 ≥ 0.

See  Figure 4.3 for an illustration.

2H

slope = 5 (H)− 5 (2)
H−2 ≥ 0

G

slope = 5 (G)− 5 (2)
G−2 ≤ 0

Figure 4.3: Slopes of secants at a relative maximum.

As 𝑎 < 𝑐 < 𝑏, there exist sequences {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 in (𝑎, 𝑏) such that 𝑐 < 𝑥𝑛 < 𝑐+𝛿
and 𝑐 − 𝛿 < 𝑦𝑛 < 𝑐 for all 𝑛 ∈ ℕ, and such that lim𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑦𝑛 = 𝑐. Since 𝑓 is
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differentiable at 𝑐,

0 ≥ lim
𝑛→∞

𝑓 (𝑥𝑛) − 𝑓 (𝑐)
𝑥𝑛 − 𝑐 = 𝑓 ′(𝑐) = lim

𝑛→∞
𝑓 (𝑦𝑛) − 𝑓 (𝑐)
𝑦𝑛 − 𝑐 ≥ 0.

We are done with a maximum. For a minimum, consider the function − 𝑓 . □

For a differentiable function, a point where 𝑓 ′(𝑐) = 0 is called a critical point. When 𝑓 is
not differentiable at some points, it is common to also say that 𝑐 is a critical point if 𝑓 ′(𝑐)
does not exist. The theorem says that a relative minimum or maximum at an interior point
of an interval must be a critical point. As you remember from calculus, one finds minima
and maxima of a function by finding all the critical points together with the endpoints of
the interval and simply checking at which of these points is the function biggest or smallest.

4.2.2 Rolle’s theorem
Suppose a function has the same value at both endpoints of an interval. Intuitively, it ought
to attain a minimum or a maximum in the interior of the interval, then at such a minimum
or a maximum, the derivative should be zero. See  Figure 4.4 for the geometric idea. This is
the content of the so-called Rolle’s theorem 

‗
 .

20
1

Figure 4.4: Point where the tangent line is horizontal, that is 𝑓 ′(𝑐) = 0.

Theorem 4.2.3 (Rolle). Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function differentiable on (𝑎, 𝑏) such
that 𝑓 (𝑎) = 𝑓 (𝑏). Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 0.

Proof. As 𝑓 is continuous on [𝑎, 𝑏], it attains an absolute minimum and an absolute
maximum in [𝑎, 𝑏]. We wish to apply  Lemma 4.2.2 , and so we need to find some 𝑐 ∈ (𝑎, 𝑏)
where 𝑓 attains a minimum or a maximum. Write 𝐾 B 𝑓 (𝑎) = 𝑓 (𝑏). If there exists an
𝑥 such that 𝑓 (𝑥) > 𝐾, then the absolute maximum is larger than 𝐾 and hence occurs at
some 𝑐 ∈ (𝑎, 𝑏), and therefore 𝑓 ′(𝑐) = 0. On the other hand, if there exists an 𝑥 such that

‗Named after the French mathematician  Michel Rolle (1652–1719).

https://en.wikipedia.org/wiki/Michel_Rolle
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𝑓 (𝑥) < 𝐾, then the absolute minimum occurs at some 𝑐 ∈ (𝑎, 𝑏), and so 𝑓 ′(𝑐) = 0. If there
is no 𝑥 such that 𝑓 (𝑥) > 𝐾 or 𝑓 (𝑥) < 𝐾, then 𝑓 (𝑥) = 𝐾 for all 𝑥 and then 𝑓 ′(𝑥) = 0 for all
𝑥 ∈ [𝑎, 𝑏], so any 𝑐 ∈ (𝑎, 𝑏) works. □

It is absolutely necessary that the derivative exists for all 𝑥 ∈ (𝑎, 𝑏). Consider the
function 𝑓 (𝑥) B |𝑥| on [−1, 1]. Clearly 𝑓 (−1) = 𝑓 (1), but there is no point 𝑐 where 𝑓 ′(𝑐) = 0.

4.2.3 Mean value theorem
We extend  Rolle’s theorem to functions that attain different values at the endpoints.
Theorem 4.2.4 (Mean value theorem). Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function differentiable
on (𝑎, 𝑏). Then there exists a point 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎).
For a geometric interpretation of the mean value theorem, see  Figure 4.5  . The idea is

that the value 𝑓 (𝑏)− 𝑓 (𝑎)
𝑏−𝑎 is the slope of the line between the points

(
𝑎, 𝑓 (𝑎)) and

(
𝑏, 𝑓 (𝑏)) .

Then 𝑐 is the point such that 𝑓 ′(𝑐) = 𝑓 (𝑏)− 𝑓 (𝑎)
𝑏−𝑎 , that is, the tangent line at the point

(
𝑐, 𝑓 (𝑐))

has the same slope as the line between
(
𝑎, 𝑓 (𝑎)) and

(
𝑏, 𝑓 (𝑏)) . The name comes from the

fact that the slope of the secant line is the mean value of the derivative, so the average
derivative is achieved in the interior of the interval.

The theorem follows from  Rolle’s theorem by subtracting from 𝑓 the affine linear
function with the derivative 𝑓 (𝑏)− 𝑓 (𝑎)

𝑏−𝑎 with the same values at 𝑎 and 𝑏 as 𝑓 . That is, we
subtract the function whose graph is the straight line

(
𝑎, 𝑓 (𝑎)) and

(
𝑏, 𝑓 (𝑏)) . Then we are

looking for a point where this new function has derivative zero.

2

(0, 5 (0))

(1, 5 (1))

Figure 4.5: Graphical interpretation of the mean value theorem.

Proof. Define the function 𝑔 : [𝑎, 𝑏] → ℝ by

𝑔(𝑥) B 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 (𝑥 − 𝑏).
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The function 𝑔 is differentiable on (𝑎, 𝑏), continuous on [𝑎, 𝑏], such that 𝑔(𝑎) = 0 and
𝑔(𝑏) = 0. Thus there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑔′(𝑐) = 0, that is,

0 = 𝑔′(𝑐) = 𝑓 ′(𝑐) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

In other words, 𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎). □

The proof generalizes. By considering 𝑔(𝑥) B 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑏)− 𝑓 (𝑎)
𝜑(𝑏)−𝜑(𝑎)

(
𝜑(𝑥) − 𝜑(𝑏)) , one

can prove the following version. We leave the proof as an exercise.

Theorem 4.2.5 (Cauchy’s mean value theorem). Let 𝑓 : [𝑎, 𝑏] → ℝ and 𝜑 : [𝑎, 𝑏] → ℝ be
continuous functions differentiable on (𝑎, 𝑏). Then there exists a point 𝑐 ∈ (𝑎, 𝑏) such that(

𝑓 (𝑏) − 𝑓 (𝑎))𝜑′(𝑐) = 𝑓 ′(𝑐)(𝜑(𝑏) − 𝜑(𝑎)) .
The mean value theorem has the distinction of being one of the few theorems cited in

court. That is, when police measure the speed of cars by aircraft, or via cameras reading
license plates, they measure the time the car takes to go between two points. The mean
value theorem then says that the car must have somewhere attained the speed you get by
dividing the difference in distance by the difference in time.

4.2.4 Applications
Let us look at a few applications of the mean value theorem. The applications show the
typical use of the theorem, which is to get rid of a limit by finding the right sort of points
where the derivative is not just close to some difference quotient, but actually equal to one.
First, we solve our very first differential equation.

Proposition 4.2.6. Let 𝐼 be an interval and let 𝑓 : 𝐼 → ℝ be a differentiable function such that
𝑓 ′(𝑥) = 0 for all 𝑥 ∈ 𝐼. Then 𝑓 is constant.

Proof. Take arbitrary 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦. As 𝐼 is an interval, [𝑥, 𝑦] ⊂ 𝐼. Then 𝑓 restricted to
[𝑥, 𝑦] satisfies the hypotheses of the  mean value theorem . Therefore, there is a 𝑐 ∈ (𝑥, 𝑦)
such that

𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑐)(𝑦 − 𝑥).
As 𝑓 ′(𝑐) = 0, we have 𝑓 (𝑦) = 𝑓 (𝑥). Hence, the function is constant. □

Now that we know what it means for the function to stay constant, we look at increasing
and decreasing functions. We say 𝑓 : 𝐼 → ℝ is increasing (resp. strictly increasing) if 𝑥 < 𝑦
implies 𝑓 (𝑥) ≤ 𝑓 (𝑦) (resp. 𝑓 (𝑥) < 𝑓 (𝑦)). We define decreasing and strictly decreasing in the
same way by switching the inequalities for 𝑓 .

Proposition 4.2.7. Let 𝐼 be an interval and let 𝑓 : 𝐼 → ℝ be a differentiable function.
(i) 𝑓 is increasing if and only if 𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼.
(ii) 𝑓 is decreasing if and only if 𝑓 ′(𝑥) ≤ 0 for all 𝑥 ∈ 𝐼.
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Proof. Let us prove the first item. Suppose 𝑓 is increasing. For all 𝑥, 𝑐 ∈ 𝐼 with 𝑥 ≠ 𝑐,
𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≥ 0.

Taking a limit as 𝑥 goes to 𝑐, we see that 𝑓 ′(𝑐) ≥ 0.
For the other direction, suppose 𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼. Take any 𝑥, 𝑦 ∈ 𝐼 where 𝑥 < 𝑦,

and note that [𝑥, 𝑦] ⊂ 𝐼. By the  mean value theorem , there is some 𝑐 ∈ (𝑥, 𝑦) such that

𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑐)(𝑦 − 𝑥).
As 𝑓 ′(𝑐) ≥ 0 and 𝑦 − 𝑥 > 0, then 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 0 or 𝑓 (𝑥) ≤ 𝑓 (𝑦), and so 𝑓 is increasing.

We leave the second item, decreasing 𝑓 , to the reader as an exercise. □

A similar but weaker statement is true for strictly increasing and decreasing functions.
Proposition 4.2.8. Let 𝐼 be an interval and let 𝑓 : 𝐼 → ℝ be a differentiable function.

(i) If 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ 𝐼, then 𝑓 is strictly increasing.
(ii) If 𝑓 ′(𝑥) < 0 for all 𝑥 ∈ 𝐼, then 𝑓 is strictly decreasing.

The proof of  (i) is left as an exercise. Then  (ii) follows from  (i) by considering − 𝑓 instead.
The converse of this proposition is not true. The function 𝑓 (𝑥) B 𝑥3 is strictly increasing,
but 𝑓 ′(0) = 0.

Another application of the  mean value theorem is the following result about the location
of extrema, sometimes called the first derivative test. The result is stated for an absolute
minimum and maximum. To apply it to find relative minima and maxima, restrict 𝑓 to an
interval (𝑐 − 𝛿, 𝑐 + 𝛿).
Proposition 4.2.9. Let 𝑓 : (𝑎, 𝑏) → ℝ be continuous. Let 𝑐 ∈ (𝑎, 𝑏) and suppose 𝑓 is differentiable
on (𝑎, 𝑐) and (𝑐, 𝑏).

(i) If 𝑓 ′(𝑥) ≤ 0 whenever 𝑥 ∈ (𝑎, 𝑐) and 𝑓 ′(𝑥) ≥ 0 whenever 𝑥 ∈ (𝑐, 𝑏), then 𝑓 has an absolute
minimum at 𝑐.

(ii) If 𝑓 ′(𝑥) ≥ 0 whenever 𝑥 ∈ (𝑎, 𝑐) and 𝑓 ′(𝑥) ≤ 0 whenever 𝑥 ∈ (𝑐, 𝑏), then 𝑓 has an absolute
maximum at 𝑐.

Proof. We prove the first item and leave the second to the reader. Take 𝑥 ∈ (𝑎, 𝑐) and a
sequence {𝑦𝑛}∞𝑛=1 such that 𝑥 < 𝑦𝑛 < 𝑐 for all 𝑛 and lim𝑛→∞ 𝑦𝑛 = 𝑐. By the preceding
proposition, 𝑓 is decreasing on (𝑎, 𝑐) so 𝑓 (𝑥) ≥ 𝑓 (𝑦𝑛) for all 𝑛. As 𝑓 is continuous at 𝑐, we
take the limit to get 𝑓 (𝑥) ≥ 𝑓 (𝑐).

Similarly, take 𝑥 ∈ (𝑐, 𝑏) and {𝑦𝑛}∞𝑛=1 a sequence such that 𝑐 < 𝑦𝑛 < 𝑥 and lim𝑛→∞ 𝑦𝑛 = 𝑐.
The function is increasing on (𝑐, 𝑏) so 𝑓 (𝑥) ≥ 𝑓 (𝑦𝑛) for all 𝑛. By continuity of 𝑓 , we get
𝑓 (𝑥) ≥ 𝑓 (𝑐). Thus 𝑓 (𝑥) ≥ 𝑓 (𝑐) for all 𝑥 ∈ (𝑎, 𝑏). □

The converse of the proposition does not hold. See  Example 4.2.12 below.
Another often used application of the mean value theorem you have possibly seen in

calculus is the following result on differentiability at the end points of an interval. The
proof is  Exercise 4.2.13 .
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Proposition 4.2.10.

(i) Suppose 𝑓 : [𝑎, 𝑏) → ℝ is continuous, differentiable in (𝑎, 𝑏), and lim𝑥→𝑎 𝑓 ′(𝑥) = 𝐿. Then
𝑓 is differentiable at 𝑎 and 𝑓 ′(𝑎) = 𝐿.

(ii) Suppose 𝑓 : (𝑎, 𝑏] → ℝ is continuous, differentiable in (𝑎, 𝑏), and lim𝑥→𝑏 𝑓 ′(𝑥) = 𝐿. Then
𝑓 is differentiable at 𝑏 and 𝑓 ′(𝑏) = 𝐿.

In fact, using the extension result  Proposition 3.4.6 , you do not need to assume that 𝑓 is
defined at the end point. See  Exercise 4.2.14 .

4.2.5 Continuity of derivatives and the intermediate value theorem
Derivatives of functions satisfy an intermediate value property.

Theorem 4.2.11 (Darboux). Let 𝑓 : [𝑎, 𝑏] → ℝ be differentiable. Suppose 𝑦 ∈ ℝ is such that
𝑓 ′(𝑎) < 𝑦 < 𝑓 ′(𝑏) or 𝑓 ′(𝑎) > 𝑦 > 𝑓 ′(𝑏). Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 𝑦.

The proof follows by subtracting 𝑓 and a linear function with derivative 𝑦. The new
function 𝑔 reduces the problem to the case 𝑦 = 0, where 𝑔′(𝑎) > 0 > 𝑔′(𝑏). That is, 𝑔 is
increasing at 𝑎 and decreasing at 𝑏, so it must attain a maximum inside (𝑎, 𝑏), where the
derivative is zero. See  Figure 4.6 .

0

6′(0) > 0

2

6′(2) = 0

1

6′(1) < 0

Figure 4.6: Idea of the proof of Darboux theorem.

Proof. Suppose 𝑓 ′(𝑎) < 𝑦 < 𝑓 ′(𝑏). Define

𝑔(𝑥) B 𝑦𝑥 − 𝑓 (𝑥).

The function 𝑔 is continuous on [𝑎, 𝑏], and so 𝑔 attains a maximum at some 𝑐 ∈ [𝑎, 𝑏].
The function 𝑔 is also differentiable on [𝑎, 𝑏]. Compute 𝑔′(𝑥) = 𝑦− 𝑓 ′(𝑥). Thus 𝑔′(𝑎) > 0.

As the derivative is the limit of difference quotients and is positive, there must be some
difference quotient that is positive. That is, there must exist an 𝑥 > 𝑎 such that

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎 > 0,
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or 𝑔(𝑥) > 𝑔(𝑎). Thus 𝑔 cannot possibly have a maximum at 𝑎. Similarly, as 𝑔′(𝑏) < 0,
we find an 𝑥 < 𝑏 (a different 𝑥) such that 𝑔(𝑥)−𝑔(𝑏)

𝑥−𝑏 < 0 or that 𝑔(𝑥) > 𝑔(𝑏), thus 𝑔 cannot
possibly have a maximum at 𝑏. Therefore, 𝑐 ∈ (𝑎, 𝑏), and  Lemma 4.2.2 applies: As 𝑔 attains
a maximum at 𝑐, we find 𝑔′(𝑐) = 0 and so 𝑓 ′(𝑐) = 𝑦.

Similarly, if 𝑓 ′(𝑎) > 𝑦 > 𝑓 ′(𝑏), consider 𝑔(𝑥) B 𝑓 (𝑥) − 𝑦𝑥. □

We have seen already that there exist discontinuous functions that have the intermediate
value property. While it is hard to imagine at first, there also exist functions that are
differentiable everywhere and the derivative is not continuous.

Example 4.2.12: Let 𝑓 : ℝ → ℝ be the function defined by

𝑓 (𝑥) B
{(
𝑥 sin(1/𝑥))2 if 𝑥 ≠ 0,

0 if 𝑥 = 0.

We claim that 𝑓 is differentiable everywhere, but 𝑓 ′ : ℝ → ℝ is not continuous at the origin.
Furthermore, 𝑓 has a minimum at 0, but the derivative changes sign infinitely often near
the origin. See  Figure 4.7 .

Figure 4.7: A function with a discontinuous derivative. The function 𝑓 is on the left and 𝑓 ′ is
on the right. Notice that 𝑓 (𝑥) ≤ 𝑥2 on the left graph.

Proof: It is immediate from the definition that 𝑓 has an absolute minimum at 0; we
know 𝑓 (𝑥) ≥ 0 for all 𝑥 and 𝑓 (0) = 0.

For 𝑥 ≠ 0, 𝑓 is differentiable and the derivative is 2 sin(1/𝑥)(𝑥 sin(1/𝑥) − cos(1/𝑥)) . As an
exercise, show that for 𝑥𝑛 = 4

(8𝑛+1)𝜋 , we have lim𝑛→∞ 𝑓 ′(𝑥𝑛) = −1, and for 𝑦𝑛 = 4
(8𝑛+3)𝜋 , we

have lim𝑛→∞ 𝑓 ′(𝑦𝑛) = 1. So 𝑓 ′ cannot be continuous at 0 no matter what 𝑓 ′(0) is.
Let us show that 𝑓 is differentiable at 0 and 𝑓 ′(0) = 0. For 𝑥 ≠ 0,���� 𝑓 (𝑥) − 𝑓 (0)

𝑥 − 0 − 0
���� = ����𝑥2 sin2(1/𝑥)

𝑥

���� = ��𝑥 sin2(1/𝑥)�� ≤ |𝑥| .
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And, of course, as 𝑥 tends to zero, |𝑥| tends to zero, and hence
��� 𝑓 (𝑥)− 𝑓 (0)𝑥−0 − 0

��� goes to zero.
Therefore, 𝑓 is differentiable at 0 and the derivative at 0 is 0. A key point in the calculation
above is that

�� 𝑓 (𝑥)�� ≤ 𝑥2, see also Exercises  4.1.11 and  4.1.12 .

It is sometimes useful to assume the derivative of a differentiable function is continuous.
If 𝑓 : 𝐼 → ℝ is differentiable and the derivative 𝑓 ′ is continuous on 𝐼, then we say 𝑓
is continuously differentiable. It is common to write 𝐶1(𝐼) for the set of continuously
differentiable functions on 𝐼.

4.2.6 Exercises
Exercise 4.2.1: Finish the proof of  Proposition 4.2.7 .

Exercise 4.2.2: Finish the proof of  Proposition 4.2.9 .

Exercise 4.2.3: Suppose 𝑓 : ℝ → ℝ is a differentiable function such that 𝑓 ′ is a bounded function. Prove
that 𝑓 is a Lipschitz continuous function.

Exercise 4.2.4: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is differentiable and 𝑐 ∈ [𝑎, 𝑏]. Show there exists a sequence {𝑥𝑛}∞𝑛=1
converging to 𝑐, 𝑥𝑛 ≠ 𝑐 for all 𝑛, such that

𝑓 ′(𝑐) = lim
𝑛→∞ 𝑓 ′(𝑥𝑛).

Do note this does not imply that 𝑓 ′ is continuous (why?).

Exercise 4.2.5: Suppose 𝑓 : ℝ → ℝ is a function such that
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� ≤ ��𝑥 − 𝑦��2 for all 𝑥 and 𝑦. Show

that 𝑓 (𝑥) = 𝐶 for some constant 𝐶. Hint: Show that 𝑓 is differentiable at all points and compute the
derivative.

Exercise 4.2.6: Finish the proof of  Proposition 4.2.8 . That is, suppose 𝐼 is an interval and 𝑓 : 𝐼 → ℝ is a
differentiable function such that 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ 𝐼. Show that 𝑓 is strictly increasing.

Exercise 4.2.7: Suppose 𝑓 : (𝑎, 𝑏) → ℝ is a differentiable function such that 𝑓 ′(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏).
Suppose there exists a point 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) > 0. Prove 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏).
Exercise 4.2.8: Suppose 𝑓 : (𝑎, 𝑏) → ℝ and 𝑔 : (𝑎, 𝑏) → ℝ are differentiable functions such that 𝑓 ′(𝑥) =
𝑔′(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), then show that there exists a constant 𝐶 such that 𝑓 (𝑥) = 𝑔(𝑥) + 𝐶.

Exercise 4.2.9: Prove the following version of L’Hôpital’s rule. Suppose 𝑓 : (𝑎, 𝑏) → ℝ and 𝑔 : (𝑎, 𝑏) → ℝ

are differentiable functions and 𝑐 ∈ (𝑎, 𝑏). Suppose that 𝑓 (𝑐) = 0, 𝑔(𝑐) = 0, 𝑔′(𝑥) ≠ 0 when 𝑥 ≠ 𝑐, and that
the limit of 𝑓 ′(𝑥)/𝑔′(𝑥) as 𝑥 goes to 𝑐 exists. Show that

lim
𝑥→𝑐

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→𝑐

𝑓 ′(𝑥)
𝑔′(𝑥) .

Compare to  Exercise 4.1.15 . Note: Before you do anything else, prove that 𝑔(𝑥) ≠ 0 when 𝑥 ≠ 𝑐.

Exercise 4.2.10: Let 𝑓 : (𝑎, 𝑏) → ℝ be an unbounded differentiable function. Show 𝑓 ′ : (𝑎, 𝑏) → ℝ is
unbounded.
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Exercise 4.2.11: Prove the theorem Rolle actually proved in 1691: If 𝑓 is a polynomial, 𝑓 ′(𝑎) = 𝑓 ′(𝑏) = 0
for some 𝑎 < 𝑏, and there is no 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 0, then there is at most one root of 𝑓 in
(𝑎, 𝑏), that is at most one 𝑥 ∈ (𝑎, 𝑏) such that 𝑓 (𝑥) = 0. In other words, between any two consecutive
roots of 𝑓 ′ is at most one root of 𝑓 . Hint: Suppose there are two roots and see what happens.

Exercise 4.2.12: Suppose 𝑎, 𝑏 ∈ ℝ and 𝑓 : ℝ → ℝ is differentiable, 𝑓 ′(𝑥) = 𝑎 for all 𝑥, and 𝑓 (0) = 𝑏. Find
𝑓 and prove that it is the unique differentiable function with this property.

Exercise 4.2.13:

a) Prove  Proposition 4.2.10 .

b) Suppose 𝑓 : (𝑎, 𝑏) → ℝ is continuous, and suppose 𝑓 is differentiable everywhere except at 𝑐 ∈ (𝑎, 𝑏)
and lim𝑥→𝑐 𝑓 ′(𝑥) = 𝐿. Prove that 𝑓 is differentiable at 𝑐 and 𝑓 ′(𝑐) = 𝐿.

Exercise 4.2.14: Suppose 𝑓 : (0, 1) → ℝ is differentiable and 𝑓 ′ is bounded.

a) Show that there exists a continuous function 𝑔 : [0, 1) → ℝ such that 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ≠ 0.
Hint:  Proposition 3.4.6 and  Exercise 4.2.3 .

b) Find an example where the 𝑔 is not differentiable at 𝑥 = 0.
Hint: Consider something based on sin(ln 𝑥), and assume you know basic properties of sin and ln from
calculus.

c) Instead of assuming that 𝑓 ′ is bounded, assume that lim𝑥→0 𝑓 ′(𝑥) = 𝐿. Prove that not only does 𝑔 exist
but it is differentiable at 0 and 𝑔′(0) = 𝐿.

Exercise 4.2.15: Prove  Theorem 4.2.5 .
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4.3 Taylor’s theorem
Note: less than a lecture (optional section)

4.3.1 Derivatives of higher orders
When 𝑓 : 𝐼 → ℝ is differentiable, we obtain a function 𝑓 ′ : 𝐼 → ℝ. The function 𝑓 ′ is called
the first derivative of 𝑓 . If 𝑓 ′ is differentiable, we denote by 𝑓 ′′ : 𝐼 → ℝ the derivative of 𝑓 ′.
The function 𝑓 ′′ is called the second derivative of 𝑓 . We similarly obtain 𝑓 ′′′, 𝑓 ′′′′, and so on.
With a larger number of derivatives the notation would get out of hand; we denote by 𝑓 (𝑛)
the 𝑛th derivative of 𝑓 . When 𝑓 possesses 𝑛 derivatives, we say 𝑓 is 𝑛 times differentiable.

4.3.2 Taylor’s theorem
Taylor’s theorem 

‗
 is a generalization of the  mean value theorem . Mean value theorem says

that up to a small error 𝑓 (𝑥) for 𝑥 near 𝑥0 can be approximated by 𝑓 (𝑥0), that is

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑐)(𝑥 − 𝑥0),
where the “error” is measured in terms of the first derivative at some point 𝑐 between 𝑥
and 𝑥0. Taylor’s theorem generalizes this result to higher derivatives. It tells us that up to
a small error, any 𝑛 times differentiable function can be approximated at a point 𝑥0 by a
polynomial. The error of this approximation behaves like (𝑥 − 𝑥0)𝑛 near the point 𝑥0. To
see why this is a good approximation, notice that for a big 𝑛, (𝑥 − 𝑥0)𝑛 is very small in a
small interval around 𝑥0.

Definition 4.3.1. For an 𝑛 times differentiable function 𝑓 defined near a point 𝑥0 ∈ ℝ,
define the 𝑛th order Taylor polynomial for 𝑓 at 𝑥0 as

𝑃𝑥0
𝑛 (𝑥) B

𝑛∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑥 − 𝑥0)𝑘

= 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + 𝑓 ′′(𝑥0)
2 (𝑥 − 𝑥0)2 + 𝑓 (3)(𝑥0)

6 (𝑥 − 𝑥0)3

+ · · · + 𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 .

See  Figure 4.8 for the odd-degree Taylor polynomials for the sine function at 𝑥0 = 0.
The even-degree terms are all zero, as even derivatives of sine are again sines, which are
zero at the origin.

Taylor’s theorem says a function behaves like its 𝑛th Taylor polynomial. The  mean
value theorem is really Taylor’s theorem for 𝑛 = 0.

‗Named for the English mathematician  Brook Taylor (1685–1731). It was first found by the Scottish
mathematician  James Gregory (1638–1675). The statement we give was proved by  Joseph-Louis Lagrange 

(1736–1813).

https://en.wikipedia.org/wiki/Brook_Taylor
https://en.wikipedia.org/wiki/James_Gregory_(mathematician)
https://en.wikipedia.org/wiki/Lagrange
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H = sin(G) H = %0
1(G)H = %0

3(G)

H = %0
5(G) H = %0

7(G)

Figure 4.8: The odd degree Taylor polynomials for the sine function.

Theorem 4.3.2 (Taylor). Suppose 𝑓 : [𝑎, 𝑏] → ℝ is a function with 𝑛 continuous derivatives on
[𝑎, 𝑏] and such that 𝑓 (𝑛+1) exists on (𝑎, 𝑏). Given distinct points 𝑥0 and 𝑥 in [𝑎, 𝑏], we can find a
point 𝑐 between 𝑥0 and 𝑥 such that

𝑓 (𝑥) = 𝑃𝑥0
𝑛 (𝑥) + 𝑓 (𝑛+1)(𝑐)

(𝑛 + 1)! (𝑥 − 𝑥0)𝑛+1.

The term 𝑅𝑥0
𝑛 (𝑥) B 𝑓 (𝑛+1)(𝑐)

(𝑛+1)! (𝑥 − 𝑥0)𝑛+1 is called the remainder term. This form of the
remainder term is called the Lagrange form of the remainder. There are other ways to write
the remainder term, but we skip those. Note that 𝑐 depends on both 𝑥 and 𝑥0.

Proof. Find a number 𝑀𝑥,𝑥0 (depending on 𝑥 and 𝑥0) solving the equation

𝑓 (𝑥) = 𝑃𝑥0
𝑛 (𝑥) +𝑀𝑥,𝑥0(𝑥 − 𝑥0)𝑛+1.

Define a function 𝑔(𝑠) by

𝑔(𝑠) B 𝑓 (𝑠) − 𝑃𝑥0
𝑛 (𝑠) −𝑀𝑥,𝑥0(𝑠 − 𝑥0)𝑛+1.

We compute the 𝑘th derivative at 𝑥0 of the Taylor polynomial (𝑃𝑥0
𝑛 )(𝑘)(𝑥0) = 𝑓 (𝑘)(𝑥0) for

𝑘 = 0, 1, 2, . . . , 𝑛 (the zeroth derivative of a function is the function itself). Therefore,

𝑔(𝑥0) = 𝑔′(𝑥0) = 𝑔′′(𝑥0) = · · · = 𝑔(𝑛)(𝑥0) = 0.

In particular, 𝑔(𝑥0) = 0. On the other hand 𝑔(𝑥) = 0. By the  mean value theorem , there
exists an 𝑥1 between 𝑥0 and 𝑥 such that 𝑔′(𝑥1) = 0. Applying the  mean value theorem to 𝑔′,
we obtain that there exists 𝑥2 between 𝑥0 and 𝑥1 (and therefore between 𝑥0 and 𝑥) such
that 𝑔′′(𝑥2) = 0. We repeat the argument 𝑛 + 1 times to obtain a number 𝑥𝑛+1 between 𝑥0
and 𝑥𝑛 (and therefore between 𝑥0 and 𝑥) such that 𝑔(𝑛+1)(𝑥𝑛+1) = 0.
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Let 𝑐 B 𝑥𝑛+1. We compute the (𝑛 + 1)th derivative of 𝑔 to find

𝑔(𝑛+1)(𝑠) = 𝑓 (𝑛+1)(𝑠) − (𝑛 + 1)!𝑀𝑥,𝑥0 .

Plugging in 𝑐 for 𝑠 we obtain 𝑀𝑥,𝑥0 =
𝑓 (𝑛+1)(𝑐)
(𝑛+1)! , and we are done. □

In the proof, we found (𝑃𝑥0
𝑛 )(𝑘)(𝑥0) = 𝑓 (𝑘)(𝑥0) for 𝑘 = 0, 1, 2, . . . , 𝑛. Therefore, the Taylor

polynomial has the same derivatives as 𝑓 at 𝑥0 up to the 𝑛th derivative. That is why the
Taylor polynomial is a good approximation to 𝑓 . Notice how in  Figure 4.8 the Taylor
polynomials are reasonably good approximations to the sine near 𝑥 = 0.

We do not necessarily get good approximations by the Taylor polynomial everywhere.
Consider expanding the function 𝑓 (𝑥) B 𝑥

1−𝑥 around 0, for 𝑥 < 1, we get the graphs in
 Figure 4.9  . The dotted lines are the first, second, and third degree approximations. The
dashed line is the 20th degree polynomial. The approximation does seem to get better as
the degree rises for 𝑥 > −1. For 𝑥 < −1, it in fact gets visibly worse. The polynomials are
the partial sums of the geometric series

∑∞
𝑛=1 𝑥

𝑛 , and the series only converges on (−1, 1).
See the discussion of power series  §2.6 .

Figure 4.9: The function 𝑥
1−𝑥 , and the Taylor polynomials 𝑃0

1 , 𝑃0
2 , 𝑃0

3 (all dotted), and the
polynomial 𝑃0

20 (dashed).

If 𝑓 is infinitely differentiable, that is, if 𝑓 can be differentiated any number of times, then
we define the Taylor series:

∞∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑥 − 𝑥0)𝑘 .

There is no guarantee that this series converges for any 𝑥 ≠ 𝑥0. Even where it does converge,
there is no guarantee that it converges to the function 𝑓 . Functions 𝑓 whose Taylor series
at every point 𝑥0 converges to 𝑓 in some open interval containing 𝑥0 are called analytic
functions. Many functions one tends to see in practice are analytic. See  Exercise 5.4.11 , for
an example of a non-analytic function.



174 CHAPTER 4. THE DERIVATIVE

The definition of derivative says that a function is differentiable if it is locally approxi-
mated by a line. We mention in passing that there exists a converse to Taylor’s theorem,
which we will neither state nor prove, saying that if a function is locally approximated in a
certain way by a polynomial of degree 𝑑, then it has 𝑑 derivatives.

Taylor’s theorem gives us a quick proof of a version of the second derivative test. By a
strict relative minimum of 𝑓 at 𝑐, we mean that there exists a 𝛿 > 0 such that 𝑓 (𝑥) > 𝑓 (𝑐) for
all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) where 𝑥 ≠ 𝑐. A strict relative maximum is defined similarly. Continuity
of the second derivative is not needed, but the proof is more difficult and is left as an
exercise. The proof also generalizes immediately into the 𝑛th derivative test, which is also
left as an exercise.

Proposition 4.3.3 (Second derivative test). Suppose 𝑓 : (𝑎, 𝑏) → ℝ is twice continuously
differentiable, 𝑥0 ∈ (𝑎, 𝑏), 𝑓 ′(𝑥0) = 0 and 𝑓 ′′(𝑥0) > 0. Then 𝑓 has a strict relative minimum at 𝑥0.

Proof. As 𝑓 ′′ is continuous, there exists a 𝛿 > 0 such that 𝑓 ′′(𝑐) > 0 for all 𝑐 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿),
see  Exercise 3.2.11 . Take 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿), 𝑥 ≠ 𝑥0. Taylor’s theorem says that for some 𝑐
between 𝑥0 and 𝑥,

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + 𝑓 ′′(𝑐)
2 (𝑥 − 𝑥0)2 = 𝑓 (𝑥0) + 𝑓 ′′(𝑐)

2 (𝑥 − 𝑥0)2.

As 𝑓 ′′(𝑐) > 0 and (𝑥 − 𝑥0)2 > 0, we have 𝑓 (𝑥) > 𝑓 (𝑥0). □

4.3.3 Exercises
Exercise 4.3.1: Compute the 𝑛th Taylor polynomial at 0 for the exponential function.

Exercise 4.3.2: Suppose 𝑝 is a polynomial of degree 𝑑. Given 𝑥0 ∈ ℝ, show that the 𝑑th Taylor polynomial
for 𝑝 at 𝑥0 is equal to 𝑝.

Exercise 4.3.3: Let 𝑓 (𝑥) B |𝑥|3. Compute 𝑓 ′(𝑥) and 𝑓 ′′(𝑥) for all 𝑥, but show that 𝑓 (3)(0) does not exist.

Exercise 4.3.4: Suppose 𝑓 : ℝ → ℝ has 𝑛 continuous derivatives. Show that for every 𝑥0 ∈ ℝ, there exist
polynomials 𝑃 and 𝑄 of degree 𝑛 and an 𝜖 > 0 such that 𝑃(𝑥) ≤ 𝑓 (𝑥) ≤ 𝑄(𝑥) for all 𝑥 ∈ [𝑥0 , 𝑥0 + 𝜖] and
𝑄(𝑥) − 𝑃(𝑥) = 𝜆(𝑥 − 𝑥0)𝑛 for some 𝜆 ≥ 0.

Exercise 4.3.5: If 𝑓 : [𝑎, 𝑏] → ℝ has 𝑛 + 1 continuous derivatives and 𝑥0 ∈ [𝑎, 𝑏], prove lim
𝑥→𝑥0

𝑅
𝑥0
𝑛 (𝑥)

(𝑥−𝑥0)𝑛 = 0.

Exercise 4.3.6: Suppose 𝑓 : [𝑎, 𝑏] → ℝ has 𝑛+1 continuous derivatives and 𝑥0 ∈ (𝑎, 𝑏). Prove: 𝑓 (𝑘)(𝑥0) = 0
for all 𝑘 = 0, 1, 2, . . . , 𝑛 if and only if lim

𝑥→𝑥0

𝑓 (𝑥)
(𝑥−𝑥0)𝑛+1 exists.

Exercise 4.3.7: Suppose 𝑎, 𝑏, 𝑐 ∈ ℝ and 𝑓 : ℝ → ℝ is differentiable, 𝑓 ′′(𝑥) = 𝑎 for all 𝑥, 𝑓 ′(0) = 𝑏, and
𝑓 (0) = 𝑐. Find 𝑓 and prove that it is the unique differentiable function with this property.

Exercise 4.3.8 (Challenging): Show that a simple converse to Taylor’s theorem does not hold. Find a
function 𝑓 : ℝ → ℝ with no second derivative at 𝑥 = 0 such that

�� 𝑓 (𝑥)�� ≤ ��𝑥3
��, that is, 𝑓 goes to zero at 0

faster than 𝑥2, and while 𝑓 ′(0) exists, 𝑓 ′′(0) does not.
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Exercise 4.3.9: Suppose 𝑓 : (0, 1) → ℝ is differentiable and 𝑓 ′′ is bounded.

a) Show that there exists a once differentiable function 𝑔 : [0, 1) → ℝ such that 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ≠ 0.
Hint: See  Exercise 4.2.14 .

b) Find an example where the 𝑔 is not twice differentiable at 𝑥 = 0.

Exercise 4.3.10: Prove the 𝑛th derivative test. Suppose 𝑛 ∈ ℕ, 𝑥0 ∈ (𝑎, 𝑏), and 𝑓 : (𝑎, 𝑏) → ℝ is 𝑛 times
continuously differentiable, with 𝑓 (𝑘)(𝑥0) = 0 for 𝑘 = 1, 2, . . . , 𝑛 − 1, and 𝑓 (𝑛)(𝑥0) ≠ 0. Prove:

a) If 𝑛 is odd, then 𝑓 has neither a relative minimum, nor a maximum at 𝑥0.

b) If 𝑛 is even, then 𝑓 has a strict relative minimum at 𝑥0 if 𝑓 (𝑛)(𝑥0) > 0 and a strict relative maximum at
𝑥0 if 𝑓 (𝑛)(𝑥0) < 0.

Exercise 4.3.11: Prove the more general version of the second derivative test. Suppose 𝑓 : (𝑎, 𝑏) → ℝ is
differentiable and 𝑥0 ∈ (𝑎, 𝑏) is such that, 𝑓 ′(𝑥0) = 0, 𝑓 ′′(𝑥0) exists, and 𝑓 ′′(𝑥0) > 0. Prove that 𝑓 has a
strict relative minimum at 𝑥0. Hint: Consider the limit definition of 𝑓 ′′(𝑥0).
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4.4 Inverse function theorem
Note: less than 1 lecture (optional section, needed for  §5.4 , requires  §3.6 )

4.4.1 Inverse function theorem
We start with a simple example. Consider the function 𝑓 (𝑥) B 𝑎𝑥 for a number 𝑎 ≠ 0.
Then 𝑓 : ℝ → ℝ is bĳective, and the inverse is 𝑓 −1(𝑦) = 1

𝑎 𝑦. In particular, 𝑓 ′(𝑥) = 𝑎 and
( 𝑓 −1)′(𝑦) = 1

𝑎 . As differentiable functions are “infinitesimally like” linear functions, we
expect the same sort of behavior from the inverse of a differentiable function. The main
idea of differentiating inverse functions is the following lemma.

Lemma 4.4.1. Let 𝐼 , 𝐽 ⊂ ℝ be intervals. If 𝑓 : 𝐼 → 𝐽 is strictly monotone (hence one-to-one),
onto ( 𝑓 (𝐼) = 𝐽), differentiable at 𝑥0 ∈ 𝐼, and 𝑓 ′(𝑥0) ≠ 0, then the inverse 𝑓 −1 is differentiable at
𝑦0 = 𝑓 (𝑥0) and

( 𝑓 −1)′(𝑦0) = 1
𝑓 ′

(
𝑓 −1(𝑦0)

) =
1

𝑓 ′(𝑥0) .

If 𝑓 is continuously differentiable and 𝑓 ′ is never zero, then 𝑓 −1 is continuously differentiable.

Proof. By  Proposition 3.6.6 , 𝑓 has a continuous inverse. For convenience, call the inverse
𝑔 : 𝐽 → 𝐼. Let 𝑥0, 𝑦0 be as in the statement. For 𝑥 ∈ 𝐼, write 𝑦 B 𝑓 (𝑥). If 𝑥 ≠ 𝑥0, and so
𝑦 ≠ 𝑦0, we find

𝑔(𝑦) − 𝑔(𝑦0)
𝑦 − 𝑦0

=
𝑔
(
𝑓 (𝑥)) − 𝑔

(
𝑓 (𝑥0)

)
𝑓 (𝑥) − 𝑓 (𝑥0) =

𝑥 − 𝑥0
𝑓 (𝑥) − 𝑓 (𝑥0) .

See  Figure 4.10 for the geometric idea.

G = 6(H) G0 = 6(H0)

5 (G) = H

5 (G0) = H0

slope = 5 (G)− 5 (G0)
G−G0

= H−H0
6(H)−6(H0)

5 (G) = H 5 (G0) = H0

G = 6(H)

G0 = 6(H0)
slope = G−G0

5 (G)− 5 (G0) =
6(H)−6(H0)

H−H0

Figure 4.10: Interpretation of the derivative of the inverse function.
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Let

𝑄(𝑥) B
{

𝑥−𝑥0
𝑓 (𝑥)− 𝑓 (𝑥0) if 𝑥 ≠ 𝑥0,

1
𝑓 ′(𝑥0) if 𝑥 = 𝑥0 (notice that 𝑓 ′(𝑥0) ≠ 0).

As 𝑓 is differentiable at 𝑥0,

lim
𝑥→𝑥0

𝑄(𝑥) = lim
𝑥→𝑥0

𝑥 − 𝑥0
𝑓 (𝑥) − 𝑓 (𝑥0) =

1
𝑓 ′(𝑥0) = 𝑄(𝑥0),

that is, 𝑄 is continuous at 𝑥0. As 𝑔(𝑦) is continuous at 𝑦0, the composition 𝑄
(
𝑔(𝑦)) =

𝑔(𝑦)−𝑔(𝑦0)
𝑦−𝑦0

is continuous at 𝑦0 by  Proposition 3.2.7 . Therefore,

1
𝑓 ′

(
𝑔(𝑦0)

) = 𝑄
(
𝑔(𝑦0)

)
= lim

𝑦→𝑦0
𝑄

(
𝑔(𝑦)) = lim

𝑦→𝑦0

𝑔(𝑦) − 𝑔(𝑦0)
𝑦 − 𝑦0

.

So 𝑔 is differentiable at 𝑦0, and 𝑔′(𝑦0) = 1
𝑓 ′(𝑔(𝑦0)) .

If 𝑓 ′ is continuous and nonzero at all 𝑥 ∈ 𝐼, then the lemma applies at all 𝑥 ∈ 𝐼. As 𝑔 is
also continuous (it is differentiable), the derivative 𝑔′(𝑦) = 1

𝑓 ′(𝑔(𝑦)) must be continuous. □

What is usually called the inverse function theorem is the following result.
Theorem 4.4.2 (Inverse function theorem). Let 𝑓 : (𝑎, 𝑏) → ℝ be a continuously differentiable
function, 𝑥0 ∈ (𝑎, 𝑏) a point where 𝑓 ′(𝑥0) ≠ 0. Then there exists an open interval 𝐼 ⊂ (𝑎, 𝑏) with
𝑥0 ∈ 𝐼, the restriction 𝑓 |𝐼 is injective with a continuously differentiable inverse 𝑔 : 𝐽 → 𝐼 defined
on an interval 𝐽 B 𝑓 (𝐼), and

𝑔′(𝑦) = 1
𝑓 ′

(
𝑔(𝑦)) for all 𝑦 ∈ 𝐽.

Proof. Without loss of generality, suppose 𝑓 ′(𝑥0) > 0. As 𝑓 ′ is continuous, there must exist
an open interval 𝐼 = (𝑥0 − 𝛿, 𝑥0 + 𝛿) such that 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ 𝐼. See  Exercise 3.2.11 .

By  Proposition 4.2.8 , 𝑓 is strictly increasing on 𝐼, and hence the restriction 𝑓 |𝐼 is bĳective
onto 𝐽 := 𝑓 (𝐼). As 𝑓 is continuous,  Corollary 3.6.3  (or directly via the  intermediate value
theorem ) implies that 𝑓 (𝐼) is an interval. Now apply  Lemma 4.4.1 . □

In  Example 1.2.3 , we saw how difficult an endeavor was proving the existence of
√

2
without any tools. With the  intermediate value theorem , the the existence of roots is almost
trivial, and with the machinery of this section, we will prove far more than mere existence.
Corollary 4.4.3. Given 𝑛 ∈ ℕ and 𝑥 ≥ 0, there exists a unique number 𝑦 ≥ 0 (denoted 𝑥1/𝑛 B 𝑦),
such that 𝑦𝑛 = 𝑥. Furthermore, the function 𝑔 : (0,∞) → (0,∞) defined by 𝑔(𝑥) B 𝑥1/𝑛 is
continuously differentiable and

𝑔′(𝑥) = 1
𝑛𝑥(𝑛−1)/𝑛 =

1
𝑛
𝑥(1−𝑛)/𝑛 ,

using the convention 𝑥𝑚/𝑛 B (𝑥1/𝑛)𝑚 .
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Proof. For 𝑥 = 0, the existence of a unique root is trivial.
Let 𝑓 : (0,∞) → (0,∞) be defined by 𝑓 (𝑦) B 𝑦𝑛 . The function 𝑓 is continuously

differentiable, and 𝑓 ′(𝑦) = 𝑛𝑦𝑛−1, see  Exercise 4.1.3 . For 𝑦 > 0, the derivative 𝑓 ′ is strictly
positive, and so again by  Proposition 4.2.8 , 𝑓 is strictly increasing (this can also be proved
directly) and hence injective. Suppose 𝑀 and 𝜖 are such that 𝑀 > 1 and 1 > 𝜖 > 0. Then
𝑓 (𝑀) = 𝑀𝑛 ≥ 𝑀 and 𝑓 (𝜖) = 𝜖𝑛 ≤ 𝜖. For every 𝑥 with 𝜖 < 𝑥 < 𝑀, we have, by the

 intermediate value theorem  , that 𝑥 ∈ 𝑓
([𝜖, 𝑀]) ⊂ 𝑓

((0,∞)) . As 𝑀 and 𝜖 were arbitrary, 𝑓
is onto (0,∞), and hence 𝑓 is bĳective. Let 𝑔 be the inverse of 𝑓 , and we obtain the existence
and uniqueness of positive 𝑛th roots.  Lemma 4.4.1 says that 𝑔 has a continuous derivative
and 𝑔′(𝑥) = 1

𝑓 ′(𝑔(𝑥)) =
1

𝑛(𝑥1/𝑛)𝑛−1 . □

Example 4.4.4: The corollary provides a good example of where the inverse function
theorem gives us an interval smaller than (𝑎, 𝑏). Take 𝑓 : ℝ → ℝ defined by 𝑓 (𝑥) B 𝑥2.
Then 𝑓 ′(𝑥0) ≠ 0 as long as 𝑥0 ≠ 0. If 𝑥0 > 0, we can take 𝐼 = (0,∞), but no larger.

Example 4.4.5: Another useful example is 𝑓 (𝑥) B 𝑥3. The function 𝑓 : ℝ → ℝ is one-to-one
and onto, so 𝑓 −1(𝑦) = 𝑦1/3 exists on the entire real line, including zero and negative 𝑦. The
function 𝑓 has a continuous derivative, but 𝑓 −1 has no derivative at the origin. The point is
that 𝑓 ′(0) = 0. See  Figure 4.11 for a graph. Notice the vertical tangent on the cube root at
the origin. See also  Exercise 4.4.4 .

H = G1/3

H = G3

Figure 4.11: Graphs of 𝑥3 and 𝑥1/3.

4.4.2 Exercises
Exercise 4.4.1: Suppose 𝑓 : ℝ → ℝ is continuously differentiable and 𝑓 ′(𝑥) > 0 for all 𝑥. Show that 𝑓
is invertible on the interval 𝐽 = 𝑓 (ℝ), the inverse is continuously differentiable, and ( 𝑓 −1)′(𝑦) > 0 for all
𝑦 ∈ 𝑓 (ℝ).
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Exercise 4.4.2: Suppose 𝐼 , 𝐽 are intervals and a monotone onto 𝑓 : 𝐼 → 𝐽 has an inverse 𝑔 : 𝐽 → 𝐼. Suppose
you already know that both 𝑓 and 𝑔 are differentiable everywhere and 𝑓 ′ is never zero. Using chain rule but
not  Lemma 4.4.1  , prove the formula 𝑔′(𝑦) = 1

𝑓 ′(𝑔(𝑦)) . Remark: This exercise is the same as  Exercise 4.1.10 ,
no need to do it again if you have solved it already.

Exercise 4.4.3: Let 𝑛 ∈ ℕ be even. Prove that every 𝑥 > 0 has a unique negative 𝑛th root. That is, there
exists a negative number 𝑦 such that 𝑦𝑛 = 𝑥. Compute the derivative of the function 𝑔(𝑥) B 𝑦.

Exercise 4.4.4: Let 𝑛 ∈ ℕ be odd and 𝑛 ≥ 3. Prove that every 𝑥 has a unique 𝑛th root. That is, there exists a
number 𝑦 such that 𝑦𝑛 = 𝑥. Prove that the function defined by 𝑔(𝑥) B 𝑦 is differentiable except at 𝑥 = 0
and compute the derivative. Prove that 𝑔 is not differentiable at 𝑥 = 0.

Exercise 4.4.5 (requires  §4.3 ): Show that if in the inverse function theorem 𝑓 has 𝑘 continuous derivatives,
then the inverse function 𝑔 also has 𝑘 continuous derivatives.

Exercise 4.4.6: Let 𝑓 (𝑥) B 𝑥 + 2𝑥2 sin(1/𝑥) for 𝑥 ≠ 0 and 𝑓 (0) B 0. Show that 𝑓 is differentiable at all 𝑥,
that 𝑓 ′(0) > 0, but that 𝑓 is not invertible on any open interval containing the origin.

Exercise 4.4.7:

a) Let 𝑓 : ℝ → ℝ be a continuously differentiable function and 𝑘 > 0 be a number such that 𝑓 ′(𝑥) ≥ 𝑘 for
all 𝑥 ∈ ℝ. Show 𝑓 is one-to-one and onto, and has a continuously differentiable inverse 𝑓 −1 : ℝ → ℝ.

b) Find an example 𝑓 : ℝ → ℝ where 𝑓 ′(𝑥) > 0 for all 𝑥, but 𝑓 is not onto.

Exercise 4.4.8: Suppose 𝐼 , 𝐽 are intervals and a monotone onto 𝑓 : 𝐼 → 𝐽 has an inverse 𝑔 : 𝐽 → 𝐼. Suppose
𝑥 ∈ 𝐼 and 𝑦 B 𝑓 (𝑥) ∈ 𝐽, and that 𝑔 is differentiable at 𝑦. Prove:

a) If 𝑔′(𝑦) ≠ 0, then 𝑓 is differentiable at 𝑥.

b) If 𝑔′(𝑦) = 0, then 𝑓 is not differentiable at 𝑥.
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Chapter 5

The Riemann Integral

5.1 The Riemann integral
Note: 1.5 lectures

An integral is a way to “sum” the values of a function. There is sometimes confusion
among students of calculus between the integral and the antiderivative. The integral is
(informally) the area under the curve, nothing else. That we can compute an antiderivative
using the integral is a nontrivial result we must prove. We will define the Riemann integral  

‗
 

using the Darboux integral 

†
 , an equivalent but technically simpler definition.

5.1.1 Partitions and lower and upper integrals
We want to integrate a bounded function defined on an interval [𝑎, 𝑏]. We first define two
auxiliary integrals that are defined for all bounded functions. Only then can we talk about
the Riemann integral and the functions which it can integrate, the Riemann integrable
functions.

Definition 5.1.1. A partition 𝑃 of [𝑎, 𝑏] is a finite set of numbers {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛} such
that

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.

We write
Δ𝑥𝑖 B 𝑥𝑖 − 𝑥𝑖−1.

Suppose 𝑓 : [𝑎, 𝑏] → ℝ is bounded and 𝑃 is a partition of [𝑎, 𝑏]. Define

𝑚𝑖 B inf
{
𝑓 (𝑥) : 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖

}
, 𝑀𝑖 B sup

{
𝑓 (𝑥) : 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖

}
,

𝐿(𝑃, 𝑓 ) B
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 , 𝑈(𝑃, 𝑓 ) B
𝑛∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 .

We call 𝐿(𝑃, 𝑓 ) the lower Darboux sum and𝑈(𝑃, 𝑓 ) the upper Darboux sum.
‗Named after the German mathematician  Georg Friedrich Bernhard Riemann (1826–1866).
†Named after the French mathematician  Jean-Gaston Darboux (1842–1917).

https://en.wikipedia.org/wiki/Riemann
https://en.wikipedia.org/wiki/Darboux
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The geometric idea of Darboux sums is indicated in  Figure 5.1 . The lower sum is
the area of the shaded rectangles, and the upper sum is the area of the entire rectangles,
shaded plus unshaded parts. The width of the 𝑖th rectangle is Δ𝑥𝑖 , the height of the shaded
rectangle is 𝑚𝑖 , and the height of the entire rectangle is 𝑀𝑖 .

G0 G1 G2 G3 G4 G5 G6 G7 G8

ΔG5

<5

"5

Figure 5.1: Sample Darboux sums.

Proposition 5.1.2. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Let 𝑚, 𝑀 ∈ ℝ be such that for all
𝑥 ∈ [𝑎, 𝑏], we have 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀. Then for every partition 𝑃 of [𝑎, 𝑏],

𝑚(𝑏 − 𝑎) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑀(𝑏 − 𝑎). (5.1)

Proof. Let 𝑃 be a partition of [𝑎, 𝑏]. Note that 𝑚 ≤ 𝑚𝑖 for all 𝑖 and 𝑀𝑖 ≤ 𝑀 for all 𝑖. Also,
𝑚𝑖 ≤ 𝑀𝑖 for all 𝑖. Finally,

∑𝑛
𝑖=1 Δ𝑥𝑖 = (𝑏 − 𝑎). Therefore,

𝑚(𝑏 − 𝑎) = 𝑚

(
𝑛∑
𝑖=1

Δ𝑥𝑖

)
=

𝑛∑
𝑖=1

𝑚Δ𝑥𝑖 ≤
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 ≤

≤
𝑛∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 ≤
𝑛∑
𝑖=1

𝑀Δ𝑥𝑖 = 𝑀

(
𝑛∑
𝑖=1

Δ𝑥𝑖

)
= 𝑀(𝑏 − 𝑎).

Hence we get ( 5.1 ). In particular, the sets of lower and upper sums are bounded sets. □

Definition 5.1.3. As the sets of lower and upper Darboux sums are bounded, we define∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 B sup

{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]} ,∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 B inf

{
𝑈(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]}.

We call
∫

the lower Darboux integral and
∫

the upper Darboux integral. To avoid worrying
about the variable of integration, we often simply write∫ 𝑏

𝑎
𝑓 B

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 and

∫ 𝑏

𝑎
𝑓 B

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.
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If integration is to make sense, then the lower and upper Darboux integrals should
be the same number, as we want a single number to call the integral. However, these two
integrals may differ for some functions.

Example 5.1.4: Take the Dirichlet function 𝑓 : [0, 1] → ℝ, where 𝑓 (𝑥) B 1 if 𝑥 ∈ ℚ and
𝑓 (𝑥) B 0 if 𝑥 ∉ ℚ. Then ∫ 1

0
𝑓 = 0 and

∫ 1

0
𝑓 = 1.

The reason is that for any partition 𝑃 and every 𝑖, we have𝑚𝑖 = inf
{
𝑓 (𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
= 0

and 𝑀𝑖 = sup
{
𝑓 (𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
= 1. Thus

𝐿(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

0 · Δ𝑥𝑖 = 0, and 𝑈(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

1 · Δ𝑥𝑖 =
𝑛∑
𝑖=1

Δ𝑥𝑖 = 1.

Remark 5.1.5. The same definition of
∫ 𝑏
𝑎 𝑓 and

∫ 𝑏
𝑎 𝑓 is used when 𝑓 is defined on a larger set

𝑆 such that [𝑎, 𝑏] ⊂ 𝑆. In that case, we use the restriction of 𝑓 to [𝑎, 𝑏] and we must ensure
that the restriction is bounded on [𝑎, 𝑏].

To compute the integral, we often take a partition 𝑃 and make it finer. That is, we cut
intervals in the partition into yet smaller pieces.

Definition 5.1.6. Let 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} and 𝑃 = {�̃�0, �̃�1, . . . , �̃�ℓ} be partitions of [𝑎, 𝑏].
We say 𝑃 is a refinement of 𝑃 if as sets 𝑃 ⊂ 𝑃.

That is, 𝑃 is a refinement of a partition if it contains all the numbers in 𝑃 and perhaps
some other numbers in between. For example, {0, 0.5, 1, 2} is a partition of [0, 2] and
{0, 0.2, 0.5, 1, 1.5, 1.75, 2} is a refinement. The main reason for introducing refinements is
the following proposition.

Proposition 5.1.7. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function, and let 𝑃 be a partition of [𝑎, 𝑏].
Let 𝑃 be a refinement of 𝑃. Then

𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) and 𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ).

Proof. The tricky part of this proof is to get the notation correct. Let 𝑃 = {�̃�0, �̃�1, . . . , �̃�ℓ} be
a refinement of 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛}. Then 𝑥0 = �̃�0 and 𝑥𝑛 = �̃�ℓ . In fact, there are integers
𝑘0 < 𝑘1 < · · · < 𝑘𝑛 such that 𝑥𝑖 = �̃�𝑘𝑖 for 𝑖 = 0, 1, 2, . . . , 𝑛.

Let Δ�̃�𝑞 B �̃�𝑞 − �̃�𝑞−1 for 𝑞 = 0, 1, 2, . . . , ℓ . See  Figure 5.2 . We get

Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 = �̃�𝑘𝑖 − �̃�𝑘𝑖−1 =
𝑘𝑖∑

𝑞=𝑘𝑖−1+1
�̃�𝑞 − �̃�𝑞−1 =

𝑘𝑖∑
𝑞=𝑘𝑖−1+1

Δ�̃�𝑞 .
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Δ�̃�𝑞−1Δ�̃�𝑞−2
�̃�𝑞�̃�𝑞−1�̃�𝑞−2�̃�𝑞−3 Δ�̃�𝑞

�̃�𝑘𝑖−1 �̃�𝑘𝑖==

𝑥𝑖−1

· · ·· · ·
Δ𝑥𝑖 𝑥𝑖

Figure 5.2: Refinement of a subinterval. NoticeΔ𝑥𝑖 = Δ�̃�𝑞−2+Δ�̃�𝑞−1+Δ�̃�𝑞 , and also 𝑘𝑖−1+1 = 𝑞−2
and 𝑘𝑖 = 𝑞.

Let 𝑚𝑖 be as before and correspond to the partition 𝑃. Let 𝑚𝑞 B inf
{
𝑓 (𝑥) : �̃�𝑞−1 ≤ 𝑥 ≤

�̃�𝑞
}
. Now, 𝑚𝑖 ≤ 𝑚𝑞 for 𝑘𝑖−1 < 𝑞 ≤ 𝑘𝑖 . Therefore,

𝑚𝑖Δ𝑥𝑖 = 𝑚𝑖

𝑘𝑖∑
𝑞=𝑘𝑖−1+1

Δ�̃�𝑞 =
𝑘𝑖∑

𝑞=𝑘𝑖−1+1
𝑚𝑖Δ�̃�𝑞 ≤

𝑘𝑖∑
𝑞=𝑘𝑖−1+1

𝑚𝑞Δ�̃�𝑞 .

So

𝐿(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 ≤
𝑛∑
𝑖=1

𝑘𝑖∑
𝑞=𝑘𝑖−1+1

𝑚𝑞Δ�̃�𝑞 =
ℓ∑
𝑞=1

𝑚𝑞Δ�̃�𝑞 = 𝐿(𝑃, 𝑓 ).

The proof of𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) is left as an exercise. □

Armed with refinements, we prove the following. The key point of this next proposition
is that the lower Darboux integral is less than or equal to the upper Darboux integral.

Proposition 5.1.8. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Let 𝑚, 𝑀 ∈ ℝ be such that for all
𝑥 ∈ [𝑎, 𝑏], we have 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀. Then

𝑚(𝑏 − 𝑎) ≤
∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑓 ≤ 𝑀(𝑏 − 𝑎). (5.2)

Proof. By  Proposition 5.1.2 , for every partition 𝑃,

𝑚(𝑏 − 𝑎) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑀(𝑏 − 𝑎).

The inequality𝑚(𝑏−𝑎) ≤ 𝐿(𝑃, 𝑓 ) implies𝑚(𝑏−𝑎) ≤
∫ 𝑏
𝑎 𝑓 . The inequality𝑈(𝑃, 𝑓 ) ≤ 𝑀(𝑏−𝑎)

implies
∫ 𝑏
𝑎 𝑓 ≤ 𝑀(𝑏 − 𝑎).

The middle inequality in ( 5.2 ) is the main point of the proposition. Let 𝑃1, 𝑃2 be
partitions of [𝑎, 𝑏]. Define 𝑃 B 𝑃1 ∪ 𝑃2. The set 𝑃 is a partition of [𝑎, 𝑏], which is a
refinement of 𝑃1 and a refinement of 𝑃2. By  Proposition 5.1.7  , 𝐿(𝑃1, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) and
𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑃2, 𝑓 ). So

𝐿(𝑃1, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈(𝑃, 𝑓 ) ≤ 𝑈(𝑃2, 𝑓 ).
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In other words, for two arbitrary partitions 𝑃1 and 𝑃2, we have 𝐿(𝑃1, 𝑓 ) ≤ 𝑈(𝑃2, 𝑓 ). Recall
 Proposition 1.2.7 , and take the supremum and infimum over all partitions:∫ 𝑏

𝑎
𝑓 = sup

{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]}

≤ inf
{
𝑈(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]} =

∫ 𝑏

𝑎
𝑓 . □

5.1.2 Riemann integral
We can finally define the Riemann integral. However, the Riemann integral is only defined
on a certain class of functions, called the Riemann integrable functions.

Definition 5.1.9. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function such that∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

Then 𝑓 is said to be Riemann integrable. The set of Riemann integrable functions on [𝑎, 𝑏] is
denoted by R

([𝑎, 𝑏]) . When 𝑓 ∈ R
([𝑎, 𝑏]) , we define∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 B

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

As before, we often write ∫ 𝑏

𝑎
𝑓 B

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

The number
∫ 𝑏
𝑎 𝑓 is called the Riemann integral of 𝑓 , or sometimes simply the integral of 𝑓 .

By definition, a Riemann integrable function is bounded. Appealing to  Proposition 5.1.8 ,
we immediately obtain the following proposition. See also  Figure 5.3 .

Proposition 5.1.10. Let 𝑓 : [𝑎, 𝑏] → ℝ be a Riemann integrable function. Let 𝑚, 𝑀 ∈ ℝ be such
that 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏]. Then

𝑚(𝑏 − 𝑎) ≤
∫ 𝑏

𝑎
𝑓 ≤ 𝑀(𝑏 − 𝑎).

A weaker form of this proposition is often useful: If
�� 𝑓 (𝑥)�� ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏], then�����∫ 𝑏

𝑎
𝑓

����� ≤ 𝑀(𝑏 − 𝑎).
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0 1

<

"

Figure 5.3: The area under the curve is bounded from above by the area of the entire rectangle,
𝑀(𝑏 − 𝑎), and from below by the area of the shaded part, 𝑚(𝑏 − 𝑎).

Example 5.1.11: We integrate constant functions using  Proposition 5.1.8 . If 𝑓 (𝑥) B 𝑐 for
some constant 𝑐, then we take 𝑚 = 𝑀 = 𝑐. In inequality ( 5.2 ) all the inequalities must be
equalities. Thus 𝑓 is integrable on [𝑎, 𝑏] and

∫ 𝑏
𝑎 𝑓 = 𝑐(𝑏 − 𝑎).

Example 5.1.12: Let 𝑓 : [0, 2] → ℝ be defined by

𝑓 (𝑥) B


1 if 𝑥 < 1,
1/2 if 𝑥 = 1,
0 if 𝑥 > 1.

We claim 𝑓 is Riemann integrable and
∫ 2

0 𝑓 = 1.
Proof: Let 0 < 𝜖 < 1 be arbitrary. Let 𝑃 B {0, 1 − 𝜖, 1 + 𝜖, 2} be a partition. We use the

notation from the definition of the Darboux sums. Then

𝑚1 = inf
{
𝑓 (𝑥) : 𝑥 ∈ [0, 1 − 𝜖]} = 1, 𝑀1 = sup

{
𝑓 (𝑥) : 𝑥 ∈ [0, 1 − 𝜖]} = 1,

𝑚2 = inf
{
𝑓 (𝑥) : 𝑥 ∈ [1 − 𝜖, 1 + 𝜖]} = 0, 𝑀2 = sup

{
𝑓 (𝑥) : 𝑥 ∈ [1 − 𝜖, 1 + 𝜖]} = 1,

𝑚3 = inf
{
𝑓 (𝑥) : 𝑥 ∈ [1 + 𝜖, 2]} = 0, 𝑀3 = sup

{
𝑓 (𝑥) : 𝑥 ∈ [1 + 𝜖, 2]} = 0.

Furthermore, Δ𝑥1 = 1 − 𝜖, Δ𝑥2 = 2𝜖, and Δ𝑥3 = 1 − 𝜖. See  Figure 5.4 .
We compute

𝐿(𝑃, 𝑓 ) =
3∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 = 1 · (1 − 𝜖) + 0 · 2𝜖 + 0 · (1 − 𝜖) = 1 − 𝜖,

𝑈(𝑃, 𝑓 ) =
3∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 = 1 · (1 − 𝜖) + 1 · 2𝜖 + 0 · (1 − 𝜖) = 1 + 𝜖.

Thus, ∫ 2

0
𝑓 −

∫ 2

0
𝑓 ≤ 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) = (1 + 𝜖) − (1 − 𝜖) = 2𝜖.
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0 1 − & 1 + & 2
ΔG1 = 1 − & ΔG2 = 2& ΔG3 = 1 − &

"3 = <2 = <3 = 0

"1 = "2 = <1 = 1

Figure 5.4: Darboux sums for the step function. 𝐿(𝑃, 𝑓 ) is the area of the shaded rectangle,
𝑈(𝑃, 𝑓 ) is the area of both rectangles, and𝑈(𝑃, 𝑓 )−𝐿(𝑃, 𝑓 ) is the area of the unshaded rectangle.

By  Proposition 5.1.8 ,
∫ 2

0 𝑓 ≤
∫ 2

0 𝑓 . As 𝜖 was arbitrary,
∫ 2

0 𝑓 =
∫ 2

0 𝑓 . So 𝑓 is Riemann
integrable. Finally,

1 − 𝜖 = 𝐿(𝑃, 𝑓 ) ≤
∫ 2

0
𝑓 ≤ 𝑈(𝑃, 𝑓 ) = 1 + 𝜖.

Hence,
��∫ 2

0 𝑓 − 1
�� ≤ 𝜖. As 𝜖 was arbitrary, we conclude

∫ 2
0 𝑓 = 1.

It may be worthwhile to extract part of the technique of the example into a proposition.
Note that 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) is exactly the total area of the white part of the rectangles in

 Figure 5.1 .
Proposition 5.1.13. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Then 𝑓 is Riemann integrable if
for every 𝜖 > 0, there exists a partition 𝑃 of [𝑎, 𝑏] such that

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

Proof. If for every 𝜖 > 0 such a 𝑃 exists, then

0 ≤
∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓 ≤ 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

Therefore,
∫ 𝑏
𝑎 𝑓 =

∫ 𝑏
𝑎 𝑓 , and 𝑓 is integrable. □

Example 5.1.14: Let us show 1
1+𝑥 is integrable on [0, 𝑏] for all 𝑏 > 0. We will see later that

continuous functions are integrable, but let us demonstrate how we do it directly.
Let 𝜖 > 0 be given. Take 𝑛 ∈ ℕ and let 𝑥𝑖 B 𝑖𝑏/𝑛 form the partition 𝑃 B {𝑥0, 𝑥1, . . . , 𝑥𝑛}

of [0, 𝑏]. Then Δ𝑥𝑖 = 𝑏/𝑛 for all 𝑖. As 𝑓 is decreasing, for every subinterval [𝑥𝑖−1, 𝑥𝑖],

𝑚𝑖 = inf
{

1
1 + 𝑥 : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
=

1
1 + 𝑥𝑖 , 𝑀𝑖 = sup

{
1

1 + 𝑥 : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]
}
=

1
1 + 𝑥𝑖−1

.
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Then

𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

Δ𝑥𝑖(𝑀𝑖 − 𝑚𝑖) = 𝑏
𝑛

𝑛∑
𝑖=1

(
1

1 + (𝑖−1)𝑏/𝑛 − 1
1 + 𝑖𝑏/𝑛

)
=

=
𝑏
𝑛

(
1

1 + 0𝑏/𝑛 − 1
1 + 𝑛𝑏/𝑛

)
=

𝑏2

𝑛(𝑏 + 1) .

The sum telescopes, the terms successively cancel each other, something we have seen
before. Picking 𝑛 to be such that 𝑏2

𝑛(𝑏+1) < 𝜖, the proposition is satisfied, and the function is
integrable.

Remark 5.1.15. A way of thinking of the integral is that it adds up (integrates) lots of local
information—it sums 𝑓 (𝑥) 𝑑𝑥 over all 𝑥. The integral sign was chosen by Leibniz to be
the long S to mean summation. Unlike derivatives, which are “local,” integrals show
up in applications when one wants a “global” answer: total distance travelled, average
temperature, total charge, etc.

5.1.3 More notation
When 𝑓 : 𝑆 → ℝ is defined on a larger set 𝑆 and [𝑎, 𝑏] ⊂ 𝑆, we say 𝑓 is Riemann integrable on
[𝑎, 𝑏] if the restriction of 𝑓 to [𝑎, 𝑏] is Riemann integrable. In this case, we say 𝑓 ∈ R

([𝑎, 𝑏]) ,
and we write

∫ 𝑏
𝑎 𝑓 to mean the Riemann integral of the restriction of 𝑓 to [𝑎, 𝑏].

It is useful to define the integral
∫ 𝑏
𝑎 𝑓 even if 𝑎 ≮ 𝑏. Suppose 𝑏 < 𝑎 and 𝑓 ∈ R

([𝑏, 𝑎]) ,
then define ∫ 𝑏

𝑎
𝑓 B −

∫ 𝑎

𝑏
𝑓 .

For any function 𝑓 , define ∫ 𝑎

𝑎
𝑓 B 0.

At times, the variable 𝑥 may already have some other meaning. When we need to write
down the variable of integration, we may simply use a different letter. For example,∫ 𝑏

𝑎
𝑓 (𝑠) 𝑑𝑠 B

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

5.1.4 Exercises
Exercise 5.1.1: Define 𝑓 : [0, 1] → ℝ by 𝑓 (𝑥) B 𝑥3 and let 𝑃 B {0, 0.1, 0.4, 1}. Compute 𝐿(𝑃, 𝑓 ) and
𝑈(𝑃, 𝑓 ).

Exercise 5.1.2: Let 𝑓 : [0, 1] → ℝ be defined by 𝑓 (𝑥) B 𝑥. Show that 𝑓 ∈ R
([0, 1]) and compute

∫ 1
0 𝑓

using the definition of the integral (but feel free to use the propositions of this section).
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Exercise 5.1.3: Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Suppose there exists a sequence of partitions
{𝑃𝑘}∞𝑘=1 of [𝑎, 𝑏] such that

lim
𝑘→∞

(
𝑈(𝑃𝑘 , 𝑓 ) − 𝐿(𝑃𝑘 , 𝑓 )

)
= 0.

Show that 𝑓 is Riemann integrable and that∫ 𝑏

𝑎
𝑓 = lim

𝑘→∞
𝑈(𝑃𝑘 , 𝑓 ) = lim

𝑘→∞
𝐿(𝑃𝑘 , 𝑓 ).

Exercise 5.1.4: Finish the proof of  Proposition 5.1.7 .

Exercise 5.1.5: Suppose 𝑓 : [−1, 1] → ℝ is defined as

𝑓 (𝑥) B
{

1 if 𝑥 > 0,
0 if 𝑥 ≤ 0.

Prove that 𝑓 ∈ R
([−1, 1]) and compute

∫ 1
−1 𝑓 using the definition of the integral (but feel free to use the

propositions of this section).

Exercise 5.1.6: Let 𝑐 ∈ (𝑎, 𝑏) and let 𝑑 ∈ ℝ. Define 𝑓 : [𝑎, 𝑏] → ℝ as

𝑓 (𝑥) B
{
𝑑 if 𝑥 = 𝑐,

0 if 𝑥 ≠ 𝑐.

Prove that 𝑓 ∈ R
([𝑎, 𝑏]) and compute

∫ 𝑏
𝑎 𝑓 using the definition of the integral (but feel free to use the

propositions of this section).

Exercise 5.1.7: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is Riemann integrable. Let 𝜖 > 0 be given. Then show that
there exists a partition 𝑃 = {𝑥0 , 𝑥1 , . . . , 𝑥𝑛} such that for every set of numbers {𝑐1 , 𝑐2 , . . . , 𝑐𝑛} with
𝑐𝑘 ∈ [𝑥𝑘−1 , 𝑥𝑘] for all 𝑘, we have �����∫ 𝑏

𝑎
𝑓 −

𝑛∑
𝑘=1

𝑓 (𝑐𝑘)Δ𝑥𝑘
����� < 𝜖.

Exercise 5.1.8: Let 𝑓 : [𝑎, 𝑏] → ℝ be a Riemann integrable function. Let 𝛼 > 0 and 𝛽 ∈ ℝ. Then define
𝑔(𝑥) B 𝑓 (𝛼𝑥 + 𝛽) on the interval 𝐼 = [ 𝑎−𝛽𝛼 , 𝑏−𝛽𝛼 ]. Show that 𝑔 is Riemann integrable on 𝐼.

Exercise 5.1.9: Suppose 𝑓 : [0, 1] → ℝ and 𝑔 : [0, 1] → ℝ are such that for all 𝑥 ∈ (0, 1], we have
𝑓 (𝑥) = 𝑔(𝑥). Suppose 𝑓 is Riemann integrable. Prove 𝑔 is Riemann integrable and

∫ 1
0 𝑓 =

∫ 1
0 𝑔.

Exercise 5.1.10: Let 𝑓 : [0, 1] → ℝ be a bounded function. Let 𝑃𝑛 = {𝑥0 , 𝑥1 , . . . , 𝑥𝑛} be a uniform partition
of [0, 1], that is, 𝑥𝑖 = 𝑖/𝑛. Is

{
𝐿(𝑃𝑛 , 𝑓 )

}∞
𝑛=1 always monotone? Yes/No: Prove or find a counterexample.

Exercise 5.1.11 (Challenging): For a bounded function 𝑓 : [0, 1] → ℝ, let 𝑅𝑛 B (1/𝑛)∑𝑛
𝑖=1 𝑓 (𝑖/𝑛) (the

uniform right-hand rule).

a) If 𝑓 is Riemann integrable show
∫ 1

0 𝑓 = lim
𝑛→∞𝑅𝑛 .

b) Find an 𝑓 that is not Riemann integrable, but lim
𝑛→∞𝑅𝑛 exists.
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Exercise 5.1.12 (Challenging): Generalize the previous exercise. Show that 𝑓 ∈ R
([𝑎, 𝑏]) if and only if

there exists an 𝐼 ∈ ℝ, such that for every 𝜖 > 0 there exists a 𝛿 > 0 such that if 𝑃 is a partition with Δ𝑥𝑖 < 𝛿

for all 𝑖, then
��𝐿(𝑃, 𝑓 ) − 𝐼�� < 𝜖 and

��𝑈(𝑃, 𝑓 ) − 𝐼�� < 𝜖. If 𝑓 ∈ R
([𝑎, 𝑏]) , then 𝐼 =

∫ 𝑏
𝑎 𝑓 .

Exercise 5.1.13: Using  Exercise 5.1.12 and the idea of the proof in  Exercise 5.1.7 , show that Darboux integral
is the same as the standard definition of Riemann integral, which you have most likely seen in calculus. That
is, show that 𝑓 ∈ R

([𝑎, 𝑏]) if and only if there exists an 𝐼 ∈ ℝ, such that for every 𝜖 > 0 there exists a 𝛿 > 0
such that if 𝑃 = {𝑥0 , 𝑥1 , . . . , 𝑥𝑛} is a partition with Δ𝑥𝑖 < 𝛿 for all 𝑖, then

��∑𝑛
𝑖=1 𝑓 (𝑐𝑖)Δ𝑥𝑖 − 𝐼

�� < 𝜖 for every
set {𝑐1 , 𝑐2 , . . . , 𝑐𝑛} with 𝑐𝑖 ∈ [𝑥𝑖−1 , 𝑥𝑖]. If 𝑓 ∈ R

([𝑎, 𝑏]) , then 𝐼 =
∫ 𝑏
𝑎 𝑓 .

Exercise 5.1.14 (Challenging): Construct functions 𝑓 and 𝑔, where 𝑓 : [0, 1] → ℝ is Riemann integrable,
𝑔 : [0, 1] → [0, 1] is one-to-one and onto, and such that the composition 𝑓 ◦ 𝑔 is not Riemann integrable.

Exercise 5.1.15: Suppose that 𝑓 : [𝑎, 𝑏] → ℝ is a bounded function, and 𝑃 is a partition of [𝑎, 𝑏] such that
𝐿(𝑃, 𝑓 ) = 𝑈(𝑃, 𝑓 ). Prove that 𝑓 is a constant function.
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5.2 Properties of the integral
Note: 2 lectures, integrability of functions with discontinuities can safely be skipped

5.2.1 Additivity
Adding a bunch of things in two parts and then adding those two parts should be the same
as adding everything all at once. The corresponding property for integrals is called the
additive property of the integral. First, we prove the additivity property for the lower and
upper Darboux integrals.

Lemma 5.2.1. Suppose 𝑎 < 𝑏 < 𝑐 and 𝑓 : [𝑎, 𝑐] → ℝ is a bounded function. Then∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 and

∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 .

Proof. If we have partitions 𝑃1 = {𝑥0, 𝑥1, . . . , 𝑥𝑘} of [𝑎, 𝑏] and 𝑃2 = {𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛} of
[𝑏, 𝑐], then the set 𝑃 B 𝑃1 ∪ 𝑃2 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} is a partition of [𝑎, 𝑐]. We find

𝐿(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 =
𝑘∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 +
𝑛∑

𝑖=𝑘+1
𝑚𝑖Δ𝑥𝑖 = 𝐿(𝑃1, 𝑓 ) + 𝐿(𝑃2, 𝑓 ).

When we take the supremum of the right-hand side over all 𝑃1 and 𝑃2, we are taking
a supremum of the left-hand side over all partitions 𝑃 of [𝑎, 𝑐] that contain 𝑏. If 𝑄 is a
partition of [𝑎, 𝑐] and 𝑃 = 𝑄 ∪ {𝑏}, then 𝑃 is a refinement of 𝑄 and so 𝐿(𝑄, 𝑓 ) ≤ 𝐿(𝑃, 𝑓 ).
Therefore, taking a supremum only over the 𝑃 that contain 𝑏 is sufficient to find the
supremum of 𝐿(𝑃, 𝑓 ) over all partitions 𝑃, see  Exercise 1.1.9 . Finally, recall  Exercise 1.2.9 to
compute∫ 𝑐

𝑎
𝑓 = sup

{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑐]}

= sup
{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑐], 𝑏 ∈ 𝑃}

= sup
{
𝐿(𝑃1, 𝑓 ) + 𝐿(𝑃2, 𝑓 ) : 𝑃1 a partition of [𝑎, 𝑏], 𝑃2 a partition of [𝑏, 𝑐]}

= sup
{
𝐿(𝑃1, 𝑓 ) : 𝑃1 a partition of [𝑎, 𝑏]} + sup

{
𝐿(𝑃2, 𝑓 ) : 𝑃2 a partition of [𝑏, 𝑐]}

=
∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 .

Similarly, for 𝑃, 𝑃1, and 𝑃2 as above, we obtain

𝑈(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 =
𝑘∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 +
𝑛∑

𝑖=𝑘+1
𝑀𝑖Δ𝑥𝑖 = 𝑈(𝑃1, 𝑓 ) +𝑈(𝑃2, 𝑓 ).
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We wish to take the infimum on the right over all 𝑃1 and 𝑃2, and so we are taking the
infimum over all partitions 𝑃 of [𝑎, 𝑐] that contain 𝑏. If 𝑄 is a partition of [𝑎, 𝑐] and
𝑃 = 𝑄 ∪ {𝑏}, then 𝑃 is a refinement of 𝑄 and so𝑈(𝑄, 𝑓 ) ≥ 𝑈(𝑃, 𝑓 ). Therefore, taking an
infimum only over the 𝑃 that contain 𝑏 is sufficient to find the infimum of𝑈(𝑃, 𝑓 ) for all 𝑃.
We obtain ∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 . □

Proposition 5.2.2. Let 𝑎 < 𝑏 < 𝑐. A function 𝑓 : [𝑎, 𝑐] → ℝ is Riemann integrable if and only if
𝑓 is Riemann integrable on [𝑎, 𝑏] and [𝑏, 𝑐]. If 𝑓 is Riemann integrable, then∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 .

Proof. Suppose 𝑓 ∈ R
([𝑎, 𝑐]) , then it is bounded and

∫ 𝑐
𝑎 𝑓 =

∫ 𝑐
𝑎 𝑓 =

∫ 𝑐
𝑎 𝑓 . The lemma gives

∫ 𝑐

𝑎
𝑓 =

∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 ≤

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 =

∫ 𝑐

𝑎
𝑓 =

∫ 𝑐

𝑎
𝑓 .

Thus the inequality is an equality,∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 .

As we also know
∫ 𝑏
𝑎 𝑓 ≤

∫ 𝑏
𝑎 𝑓 and

∫ 𝑐
𝑏 𝑓 ≤

∫ 𝑐
𝑏 𝑓 , we conclude

∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 and

∫ 𝑐

𝑏
𝑓 =

∫ 𝑐

𝑏
𝑓 .

Thus 𝑓 is Riemann integrable on [𝑎, 𝑏] and [𝑏, 𝑐] and the desired formula holds.
Now assume 𝑓 is Riemann integrable on [𝑎, 𝑏] and on [𝑏, 𝑐]. Again it is bounded, and

the lemma gives∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 =

∫ 𝑐

𝑎
𝑓 .

Therefore, 𝑓 is Riemann integrable on [𝑎, 𝑐], and the integral is computed as indicated. □

An easy consequence of the additivity is the following corollary. We leave the details to
the reader as an exercise.

Corollary 5.2.3. If 𝑓 ∈ R
([𝑎, 𝑏]) and [𝑐, 𝑑] ⊂ [𝑎, 𝑏], then the restriction 𝑓 |[𝑐,𝑑] is in R

([𝑐, 𝑑]) .
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5.2.2 Linearity and monotonicity
A sum is a linear function of the summands. So is the integral.

Proposition 5.2.4 (Linearity). Let 𝑓 and 𝑔 be in R
([𝑎, 𝑏]) and 𝛼 ∈ ℝ.

(i) 𝛼 𝑓 is in R
([𝑎, 𝑏]) and ∫ 𝑏

𝑎
𝛼 𝑓 (𝑥) 𝑑𝑥 = 𝛼

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

(ii) 𝑓 + 𝑔 is in R
([𝑎, 𝑏]) and∫ 𝑏

𝑎

(
𝑓 (𝑥) + 𝑔(𝑥)) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 +

∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

Proof. Let us prove the first item for 𝛼 ≥ 0. Let 𝑃 be a partition of [𝑎, 𝑏], and𝑚𝑖 B inf
{
𝑓 (𝑥) :

𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]
}

as usual. As 𝛼 ≥ 0, the multiplication by 𝛼 moves past the infimum,

inf
{
𝛼 𝑓 (𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
= 𝛼 inf

{
𝑓 (𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
= 𝛼𝑚𝑖 .

Therefore,

𝐿(𝑃, 𝛼 𝑓 ) =
𝑛∑
𝑖=1

𝛼𝑚𝑖Δ𝑥𝑖 = 𝛼
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 = 𝛼𝐿(𝑃, 𝑓 ).

Similarly,
𝑈(𝑃, 𝛼 𝑓 ) = 𝛼𝑈(𝑃, 𝑓 ).

Again, as 𝛼 ≥ 0, we may move multiplication by 𝛼 past the supremum. Hence,∫ 𝑏

𝑎
𝛼 𝑓 (𝑥) 𝑑𝑥 = sup

{
𝐿(𝑃, 𝛼 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]}

= sup
{
𝛼𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]}

= 𝛼 sup
{
𝐿(𝑃, 𝑓 ) : 𝑃 a partition of [𝑎, 𝑏]}

= 𝛼

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

Similarly, we show ∫ 𝑏

𝑎
𝛼 𝑓 (𝑥) 𝑑𝑥 = 𝛼

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

The conclusion now follows for 𝛼 ≥ 0.
To finish the proof of the first item (for 𝛼 < 0), we need to show that − 𝑓 is Riemann

integrable and
∫ 𝑏
𝑎 − 𝑓 (𝑥) 𝑑𝑥 = −

∫ 𝑏
𝑎 𝑓 (𝑥) 𝑑𝑥. The proof of this fact is left as  Exercise 5.2.1 .

The proof of the second item is left as  Exercise 5.2.2 . It is not difficult, but it is not as
trivial as it may appear at first glance. □
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The second item in the proposition does not hold with equality for the Darboux integrals,
but we do obtain inequalities. The proof of the following proposition is  Exercise 5.2.16 . It
follows for upper and lower sums on a fixed partition by  Exercise 1.3.7 , that is, supremum
of a sum is less than or equal to the sum of suprema and similarly for infima.

Proposition 5.2.5. Let 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ be bounded functions. Then∫ 𝑏

𝑎
( 𝑓 + 𝑔) ≤

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔, and

∫ 𝑏

𝑎
( 𝑓 + 𝑔) ≥

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔.

Adding up smaller numbers should give us a smaller result. That is true for an integral
as well.

Proposition 5.2.6 (Monotonicity). Let 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ be bounded, and
𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Then∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔 and

∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔.

Moreover, if 𝑓 and 𝑔 are in R
([𝑎, 𝑏]) , then∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔.

Proof. Let 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} be a partition of [𝑎, 𝑏]. Then let

𝑚𝑖 B inf
{
𝑓 (𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
and 𝑚𝑖 B inf

{
𝑔(𝑥) : 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

}
.

As 𝑓 (𝑥) ≤ 𝑔(𝑥), then 𝑚𝑖 ≤ 𝑚𝑖 . Therefore,

𝐿(𝑃, 𝑓 ) =
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 ≤
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 = 𝐿(𝑃, 𝑔).

We take the supremum over all 𝑃 (see  Proposition 1.3.7 ) to obtain∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔.

Similarly, we obtain the same conclusion for the upper integrals. Finally, if 𝑓 and 𝑔 are
Riemann integrable all the integrals are equal, and the conclusion follows. □

5.2.3 Continuous functions
Let us show that continuous functions are Riemann integrable. We can even allow some
discontinuities. We start with a function continuous on the whole closed interval [𝑎, 𝑏].
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Lemma 5.2.7. If 𝑓 : [𝑎, 𝑏] → ℝ is a continuous function, then 𝑓 ∈ R
([𝑎, 𝑏]) .

Proof. As 𝑓 is continuous on a closed bounded interval, it is bounded and uniformly
continuous. Given 𝜖 > 0, find a 𝛿 > 0 such that

��𝑥 − 𝑦�� < 𝛿 implies
�� 𝑓 (𝑥) − 𝑓 (𝑦)�� < 𝜖

𝑏−𝑎 .
Let 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} be a partition of [𝑎, 𝑏] such that Δ𝑥𝑖 < 𝛿 for all 𝑖 = 1, 2, . . . , 𝑛.

For example, take 𝑛 such that 𝑏−𝑎𝑛 < 𝛿, and let 𝑥𝑖 B 𝑖
𝑛 (𝑏− 𝑎)+ 𝑎. Then for all 𝑥, 𝑦 ∈ [𝑥𝑖−1, 𝑥𝑖],

we have
��𝑥 − 𝑦�� ≤ Δ𝑥𝑖 < 𝛿, and so

𝑓 (𝑥) − 𝑓 (𝑦) ≤ �� 𝑓 (𝑥) − 𝑓 (𝑦)�� < 𝜖
𝑏 − 𝑎 .

As 𝑓 is continuous on [𝑥𝑖−1, 𝑥𝑖], it attains a maximum and a minimum on this interval. Let
𝑥 be a point where 𝑓 attains the maximum and 𝑦 be a point where 𝑓 attains the minimum.
Then 𝑓 (𝑥) = 𝑀𝑖 and 𝑓 (𝑦) = 𝑚𝑖 in the notation from the definition of the integral. Therefore,

𝑀𝑖 − 𝑚𝑖 = 𝑓 (𝑥) − 𝑓 (𝑦) < 𝜖
𝑏 − 𝑎 .

And so ∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓 ≤ 𝑈(𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 )

=

(
𝑛∑
𝑖=1

𝑀𝑖Δ𝑥𝑖

)
−

(
𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖

)
=

𝑛∑
𝑖=1

(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖

<
𝜖

𝑏 − 𝑎
𝑛∑
𝑖=1

Δ𝑥𝑖

=
𝜖

𝑏 − 𝑎 (𝑏 − 𝑎) = 𝜖.

As 𝜖 > 0 was arbitrary, ∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 ,

and 𝑓 is Riemann integrable on [𝑎, 𝑏]. □

The second lemma says that we need the function to only be “Riemann integrable inside
the interval,” as long as it is bounded. It also tells us how to compute the integral.
Lemma 5.2.8. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function, {𝑎𝑛}∞𝑛=1 and {𝑏𝑛}∞𝑛=1 be sequences
such that 𝑎 < 𝑎𝑛 < 𝑏𝑛 < 𝑏 for all 𝑛, with lim𝑛→∞ 𝑎𝑛 = 𝑎 and lim𝑛→∞ 𝑏𝑛 = 𝑏. Suppose
𝑓 ∈ R

([𝑎𝑛 , 𝑏𝑛]) for all 𝑛. Then 𝑓 ∈ R
([𝑎, 𝑏]) and∫ 𝑏

𝑎
𝑓 = lim

𝑛→∞

∫ 𝑏𝑛

𝑎𝑛
𝑓 .
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Proof. Let 𝑀 > 0 be a real number such that
�� 𝑓 (𝑥)�� ≤ 𝑀. As (𝑏 − 𝑎) ≥ (𝑏𝑛 − 𝑎𝑛),

−𝑀(𝑏 − 𝑎) ≤ −𝑀(𝑏𝑛 − 𝑎𝑛) ≤
∫ 𝑏𝑛

𝑎𝑛
𝑓 ≤ 𝑀(𝑏𝑛 − 𝑎𝑛) ≤ 𝑀(𝑏 − 𝑎).

Therefore, the sequence of numbers
{∫ 𝑏𝑛
𝑎𝑛

𝑓
}∞
𝑛=1 is bounded and by  Bolzano–Weierstrass 

has a convergent subsequence indexed by 𝑛𝑘 . Let us call 𝐿 the limit of the subsequence{∫ 𝑏𝑛𝑘
𝑎𝑛𝑘

𝑓
}∞
𝑘=1.

 Lemma 5.2.1 says that the lower and upper integral are additive and the hypothesis
says that 𝑓 is integrable on [𝑎𝑛𝑘 , 𝑏𝑛𝑘 ]. Therefore∫ 𝑏

𝑎
𝑓 =

∫ 𝑎𝑛𝑘

𝑎
𝑓 +

∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

𝑓 +
∫ 𝑏

𝑏𝑛𝑘

𝑓 ≥ −𝑀(𝑎𝑛𝑘 − 𝑎) +
∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

𝑓 −𝑀(𝑏 − 𝑏𝑛𝑘 ).

We take the limit as 𝑘 goes to ∞ on the right-hand side,∫ 𝑏

𝑎
𝑓 ≥ −𝑀 · 0 + 𝐿 −𝑀 · 0 = 𝐿.

Next we use additivity of the upper integral,∫ 𝑏

𝑎
𝑓 =

∫ 𝑎𝑛𝑘

𝑎
𝑓 +

∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

𝑓 +
∫ 𝑏

𝑏𝑛𝑘

𝑓 ≤ 𝑀(𝑎𝑛𝑘 − 𝑎) +
∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

𝑓 +𝑀(𝑏 − 𝑏𝑛𝑘 ).

We take the same subsequence {
∫ 𝑏𝑛𝑘
𝑎𝑛𝑘

𝑓 }∞𝑘=1 and take the limit to obtain∫ 𝑏

𝑎
𝑓 ≤ 𝑀 · 0 + 𝐿 +𝑀 · 0 = 𝐿.

Thus
∫ 𝑏
𝑎 𝑓 =

∫ 𝑏
𝑎 𝑓 = 𝐿 and hence 𝑓 is Riemann integrable and

∫ 𝑏
𝑎 𝑓 = 𝐿. In particular, no

matter what subsequence we chose, the 𝐿 is the same number.
To prove the final statement of the lemma we use  Proposition 2.3.7 . We have shown that

every convergent subsequence
{∫ 𝑏𝑛𝑘
𝑎𝑛𝑘

𝑓
}∞
𝑘=1 converges to 𝐿 =

∫ 𝑏
𝑎 𝑓 . Therefore, the sequence{∫ 𝑏𝑛

𝑎𝑛
𝑓
}∞
𝑛=1 is convergent and converges to

∫ 𝑏
𝑎 𝑓 . □

We say a function 𝑓 : [𝑎, 𝑏] → ℝ has finitely many discontinuities if there exists a finite set
𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊂ [𝑎, 𝑏], and 𝑓 is continuous at all points of [𝑎, 𝑏] \ 𝑆.
Theorem 5.2.9. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function with finitely many discontinuities.
Then 𝑓 ∈ R

([𝑎, 𝑏]) .
Proof. We divide the interval into finitely many intervals [𝑎𝑖 , 𝑏𝑖] so that 𝑓 is continuous on
the interior (𝑎𝑖 , 𝑏𝑖). If 𝑓 is continuous on (𝑎𝑖 , 𝑏𝑖), then it is continuous and hence integrable
on [𝑐𝑖 , 𝑑𝑖] whenever 𝑎𝑖 < 𝑐𝑖 < 𝑑𝑖 < 𝑏𝑖 . By  Lemma 5.2.8 , the restriction of 𝑓 to [𝑎𝑖 , 𝑏𝑖] is
integrable. By additivity of the integral (and  induction ), 𝑓 is integrable on the union of the
intervals. □
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5.2.4 More on integrable functions
Sometimes it is convenient (or necessary) to change certain values of a function and then
integrate. The next result says that if we change the values at finitely many points, the
integral does not change.

Proposition 5.2.10. Let 𝑓 : [𝑎, 𝑏] → ℝ be Riemann integrable. Let 𝑔 : [𝑎, 𝑏] → ℝ be such that
𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏] \ 𝑆, where 𝑆 is a finite set. Then 𝑔 is Riemann integrable and∫ 𝑏

𝑎
𝑔 =

∫ 𝑏

𝑎
𝑓 .

Sketch of proof. Using additivity of the integral, split the interval [𝑎, 𝑏] into smaller intervals
such that 𝑓 (𝑥) = 𝑔(𝑥) holds for all 𝑥 except at the endpoints (details are left to the reader).

Therefore, without loss of generality suppose 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ (𝑎, 𝑏). The proof
follows by  Lemma 5.2.8 , and is left as  Exercise 5.2.3 . □

Finally, monotone (increasing or decreasing) functions are always Riemann integrable.
The proof is left to the reader as part of  Exercise 5.2.14 .

Proposition 5.2.11. Let 𝑓 : [𝑎, 𝑏] → ℝ be a monotone function. Then 𝑓 ∈ R
([𝑎, 𝑏]) .

5.2.5 Exercises
Exercise 5.2.1: Finish the proof of the first part of  Proposition 5.2.4 . Let 𝑓 be in R

([𝑎, 𝑏]) . Prove that − 𝑓 is
in R

([𝑎, 𝑏]) and ∫ 𝑏

𝑎
− 𝑓 (𝑥) 𝑑𝑥 = −

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

Exercise 5.2.2: Prove the second part of  Proposition 5.2.4  . Let 𝑓 and 𝑔 be in R
([𝑎, 𝑏]) . Prove, without

using  Proposition 5.2.5 , that 𝑓 + 𝑔 is in R
([𝑎, 𝑏]) and∫ 𝑏

𝑎

(
𝑓 (𝑥) + 𝑔(𝑥)) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 +

∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

Hint: One way to do it is to use  Proposition 5.1.7 to find a single partition 𝑃 such that𝑈(𝑃, 𝑓 )−𝐿(𝑃, 𝑓 ) < 𝜖/2

and𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔) < 𝜖/2.

Exercise 5.2.3: Let 𝑓 : [𝑎, 𝑏] → ℝ be Riemann integrable, and 𝑔 : [𝑎, 𝑏] → ℝ be such that 𝑓 (𝑥) = 𝑔(𝑥) for
all 𝑥 ∈ (𝑎, 𝑏). Prove that 𝑔 is Riemann integrable and that∫ 𝑏

𝑎
𝑔 =

∫ 𝑏

𝑎
𝑓 .

Exercise 5.2.4: Prove the mean value theorem for integrals: If 𝑓 : [𝑎, 𝑏] → ℝ is continuous, then there
exists a 𝑐 ∈ [𝑎, 𝑏] such that

∫ 𝑏
𝑎 𝑓 = 𝑓 (𝑐)(𝑏 − 𝑎).

Exercise 5.2.5: Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function such that 𝑓 (𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏] and∫ 𝑏
𝑎 𝑓 = 0. Prove that 𝑓 (𝑥) = 0 for all 𝑥.
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Exercise 5.2.6: Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function and
∫ 𝑏
𝑎 𝑓 = 0. Prove that there exists a

𝑐 ∈ [𝑎, 𝑏] such that 𝑓 (𝑐) = 0. (Compare with the previous exercise.)

Exercise 5.2.7: Let 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ be continuous functions such that
∫ 𝑏
𝑎 𝑓 =

∫ 𝑏
𝑎 𝑔.

Show that there exists a 𝑐 ∈ [𝑎, 𝑏] such that 𝑓 (𝑐) = 𝑔(𝑐).
Exercise 5.2.8: Let 𝑓 ∈ R

([𝑎, 𝑏]) . Let 𝛼, 𝛽, 𝛾 be arbitrary numbers in [𝑎, 𝑏] (not necessarily ordered in any
way). Prove ∫ 𝛾

𝛼
𝑓 =

∫ 𝛽

𝛼
𝑓 +

∫ 𝛾

𝛽
𝑓 .

Recall what
∫ 𝑏
𝑎 𝑓 means if 𝑏 ≤ 𝑎.

Exercise 5.2.9: Prove  Corollary 5.2.3 .

Exercise 5.2.10: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is bounded and has finitely many discontinuities. Show that as
a function of 𝑥 the expression

�� 𝑓 (𝑥)�� is bounded with finitely many discontinuities and is thus Riemann
integrable. Then show �����∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

����� ≤ ∫ 𝑏

𝑎

�� 𝑓 (𝑥)�� 𝑑𝑥.
Exercise 5.2.11 (Hard): Show that the Thomae or popcorn function (see  Example 3.2.12 ) is Riemann
integrable. Therefore, there exists a function discontinuous at all rational numbers (a dense set) that is
Riemann integrable.

That is, define 𝑓 : [0, 1] → ℝ by

𝑓 (𝑥) B
{

1/𝑘 if 𝑥 = 𝑚/𝑘 where 𝑚, 𝑘 ∈ ℕ and 𝑚 and 𝑘 have no common divisors,
0 if 𝑥 is irrational.

Show
∫ 1

0 𝑓 = 0.

If 𝐼 ⊂ ℝ is a bounded interval, then the function

𝜑𝐼(𝑥) B
{

1 if 𝑥 ∈ 𝐼 ,
0 otherwise,

is called an elementary step function.

Exercise 5.2.12: Let 𝐼 be an arbitrary bounded interval (you should consider all types of intervals: closed,
open, half-open) and 𝑎 < 𝑏, then using only the definition of the integral show that the elementary step
function 𝜑𝐼 is integrable on [𝑎, 𝑏], and find the integral in terms of 𝑎, 𝑏, and the endpoints of 𝐼.

A function 𝑓 is called a step function if it can be written as

𝑓 (𝑥) =
𝑛∑
𝑘=1

𝛼𝑘𝜑𝐼𝑘 (𝑥)

for some real numbers 𝛼1 , 𝛼2 , . . . , 𝛼𝑛 and some bounded intervals 𝐼1 , 𝐼2 , . . . , 𝐼𝑛 .
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Exercise 5.2.13: Using  Exercise 5.2.12 , show that a step function (see above) is integrable on every interval
[𝑎, 𝑏]. Furthermore, find the integral in terms of 𝑎, 𝑏, the endpoints of 𝐼𝑘 and the 𝛼𝑘 .

Exercise 5.2.14: Let 𝑓 : [𝑎, 𝑏] → ℝ be a function.

a) Show that if 𝑓 is increasing, then it is Riemann integrable. Hint: Use a uniform partition; each subinterval
of same length.

b) Use part a) to show that if 𝑓 is decreasing, then it is Riemann integrable.

c) Suppose 

‗
 ℎ = 𝑓 − 𝑔 where 𝑓 and 𝑔 are increasing functions on [𝑎, 𝑏]. Show that ℎ is Riemann integrable.

Exercise 5.2.15 (Challenging): Suppose 𝑓 ∈ R
([𝑎, 𝑏]) , then the function that takes 𝑥 to

�� 𝑓 (𝑥)�� is also
Riemann integrable on [𝑎, 𝑏]. Then show the same inequality as  Exercise 5.2.10 .

Exercise 5.2.16: Suppose 𝑓 : [𝑎, 𝑏] → ℝ and 𝑔 : [𝑎, 𝑏] → ℝ are bounded.

a) Show
∫ 𝑏
𝑎 ( 𝑓 + 𝑔) ≤

∫ 𝑏
𝑎 𝑓 +

∫ 𝑏
𝑎 𝑔 and

∫ 𝑏
𝑎 ( 𝑓 + 𝑔) ≥

∫ 𝑏
𝑎 𝑓 +

∫ 𝑏
𝑎 𝑔.

b) Find example 𝑓 and 𝑔 where the inequality is strict. Hint: 𝑓 and 𝑔 should not be Riemann integrable.

Exercise 5.2.17: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is continuous and 𝑔 : ℝ → ℝ is Lipschitz continuous. Define

ℎ(𝑥) B
∫ 𝑏

𝑎
𝑔(𝑡 − 𝑥) 𝑓 (𝑡) 𝑑𝑡.

Prove that ℎ is Lipschitz continuous.

Exercise 5.2.18: Prove a version of the so-called Riemann–Lebesgue Lemma (one of several so named):
Suppose 𝑓 : [𝑎, 𝑏] → ℝ is continuous and define the sequence {𝑥𝑛}∞𝑛=1 by

𝑥𝑛 B
∫ 𝑏

𝑎
𝑓 (𝑡) sin(𝑛𝑡) 𝑑𝑡.

Prove that lim
𝑛→∞ 𝑥𝑛 = 0.

‗Such an ℎ is said to be of bounded variation.
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5.3 Fundamental theorem of calculus
Note: 1.5 lectures

In this section we discuss and prove the fundamental theorem of calculus. The entirety
of integral calculus is built upon this theorem, ergo the name. The theorem relates the
seemingly unrelated concepts of integral and derivative. It tells us how to compute the
antiderivative of a function using the integral and vice versa.

5.3.1 First form of the theorem
Theorem 5.3.1. Let 𝐹 : [𝑎, 𝑏] → ℝ be a continuous function, differentiable on (𝑎, 𝑏). Let
𝑓 ∈ R

([𝑎, 𝑏]) be such that 𝑓 (𝑥) = 𝐹′(𝑥) for 𝑥 ∈ (𝑎, 𝑏). Then∫ 𝑏

𝑎
𝑓 = 𝐹(𝑏) − 𝐹(𝑎).

It is not hard to generalize the theorem to allow a finite number of points in [𝑎, 𝑏] where
𝐹 is not differentiable, as long as it is continuous. This generalization is left as an exercise.

Proof. Let 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} be a partition of [𝑎, 𝑏]. For each interval [𝑥𝑖−1, 𝑥𝑖], use the
 mean value theorem to find a 𝑐𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖) such that

𝑓 (𝑐𝑖)Δ𝑥𝑖 = 𝐹′(𝑐𝑖)(𝑥𝑖 − 𝑥𝑖−1) = 𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1).

See  Figure 5.5 , and notice that the area of the 𝑖th rectangle is 𝐹(𝑥𝑖+1) − 𝐹(𝑥𝑖−2) for all three
rectangles. The idea is that by taking smaller and smaller subintervals we prove that this
area is the integral of 𝑓 .

area = 5 (28)ΔG8
= �(G8) − �(G8−1)

area = 5 (28−1)ΔG8−1

= �(G8−1) − �(G8−2)

area = 5 (28+1)ΔG8+1

= �(G8+1) − �(G8)

G8−2 G8−1 G8 G8+1

5 (28−1)
5 (28)

5 (28+1)

28−1 28 28+1

ΔG8−1 ΔG8 ΔG8+1

H = 5 (G) = �′(G)

Figure 5.5: Mean value theorem on subintervals of a partition approximating the area under
the curve.
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Using the notation from the definition of the integral, 𝑚𝑖 ≤ 𝑓 (𝑐𝑖) ≤ 𝑀𝑖 , and multiplying
by Δ𝑥𝑖 gets

𝑚𝑖Δ𝑥𝑖 ≤ 𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) ≤ 𝑀𝑖Δ𝑥𝑖 .

We sum over 𝑖 = 1, 2, . . . , 𝑛 to get

𝑛∑
𝑖=1

𝑚𝑖Δ𝑥𝑖 ≤
𝑛∑
𝑖=1

(
𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1)

) ≤ 𝑛∑
𝑖=1

𝑀𝑖Δ𝑥𝑖 .

In the middle sum, all the terms except the first and last cancel and we end up with
𝐹(𝑥𝑛) − 𝐹(𝑥0) = 𝐹(𝑏) − 𝐹(𝑎). The sums on the left and on the right are the lower and the
upper sum respectively. So

𝐿(𝑃, 𝑓 ) ≤ 𝐹(𝑏) − 𝐹(𝑎) ≤ 𝑈(𝑃, 𝑓 ).

We take the supremum of 𝐿(𝑃, 𝑓 ) over all partitions 𝑃 and the left inequality yields∫ 𝑏

𝑎
𝑓 ≤ 𝐹(𝑏) − 𝐹(𝑎).

Similarly, taking the infimum of𝑈(𝑃, 𝑓 ) over all partitions 𝑃 yields

𝐹(𝑏) − 𝐹(𝑎) ≤
∫ 𝑏

𝑎
𝑓 .

As 𝑓 is Riemann integrable, we have∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 ≤ 𝐹(𝑏) − 𝐹(𝑎) ≤

∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 .

The inequalities must be equalities and we are done. □

The theorem is used to compute integrals. Suppose we know that the function 𝑓 (𝑥) is a
derivative of some other function 𝐹(𝑥), then we can find an explicit expression for

∫ 𝑏
𝑎 𝑓 .

Example 5.3.2: To compute ∫ 1

0
𝑥2 𝑑𝑥,

we notice 𝑥2 is the derivative of 𝑥3

3 . The fundamental theorem says∫ 1

0
𝑥2 𝑑𝑥 =

13

3 − 03

3 =
1
3 .
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5.3.2 Second form of the theorem
The second form of the fundamental theorem gives us a way to solve the differential
equation 𝐹′(𝑥) = 𝑓 (𝑥), where 𝑓 is a known function and we are trying to find an 𝐹 that
satisfies the equation.

Theorem 5.3.3. Let 𝑓 : [𝑎, 𝑏] → ℝ be a Riemann integrable function. Define

𝐹(𝑥) B
∫ 𝑥

𝑎
𝑓 .

First, 𝐹 is continuous on [𝑎, 𝑏]. Second, if 𝑓 is continuous at 𝑐 ∈ [𝑎, 𝑏], then 𝐹 is differentiable at
𝑐 and 𝐹′(𝑐) = 𝑓 (𝑐).
Proof. As 𝑓 is bounded, there is an 𝑀 > 0 such that

�� 𝑓 (𝑥)�� ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏]. Suppose
𝑥, 𝑦 ∈ [𝑎, 𝑏] with 𝑥 > 𝑦. Then

��𝐹(𝑥) − 𝐹(𝑦)�� = ����∫ 𝑥

𝑎
𝑓 −

∫ 𝑦

𝑎
𝑓

���� = �����∫ 𝑥

𝑦
𝑓

����� ≤ 𝑀
��𝑥 − 𝑦�� .

By symmetry, the same also holds if 𝑥 < 𝑦. So 𝐹 is Lipschitz continuous and hence
continuous.

Now suppose 𝑓 is continuous at 𝑐. Let 𝜖 > 0 be given. Let 𝛿 > 0 be such that for
𝑥 ∈ [𝑎, 𝑏], |𝑥 − 𝑐| < 𝛿 implies

�� 𝑓 (𝑥) − 𝑓 (𝑐)�� < 𝜖. In particular, for such 𝑥, we have

𝑓 (𝑐) − 𝜖 < 𝑓 (𝑥) < 𝑓 (𝑐) + 𝜖.

Thus if 𝑥 > 𝑐, then (
𝑓 (𝑐) − 𝜖

)(𝑥 − 𝑐) ≤ ∫ 𝑥

𝑐
𝑓 ≤ (

𝑓 (𝑐) + 𝜖
)(𝑥 − 𝑐).

When 𝑐 > 𝑥, then the inequalities are reversed. Therefore, assuming 𝑥 ≠ 𝑐, we get

𝑓 (𝑐) − 𝜖 ≤
∫ 𝑥
𝑐 𝑓

𝑥 − 𝑐 ≤ 𝑓 (𝑐) + 𝜖.

As
𝐹(𝑥) − 𝐹(𝑐)
𝑥 − 𝑐 =

∫ 𝑥
𝑎 𝑓 −

∫ 𝑐
𝑎 𝑓

𝑥 − 𝑐 =

∫ 𝑥
𝑐 𝑓

𝑥 − 𝑐 ,
we have ����𝐹(𝑥) − 𝐹(𝑐)𝑥 − 𝑐 − 𝑓 (𝑐)

���� ≤ 𝜖.

The result follows. It is left to the reader to see why is it OK that we just have a non-strict
inequality. □
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Of course, if 𝑓 is continuous on [𝑎, 𝑏], then it is automatically Riemann integrable, 𝐹 is
differentiable on all of [𝑎, 𝑏] and 𝐹′(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏].
Remark 5.3.4. The second form of the fundamental theorem of calculus still holds if we let
𝑑 ∈ [𝑎, 𝑏] and define

𝐹(𝑥) B
∫ 𝑥

𝑑
𝑓 .

That is, we can use any point of [𝑎, 𝑏] as our base point. The proof is left as an exercise.

Let us look at what a simple discontinuity can do. Take 𝑓 (𝑥) B −1 if 𝑥 < 0, and
𝑓 (𝑥) B 1 if 𝑥 ≥ 0. Let 𝐹(𝑥) B

∫ 𝑥
0 𝑓 . It is not difficult to see that 𝐹(𝑥) = |𝑥|. Notice that 𝑓 is

discontinuous at 0 and 𝐹 is not differentiable at 0. However, the converse in the theorem
does not hold. Let 𝑔(𝑥) B 0 if 𝑥 ≠ 0, and 𝑔(0) B 1. Letting 𝐺(𝑥) B

∫ 𝑥
0 𝑔, we find that

𝐺(𝑥) = 0 for all 𝑥. So 𝑔 is discontinuous at 0, but 𝐺′(0) exists and is equal to 0.
A common misunderstanding of the integral for calculus students is to think of integrals

whose solution cannot be given in closed-form as somehow deficient. This is not the case.
Most integrals we write down are not computable in closed-form. Even some integrals
that we consider in closed-form are not really such. We define the natural logarithm as the
antiderivative of 1/𝑥 such that ln 1 = 0:

ln 𝑥 B
∫ 𝑥

1

1
𝑠
𝑑𝑠.

How does a computer find the value of ln 𝑥? One way to do it is to numerically approximate
this integral. Morally, we did not really “simplify”

∫ 𝑥
1

1
𝑠 𝑑𝑠 by writing down ln 𝑥. We

simply gave the integral a name. If we require numerical answers, it is possible we end up
doing the calculation by approximating an integral anyway. In the next section, we even
define the exponential using the logarithm, which we define in terms of the integral.

Another common function defined by an integral that cannot be evaluated symbolically
in terms of elementary functions is the erf function, defined as

erf(𝑥) B 2√
𝜋

∫ 𝑥

0
𝑒−𝑠

2
𝑑𝑠.

This function comes up often in applied mathematics. It is simply the antiderivative of
(2/√𝜋) 𝑒−𝑥2 that is zero at zero. The second form of the fundamental theorem tells us that
we can write the function as an integral. If we wish to compute any particular value, we
numerically approximate the integral.

5.3.3 Change of variables
A theorem often used in calculus to solve integrals is the change of variables theorem, you
may have called it 𝑢-substitution. Let us prove it now. Recall a function is continuously
differentiable if it is differentiable and the derivative is continuous.



204 CHAPTER 5. THE RIEMANN INTEGRAL

Theorem 5.3.5 (Change of variables). Let 𝑔 : [𝑎, 𝑏] → ℝ be a continuously differentiable
function, let 𝑓 : [𝑐, 𝑑] → ℝ be continuous, and suppose 𝑔

([𝑎, 𝑏]) ⊂ [𝑐, 𝑑]. Then∫ 𝑏

𝑎
𝑓
(
𝑔(𝑥)) 𝑔′(𝑥) 𝑑𝑥 =

∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑠) 𝑑𝑠.

Proof. As 𝑔, 𝑔′, and 𝑓 are continuous, 𝑓
(
𝑔(𝑥)) 𝑔′(𝑥) is a continuous function of [𝑎, 𝑏],

therefore it is Riemann integrable. Similarly, 𝑓 is integrable on every subinterval of [𝑐, 𝑑].
Define 𝐹 : [𝑐, 𝑑] → ℝ by

𝐹(𝑦) B
∫ 𝑦

𝑔(𝑎)
𝑓 (𝑠) 𝑑𝑠.

By the second form of the fundamental theorem of calculus (see  Remark 5.3.4 and
 Exercise 5.3.4 ), 𝐹 is a differentiable function and 𝐹′(𝑦) = 𝑓 (𝑦). Apply the chain rule,(

𝐹 ◦ 𝑔) ′(𝑥) = 𝐹′
(
𝑔(𝑥)) 𝑔′(𝑥) = 𝑓

(
𝑔(𝑥)) 𝑔′(𝑥).

Note that 𝐹
(
𝑔(𝑎)) = 0 and use the first form of the fundamental theorem to obtain∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑠) 𝑑𝑠 = 𝐹

(
𝑔(𝑏)) = 𝐹

(
𝑔(𝑏)) − 𝐹 (

𝑔(𝑎))
=

∫ 𝑏

𝑎

(
𝐹 ◦ 𝑔) ′(𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓
(
𝑔(𝑥)) 𝑔′(𝑥) 𝑑𝑥. □

The change of variables theorem is often used to solve integrals by changing them to
integrals that we know or that we can solve using the fundamental theorem of calculus.
Example 5.3.6: The derivative of sin(𝑥) is cos(𝑥). Using 𝑔(𝑥) B 𝑥2, we solve∫ √

𝜋

0
𝑥 cos(𝑥2) 𝑑𝑥 =

∫ 𝜋

0

cos(𝑠)
2 𝑑𝑠 =

1
2

∫ 𝜋

0
cos(𝑠) 𝑑𝑠 = sin(𝜋) − sin(0)

2 = 0.

However, beware that we must satisfy the hypotheses of the theorem. The following
example demonstrates why we should not just move symbols around mindlessly. We must
be careful that those symbols really make sense.
Example 5.3.7: Consider ∫ 1

−1

ln |𝑥|
𝑥

𝑑𝑥.

It may be tempting to take 𝑔(𝑥) B ln |𝑥|. Compute 𝑔′(𝑥) = 1/𝑥 and try to write∫ 𝑔(1)

𝑔(−1)
𝑠 𝑑𝑠 =

∫ 0

0
𝑠 𝑑𝑠 = 0.

This “solution” is incorrect, and it does not say that we can solve the given integral. First
problem is that ln|𝑥|

𝑥 is not continuous on [−1, 1]. It is not defined at 0, and cannot be made
continuous by defining a value at 0. Second, ln|𝑥|

𝑥 is not even Riemann integrable on [−1, 1]
(it is unbounded). The integral we wrote down simply does not make sense. Finally, 𝑔 is
not continuous on [−1, 1], let alone continuously differentiable.
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5.3.4 Exercises

Exercise 5.3.1: Compute 𝑑
𝑑𝑥

(∫ 𝑥

−𝑥
𝑒 𝑠

2
𝑑𝑠

)
.

Exercise 5.3.2: Compute 𝑑
𝑑𝑥

(∫ 𝑥2

0
sin(𝑠2) 𝑑𝑠

)
.

Exercise 5.3.3: Suppose 𝐹 : [𝑎, 𝑏] → ℝ is continuous and differentiable on [𝑎, 𝑏] \ 𝑆, where 𝑆 is a finite set.
Suppose there exists an 𝑓 ∈ R

([𝑎, 𝑏]) such that 𝑓 (𝑥) = 𝐹′(𝑥) for 𝑥 ∈ [𝑎, 𝑏]\𝑆. Show that
∫ 𝑏
𝑎 𝑓 = 𝐹(𝑏)−𝐹(𝑎).

Exercise 5.3.4: Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function. Let 𝑐 ∈ [𝑎, 𝑏] be arbitrary. Define

𝐹(𝑥) B
∫ 𝑥

𝑐
𝑓 .

Prove that 𝐹 is differentiable and that 𝐹′(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ [𝑎, 𝑏].
Exercise 5.3.5: Prove integration by parts. That is, suppose 𝐹 and 𝐺 are continuously differentiable
functions on [𝑎, 𝑏]. Then prove∫ 𝑏

𝑎
𝐹(𝑥)𝐺′(𝑥) 𝑑𝑥 = 𝐹(𝑏)𝐺(𝑏) − 𝐹(𝑎)𝐺(𝑎) −

∫ 𝑏

𝑎
𝐹′(𝑥)𝐺(𝑥) 𝑑𝑥.

Exercise 5.3.6: Suppose 𝐹 and 𝐺 are continuously 

‗
 differentiable functions defined on [𝑎, 𝑏] such that

𝐹′(𝑥) = 𝐺′(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Using the fundamental theorem of calculus, show that 𝐹 and 𝐺 differ by a
constant. That is, show that there exists a 𝐶 ∈ ℝ such that 𝐹(𝑥) − 𝐺(𝑥) = 𝐶.

The next exercise shows how we can use the integral to “smooth out” a non-differentiable
function.

Exercise 5.3.7: Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function. Let 𝜖 > 0 be a constant so that 𝑎 + 𝜖 < 𝑏 − 𝜖.
For 𝑥 ∈ [𝑎 + 𝜖, 𝑏 − 𝜖], define

𝑔(𝑥) B 1
2𝜖

∫ 𝑥+𝜖

𝑥−𝜖
𝑓 .

a) Show that 𝑔 is differentiable and find the derivative.

b) Let 𝑓 be differentiable and fix 𝑥 ∈ (𝑎, 𝑏) (let 𝜖 be small enough). What happens to 𝑔′(𝑥) as 𝜖 gets smaller?

c) Find 𝑔 for 𝑓 (𝑥) B |𝑥|, 𝜖 = 1 (you can assume [𝑎, 𝑏] is large enough).

Exercise 5.3.8: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is continuous and
∫ 𝑥
𝑎 𝑓 =

∫ 𝑏
𝑥 𝑓 for all 𝑥 ∈ [𝑎, 𝑏]. Show that

𝑓 (𝑥) = 0 for all 𝑥 ∈ [𝑎, 𝑏].
Exercise 5.3.9: Suppose 𝑓 : [𝑎, 𝑏] → ℝ is continuous and

∫ 𝑥
𝑎 𝑓 = 0 for all rational 𝑥 in [𝑎, 𝑏]. Show that

𝑓 (𝑥) = 0 for all 𝑥 ∈ [𝑎, 𝑏].
Exercise 5.3.10: A function 𝑓 is an odd function if 𝑓 (𝑥) = − 𝑓 (−𝑥), and 𝑓 is an even function if
𝑓 (𝑥) = 𝑓 (−𝑥). Let 𝑎 > 0. Assume 𝑓 is continuous. Prove:

a) If 𝑓 is odd, then
∫ 𝑎
−𝑎 𝑓 = 0.

b) If 𝑓 is even, then
∫ 𝑎
−𝑎 𝑓 = 2

∫ 𝑎
0 𝑓 .

‗Compare this hypothesis to  Exercise 4.2.8 .
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Exercise 5.3.11:

a) Show that 𝑓 (𝑥) B sin(1/𝑥) is integrable on every interval (you can define 𝑓 (0) to be anything).

b) Compute
∫ 1
−1 sin(1/𝑥) 𝑑𝑥 (mind the discontinuity).

Exercise 5.3.12 (uses  §3.6 ):
a) Suppose 𝑓 : [𝑎, 𝑏] → ℝ is increasing, by  Proposition 5.2.11 , 𝑓 is Riemann integrable. Suppose 𝑓 has a

discontinuity at 𝑐 ∈ (𝑎, 𝑏), show that 𝐹(𝑥) B
∫ 𝑥
𝑎 𝑓 is not differentiable at 𝑐.

b) In  Exercise 3.6.11 , you constructed an increasing function 𝑓 : [0, 1] → ℝ that is discontinuous at every
𝑥 ∈ [0, 1] ∩ℚ. Use this 𝑓 to construct a function 𝐹(𝑥) that is continuous on [0, 1], but not differentiable
at every 𝑥 ∈ [0, 1] ∩ℚ.

Exercise 5.3.13: For any ℓ ∈ ℕ, show that the following limit exists and find what it is:

lim
𝑛→∞

𝑛∑
𝑘=1

𝑘ℓ

𝑛ℓ+1
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5.4 The logarithm and the exponential
Note: 1 lecture (optional, requires the optional sections  §3.5 ,  §3.6 ,  §4.4 )

We now have the tools required to properly define the exponential and the logarithm
that you know from calculus so well. We start with exponentiation. If 𝑛 is a positive integer,
it is obvious to define

𝑥𝑛 B 𝑥 · 𝑥 · · · · · 𝑥︸        ︷︷        ︸
𝑛 times

.

It makes sense to define 𝑥0 B 1. For negative integers, let 𝑥−𝑛 B 1/𝑥𝑛. If 𝑥 > 0, define 𝑥1/𝑛
as the unique positive 𝑛th root. Finally, for a rational number 𝑛/𝑚 (in lowest terms), define

𝑥𝑛/𝑚 B
(
𝑥1/𝑚 )𝑛

.

It is not difficult to show we get the same number no matter what representation of 𝑛/𝑚 we
use, so we do not need to use lowest terms.

However, what do we mean by
√

2
√

2
? Or 𝑥𝑦 in general? In particular, what is 𝑒𝑥 for

all 𝑥? And how do we solve 𝑦 = 𝑒𝑥 for 𝑥? This section answers these questions and more.

5.4.1 The logarithm
It is convenient to define the logarithm first. Let us show that a unique function with the
right properties exists, and only then will we call it the logarithm.
Proposition 5.4.1. There exists a unique function 𝐿 : (0,∞) → ℝ such that

(i) 𝐿(1) = 0.
(ii) 𝐿 is differentiable and 𝐿′(𝑥) = 1/𝑥.
(iii) 𝐿 is strictly increasing, bĳective, and

lim
𝑥→0

𝐿(𝑥) = −∞, and lim
𝑥→∞ 𝐿(𝑥) = ∞.

(iv) 𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝐿(𝑦) for all 𝑥, 𝑦 ∈ (0,∞).
(v) If 𝑞 is a rational number and 𝑥 > 0, then 𝐿(𝑥𝑞) = 𝑞𝐿(𝑥).

Proof. To prove existence, we define a candidate and show it satisfies all the properties. Let

𝐿(𝑥) B
∫ 𝑥

1

1
𝑡
𝑑𝑡.

Obviously,  (i) holds. Property  (ii) holds via the second form of the fundamental theorem
of calculus ( Theorem 5.3.3 ).

To prove property  (iv) , we change variables 𝑢 = 𝑦𝑡 to obtain

𝐿(𝑥) =
∫ 𝑥

1

1
𝑡
𝑑𝑡 =

∫ 𝑥𝑦

𝑦

1
𝑢
𝑑𝑢 =

∫ 𝑥𝑦

1

1
𝑢
𝑑𝑢 −

∫ 𝑦

1

1
𝑢
𝑑𝑢 = 𝐿(𝑥𝑦) − 𝐿(𝑦).
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Let us prove  (iii) . Property  (ii) together with the fact that 𝐿′(𝑥) = 1/𝑥 > 0 for 𝑥 > 0,
implies that 𝐿 is strictly increasing and hence one-to-one. Let us show 𝐿 is onto. As 1/𝑡 ≥ 1/2

when 𝑡 ∈ [1, 2],
𝐿(2) =

∫ 2

1

1
𝑡
𝑑𝑡 ≥ 1/2.

By induction,  (iv) implies that for 𝑛 ∈ ℕ,

𝐿(2𝑛) = 𝐿(2) + 𝐿(2) + · · · + 𝐿(2) = 𝑛𝐿(2).

Given 𝑦 > 0, by the  Archimedean property  of the real numbers (notice 𝐿(2) > 0), there is
an 𝑛 ∈ ℕ such that 𝐿(2𝑛) > 𝑦. The  intermediate value theorem gives an 𝑥1 ∈ (1, 2𝑛) such
that 𝐿(𝑥1) = 𝑦. Thus (0,∞) is in the image of 𝐿. As 𝐿 is increasing, 𝐿(𝑥) > 𝑦 for all 𝑥 > 2𝑛 ,
and so

lim
𝑥→∞ 𝐿(𝑥) = ∞.

Next 0 = 𝐿(𝑥/𝑥) = 𝐿(𝑥) + 𝐿(1/𝑥), and so 𝐿(𝑥) = −𝐿(1/𝑥). Using 𝑥 = 2−𝑛 , we obtain as above
that 𝐿 achieves all negative numbers. And

lim
𝑥→0

𝐿(𝑥) = lim
𝑥→0

−𝐿(1/𝑥) = lim
𝑥→∞−𝐿(𝑥) = −∞.

In the limits, note that only 𝑥 > 0 are in the domain of 𝐿.
Let us prove  (v) . Fix 𝑥 > 0. As above,  (iv) implies 𝐿(𝑥𝑛) = 𝑛𝐿(𝑥) for all 𝑛 ∈ ℕ. We

already found that 𝐿(𝑥) = −𝐿(1/𝑥), so 𝐿(𝑥−𝑛) = −𝐿(𝑥𝑛) = −𝑛𝐿(𝑥). Then for 𝑚 ∈ ℕ

𝐿(𝑥) = 𝐿
(
(𝑥1/𝑚)𝑚

)
= 𝑚𝐿

(
𝑥1/𝑚 )

.

Putting everything together for 𝑛 ∈ ℤ and 𝑚 ∈ ℕ, we have 𝐿(𝑥𝑛/𝑚) = 𝑛𝐿(𝑥1/𝑚) = (𝑛/𝑚)𝐿(𝑥).
Uniqueness follows using properties  (i) and  (ii) . Via the first form of the fundamental

theorem of calculus ( Theorem 5.3.1 ),

𝐿(𝑥) =
∫ 𝑥

1

1
𝑡
𝑑𝑡

is the unique function such that 𝐿(1) = 0 and 𝐿′(𝑥) = 1/𝑥. □

Having proved that there is a unique function with these properties, we simply define
the logarithm or sometimes called the natural logarithm:

ln(𝑥) B 𝐿(𝑥).

See  Figure 5.6 . Mathematicians usually write log(𝑥) instead of ln(𝑥), which is more familiar
to calculus students. For all practical purposes, there is only one logarithm: the natural
logarithm. See  Exercise 5.4.2 .
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1 2 3 4 5

−2

−1

0

1

2

shaded area = ln(4)

H = ln(G)

H = 1/G

Figure 5.6: Plot of ln(𝑥) together with 1/𝑥, showing the value ln(4).

5.4.2 The exponential
Just as with the logarithm we define the exponential via a list of properties.
Proposition 5.4.2. There exists a unique function 𝐸 : ℝ → (0,∞) such that

(i) 𝐸(0) = 1.
(ii) 𝐸 is differentiable and 𝐸′(𝑥) = 𝐸(𝑥).
(iii) 𝐸 is strictly increasing, bĳective, and

lim
𝑥→−∞𝐸(𝑥) = 0, and lim

𝑥→∞𝐸(𝑥) = ∞.

(iv) 𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦) for all 𝑥, 𝑦 ∈ ℝ.
(v) If 𝑞 ∈ ℚ, then 𝐸(𝑞𝑥) = 𝐸(𝑥)𝑞 .

Proof. Again, we prove existence of such a function by defining a candidate and proving
that it satisfies all the properties. The 𝐿 = ln defined above is invertible. Let 𝐸 be the
inverse function of 𝐿. Property  (i) is immediate.

Property  (ii) follows via the inverse function theorem, in particular via  Lemma 4.4.1 :
𝐿 satisfies all the hypotheses of the lemma, and hence

𝐸′(𝑥) = 1
𝐿′

(
𝐸(𝑥)) = 𝐸(𝑥).

Let us look at property  (iii) . The function 𝐸 is strictly increasing since 𝐸′(𝑥) = 𝐸(𝑥) > 0.
As 𝐸 is the inverse of 𝐿, it must also be bĳective. To find the limits, we use that 𝐸 is strictly
increasing and onto (0,∞). For every 𝑀 > 0, there is an 𝑥0 such that 𝐸(𝑥0) = 𝑀 and
𝐸(𝑥) ≥ 𝑀 for all 𝑥 ≥ 𝑥0. Similarly, for every 𝜖 > 0, there is an 𝑥0 such that 𝐸(𝑥0) = 𝜖 and
𝐸(𝑥) < 𝜖 for all 𝑥 < 𝑥0. Therefore,

lim
𝑛→−∞𝐸(𝑥) = 0, and lim

𝑛→∞𝐸(𝑥) = ∞.
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To prove property  (iv) , we use the corresponding property for the logarithm. Take
𝑥, 𝑦 ∈ ℝ. As 𝐿 is bĳective, find 𝑎 and 𝑏 such that 𝑥 = 𝐿(𝑎) and 𝑦 = 𝐿(𝑏). Then

𝐸(𝑥 + 𝑦) = 𝐸 (
𝐿(𝑎) + 𝐿(𝑏)) = 𝐸 (

𝐿(𝑎𝑏)) = 𝑎𝑏 = 𝐸(𝑥)𝐸(𝑦).

Property  (v) also follows from the corresponding property of 𝐿. Given 𝑥 ∈ ℝ, let 𝑎 be
such that 𝑥 = 𝐿(𝑎) and

𝐸(𝑞𝑥) = 𝐸 (
𝑞𝐿(𝑎)) = 𝐸 (

𝐿(𝑎𝑞)) = 𝑎𝑞 = 𝐸(𝑥)𝑞 .

Uniqueness follows from  (i) and  (ii) . Let 𝐸 and 𝐹 be two functions satisfying  (i) and  (ii) .

𝑑
𝑑𝑥

(
𝐹(𝑥)𝐸(−𝑥)

)
= 𝐹′(𝑥)𝐸(−𝑥) − 𝐸′(−𝑥)𝐹(𝑥) = 𝐹(𝑥)𝐸(−𝑥) − 𝐸(−𝑥)𝐹(𝑥) = 0.

Therefore, by  Proposition 4.2.6 , 𝐹(𝑥)𝐸(−𝑥) = 𝐹(0)𝐸(−0) = 1 for all 𝑥 ∈ ℝ. Next, 1 = 𝐸(0) =
𝐸(𝑥 − 𝑥) = 𝐸(𝑥)𝐸(−𝑥). Then

0 = 1 − 1 = 𝐹(𝑥)𝐸(−𝑥) − 𝐸(𝑥)𝐸(−𝑥) = (
𝐹(𝑥) − 𝐸(𝑥))𝐸(−𝑥).

Finally, 𝐸(−𝑥) ≠ 0 

‗
 for all 𝑥 ∈ ℝ. So 𝐹(𝑥) − 𝐸(𝑥) = 0 for all 𝑥, and we are done. □

Having proved 𝐸 is unique, we define the exponential function (see  Figure 5.7 ) as

exp(𝑥) B 𝐸(𝑥).

−1 0 1

1

2

3

4

Figure 5.7: Plot of 𝑒𝑥 , together with a slope field giving slope 𝑦 at every point (𝑥, 𝑦). The
equation 𝑑

𝑑𝑥 𝑒
𝑥 = 𝑒𝑥 means that 𝑦 = 𝑒𝑥 follows these slopes.

‗𝐸 is a function into (0,∞) after all. However, 𝐸(−𝑥) ≠ 0 also follows from 𝐸(𝑥)𝐸(−𝑥) = 1. Therefore, we
can prove uniqueness of 𝐸 given  (i) and  (ii) , even for functions 𝐸 : ℝ → ℝ.
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If 𝑦 ∈ ℚ and 𝑥 > 0, then

𝑥𝑦 = exp
(
ln(𝑥𝑦)) = exp

(
𝑦 ln(𝑥)) .

We can now make sense of exponentiation 𝑥𝑦 for arbitrary 𝑦 ∈ ℝ; if 𝑥 > 0 and 𝑦 is irrational,
define

𝑥𝑦 B exp
(
𝑦 ln(𝑥)) .

As exp is continuous, then 𝑥𝑦 is a continuous function of 𝑦. Therefore, we would obtain
the same result had we taken a sequence of rational numbers {𝑦𝑛}∞𝑛=1 approaching 𝑦 and
defined 𝑥𝑦 = lim𝑛→∞ 𝑥𝑦𝑛 .

Define the number 𝑒, called Euler’s number or the base of the natural logarithm, as

𝑒 B exp(1).
Let us justify the notation 𝑒𝑥 for exp(𝑥):

𝑒𝑥 = exp
(
𝑥 ln(𝑒)) = exp(𝑥).

The properties of the logarithm and the exponential extend to irrational powers. The
proof is immediate.
Proposition 5.4.3. Let 𝑥, 𝑦 ∈ ℝ.

(i) exp(𝑥𝑦) = (
exp(𝑥)) 𝑦 .

(ii) If 𝑥 > 0, then ln(𝑥𝑦) = 𝑦 ln(𝑥).
Remark 5.4.4. There are other equivalent ways to define the exponential and the logarithm.
A common way is to define 𝐸 as the solution to the differential equation 𝐸′(𝑥) = 𝐸(𝑥),
𝐸(0) = 1. See  Example 6.3.3 , for a sketch of that approach. Yet another approach is to
define the exponential function by power series, see  Example 6.2.14 .
Remark 5.4.5. We proved the uniqueness of the functions 𝐿 and 𝐸 from just the properties
𝐿(1) = 0, 𝐿′(𝑥) = 1/𝑥 and the equivalent condition for the exponential 𝐸′(𝑥) = 𝐸(𝑥), 𝐸(0) = 1.
Existence also follows from just these properties. Alternatively, uniqueness also follows
from the laws of exponents, see the exercises.

5.4.3 Exercises
Exercise 5.4.1: Given a real number 𝑦 and 𝑏 > 0, define 𝑓 : (0,∞) → ℝ and 𝑔 : ℝ → ℝ as 𝑓 (𝑥) B 𝑥𝑦 and
𝑔(𝑥) B 𝑏𝑥 . Show that 𝑓 and 𝑔 are differentiable and find their derivative.

Exercise 5.4.2: Let 𝑏 > 0, 𝑏 ≠ 1 be given.

a) Show that for every 𝑦 > 0, there exists a unique number 𝑥 such that 𝑦 = 𝑏𝑥 . Define the logarithm base
𝑏, log𝑏 : (0,∞) → ℝ, by log𝑏(𝑦) B 𝑥.

b) Show that log𝑏(𝑥) = ln(𝑥)
ln(𝑏) .

c) Prove that if 𝑐 > 0, 𝑐 ≠ 1, then log𝑏(𝑥) =
log𝑐(𝑥)
log𝑐(𝑏) .

d) Prove log𝑏(𝑥𝑦) = log𝑏(𝑥) + log𝑏(𝑦), and log𝑏(𝑥𝑦) = 𝑦 log𝑏(𝑥).
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Exercise 5.4.3 (requires  §4.3 ): Use  Taylor’s theorem to study the remainder term and show that for all
𝑥 ∈ ℝ

𝑒𝑥 =
∞∑
𝑛=0

𝑥𝑛

𝑛! .

Hint: Do not differentiate the series term by term (unless you would prove that it works).

Exercise 5.4.4: Use the geometric sum formula to show (for 𝑡 ≠ −1)

1 − 𝑡 + 𝑡2 − · · · + (−1)𝑛𝑡𝑛 =
1

1 + 𝑡 −
(−1)𝑛+1𝑡𝑛+1

1 + 𝑡 .

Using this fact show

ln(1 + 𝑥) =
∞∑
𝑛=1

(−1)𝑛+1𝑥𝑛

𝑛

for all 𝑥 ∈ (−1, 1] (note that 𝑥 = 1 is included). Finally, find the limit of the alternating harmonic series

∞∑
𝑛=1

(−1)𝑛+1

𝑛
= 1 − 1

2 + 1
3 − 1

4 + · · ·

Exercise 5.4.5: Show
𝑒𝑥 = lim

𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
.

Hint: Take the logarithm.
Note: The expression

(
1 + 𝑥

𝑛

)𝑛 arises in compound interest calculations. It is the amount of money in a bank
account after 1 year if 1 dollar was deposited initially at interest 𝑥 and the interest was compounded 𝑛 times
during the year. The exponential 𝑒𝑥 is the result of continuous compounding.

Exercise 5.4.6:

a) Prove that for 𝑛 ∈ ℕ,
𝑛∑
𝑘=2

1
𝑘
≤ ln(𝑛) ≤

𝑛−1∑
𝑘=1

1
𝑘
.

b) Prove that the limit

𝛾 B lim
𝑛→∞

((
𝑛∑
𝑘=1

1
𝑘

)
− ln(𝑛)

)
exists. This constant is known as the Euler–Mascheroni constant 

‗
 . It is not known if this constant is

rational or not. It is approximately 𝛾 ≈ 0.5772.

Exercise 5.4.7: Show
lim
𝑥→∞

ln(𝑥)
𝑥

= 0.

Exercise 5.4.8: Show that 𝑒𝑥 is convex, in other words, show that if 𝑎 ≤ 𝑥 ≤ 𝑏, then 𝑒𝑥 ≤ 𝑒 𝑎 𝑏−𝑥𝑏−𝑎 + 𝑒𝑏 𝑥−𝑎𝑏−𝑎 .
‗Named for the Swiss mathematician  Leonhard Paul Euler (1707–1783) and the Italian mathematician

 Lorenzo Mascheroni (1750–1800).

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Lorenzo_Mascheroni
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Exercise 5.4.9: Using the logarithm find
lim
𝑛→∞ 𝑛

1/𝑛 .

Exercise 5.4.10: Show that 𝐸(𝑥) = 𝑒𝑥 is the unique continuous function such that 𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦)
and 𝐸(1) = 𝑒. Similarly, prove that 𝐿(𝑥) = ln(𝑥) is the unique continuous function defined on positive 𝑥
such that 𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝐿(𝑦) and 𝐿(𝑒) = 1.

Exercise 5.4.11 (requires  §4.3 ): Since (𝑒𝑥)′ = 𝑒𝑥 , it is easy to see that 𝑒𝑥 is infinitely differentiable (has
derivatives of all orders). Define the function 𝑓 : ℝ → ℝ.

𝑓 (𝑥) B
{
𝑒−1/𝑥 if 𝑥 > 0,
0 if 𝑥 ≤ 0.

a) Prove that for every 𝑚 ∈ ℕ,

lim
𝑥→0+

𝑒−1/𝑥

𝑥𝑚
= 0.

b) Prove that 𝑓 is infinitely differentiable.

c) Compute the Taylor series for 𝑓 at the origin, that is,

∞∑
𝑘=0

𝑓 (𝑘)(0)
𝑘! 𝑥𝑘 .

Show that it converges, but show that it does not converge to 𝑓 (𝑥) for any given 𝑥 > 0.
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5.5 Improper integrals
Note: 2–3 lectures (optional section, can safely be skipped, requires the optional  §3.5 )

Often it is necessary to integrate over the entire real line, or an unbounded interval of
the form [𝑎,∞) or (−∞, 𝑏]. We may also wish to integrate unbounded functions defined
on an open bounded interval (𝑎, 𝑏). For such intervals or functions, the Riemann integral
is not defined, but we will write down the integral anyway in the spirit of  Lemma 5.2.8 .
These integrals are called improper integrals and are limits of integrals rather than integrals
themselves.

Definition 5.5.1. Suppose 𝑓 : [𝑎, 𝑏) → ℝ is a function (not necessarily bounded) that is
Riemann integrable on [𝑎, 𝑐] for all 𝑐 < 𝑏. We define∫ 𝑏

𝑎
𝑓 B lim

𝑐→𝑏−

∫ 𝑐

𝑎
𝑓

if the limit exists.
Suppose 𝑓 : [𝑎,∞) → ℝ is a function such that 𝑓 is Riemann integrable on [𝑎, 𝑐] for all

𝑐 < ∞. We define ∫ ∞

𝑎
𝑓 B lim

𝑐→∞

∫ 𝑐

𝑎
𝑓

if the limit exists.
If the limit exists, we say the improper integral converges. If the limit does not exist, we

say the improper integral diverges.
We similarly define improper integrals for the left-hand endpoint, we leave this to the

reader.

For a finite endpoint 𝑏, if 𝑓 is bounded, then  Lemma 5.2.8 says that we defined nothing
new. What is new is that we can apply this definition to unbounded functions. The
following set of examples is so useful that we state it as a proposition.

Proposition 5.5.2 (𝑝-test for integrals). The improper integral∫ ∞

1

1
𝑥𝑝
𝑑𝑥

converges to 1
𝑝−1 if 𝑝 > 1 and diverges if 0 < 𝑝 ≤ 1.

The improper integral ∫ 1

0

1
𝑥𝑝
𝑑𝑥

converges to 1
1−𝑝 if 0 < 𝑝 < 1 and diverges if 𝑝 ≥ 1.

Proof. The proof follows by application of the  fundamental theorem of calculus . Let us do
the proof for 𝑝 > 1 for the infinite right endpoint and leave the rest to the reader. Hint:
You should handle 𝑝 = 1 separately.
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Suppose 𝑝 > 1. Then using the fundamental theorem,∫ 𝑏

1

1
𝑥𝑝
𝑑𝑥 =

∫ 𝑏

1
𝑥−𝑝 𝑑𝑥 =

𝑏−𝑝+1

−𝑝 + 1 − 1−𝑝+1

−𝑝 + 1 =
−1

(𝑝 − 1)𝑏𝑝−1 + 1
𝑝 − 1 .

As 𝑝 > 1, then 𝑝 − 1 > 0. Take the limit as 𝑏 → ∞ to obtain that 1
𝑏𝑝−1 goes to 0. The result

follows. □

We state the following proposition on “tails” for just one type of improper integral,
though the proof is straightforward and the same for other types of improper integrals.

Proposition 5.5.3. Let 𝑓 : [𝑎,∞) → ℝ be a function that is Riemann integrable on [𝑎, 𝑏] for all
𝑏 > 𝑎. For every 𝑏 > 𝑎, the integral

∫ ∞
𝑏 𝑓 converges if and only if

∫ ∞
𝑎 𝑓 converges, in which case∫ ∞

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ ∞

𝑏
𝑓 .

Proof. Let 𝑐 > 𝑏. Then ∫ 𝑐

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑐

𝑏
𝑓 .

Taking the limit 𝑐 → ∞ finishes the proof. □

Nonnegative functions are easier to work with as the following proposition demon-
strates. The exercises will show that this proposition holds only for nonnegative functions.
Analogues of this proposition exist for all the other types of improper limits and are left to
the student.

Proposition 5.5.4. Suppose 𝑓 : [𝑎,∞) → ℝ is nonnegative ( 𝑓 (𝑥) ≥ 0 for all 𝑥) and 𝑓 is Riemann
integrable on [𝑎, 𝑏] for all 𝑏 > 𝑎.

(i) ∫ ∞

𝑎
𝑓 = sup

{∫ 𝑥

𝑎
𝑓 : 𝑥 ≥ 𝑎

}
.

(ii) Suppose {𝑥𝑛}∞𝑛=1 is a sequence with lim𝑛→∞ 𝑥𝑛 = ∞. Then
∫ ∞
𝑎 𝑓 converges if and only if

lim𝑛→∞
∫ 𝑥𝑛
𝑎 𝑓 exists, in which case∫ ∞

𝑎
𝑓 = lim

𝑛→∞

∫ 𝑥𝑛

𝑎
𝑓 .

In the first item we allow for the value of ∞ in the supremum indicating that the integral
diverges to infinity.

Proof. We start with the first item. As 𝑓 is nonnegative,
∫ 𝑥
𝑎 𝑓 is increasing as a function of

𝑥. If the supremum is infinite, then for every 𝑀 ∈ ℝ we find 𝑁 such that
∫ 𝑁
𝑎 𝑓 ≥ 𝑀. As∫ 𝑥

𝑎 𝑓 is increasing,
∫ 𝑥
𝑎 𝑓 ≥ 𝑀 for all 𝑥 ≥ 𝑁 . So

∫ ∞
𝑎 𝑓 diverges to infinity.
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Next suppose the supremum is finite, say 𝐴 B sup
{∫ 𝑥
𝑎 𝑓 : 𝑥 ≥ 𝑎

}
. For every 𝜖 > 0, we

find an 𝑁 such that 𝐴 −
∫ 𝑁
𝑎 𝑓 < 𝜖. As

∫ 𝑥
𝑎 𝑓 is increasing, then 𝐴 −

∫ 𝑥
𝑎 𝑓 < 𝜖 for all 𝑥 ≥ 𝑁

and hence
∫ ∞
𝑎 𝑓 converges to 𝐴.

Let us look at the second item. If
∫ ∞
𝑎 𝑓 converges, then every sequence {𝑥𝑛}∞𝑛=1 going

to infinity works. The trick is proving the other direction. Suppose {𝑥𝑛}∞𝑛=1 is such that
lim𝑛→∞ 𝑥𝑛 = ∞ and

lim
𝑛→∞

∫ 𝑥𝑛

𝑎
𝑓 = 𝐴

converges. Given 𝜖 > 0, pick 𝑁 such that for all 𝑛 ≥ 𝑁 , we have 𝐴 − 𝜖 <
∫ 𝑥𝑛
𝑎 𝑓 < 𝐴 + 𝜖.

Because
∫ 𝑥
𝑎 𝑓 is increasing as a function of 𝑥, we have that for all 𝑥 ≥ 𝑥𝑁

𝐴 − 𝜖 <

∫ 𝑥𝑁

𝑎
𝑓 ≤

∫ 𝑥

𝑎
𝑓 .

As {𝑥𝑛}∞𝑛=1 goes to ∞, then for any given 𝑥, there is an 𝑥𝑚 such that 𝑚 ≥ 𝑁 and 𝑥 ≤ 𝑥𝑚 .
Then ∫ 𝑥

𝑎
𝑓 ≤

∫ 𝑥𝑚

𝑎
𝑓 < 𝐴 + 𝜖.

In particular, for all 𝑥 ≥ 𝑥𝑁 , we have
���∫ 𝑥
𝑎 𝑓 − 𝐴

��� < 𝜖. □

Proposition 5.5.5 (Comparison test for improper integrals). Let 𝑓 : [𝑎,∞) → ℝ and
𝑔 : [𝑎,∞) → ℝ be functions that are Riemann integrable on [𝑎, 𝑏] for all 𝑏 > 𝑎. Suppose
that for all 𝑥 ≥ 𝑎, �� 𝑓 (𝑥)�� ≤ 𝑔(𝑥).

(i) If
∫ ∞
𝑎 𝑔 converges, then

∫ ∞
𝑎 𝑓 converges, and in this case

���∫ ∞
𝑎 𝑓

��� ≤ ∫ ∞
𝑎 𝑔.

(ii) If
∫ ∞
𝑎 𝑓 diverges, then

∫ ∞
𝑎 𝑔 diverges.

Proof. We start with the first item. For every 𝑏 and 𝑐, such that 𝑎 ≤ 𝑏 ≤ 𝑐, we have
−𝑔(𝑥) ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥), and so ∫ 𝑐

𝑏
−𝑔 ≤

∫ 𝑐

𝑏
𝑓 ≤

∫ 𝑐

𝑏
𝑔.

In other words,
���∫ 𝑐
𝑏 𝑓

��� ≤ ∫ 𝑐
𝑏 𝑔.

Let 𝜖 > 0 be given. Because of  Proposition 5.5.3 ,∫ ∞

𝑎
𝑔 =

∫ 𝑏

𝑎
𝑔 +

∫ ∞

𝑏
𝑔.

As
∫ 𝑏
𝑎 𝑔 goes to

∫ ∞
𝑎 𝑔 as 𝑏 goes to infinity,

∫ ∞
𝑏 𝑔 goes to 0 as 𝑏 goes to infinity. Choose 𝐵

such that ∫ ∞

𝐵
𝑔 < 𝜖.
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As 𝑔 is nonnegative, if 𝐵 ≤ 𝑏 < 𝑐, then
∫ 𝑐
𝑏 𝑔 < 𝜖 as well. Let {𝑥𝑛}∞𝑛=1 be a sequence going

to infinity. Let 𝑀 be such that 𝑥𝑛 ≥ 𝐵 for all 𝑛 ≥ 𝑀. Take 𝑛, 𝑚 ≥ 𝑀, with 𝑥𝑛 ≤ 𝑥𝑚 ,����∫ 𝑥𝑚

𝑎
𝑓 −

∫ 𝑥𝑛

𝑎
𝑓

���� = ����∫ 𝑥𝑚

𝑥𝑛
𝑓

���� ≤ ∫ 𝑥𝑚

𝑥𝑛
𝑔 < 𝜖.

Therefore, the sequence
{∫ 𝑥𝑛
𝑎 𝑓

}∞
𝑛=1 is Cauchy and hence converges.

We need to show that the limit is unique. Suppose {𝑥𝑛}∞𝑛=1 is a sequence converging
to infinity such that

{∫ 𝑥𝑛
𝑎 𝑓

}∞
𝑛=1 converges to 𝐿1, and {𝑦𝑛}∞𝑛=1 is a sequence converging

to infinity such that
{∫ 𝑦𝑛
𝑎 𝑓

}∞
𝑛=1 converges to 𝐿2. Then there must be some 𝑛 such that��∫ 𝑥𝑛

𝑎 𝑓 − 𝐿1
�� < 𝜖 and

��∫ 𝑦𝑛
𝑎 𝑓 − 𝐿2

�� < 𝜖. We can also suppose 𝑥𝑛 ≥ 𝐵 and 𝑦𝑛 ≥ 𝐵. Then

|𝐿1 − 𝐿2| ≤
����𝐿1 −

∫ 𝑥𝑛

𝑎
𝑓

���� + ����∫ 𝑥𝑛

𝑎
𝑓 −

∫ 𝑦𝑛

𝑎
𝑓

���� + ����∫ 𝑦𝑛

𝑎
𝑓 − 𝐿2

���� < 𝜖 +
����∫ 𝑦𝑛

𝑥𝑛
𝑓

���� + 𝜖 < 3𝜖.

As 𝜖 > 0 was arbitrary, 𝐿1 = 𝐿2, and hence
∫ ∞
𝑎 𝑓 converges. Above we have shown that���∫ 𝑐

𝑎 𝑓
��� ≤ ∫ 𝑐

𝑎 𝑔 for all 𝑐 > 𝑎. By taking the limit 𝑐 → ∞, the first item is proved.
The second item is simply a contrapositive of the first item. □

Example 5.5.6: The improper integral∫ ∞

0

sin(𝑥2)(𝑥 + 2)
𝑥3 + 1

𝑑𝑥

converges.
Proof: Observe we simply need to show that the integral converges when going from 1

to infinity. For 𝑥 ≥ 1 we obtain����sin(𝑥2)(𝑥 + 2)
𝑥3 + 1

���� ≤ 𝑥 + 2
𝑥3 + 1

≤ 𝑥 + 2
𝑥3 ≤ 𝑥 + 2𝑥

𝑥3 ≤ 3
𝑥2 .

Then ∫ ∞

1

3
𝑥2 𝑑𝑥 = 3

∫ ∞

1

1
𝑥2 𝑑𝑥 = 3.

So using the comparison test and the tail test, the original integral converges.

Example 5.5.7: You should be careful when doing formal manipulations with improper
integrals. The integral ∫ ∞

2

2
𝑥2 − 1

𝑑𝑥

converges via the comparison test using 1/𝑥2 again. However, if you succumb to the
temptation to write

2
𝑥2 − 1

=
1

𝑥 − 1 − 1
𝑥 + 1
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and try to integrate each part separately, you will not succeed. It is not true that you can
split the improper integral in two; you cannot split the limit.∫ ∞

2

2
𝑥2 − 1

𝑑𝑥 = lim
𝑏→∞

∫ 𝑏

2

2
𝑥2 − 1

𝑑𝑥

= lim
𝑏→∞

(∫ 𝑏

2

1
𝑥 − 1 𝑑𝑥 −

∫ 𝑏

2

1
𝑥 + 1 𝑑𝑥

)
≠

∫ ∞

2

1
𝑥 − 1 𝑑𝑥 −

∫ ∞

2

1
𝑥 + 1 𝑑𝑥.

The last line in the computation does not even make sense. Both of the integrals diverge to
infinity, since we can apply the comparison test appropriately with 1/𝑥. We get ∞−∞.

Now suppose we need to take limits at both endpoints.

Definition 5.5.8. Suppose 𝑓 : (𝑎, 𝑏) → ℝ is a function that is Riemann integrable on [𝑐, 𝑑]
for all 𝑐, 𝑑 such that 𝑎 < 𝑐 < 𝑑 < 𝑏, then we define∫ 𝑏

𝑎
𝑓 B lim

𝑐→𝑎+
lim
𝑑→𝑏−

∫ 𝑑

𝑐
𝑓

if the limits exist.
Suppose 𝑓 : ℝ → ℝ is a function such that 𝑓 is Riemann integrable on all bounded

intervals [𝑎, 𝑏]. Then we define∫ ∞

−∞
𝑓 B lim

𝑐→−∞ lim
𝑑→∞

∫ 𝑑

𝑐
𝑓

if the limits exist.
We similarly define improper integrals with one infinite and one finite improper

endpoint, we leave this to the reader.

One ought to always be careful about double limits. The definition given above says
that we first take the limit as 𝑑 goes to 𝑏 or ∞ for a fixed 𝑐, and then we take the limit in 𝑐.
We will have to prove that in this case it does not matter which limit we compute first.

Example 5.5.9:∫ ∞

−∞
1

1 + 𝑥2 𝑑𝑥 = lim
𝑎→−∞ lim

𝑏→∞

∫ 𝑏

𝑎

1
1 + 𝑥2 𝑑𝑥 = lim

𝑎→−∞ lim
𝑏→∞

(
arctan(𝑏) − arctan(𝑎)) = 𝜋.

In the definition, the order of the limits can always be switched if they exist. Let us
state and prove this fact only for the limits at infinity.
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Proposition 5.5.10. Suppose 𝑓 : ℝ → ℝ is integrable on every bounded interval [𝑎, 𝑏]. Then

lim
𝑎→−∞ lim

𝑏→∞

∫ 𝑏

𝑎
𝑓 converges if and only if lim

𝑏→∞
lim
𝑎→−∞

∫ 𝑏

𝑎
𝑓 converges,

in which case the two expressions are equal. If either of the expressions converges, then the improper
integral converges and

lim
𝑎→∞

∫ 𝑎

−𝑎
𝑓 =

∫ ∞

−∞
𝑓 .

Proof. Without loss of generality, assume 𝑎 < 0 and 𝑏 > 0. Suppose the first expression
converges. Then

lim
𝑎→−∞ lim

𝑏→∞

∫ 𝑏

𝑎
𝑓 = lim

𝑎→−∞ lim
𝑏→∞

(∫ 0

𝑎
𝑓 +

∫ 𝑏

0
𝑓

)
=

(
lim
𝑎→−∞

∫ 0

𝑎
𝑓

)
+

(
lim
𝑏→∞

∫ 𝑏

0
𝑓

)
= lim
𝑏→∞

((
lim
𝑎→−∞

∫ 0

𝑎
𝑓

)
+

∫ 𝑏

0
𝑓

)
= lim
𝑏→∞

lim
𝑎→−∞

(∫ 0

𝑎
𝑓 +

∫ 𝑏

0
𝑓

)
.

Similar computation shows the other direction. Therefore, if either expression converges,
then the improper integral converges and∫ ∞

−∞
𝑓 = lim

𝑎→−∞ lim
𝑏→∞

∫ 𝑏

𝑎
𝑓 =

(
lim
𝑎→−∞

∫ 0

𝑎
𝑓

)
+

(
lim
𝑏→∞

∫ 𝑏

0
𝑓

)
=

(
lim
𝑎→∞

∫ 0

−𝑎
𝑓

)
+

(
lim
𝑎→∞

∫ 𝑎

0
𝑓

)
= lim
𝑎→∞

(∫ 0

−𝑎
𝑓 +

∫ 𝑎

0
𝑓

)
= lim
𝑎→∞

∫ 𝑎

−𝑎
𝑓 .

□

Example 5.5.11: On the other hand, you must be careful to take the limits independently
before you know convergence. Let 𝑓 (𝑥) = 𝑥

|𝑥| for 𝑥 ≠ 0 and 𝑓 (0) = 0. If 𝑎 < 0 and 𝑏 > 0,
then ∫ 𝑏

𝑎
𝑓 =

∫ 0

𝑎
𝑓 +

∫ 𝑏

0
𝑓 = 𝑎 + 𝑏.

For every fixed 𝑎 < 0, the limit as 𝑏 → ∞ is infinite. So even the first limit does not exist,
and the improper integral

∫ ∞
−∞ 𝑓 does not converge. On the other hand, if 𝑎 > 0, then∫ 𝑎

−𝑎
𝑓 = (−𝑎) + 𝑎 = 0.

Therefore,

lim
𝑎→∞

∫ 𝑎

−𝑎
𝑓 = 0.
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Example 5.5.12: An example to keep in mind for improper integrals is the so-called sinc
function 

‗
 . This function comes up quite often in both pure and applied mathematics. Define

sinc(𝑥) B
{

sin(𝑥)
𝑥 if 𝑥 ≠ 0,

1 if 𝑥 = 0.

−4� −2� 4�2�

1
2

1

− 1
4

Figure 5.8: The sinc function.

It is not difficult to show that the sinc function is continuous at zero, but that is not
important right now. What is important is that∫ ∞

−∞
sinc(𝑥) 𝑑𝑥 = 𝜋, while

∫ ∞

−∞
|sinc(𝑥)| 𝑑𝑥 = ∞.

The integral of the sinc function is a continuous analogue of the alternating harmonic
series

∑∞
𝑛=1 (−1)𝑛/𝑛, while the absolute value is like the regular harmonic series

∑∞
𝑛=1 1/𝑛.

In particular, the fact that the integral converges must be done directly rather than using
comparison test.

We will not prove the first statement exactly. Let us simply prove that the integral of the
sinc function converges, but we will not worry about the exact limit. Because sin(−𝑥)

−𝑥 = sin(𝑥)
𝑥 ,

it is enough to show that ∫ ∞

2𝜋

sin(𝑥)
𝑥

𝑑𝑥

converges. We also avoid 𝑥 = 0 this way to make our life simpler.
For every 𝑛 ∈ ℕ, we have that for 𝑥 ∈ [𝜋2𝑛,𝜋(2𝑛 + 1)],

sin(𝑥)
𝜋(2𝑛 + 1) ≤

sin(𝑥)
𝑥

≤ sin(𝑥)
𝜋2𝑛 ,

‗Shortened from Latin: sinus cardinalis
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as sin(𝑥) ≥ 0. For 𝑥 ∈ [𝜋(2𝑛 + 1),𝜋(2𝑛 + 2)],
sin(𝑥)

𝜋(2𝑛 + 1) ≤
sin(𝑥)
𝑥

≤ sin(𝑥)
𝜋(2𝑛 + 2) ,

as sin(𝑥) ≤ 0.
Via the fundamental theorem of calculus,

2
𝜋(2𝑛 + 1) =

∫ 𝜋(2𝑛+1)

𝜋2𝑛

sin(𝑥)
𝜋(2𝑛 + 1) 𝑑𝑥 ≤

∫ 𝜋(2𝑛+1)

𝜋2𝑛

sin(𝑥)
𝑥

𝑑𝑥 ≤
∫ 𝜋(2𝑛+1)

𝜋2𝑛

sin(𝑥)
𝜋2𝑛 𝑑𝑥 =

1
𝜋𝑛

.

Similarly,
−2

𝜋(2𝑛 + 1) ≤
∫ 𝜋(2𝑛+2)

𝜋(2𝑛+1)
sin(𝑥)
𝑥

𝑑𝑥 ≤ −1
𝜋(𝑛 + 1) .

Adding the two together we find

0 =
2

𝜋(2𝑛 + 1) +
−2

𝜋(2𝑛 + 1) ≤
∫ 2𝜋(𝑛+1)

2𝜋𝑛

sin(𝑥)
𝑥

𝑑𝑥 ≤ 1
𝜋𝑛

+ −1
𝜋(𝑛 + 1) =

1
𝜋𝑛(𝑛 + 1) .

See  Figure 5.9 .

sin(G)
G

sin(G)
�(2=+1)

sin(G)
�2=

sin(G)
G

sin(G)
�(2=+1)

sin(G)
�(2=+2)

�2=
�(2= + 1) �(2= + 2)

+

−

Figure 5.9: Bound of
∫ 2𝜋(𝑛+1)

2𝜋𝑛
sin(𝑥)
𝑥 𝑑𝑥 using the shaded integral (signed area 1

𝜋𝑛 + −1
𝜋(𝑛+1) ).

For 𝑘 ∈ ℕ, ∫ 2𝑘𝜋

2𝜋

sin(𝑥)
𝑥

𝑑𝑥 =
𝑘−1∑
𝑛=1

∫ 2𝜋(𝑛+1)

2𝜋𝑛

sin(𝑥)
𝑥

𝑑𝑥 ≤
𝑘−1∑
𝑛=1

1
𝜋𝑛(𝑛 + 1) .

We find the partial sums of a series with positive terms. The series converges as
∑∞
𝑛=1

1
𝜋𝑛(𝑛+1)

is a convergent series. Thus as a sequence,

lim
𝑘→∞

∫ 2𝑘𝜋

2𝜋

sin(𝑥)
𝑥

𝑑𝑥 = 𝐿 ≤
∞∑
𝑛=1

1
𝜋𝑛(𝑛 + 1) < ∞.
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Let 𝑀 > 2𝜋 be arbitrary, and let 𝑘 ∈ ℕ be the largest integer such that 2𝑘𝜋 ≤ 𝑀. For
𝑥 ∈ [2𝑘𝜋, 𝑀], we have −1

2𝑘𝜋 ≤ sin(𝑥)
𝑥 ≤ 1

2𝑘𝜋 , and so����∫ 𝑀

2𝑘𝜋

sin(𝑥)
𝑥

𝑑𝑥

���� ≤ 𝑀 − 2𝑘𝜋
2𝑘𝜋 ≤ 1

𝑘
.

As 𝑘 is the largest 𝑘 such that 2𝑘𝜋 ≤ 𝑀, then as 𝑀 ∈ ℝ goes to infinity, so does 𝑘 ∈ ℕ.
Then ∫ 𝑀

2𝜋

sin(𝑥)
𝑥

𝑑𝑥 =
∫ 2𝑘𝜋

2𝜋

sin(𝑥)
𝑥

𝑑𝑥 +
∫ 𝑀

2𝑘𝜋

sin(𝑥)
𝑥

𝑑𝑥.

As 𝑀 goes to infinity, the first term on the right-hand side goes to 𝐿, and the second term
on the right-hand side goes to zero. Hence∫ ∞

2𝜋

sin(𝑥)
𝑥

𝑑𝑥 = 𝐿.

The double-sided integral of sinc also exists as noted above. We leave the other
statement—that the integral of the absolute value of the sinc function diverges—as an
exercise.

5.5.1 Integral test for series
The fundamental theorem of calculus can be used in proving a series is summable and to
estimate its sum.

Proposition 5.5.13 (Integral test). Suppose 𝑓 : [𝑘,∞) → ℝ is a decreasing nonnegative function
where 𝑘 ∈ ℤ. Then

∞∑
𝑛=𝑘

𝑓 (𝑛) converges if and only if
∫ ∞

𝑘
𝑓 converges.

In this case ∫ ∞

𝑘
𝑓 ≤

∞∑
𝑛=𝑘

𝑓 (𝑛) ≤ 𝑓 (𝑘) +
∫ ∞

𝑘
𝑓 .

See  Figure 5.10 , for an illustration with 𝑘 = 1. By  Proposition 5.2.11 , 𝑓 is integrable on
every interval [𝑘, 𝑏] for all 𝑏 > 𝑘, so the statement of the theorem makes sense without
additional hypotheses of integrability.

Proof. Let ℓ , 𝑚 ∈ ℤ be such that 𝑚 > ℓ ≥ 𝑘. Because 𝑓 is decreasing, we have
∫ 𝑛+1
𝑛 𝑓 ≤

𝑓 (𝑛) ≤
∫ 𝑛
𝑛−1 𝑓 . Therefore,∫ 𝑚

ℓ
𝑓 =

𝑚−1∑
𝑛=ℓ

∫ 𝑛+1

𝑛
𝑓 ≤

𝑚−1∑
𝑛=ℓ

𝑓 (𝑛) ≤ 𝑓 (ℓ ) +
𝑚−1∑
𝑛=ℓ+1

∫ 𝑛

𝑛−1
𝑓 ≤ 𝑓 (ℓ ) +

∫ 𝑚−1

ℓ
𝑓 . (5.3)
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0 1 2 3 4 5 6 7 8 9 10
· · ·

Figure 5.10: The area under the curve,
∫ ∞

1 𝑓 , is bounded below by the area of the shaded
rectangles, 𝑓 (2) + 𝑓 (3) + 𝑓 (4) + · · · , and bounded above by the area entire rectangles, 𝑓 (1) +
𝑓 (2) + 𝑓 (3) + · · · .

Suppose first that
∫ ∞
𝑘 𝑓 converges and let 𝜖 > 0 be given. As before, since 𝑓 is positive,

then there exists an 𝐿 ∈ ℕ such that if ℓ ≥ 𝐿, then
∫ 𝑚
ℓ 𝑓 < 𝜖/2 for all 𝑚 ≥ ℓ . The function 𝑓

must decrease to zero (why?), so make 𝐿 large enough so that for ℓ ≥ 𝐿, we have 𝑓 (ℓ ) < 𝜖/2.
Thus, for 𝑚 > ℓ ≥ 𝐿, we have via ( 5.3 ),

𝑚∑
𝑛=ℓ

𝑓 (𝑛) ≤ 𝑓 (ℓ ) +
∫ 𝑚

ℓ
𝑓 < 𝜖/2 + 𝜖/2 = 𝜖.

The series is therefore Cauchy and thus converges. The estimate in the proposition is
obtained by letting 𝑚 go to infinity in ( 5.3 ) with ℓ = 𝑘.

Conversely, suppose
∫ ∞
𝑘 𝑓 diverges. As 𝑓 is positive, then by  Proposition 5.5.4 , the

sequence {
∫ 𝑚
𝑘 𝑓 }∞𝑚=𝑘 diverges to infinity. Using ( 5.3 ) with ℓ = 𝑘, we find∫ 𝑚

𝑘
𝑓 ≤

𝑚−1∑
𝑛=𝑘

𝑓 (𝑛).

As the left-hand side goes to infinity as 𝑚 → ∞, so does the right-hand side. □

Example 5.5.14: The integral test can be used not only to show that a series converges, but
to estimate its sum to arbitrary precision. Let us show

∑∞
𝑛=1

1
𝑛2 exists and estimate its sum

to within 0.01. As this series is the 𝑝-series for 𝑝 = 2, we already proved it converges (let us
pretend we do not know that), but we only roughly estimated its sum.

The fundamental theorem of calculus says that for all 𝑘 ∈ ℕ,∫ ∞

𝑘

1
𝑥2 𝑑𝑥 =

1
𝑘
.

In particular, the series must converge. But we also have

1
𝑘
=

∫ ∞

𝑘

1
𝑥2 𝑑𝑥 ≤

∞∑
𝑛=𝑘

1
𝑛2 ≤ 1

𝑘2 +
∫ ∞

𝑘

1
𝑥2 𝑑𝑥 =

1
𝑘2 + 1

𝑘
.
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Adding the partial sum up to 𝑘 − 1 we get

1
𝑘
+

𝑘−1∑
𝑛=1

1
𝑛2 ≤

∞∑
𝑛=1

1
𝑛2 ≤ 1

𝑘2 + 1
𝑘
+

𝑘−1∑
𝑛=1

1
𝑛2 .

In other words, 1/𝑘 + ∑𝑘−1
𝑛=1 1/𝑛2 is an estimate for the sum to within 1/𝑘2. Therefore, if we

wish to find the sum to within 0.01, we note 1/102 = 0.01. We obtain

1.6397 . . . ≈ 1
10 +

9∑
𝑛=1

1
𝑛2 ≤

∞∑
𝑛=1

1
𝑛2 ≤ 1

100 + 1
10 +

9∑
𝑛=1

1
𝑛2 ≈ 1.6497 . . . .

The actual sum is 𝜋2/6 ≈ 1.6449 . . ..

5.5.2 Exercises
Exercise 5.5.1: Finish the proof of  Proposition 5.5.2 .

Exercise 5.5.2: Find out for which 𝑎 ∈ ℝ does
∑∞
𝑛=1 𝑒

𝑎𝑛 converge. When the series converges, find an upper
bound for the sum.

Exercise 5.5.3:

a) Estimate
∑∞
𝑛=1

1
𝑛(𝑛+1) correct to within 0.01 using the integral test.

b) Compute the limit of the series exactly and compare. Hint: The sum telescopes.

Exercise 5.5.4: Prove ∫ ∞

−∞
|sinc(𝑥)| 𝑑𝑥 = ∞.

Hint: Again, it is enough to show this on just one side.

Exercise 5.5.5: Can you interpret ∫ 1

−1

1√
|𝑥|

𝑑𝑥

as an improper integral? If so, compute its value.

Exercise 5.5.6: Take 𝑓 : [0,∞) → ℝ, Riemann integrable on every interval [0, 𝑏], and such that there exist
𝑀, 𝑎, and 𝑇, such that

�� 𝑓 (𝑡)�� ≤ 𝑀𝑒 𝑎𝑡 for all 𝑡 ≥ 𝑇. Show that the Laplace transform of 𝑓 exists. That is,
for every 𝑠 > 𝑎 the following integral converges:

𝐹(𝑠) B
∫ ∞

0
𝑓 (𝑡)𝑒−𝑠𝑡 𝑑𝑡.

Exercise 5.5.7: Let 𝑓 : ℝ → ℝ be a Riemann integrable function on every interval [𝑎, 𝑏], and such that∫ ∞
−∞

�� 𝑓 (𝑥)�� 𝑑𝑥 < ∞. Show that the Fourier sine and cosine transforms exist. That is, for every 𝜔 ≥ 0 the
following integrals converge

𝐹𝑠(𝜔) B 1
𝜋

∫ ∞

−∞
𝑓 (𝑡) sin(𝜔𝑡) 𝑑𝑡, 𝐹𝑐(𝜔) B 1

𝜋

∫ ∞

−∞
𝑓 (𝑡) cos(𝜔𝑡) 𝑑𝑡.

Furthermore, show that 𝐹𝑠 and 𝐹𝑐 are bounded functions.
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Exercise 5.5.8: Suppose 𝑓 : [0,∞) → ℝ is Riemann integrable on every interval [0, 𝑏]. Show that
∫ ∞

0 𝑓

converges if and only if for every 𝜖 > 0 there exists an 𝑀 such that if 𝑀 ≤ 𝑎 < 𝑏, then
��∫ 𝑏
𝑎 𝑓

�� < 𝜖.

Exercise 5.5.9: Suppose 𝑓 : [0,∞) → ℝ is nonnegative and decreasing. Prove:

a) If
∫ ∞

0 𝑓 < ∞, then lim
𝑥→∞ 𝑓 (𝑥) = 0.

b) The converse does not hold.

Exercise 5.5.10: Find an example of an unbounded continuous function 𝑓 : [0,∞) → ℝ that is nonnegative
and such that

∫ ∞
0 𝑓 < ∞. Note that lim𝑥→∞ 𝑓 (𝑥) will not exist; compare previous exercise. Hint: On each

interval [𝑘, 𝑘 + 1], 𝑘 ∈ ℕ, define a function whose integral over this interval is less than say 2−𝑘 .

Exercise 5.5.11 (More challenging): Find an example of a function 𝑓 : [0,∞) → ℝ integrable on all
intervals such that lim𝑛→∞

∫ 𝑛
0 𝑓 converges as a limit of a sequence (so 𝑛 ∈ ℕ), but such that

∫ ∞
0 𝑓 does not

exist. Hint: For all 𝑛 ∈ ℕ, divide [𝑛, 𝑛 + 1] into two halves. On one half make the function negative, on the
other make the function positive.

Exercise 5.5.12: Suppose 𝑓 : [1,∞) → ℝ is such that 𝑔(𝑥) B 𝑥2 𝑓 (𝑥) is a bounded function. Prove that∫ ∞
1 𝑓 converges.

It is sometimes desirable to assign a value to integrals that normally cannot be interpreted even
as improper integrals, e.g.

∫ 1
−1

1/𝑥 𝑑𝑥. Suppose 𝑓 : [𝑎, 𝑏] → ℝ is a function and 𝑎 < 𝑐 < 𝑏, where 𝑓 is
Riemann integrable on the intervals [𝑎, 𝑐 − 𝜖] and [𝑐 + 𝜖, 𝑏] for all 𝜖 > 0. Define the Cauchy principal
value of

∫ 𝑏
𝑎 𝑓 as

𝑝.𝑣.
∫ 𝑏

𝑎
𝑓 B lim

𝜖→0+

(∫ 𝑐−𝜖

𝑎
𝑓 +

∫ 𝑏

𝑐+𝜖
𝑓

)
,

if the limit exists.

Exercise 5.5.13:

a) Compute 𝑝.𝑣.
∫ 1
−1

1/𝑥 𝑑𝑥.

b) Compute lim𝜖→0+(
∫ −𝜖
−1

1/𝑥 𝑑𝑥 +
∫ 1

2𝜖
1/𝑥 𝑑𝑥) and show it is not equal to the principal value.

c) Show that if 𝑓 is integrable on [𝑎, 𝑏], then 𝑝.𝑣.
∫ 𝑏
𝑎 𝑓 =

∫ 𝑏
𝑎 𝑓 (for an arbitrary 𝑐 ∈ (𝑎, 𝑏)).

d) Suppose 𝑓 : [−1, 1] → ℝ is an odd function ( 𝑓 (−𝑥) = − 𝑓 (𝑥)) that is integrable on [−1,−𝜖] and [𝜖, 1]
for all 𝜖 > 0. Prove that 𝑝.𝑣.

∫ 1
−1 𝑓 = 0

e) Suppose 𝑓 : [−1, 1] → ℝ is continuous and differentiable at 0. Show that 𝑝.𝑣.
∫ 1
−1

𝑓 (𝑥)
𝑥 𝑑𝑥 exists.

Exercise 5.5.14: Let 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ be continuous functions, where 𝑔(𝑥) = 0 for all 𝑥 ∉ [𝑎, 𝑏]
for some interval [𝑎, 𝑏].
a) Show that the convolution

(𝑔 ∗ 𝑓 )(𝑥) B
∫ ∞

−∞
𝑓 (𝑡)𝑔(𝑥 − 𝑡) 𝑑𝑡

is well-defined for all 𝑥 ∈ ℝ.

b) Suppose
∫ ∞
−∞

�� 𝑓 (𝑥)�� 𝑑𝑥 < ∞. Prove that

lim
𝑥→−∞(𝑔 ∗ 𝑓 )(𝑥) = 0, and lim

𝑥→∞(𝑔 ∗ 𝑓 )(𝑥) = 0.
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Chapter 6

Sequences of Functions

6.1 Pointwise and uniform convergence
Note: 1–1.5 lecture

Up till now, when we talked about limits of sequences we talked about sequences
of numbers. A very useful concept in analysis is a sequence of functions. For example,
a solution to some differential equation might be found by finding only approximate
solutions. Then the actual solution is some sort of limit of those approximate solutions.

When talking about sequences of functions, the tricky part is that there are multiple
notions of a limit. Let us describe two common notions of a limit of a sequence of functions.

6.1.1 Pointwise convergence
Definition 6.1.1. For every 𝑛 ∈ ℕ, let 𝑓𝑛 : 𝑆 → ℝ be a function. The sequence { 𝑓𝑛}∞𝑛=1
converges pointwise 

‗
 to 𝑓 : 𝑆 → ℝ if for every 𝑥 ∈ 𝑆, we have

𝑓 (𝑥) = lim
𝑛→∞ 𝑓𝑛(𝑥).

Limits of sequences of numbers are unique, and so if a sequence { 𝑓𝑛}∞𝑛=1 converges
pointwise, the limit function 𝑓 is unique. It is common to say that 𝑓𝑛 : 𝑆 → ℝ converges
pointwise to 𝑓 on 𝑇 ⊂ 𝑆 for some 𝑓 : 𝑇 → ℝ. In that case we mean 𝑓 (𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥) for
every 𝑥 ∈ 𝑇. In other words, the restrictions of 𝑓𝑛 to 𝑇 converge pointwise to 𝑓 .

Example 6.1.2: On [−1, 1], the sequence of functions defined by 𝑓𝑛(𝑥) B 𝑥2𝑛 converges
pointwise to 𝑓 : [−1, 1] → ℝ, where

𝑓 (𝑥) =
{

1 if 𝑥 = −1 or 𝑥 = 1,
0 otherwise.

See  Figure 6.1 .
‗Unless otherwise specified, converges generally means converges pointwise.
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G2 G4 G6 G16

Figure 6.1: Graphs of 𝑓1, 𝑓2, 𝑓3, and 𝑓8 for 𝑓𝑛(𝑥) B 𝑥2𝑛 .

To see this is so, first take 𝑥 ∈ (−1, 1). Then 0 ≤ 𝑥2 < 1. We have seen before that��𝑥2𝑛 − 0
�� = (𝑥2)𝑛 → 0 as 𝑛 → ∞.

Therefore, lim𝑛→∞ 𝑓𝑛(𝑥) = 0.
When 𝑥 = 1 or 𝑥 = −1, then 𝑥2𝑛 = 1 for all 𝑛 and hence lim𝑛→∞ 𝑓𝑛(𝑥) = 1. For all other

𝑥, the sequence
{
𝑓𝑛(𝑥)

}∞
𝑛=1 does not converge.

Often, functions are given as a series. In this case, we use the notion of pointwise
convergence to find the values of the function.

Example 6.1.3: We write
∞∑
𝑘=0

𝑥𝑘

to denote the limit of the functions

𝑓𝑛(𝑥) B
𝑛∑
𝑘=0

𝑥𝑘 .

When studying series, we saw that for (−1, 1) the 𝑓𝑛 converge pointwise to

1
1 − 𝑥 .

The subtle point here is that while 1
1−𝑥 is defined for all 𝑥 ≠ 1, and 𝑓𝑛 are defined for all

𝑥 (even at 𝑥 = 1), convergence only happens on (−1, 1). Therefore, when we write

𝑓 (𝑥) B
∞∑
𝑘=0

𝑥𝑘

we mean that 𝑓 is defined on (−1, 1) and is the pointwise limit of the partial sums.
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Example 6.1.4: Let 𝑓𝑛(𝑥) B sin(𝑛𝑥). Then 𝑓𝑛 does not converge pointwise to any function
on any interval. It may converge at certain points, such as when 𝑥 = 0 or 𝑥 = 𝜋. It is left as
an exercise that in any interval [𝑎, 𝑏], there exists an 𝑥 such that sin(𝑥𝑛) does not have a
limit as 𝑛 goes to infinity. See  Figure 6.2 .

Figure 6.2: Graphs of sin(𝑛𝑥) for 𝑛 = 1, 2, . . . , 10, with higher 𝑛 in lighter gray.

Before we move to uniform convergence, let us reformulate pointwise convergence in a
different way. We leave the proof to the reader—it is a simple application of the definition
of convergence of a sequence of real numbers.

Proposition 6.1.5. Let 𝑓𝑛 : 𝑆 → ℝ and 𝑓 : 𝑆 → ℝ be functions. Then { 𝑓𝑛}∞𝑛=1 converges
pointwise to 𝑓 if and only if for every 𝑥 ∈ 𝑆 and every 𝜖 > 0, there exists an 𝑁 ∈ ℕ such that�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < 𝜖 for all 𝑛 ≥ 𝑁.

The key point is that𝑁 can depend on 𝑥, not just on 𝜖. For each 𝑥, we can pick a different
𝑁 . If we could pick one 𝑁 for all 𝑥, we would have what is called uniform convergence.

6.1.2 Uniform convergence
Definition 6.1.6. Let 𝑓𝑛 : 𝑆 → ℝ and 𝑓 : 𝑆 → ℝ be functions. The sequence { 𝑓𝑛}∞𝑛=1 converges
uniformly to 𝑓 if for every 𝜖 > 0, there exists an 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁 ,�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < 𝜖 for all 𝑥 ∈ 𝑆.

In uniform convergence, 𝑁 cannot depend on 𝑥. Given 𝜖 > 0, we must find an 𝑁
that works for all 𝑥 ∈ 𝑆. See  Figure 6.3 for an illustration. Uniform convergence implies
pointwise convergence, and the proof follows by  Proposition 6.1.5 :

Proposition 6.1.7. Let { 𝑓𝑛}∞𝑛=1 be a sequence of functions 𝑓𝑛 : 𝑆 → ℝ. If { 𝑓𝑛}∞𝑛=1 converges
uniformly to 𝑓 : 𝑆 → ℝ, then { 𝑓𝑛}∞𝑛=1 converges pointwise to 𝑓 .

The converse does not hold.
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5 − &

5

5 + &
5=

Figure 6.3: In uniform convergence, for 𝑛 ≥ 𝑁 , the functions 𝑓𝑛 are within a strip of ±𝜖 from 𝑓 .

Example 6.1.8: The functions 𝑓𝑛(𝑥) B 𝑥2𝑛 do not converge uniformly on [−1, 1], even
though they converge pointwise. To see this, suppose for contradiction that the convergence
is uniform. For 𝜖 B 1/2, there would have to exist an 𝑁 such that 𝑥2𝑁 =

��𝑥2𝑁 − 0
�� < 1/2 for

all 𝑥 ∈ (−1, 1) (as 𝑓𝑛(𝑥) converges to 0 on (−1, 1)). But that means that for every sequence
{𝑥𝑘}∞𝑘=1 in (−1, 1) such that lim𝑘→∞ 𝑥𝑘 = 1, we have 𝑥2𝑁

𝑘 < 1/2 for all 𝑘. On the other hand,
𝑥2𝑁 is a continuous function of 𝑥 (it is a polynomial). Therefore, we obtain a contradiction

1 = 12𝑁 = lim
𝑘→∞

𝑥2𝑁
𝑘 ≤ 1/2.

However, if we restrict our domain to [−𝑎, 𝑎] where 0 < 𝑎 < 1, then { 𝑓𝑛}∞𝑛=1 converges
uniformly to 0 on [−𝑎, 𝑎]. Note that 𝑎2𝑛 → 0 as 𝑛 → ∞. Given 𝜖 > 0, pick 𝑁 ∈ ℕ such that
𝑎2𝑛 < 𝜖 for all 𝑛 ≥ 𝑁 . If 𝑥 ∈ [−𝑎, 𝑎], then |𝑥| ≤ 𝑎. So for all 𝑛 ≥ 𝑁 and all 𝑥 ∈ [−𝑎, 𝑎],��𝑥2𝑛 �� = |𝑥|2𝑛 ≤ 𝑎2𝑛 < 𝜖.

6.1.3 Convergence in uniform norm

For bounded functions, there is another more abstract way to think of uniform convergence.
To every bounded function we assign a certain nonnegative number that measures the
“distance” of the function from the constant function 0. This number allows us to “measure”
how far two functions are from each other. We then translate a statement about uniform
convergence into a statement about a certain sequence of real numbers converging to zero.

Definition 6.1.9. Let 𝑓 : 𝑆 → ℝ be a bounded function. Define

∥ 𝑓 ∥𝑆 B sup
{�� 𝑓 (𝑥)�� : 𝑥 ∈ 𝑆}.

We call ∥·∥𝑆 the uniform norm. Sometimes other notation 

‗
 is used, such as ∥ 𝑓 ∥𝑢 .

‗The notation nor terminology is not completely standardized. The norm is also called the sup norm or
infinity norm, and in addition to ∥ 𝑓 ∥𝑢 and ∥ 𝑓 ∥𝑆 it is sometimes written as ∥ 𝑓 ∥∞ or ∥ 𝑓 ∥∞,𝑆.
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The subscript is the set over which the supremum is taken. So if 𝐾 ⊂ 𝑆 then

∥ 𝑓 ∥𝐾 = sup
{�� 𝑓 (𝑥)�� : 𝑥 ∈ 𝐾}

.

Proposition 6.1.10. A sequence of bounded functions 𝑓𝑛 : 𝑆 → ℝ converges uniformly to 𝑓 : 𝑆 →
ℝ if and only if

lim
𝑛→∞∥ 𝑓𝑛 − 𝑓 ∥𝑆 = 0.

Proof. First suppose lim𝑛→∞
 𝑓𝑛 − 𝑓


𝑆 = 0. Let 𝜖 > 0 be given. There exists an 𝑁 such that

for 𝑛 ≥ 𝑁 , we have ∥ 𝑓𝑛 − 𝑓 ∥𝑆 < 𝜖. As
 𝑓𝑛 − 𝑓


𝑆 is the supremum of

�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)��, we see
that for all 𝑥 ∈ 𝑆, we have

�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� ≤ ∥ 𝑓𝑛 − 𝑓 ∥𝑆 < 𝜖.
On the other hand, suppose { 𝑓𝑛}∞𝑛=1 converges uniformly to 𝑓 . Let 𝜖 > 0 be given.

Then find 𝑁 such that for all 𝑛 ≥ 𝑁 , we have
�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < 𝜖 for all 𝑥 ∈ 𝑆. Taking the

supremum over 𝑥 ∈ 𝑆, we see that ∥ 𝑓𝑛 − 𝑓 ∥𝑆 ≤ 𝜖. Hence lim𝑛→∞∥ 𝑓𝑛 − 𝑓 ∥𝑆 = 0. □

Sometimes it is said that { 𝑓𝑛}∞𝑛=1 converges to 𝑓 in uniform norm instead of converges
uniformly if ∥ 𝑓𝑛 − 𝑓 ∥𝑆 → 0. The proposition says that the two notions are the same thing
for bounded functions.

Example 6.1.11: Let 𝑓𝑛 : [0, 1] → ℝ be defined by 𝑓𝑛(𝑥) B 𝑛𝑥+sin(𝑛𝑥2)
𝑛 . We claim { 𝑓𝑛}∞𝑛=1

converges uniformly to 𝑓 (𝑥) B 𝑥. Let us compute: 𝑓𝑛 − 𝑓
[0,1] = sup

{����𝑛𝑥 + sin(𝑛𝑥2)
𝑛

− 𝑥
���� : 𝑥 ∈ [0, 1]

}
= sup

{��sin(𝑛𝑥2)��
𝑛

: 𝑥 ∈ [0, 1]
}

≤ sup
{

1/𝑛 : 𝑥 ∈ [0, 1]}
= 1/𝑛.

Using the uniform norm, we define Cauchy sequences in a similar way as we define
Cauchy sequences of real numbers.

Definition 6.1.12. Let 𝑓𝑛 : 𝑆 → ℝ be bounded functions. The sequence is Cauchy in the
uniform norm or uniformly Cauchy if for every 𝜖 > 0, there exists an 𝑁 ∈ ℕ such that for all
𝑚, 𝑘 ≥ 𝑁 ,  𝑓𝑚 − 𝑓𝑘


𝑆 < 𝜖.

Proposition 6.1.13. Let 𝑓𝑛 : 𝑆 → ℝ be bounded functions. Then { 𝑓𝑛}∞𝑛=1 is Cauchy in the uniform
norm if and only if there exists an 𝑓 : 𝑆 → ℝ and { 𝑓𝑛}∞𝑛=1 converges uniformly to 𝑓 .

Proof. First suppose { 𝑓𝑛}∞𝑛=1 is Cauchy in the uniform norm. Let us define 𝑓 . Fix 𝑥. The
sequence

{
𝑓𝑛(𝑥)

}∞
𝑛=1 is Cauchy because�� 𝑓𝑚(𝑥) − 𝑓𝑘(𝑥)

�� ≤  𝑓𝑚 − 𝑓𝑘

𝑆 .
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Thus
{
𝑓𝑛(𝑥)

}∞
𝑛=1 converges to some real number. Define 𝑓 : 𝑆 → ℝ by

𝑓 (𝑥) B lim
𝑛→∞ 𝑓𝑛(𝑥).

The sequence { 𝑓𝑛}∞𝑛=1 converges pointwise to 𝑓 . To show that the convergence is uniform,
let 𝜖 > 0 be given. Find an 𝑁 such that for all 𝑚, 𝑘 ≥ 𝑁 , we have

 𝑓𝑚 − 𝑓𝑘

𝑆 < 𝜖/2. In other

words, for all 𝑥, we have
�� 𝑓𝑚(𝑥) − 𝑓𝑘(𝑥)

�� < 𝜖/2. For any fixed 𝑥, take the limit as 𝑘 goes to
infinity. Then

�� 𝑓𝑚(𝑥) − 𝑓𝑘(𝑥)
�� goes to

�� 𝑓𝑚(𝑥) − 𝑓 (𝑥)��. Consequently for all 𝑥,�� 𝑓𝑚(𝑥) − 𝑓 (𝑥)�� ≤ 𝜖/2 < 𝜖.

Hence, { 𝑓𝑛}∞𝑛=1 converges uniformly.
Next, we prove the other direction. Suppose { 𝑓𝑛}∞𝑛=1 converges uniformly to 𝑓 . Given

𝜖 > 0, find 𝑁 such that for all 𝑛 ≥ 𝑁 , we have
�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < 𝜖/4 for all 𝑥 ∈ 𝑆. Therefore,

for all 𝑚, 𝑘 ≥ 𝑁 and all 𝑥,�� 𝑓𝑚(𝑥) − 𝑓𝑘(𝑥)
�� = �� 𝑓𝑚(𝑥) − 𝑓 (𝑥) + 𝑓 (𝑥) − 𝑓𝑘(𝑥)

��
≤ �� 𝑓𝑚(𝑥) − 𝑓 (𝑥)�� + �� 𝑓 (𝑥) − 𝑓𝑘(𝑥)

�� < 𝜖/4 + 𝜖/4 = 𝜖/2.

Take the supremum over all 𝑥 to obtain 𝑓𝑚 − 𝑓𝑘

𝑆 ≤ 𝜖/2 < 𝜖. □

6.1.4 Exercises
Exercise 6.1.1: Let 𝑓 and 𝑔 be bounded functions on [𝑎, 𝑏]. Prove 𝑓 + 𝑔


[𝑎,𝑏] ≤

 𝑓 [𝑎,𝑏] + 𝑔[𝑎,𝑏] .
Exercise 6.1.2:

a) Find the pointwise limit 𝑒
𝑥/𝑛

𝑛
for 𝑥 ∈ ℝ.

b) Is the limit uniform on ℝ?

c) Is the limit uniform on [0, 1]?
Exercise 6.1.3: Suppose 𝑓𝑛 : 𝑆 → ℝ are functions that converge uniformly to 𝑓 : 𝑆 → ℝ. Suppose 𝐴 ⊂ 𝑆.
Show that the sequence of restrictions { 𝑓𝑛|𝐴}∞𝑛=1 converges uniformly to 𝑓 |𝐴.

Exercise 6.1.4: Suppose { 𝑓𝑛}∞𝑛=1 and {𝑔𝑛}∞𝑛=1 defined on some set 𝐴 converge to 𝑓 and 𝑔 respectively
pointwise. Show that { 𝑓𝑛 + 𝑔𝑛}∞𝑛=1 converges pointwise to 𝑓 + 𝑔.

Exercise 6.1.5: Suppose { 𝑓𝑛}∞𝑛=1 and {𝑔𝑛}∞𝑛=1 defined on some set 𝐴 converge to 𝑓 and 𝑔 respectively
uniformly on 𝐴. Show that { 𝑓𝑛 + 𝑔𝑛}∞𝑛=1 converges uniformly to 𝑓 + 𝑔 on 𝐴.

Exercise 6.1.6: Find an example of a sequence of functions { 𝑓𝑛}∞𝑛=1 and {𝑔𝑛}∞𝑛=1 that converge uniformly to
some 𝑓 and 𝑔 on some set 𝐴, but such that { 𝑓𝑛 𝑔𝑛}∞𝑛=1 (the multiple) does not converge uniformly to 𝑓 𝑔 on 𝐴.
Hint: Let 𝐴 B ℝ, let 𝑓 (𝑥) B 𝑔(𝑥) B 𝑥. You can even pick 𝑓𝑛 = 𝑔𝑛 .
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Exercise 6.1.7: Suppose there exists a sequence of functions {𝑔𝑛}∞𝑛=1 uniformly converging to 0 on 𝐴. Now
suppose we have a sequence of functions { 𝑓𝑛}∞𝑛=1 and a function 𝑓 on 𝐴 such that�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� ≤ 𝑔𝑛(𝑥)

for all 𝑥 ∈ 𝐴. Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to 𝑓 on 𝐴.

Exercise 6.1.8: Let { 𝑓𝑛}∞𝑛=1, {𝑔𝑛}∞𝑛=1 and {ℎ𝑛}∞𝑛=1 be sequences of functions on [𝑎, 𝑏]. Suppose { 𝑓𝑛}∞𝑛=1
and {ℎ𝑛}∞𝑛=1 converge uniformly to some function 𝑓 : [𝑎, 𝑏] → ℝ and suppose 𝑓𝑛(𝑥) ≤ 𝑔𝑛(𝑥) ≤ ℎ𝑛(𝑥) for
all 𝑥 ∈ [𝑎, 𝑏]. Show that {𝑔𝑛}∞𝑛=1 converges uniformly to 𝑓 .

Exercise 6.1.9: Let 𝑓𝑛 : [0, 1] → ℝ be a sequence of increasing functions (that is, 𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑦) whenever
𝑥 ≥ 𝑦). Suppose 𝑓𝑛(0) = 0 and lim

𝑛→∞ 𝑓𝑛(1) = 0. Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to 0.

Exercise 6.1.10: Consider a sequence of functions 𝑓𝑛 : [0, 1] → ℝ so that there is a sequence of distinct
numbers 𝑥𝑛 ∈ [0, 1] such that for all 𝑛,

𝑓𝑛(𝑥𝑛) = 1.

Prove or disprove the following statements:

a) True or false: There exists { 𝑓𝑛}∞𝑛=1 as above that converges pointwise to 0.

b) True or false: There exists { 𝑓𝑛}∞𝑛=1 as above that converges uniformly to 0.

Exercise 6.1.11: Fix a continuous ℎ : [𝑎, 𝑏] → ℝ. Let 𝑓 (𝑥) B ℎ(𝑥) for 𝑥 ∈ [𝑎, 𝑏], 𝑓 (𝑥) B ℎ(𝑎) for 𝑥 < 𝑎
and 𝑓 (𝑥) B ℎ(𝑏) for all 𝑥 > 𝑏. First show that 𝑓 : ℝ → ℝ is continuous. Now let 𝑓𝑛 be the function 𝑔 from

 Exercise 5.3.7 with 𝜖 = 1/𝑛, defined on the interval [𝑎, 𝑏]. That is,

𝑓𝑛(𝑥) B 𝑛
2

∫ 𝑥+1/𝑛

𝑥−1/𝑛
𝑓 .

Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to ℎ on [𝑎, 𝑏].
Exercise 6.1.12: Prove that if a sequence of functions 𝑓𝑛 : 𝑆 → ℝ converge uniformly to a bounded function
𝑓 : 𝑆 → ℝ, then there exists an 𝑁 such that for all 𝑛 ≥ 𝑁 , the 𝑓𝑛 are bounded.

Exercise 6.1.13: Suppose there is a single constant 𝐵 and a sequence of functions 𝑓𝑛 : 𝑆 → ℝ that are
bounded by 𝐵, that is

�� 𝑓𝑛(𝑥)�� ≤ 𝐵 for all 𝑥 ∈ 𝑆. Suppose that { 𝑓𝑛}∞𝑛=1 converges pointwise to 𝑓 : 𝑆 → ℝ.
Prove that 𝑓 is bounded.

Exercise 6.1.14 (requires  §2.6 ): In  Example 6.1.3 we saw
∑∞
𝑘=0 𝑥

𝑘 converges pointwise to 1
1−𝑥 on (−1, 1).

a) Show that whenever 0 ≤ 𝑐 < 1, the series
∑∞
𝑘=0 𝑥

𝑘 converges uniformly on [−𝑐, 𝑐].
b) Show that the series

∑∞
𝑘=0 𝑥

𝑘 does not converge uniformly on (−1, 1).
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6.2 Interchange of limits
Note: 1–2.5 lectures, subsections on derivatives and power series (which requires  §2.6 ) optional.

Large parts of modern analysis deal mainly with the question of the interchange of two
limiting operations. When we have a chain of two limits, we cannot always just swap the
limits. For instance,

0 = lim
𝑛→∞

(
lim
𝑘→∞

𝑛
𝑛 + 𝑘

)
≠ lim

𝑘→∞

(
lim
𝑛→∞

𝑛
𝑛 + 𝑘

)
= 1.

When talking about sequences of functions, interchange of limits comes up quite often.
We look at several instances: continuity of the limit, the integral of the limit, the derivative
of the limit, and the convergence of power series.

6.2.1 Continuity of the limit
If we have a sequence { 𝑓𝑛}∞𝑛=1 of continuous functions, is the limit continuous? Suppose
𝑓 is the (pointwise) limit of { 𝑓𝑛}∞𝑛=1. If lim𝑘→∞ 𝑥𝑘 = 𝑥, we are interested in the following
interchange of limits, where the equality to prove is marked with a question mark. Equality
is not always true, in fact, the limits to the left of the question mark might not even exist.

lim
𝑘→∞

𝑓 (𝑥𝑘) = lim
𝑘→∞

(
lim
𝑛→∞ 𝑓𝑛(𝑥𝑘)

)
?
= lim
𝑛→∞

(
lim
𝑘→∞

𝑓𝑛(𝑥𝑘)
)
= lim
𝑛→∞ 𝑓𝑛(𝑥) = 𝑓 (𝑥).

We wish to find conditions on the sequence { 𝑓𝑛}∞𝑛=1 so that the equation above holds. If we
only require pointwise convergence, then the limit of a sequence of functions need not be
continuous, and the equation above need not hold.

Example 6.2.1: Define 𝑓𝑛 : [0, 1] → ℝ as

𝑓𝑛(𝑥) B
{

1 − 𝑛𝑥 if 𝑥 < 1/𝑛,
0 if 𝑥 ≥ 1/𝑛.

See  Figure 6.4 .
Each function 𝑓𝑛 is continuous. Fix an 𝑥 ∈ (0, 1]. If 𝑛 ≥ 1/𝑥, then 𝑥 ≥ 1/𝑛. Therefore for

𝑛 ≥ 1/𝑥, we have 𝑓𝑛(𝑥) = 0, and so

lim
𝑛→∞ 𝑓𝑛(𝑥) = 0.

On the other hand, if 𝑥 = 0, then

lim
𝑛→∞ 𝑓𝑛(0) = lim

𝑛→∞ 1 = 1.

Thus the pointwise limit of 𝑓𝑛 is the function 𝑓 : [0, 1] → ℝ defined by

𝑓 (𝑥) B
{

1 if 𝑥 = 0,
0 if 𝑥 > 0.

The function 𝑓 is not continuous at 0.
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1

1/=

Figure 6.4: Graph of 𝑓𝑛(𝑥).

If we, however, require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.2. Suppose 𝑆 ⊂ ℝ. Let { 𝑓𝑛}∞𝑛=1 be a sequence of continuous functions 𝑓𝑛 : 𝑆 → ℝ

converging uniformly to 𝑓 : 𝑆 → ℝ. Then 𝑓 is continuous.

Proof. Let 𝑥 ∈ 𝑆 be fixed. Let {𝑥𝑛}∞𝑛=1 be a sequence in 𝑆 converging to 𝑥.
Let 𝜖 > 0 be given. As { 𝑓𝑘}∞𝑘=1 converges uniformly to 𝑓 , we find a 𝑘 ∈ ℕ such that�� 𝑓𝑘(𝑦) − 𝑓 (𝑦)�� < 𝜖/3

for all 𝑦 ∈ 𝑆. As 𝑓𝑘 is continuous at 𝑥, we find an 𝑁 ∈ ℕ such that for all 𝑚 ≥ 𝑁 ,�� 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥)
�� < 𝜖/3.

Thus for all 𝑚 ≥ 𝑁 ,�� 𝑓 (𝑥𝑚) − 𝑓 (𝑥)�� = �� 𝑓 (𝑥𝑚) − 𝑓𝑘(𝑥𝑚) + 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥) + 𝑓𝑘(𝑥) − 𝑓 (𝑥)��
≤ �� 𝑓 (𝑥𝑚) − 𝑓𝑘(𝑥𝑚)

�� + �� 𝑓𝑘(𝑥𝑚) − 𝑓𝑘(𝑥)
�� + �� 𝑓𝑘(𝑥) − 𝑓 (𝑥)��

< 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.

Therefore,
{
𝑓 (𝑥𝑚)

}∞
𝑚=1 converges to 𝑓 (𝑥), and consequently 𝑓 is continuous at 𝑥. As 𝑥 was

arbitrary, 𝑓 is continuous everywhere. □

6.2.2 Integral of the limit

Again, if we simply require pointwise convergence, then the integral of a limit of a sequence
of functions need not be equal to the limit of the integrals.
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Example 6.2.3: Define 𝑓𝑛 : [0, 1] → ℝ as

𝑓𝑛(𝑥) B


0 if 𝑥 = 0,
𝑛 − 𝑛2𝑥 if 0 < 𝑥 < 1/𝑛,
0 if 𝑥 ≥ 1/𝑛.

See  Figure 6.5 .

=

1/=

Figure 6.5: Graph of 𝑓𝑛(𝑥).

Each 𝑓𝑛 is Riemann integrable (it is continuous on (0, 1] and bounded), and the
fundamental theorem of calculus says that∫ 1

0
𝑓𝑛 =

∫ 1/𝑛

0
(𝑛 − 𝑛2𝑥) 𝑑𝑥 = 1/2.

Let us compute the pointwise limit of { 𝑓𝑛}∞𝑛=1. Fix an 𝑥 ∈ (0, 1]. For 𝑛 ≥ 1/𝑥, we have
𝑥 ≥ 1/𝑛 and so 𝑓𝑛(𝑥) = 0. Hence,

lim
𝑛→∞ 𝑓𝑛(𝑥) = 0.

We also have 𝑓𝑛(0) = 0 for all 𝑛. So the pointwise limit of { 𝑓𝑛}∞𝑛=1 is the zero function. In
summary,

1/2 = lim
𝑛→∞

∫ 1

0
𝑓𝑛(𝑥) 𝑑𝑥 ≠

∫ 1

0

(
lim
𝑛→∞ 𝑓𝑛(𝑥)

)
𝑑𝑥 =

∫ 1

0
0 𝑑𝑥 = 0.

But if we require the convergence to be uniform, the limits can be interchanged. 

‗
 

‗Weaker conditions are sufficient for this kind of theorem, but to prove such a generalization requires
more sophisticated machinery than we cover here: the Lebesgue integral. In particular, the theorem holds
with pointwise convergence as long as 𝑓 is integrable and there is an 𝑀 such that ∥ 𝑓𝑛∥[𝑎,𝑏] ≤ 𝑀 for all 𝑛.
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Theorem 6.2.4. Let { 𝑓𝑛}∞𝑛=1 be a sequence of Riemann integrable functions 𝑓𝑛 : [𝑎, 𝑏] → ℝ

converging uniformly to 𝑓 : [𝑎, 𝑏] → ℝ. Then 𝑓 is Riemann integrable, and∫ 𝑏

𝑎
𝑓 = lim

𝑛→∞

∫ 𝑏

𝑎
𝑓𝑛 .

Proof. Let 𝜖 > 0 be given. As 𝑓𝑛 goes to 𝑓 uniformly, we find an 𝑀 ∈ ℕ such that for all
𝑛 ≥ 𝑀, we have

�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < 𝜖
2(𝑏−𝑎) for all 𝑥 ∈ [𝑎, 𝑏]. In particular, by reverse triangle

inequality,
�� 𝑓 (𝑥)�� < 𝜖

2(𝑏−𝑎) +
�� 𝑓𝑛(𝑥)�� for all 𝑥. Hence 𝑓 is bounded, as 𝑓𝑛 is bounded. Note

that 𝑓𝑛 is integrable and compute∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥)

)
𝑑𝑥

≤
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 +

∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥

=
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 +

∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎
𝑓𝑛(𝑥) 𝑑𝑥

=
∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥 −

∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥

≤ 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) +
𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) = 𝜖.

The first inequality is  Proposition 5.2.5 . The second inequality follows by  Proposition 5.1.8 

and the fact that for all 𝑥 ∈ [𝑎, 𝑏], we have −𝜖
2(𝑏−𝑎) < 𝑓 (𝑥) − 𝑓𝑛(𝑥) < 𝜖

2(𝑏−𝑎) . As 𝜖 > 0 was
arbitrary, 𝑓 is Riemann integrable.

Finally, we compute
∫ 𝑏
𝑎 𝑓 . We apply  Proposition 5.1.10 in the calculation. Again, for all

𝑛 ≥ 𝑀 (where 𝑀 is the same as above),�����∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓𝑛

����� =
�����∫ 𝑏

𝑎

(
𝑓 (𝑥) − 𝑓𝑛(𝑥)

)
𝑑𝑥

�����
≤ 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) =
𝜖
2 < 𝜖.

Therefore,
{∫ 𝑏
𝑎 𝑓𝑛

}∞
𝑛=1 converges to

∫ 𝑏
𝑎 𝑓 . □

Example 6.2.5: Suppose we wish to compute

lim
𝑛→∞

∫ 1

0

𝑛𝑥 + sin(𝑛𝑥2)
𝑛

𝑑𝑥.

It is impossible to compute the integrals for any particular 𝑛 using calculus as sin(𝑛𝑥2) has
no closed-form antiderivative. However, we can compute the limit. We have shown before
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that 𝑛𝑥+sin(𝑛𝑥2)
𝑛 converges uniformly on [0, 1] to 𝑥. By  Theorem 6.2.4 , the limit exists and

lim
𝑛→∞

∫ 1

0

𝑛𝑥 + sin(𝑛𝑥2)
𝑛

𝑑𝑥 =
∫ 1

0
𝑥 𝑑𝑥 = 1/2.

Example 6.2.6: If convergence is only pointwise, the limit need not even be Riemann
integrable. On [0, 1] define

𝑓𝑛(𝑥) B
{

1 if 𝑥 = 𝑝/𝑞 in lowest terms and 𝑞 ≤ 𝑛,

0 otherwise.

Each function 𝑓𝑛 differs from the zero function at finitely many points; there are only
finitely many fractions in [0, 1] with denominator less than or equal to 𝑛. So 𝑓𝑛 is integrable
and

∫ 1
0 𝑓𝑛 =

∫ 1
0 0 = 0. It is an easy exercise to show that { 𝑓𝑛}∞𝑛=1 converges pointwise to the

Dirichlet function

𝑓 (𝑥) B
{

1 if 𝑥 ∈ ℚ,

0 otherwise,

which is not Riemann integrable.

Example 6.2.7: In fact, if the convergence is only pointwise, the limit of bounded functions
is not even necessarily bounded. Define 𝑓𝑛 : [0, 1] → ℝ by

𝑓𝑛(𝑥) B
{

0 if 𝑥 < 1/𝑛,
1/𝑥 else.

For every 𝑛 we get that
�� 𝑓𝑛(𝑥)�� ≤ 𝑛 for all 𝑥 ∈ [0, 1] so the functions are bounded. However,

{ 𝑓𝑛}∞𝑛=1 converges pointwise to the unbounded function

𝑓 (𝑥) B
{

0 if 𝑥 = 0,
1/𝑥 else.

6.2.3 Derivative of the limit

While uniform convergence is enough to swap limits with integrals, it is not, however,
enough to swap limits with derivatives, unless you also have uniform convergence of the
derivatives themselves.

Example 6.2.8: Let 𝑓𝑛(𝑥) B sin(𝑛𝑥)
𝑛 . Then 𝑓𝑛 converges uniformly to 0. See  Figure 6.6 . The

derivative of the limit is 0. But 𝑓 ′𝑛(𝑥) = cos(𝑛𝑥), which does not converge even pointwise,
for example 𝑓 ′𝑛(𝜋) = (−1)𝑛 . Moreover, 𝑓 ′𝑛(0) = 1 for all 𝑛, which does converge, but not to 0.
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Figure 6.6: Graphs of sin(𝑛𝑥)
𝑛 for 𝑛 = 1, 2, . . . , 10, with higher 𝑛 in lighter gray.

Example 6.2.9: Let 𝑓𝑛(𝑥) B 1
1+𝑛𝑥2 . If 𝑥 ≠ 0, then lim𝑛→∞ 𝑓𝑛(𝑥) = 0, but lim𝑛→∞ 𝑓𝑛(0) = 1.

Hence, { 𝑓𝑛}∞𝑛=1 converges pointwise to a function that is not continuous at 0. We compute

𝑓 ′𝑛(𝑥) =
−2𝑛𝑥

(1 + 𝑛𝑥2)2 .

For every 𝑥, lim𝑛→∞ 𝑓 ′𝑛(𝑥) = 0, so the derivatives converge pointwise to 0, but the reader
can check that the convergence is not uniform on any interval containing 0. The limit of 𝑓𝑛
is not differentiable at 0—it is not even continuous at 0. See  Figure 6.7 .

Figure 6.7: Graphs of 1
1+𝑛𝑥2 and its derivative for 𝑛 = 1, 2, . . . , 10, with higher 𝑛 in lighter gray.

See the exercises for more examples. Using the fundamental theorem of calculus, we
find an answer for continuously differentiable functions. The following theorem is true
even if we do not assume continuity of the derivatives, but the proof is more difficult.

Theorem 6.2.10. Let 𝐼 be a bounded interval and let 𝑓𝑛 : 𝐼 → ℝ be continuously differentiable
functions. Suppose { 𝑓 ′𝑛}∞𝑛=1 converges uniformly to 𝑔 : 𝐼 → ℝ, and suppose

{
𝑓𝑛(𝑐)

}∞
𝑛=1 is

a convergent sequence for some 𝑐 ∈ 𝐼. Then { 𝑓𝑛}∞𝑛=1 converges uniformly to a continuously
differentiable function 𝑓 : 𝐼 → ℝ, and 𝑓 ′ = 𝑔.
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Proof. Define 𝑓 (𝑐) B lim𝑛→∞ 𝑓𝑛(𝑐). As 𝑓 ′𝑛 are continuous and hence Riemann integrable,
then via the fundamental theorem of calculus, we find that for 𝑥 ∈ 𝐼,

𝑓𝑛(𝑥) = 𝑓𝑛(𝑐) +
∫ 𝑥

𝑐
𝑓 ′𝑛 .

As { 𝑓 ′𝑛}∞𝑛=1 converges uniformly on 𝐼, it converges uniformly on [𝑐, 𝑥] (or [𝑥, 𝑐] if 𝑥 < 𝑐).
Thus, the limit as 𝑛 → ∞ on the right-hand side exists. Define 𝑓 at the remaining points
(where 𝑥 ≠ 𝑐) by this limit:

𝑓 (𝑥) B lim
𝑛→∞ 𝑓𝑛(𝑐) + lim

𝑛→∞

∫ 𝑥

𝑐
𝑓 ′𝑛 = 𝑓 (𝑐) +

∫ 𝑥

𝑐
𝑔.

The function 𝑔 is continuous, being the uniform limit of continuous functions. Hence 𝑓 is
differentiable and 𝑓 ′(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐼 by the second form of the fundamental theorem.

It remains to prove uniform convergence. Suppose 𝐼 has a lower bound 𝑎 and upper
bound 𝑏. Let 𝜖 > 0 be given. Take 𝑀 such that for all 𝑛 ≥ 𝑀, we have

�� 𝑓 (𝑐) − 𝑓𝑛(𝑐)
�� < 𝜖/2

and
��𝑔(𝑥) − 𝑓 ′𝑛(𝑥)

�� < 𝜖
2(𝑏−𝑎) for all 𝑥 ∈ 𝐼. Then

�� 𝑓 (𝑥) − 𝑓𝑛(𝑥)
�� = ����( 𝑓 (𝑐) + ∫ 𝑥

𝑐
𝑔

)
−

(
𝑓𝑛(𝑐) +

∫ 𝑥

𝑐
𝑓 ′𝑛

)����
≤ �� 𝑓 (𝑐) − 𝑓𝑛(𝑐)

�� + ����∫ 𝑥

𝑐
𝑔 −

∫ 𝑥

𝑐
𝑓 ′𝑛

����
=

�� 𝑓 (𝑐) − 𝑓𝑛(𝑐)
�� + ����∫ 𝑥

𝑐

(
𝑔(𝑠) − 𝑓 ′𝑛(𝑠)

)
𝑑𝑠

����
<

𝜖
2 + 𝜖

2(𝑏 − 𝑎)(𝑏 − 𝑎) = 𝜖. □

The proof goes through without boundedness of 𝐼, except for the uniform convergence
of 𝑓𝑛 to 𝑓 . As an example suppose 𝐼 = ℝ and let 𝑓𝑛(𝑥) B 𝑥/𝑛. Then 𝑓 ′𝑛(𝑥) = 1/𝑛, which
converges uniformly to 0. However, { 𝑓𝑛}∞𝑛=1 converges to 0 only pointwise.

6.2.4 Convergence of power series

In  §2.6 we saw that a power series converges absolutely inside its radius of convergence, so
it converges pointwise. Let us show that it (and all its derivatives) also converges uniformly.
This fact allows us to swap several types of limits. Not only is the limit continuous, we can
integrate and even differentiate convergent power series term by term.

Proposition 6.2.11. Let
∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 be a convergent power series with a radius of convergence

𝜌, where 0 < 𝜌 ≤ ∞. Then the series converges uniformly in [𝑎 − 𝑟, 𝑎 + 𝑟] whenever 0 < 𝑟 < 𝜌.
In particular, the series converges (pointwise) to a continuous function on (𝑎 − 𝜌, 𝑎 + 𝜌) if

𝜌 < ∞, or on ℝ if 𝜌 = ∞.
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Proof. Let 𝐼 B (𝑎 − 𝜌, 𝑎 + 𝜌) if 𝜌 < ∞, or let 𝐼 B ℝ if 𝜌 = ∞. Take 0 < 𝑟 < 𝜌. The series
converges absolutely for every 𝑥 ∈ 𝐼, in particular if 𝑥 = 𝑎 + 𝑟. So

∑∞
𝑛=0 |𝑐𝑛| 𝑟𝑛 converges.

Given 𝜖 > 0, find 𝑀 such that for all 𝑘 ≥ 𝑀,

∞∑
𝑛=𝑘+1

|𝑐𝑛| 𝑟𝑛 < 𝜖.

For all 𝑥 ∈ [𝑎 − 𝑟, 𝑎 + 𝑟] and all 𝑚 > 𝑘,����� 𝑚∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛 −
𝑘∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛
����� =

����� 𝑚∑
𝑛=𝑘+1

𝑐𝑛(𝑥 − 𝑎)𝑛
�����

≤
𝑚∑

𝑛=𝑘+1
|𝑐𝑛| |𝑥 − 𝑎|𝑛 ≤

𝑚∑
𝑛=𝑘+1

|𝑐𝑛| 𝑟𝑛 ≤
∞∑

𝑛=𝑘+1
|𝑐𝑛| 𝑟𝑛 < 𝜖.

The partial sums are therefore uniformly Cauchy on [𝑎 − 𝑟, 𝑎 + 𝑟] and hence converge
uniformly on that set.

Moreover, the partial sums are polynomials, which are continuous, and so their uniform
limit on [𝑎 − 𝑟, 𝑎 + 𝑟] is a continuous function. As 𝑟 < 𝜌 was arbitrary, the limit function is
continuous on all of 𝐼. □

As we said, we will show that power series can be differentiated and integrated term
by term. The differentiated or integrated series is again a power series, and we will show
it has the same radius of convergence. Therefore, any power series defines an infinitely
differentiable function.

We first prove that we can antidifferentiate, as integration only needs uniform limits.

Corollary 6.2.12. Let
∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 be a convergent power series with a radius of convergence

0 < 𝜌 ≤ ∞. Let 𝐼 B (𝑎 − 𝜌, 𝑎 + 𝜌) if 𝜌 < ∞ or 𝐼 B ℝ if 𝜌 = ∞. Let 𝑓 : 𝐼 → ℝ be the limit. Then∫ 𝑥

𝑎
𝑓 =

∞∑
𝑛=1

𝑐𝑛−1
𝑛

(𝑥 − 𝑎)𝑛 ,

where the radius of convergence of this series is at least 𝜌.

Proof. Take 0 < 𝑟 < 𝜌. The partial sums
∑𝑘
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 converge uniformly on [𝑎− 𝑟, 𝑎+ 𝑟].

For every fixed 𝑥 ∈ [𝑎 − 𝑟, 𝑎 + 𝑟], the convergence is also uniform on [𝑎, 𝑥] (or [𝑥, 𝑎] if 𝑥 < 𝑎).
Hence,∫ 𝑥

𝑎
𝑓 =

∫ 𝑥

𝑎
lim
𝑘→∞

𝑘∑
𝑛=0

𝑐𝑛(𝑠 − 𝑎)𝑛 𝑑𝑠 = lim
𝑘→∞

∫ 𝑥

𝑎

𝑘∑
𝑛=0

𝑐𝑛(𝑠 − 𝑎)𝑛 𝑑𝑠 = lim
𝑘→∞

𝑘+1∑
𝑛=1

𝑐𝑛−1
𝑛

(𝑥 − 𝑎)𝑛 . □
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Corollary 6.2.13. Let
∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 be a convergent power series with a radius of convergence

0 < 𝜌 ≤ ∞. Let 𝐼 B (𝑎 − 𝜌, 𝑎 + 𝜌) if 𝜌 < ∞ or 𝐼 B ℝ if 𝜌 = ∞. Let 𝑓 : 𝐼 → ℝ be the limit. Then
𝑓 is a differentiable function, and

𝑓 ′(𝑥) =
∞∑
𝑛=0

(𝑛 + 1)𝑐𝑛+1(𝑥 − 𝑎)𝑛 ,

where the radius of convergence of this series is 𝜌.

Proof. Take 0 < 𝑟 < 𝜌. The series converges uniformly on [𝑎− 𝑟, 𝑎+ 𝑟], but we need uniform
convergence of the derivative. Let

𝑅 B lim sup
𝑛→∞

|𝑐𝑛|1/𝑛 .

As the series is convergent 𝑅 < ∞, and the radius of convergence is 1/𝑅 (or ∞ if 𝑅 = 0).
Let 𝜖 > 0 be given. In  Example 2.2.14  , we saw lim𝑛→∞ 𝑛1/𝑛 = 1. Hence there exists an

𝑁 such that for all 𝑛 ≥ 𝑁 , we have 𝑛1/𝑛 < 1 + 𝜖. So

𝑅 = lim sup
𝑛→∞

|𝑐𝑛|1/𝑛 ≤ lim sup
𝑛→∞

|𝑛𝑐𝑛|1/𝑛 ≤ (1 + 𝜖) lim sup
𝑛→∞

|𝑐𝑛|1/𝑛 = (1 + 𝜖)𝑅.

As 𝜖 was arbitrary, lim sup𝑛→∞ |𝑛𝑐𝑛|1/𝑛 = 𝑅. Therefore,
∑∞
𝑛=1 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛 has radius of

convergence 𝜌. By dividing by (𝑥 − 𝑎), we find
∑∞
𝑛=0(𝑛 + 1)𝑐𝑛+1(𝑥 − 𝑎)𝑛 has radius of

convergence 𝜌 as well.
Consequently, the partial sums

∑𝑘
𝑛=0(𝑛 + 1)𝑐𝑛+1(𝑥 − 𝑎)𝑛 , which are derivatives of the

partial sums
∑𝑘+1
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 , converge uniformly on [𝑎 − 𝑟, 𝑎 + 𝑟]. Furthermore, the series

clearly converges at 𝑥 = 𝑎. We may thus apply  Theorem 6.2.10 , and we are done as 𝑟 < 𝜌
was arbitrary. □

Example 6.2.14: We could have used this result to define the exponential function. That is,
the power series

𝑓 (𝑥) B
∞∑
𝑛=0

𝑥𝑛

𝑛!

has radius of convergence 𝜌 = ∞. Furthermore, 𝑓 (0) = 1, and by differentiating term by
term, we find that 𝑓 ′(𝑥) = 𝑓 (𝑥).
Example 6.2.15: The series

∞∑
𝑛=1

𝑛𝑥𝑛

converges to 𝑥
(1−𝑥)2 on (−1, 1).

Proof: On (−1, 1), ∑∞
𝑛=0 𝑥

𝑛 converges to 1
1−𝑥 . The derivative

∑∞
𝑛=1 𝑛𝑥

𝑛−1 then converges
on the same interval to 1

(1−𝑥)2 . Multiplying by 𝑥 obtains the result.
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6.2.5 Exercises
Exercise 6.2.1: Find an explicit example of a sequence of differentiable functions on [−1, 1] that converge
uniformly to a function 𝑓 such that 𝑓 is not differentiable. Hint: There are many possibilities, simplest is

perhaps to combine |𝑥| and 𝑛
2 𝑥

2 + 1
2𝑛 , another is to consider

√
𝑥2 + (1/𝑛)2. Show that these functions are

differentiable, converge uniformly, and then show that the limit is not differentiable.

Exercise 6.2.2: Let 𝑓𝑛(𝑥) B 𝑥𝑛
𝑛 . Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to a differentiable function 𝑓 on

[0, 1] (find 𝑓 ). However, show that 𝑓 ′(1) ≠ lim
𝑛→∞ 𝑓 ′𝑛(1).

Exercise 6.2.3: Let 𝑓 : [0, 1] → ℝ be Riemann integrable (hence bounded). Find lim
𝑛→∞

∫ 1

0

𝑓 (𝑥)
𝑛

𝑑𝑥.

Exercise 6.2.4: Show lim
𝑛→∞

∫ 2

1
𝑒−𝑛𝑥

2
𝑑𝑥 = 0. Feel free to use calculus facts about the exponential.

Exercise 6.2.5: Find an example of a sequence of continuous functions on (0, 1) that converges pointwise to a
continuous function on (0, 1), but the convergence is not uniform.

Note: In the previous exercise, (0, 1) was picked for simplicity. For a more challenging exercise,
replace (0, 1) with [0, 1].
Exercise 6.2.6: True/False; prove or find a counterexample to the following statement: If { 𝑓𝑛}∞𝑛=1 is a sequence
of everywhere discontinuous functions on [0, 1] that converge uniformly to a function 𝑓 , then 𝑓 is everywhere
discontinuous.

Exercise 6.2.7: For a continuously differentiable function 𝑓 : [𝑎, 𝑏] → ℝ, define 𝑓 𝐶1 B
 𝑓 [𝑎,𝑏] +  𝑓 ′[𝑎,𝑏] .

Suppose { 𝑓𝑛}∞𝑛=1 is a sequence of continuously differentiable functions such that for every 𝜖 > 0, there exists
an 𝑀 such that for all 𝑛, 𝑘 ≥ 𝑀, we have  𝑓𝑛 − 𝑓𝑘


𝐶1 < 𝜖.

Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to some continuously differentiable function 𝑓 : [𝑎, 𝑏] → ℝ.

Suppose 𝑓 : [0, 1] → ℝ is Riemann integrable. For the following two exercises define the number 𝑓 𝐿1 B

∫ 1

0

�� 𝑓 (𝑥)�� 𝑑𝑥.
It is true that

�� 𝑓 �� is integrable whenever 𝑓 is, see  Exercise 5.2.15 . The number is called the 𝐿1-norm
and defines another very common type of convergence called the 𝐿1-convergence. It is, however, a
bit more subtle.

Exercise 6.2.8: Suppose { 𝑓𝑛}∞𝑛=1 is a sequence of Riemann integrable functions on [0, 1] that converges
uniformly to 0. Show that

lim
𝑛→∞

 𝑓𝑛𝐿1 = 0.
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Exercise 6.2.9: Find a sequence { 𝑓𝑛}∞𝑛=1 of Riemann integrable functions on [0, 1] converging pointwise
to 0, but such that

lim
𝑛→∞

 𝑓𝑛𝐿1 does not exist (is ∞).

Exercise 6.2.10 (Hard): Prove Dini’s theorem: Let 𝑓𝑛 : [𝑎, 𝑏] → ℝ be a sequence of continuous functions
such that

0 ≤ 𝑓𝑛+1(𝑥) ≤ 𝑓𝑛(𝑥) ≤ · · · ≤ 𝑓1(𝑥) for all 𝑛 ∈ ℕ.

Suppose { 𝑓𝑛}∞𝑛=1 converges pointwise to 0. Show that { 𝑓𝑛}∞𝑛=1 converges to zero uniformly.

Exercise 6.2.11: Suppose 𝑓𝑛 : [𝑎, 𝑏] → ℝ is a sequence of continuous functions that converges pointwise to a
continuous 𝑓 : [𝑎, 𝑏] → ℝ. Suppose that for every 𝑥 ∈ [𝑎, 𝑏], the sequence

{�� 𝑓𝑛(𝑥) − 𝑓 (𝑥)��}∞𝑛=1 is monotone.
Show that the sequence { 𝑓𝑛}∞𝑛=1 converges uniformly.

Exercise 6.2.12: Find sequences of Riemann integrable functions 𝑓𝑛 : [0, 1] → ℝ such that { 𝑓𝑛}∞𝑛=1 converges
to zero pointwise, and such that

a)
{∫ 1

0 𝑓𝑛
}∞
𝑛=1 increases without bound,

b)
{∫ 1

0 𝑓𝑛
}∞
𝑛=1 is the sequence −1, 1,−1, 1,−1, 1, . . ..

It is possible to define a joint limit of a double sequence {𝑥𝑛,𝑚}∞𝑛,𝑚=1 of real numbers (that is a
function from ℕ × ℕ to ℝ). We say 𝐿 is the joint limit of {𝑥𝑛,𝑚}∞𝑛,𝑚=1 and write

lim
𝑛→∞
𝑚→∞

𝑥𝑛,𝑚 = 𝐿, or lim
(𝑛,𝑚)→∞

𝑥𝑛,𝑚 = 𝐿,

if for every 𝜖 > 0, there exists an 𝑀 such that if 𝑛 ≥ 𝑀 and 𝑚 ≥ 𝑀, then |𝑥𝑛,𝑚 − 𝐿| < 𝜖.

Exercise 6.2.13: Suppose the joint limit (see above) of {𝑥𝑛,𝑚}∞𝑛,𝑚=1 is 𝐿, and suppose that for all 𝑛, lim
𝑚→∞ 𝑥𝑛,𝑚

exists, and for all 𝑚, lim
𝑛→∞ 𝑥𝑛,𝑚 exists. Then show lim

𝑛→∞ lim
𝑚→∞ 𝑥𝑛,𝑚 = lim

𝑚→∞ lim
𝑛→∞ 𝑥𝑛,𝑚 = 𝐿.

Exercise 6.2.14: A joint limit (see above) does not mean the iterated limits exist. Consider 𝑥𝑛,𝑚 B (−1)𝑛+𝑚
min{𝑛,𝑚} .

a) Show that for no 𝑛 does lim
𝑚→∞ 𝑥𝑛,𝑚 exist, and for no 𝑚 does lim

𝑛→∞ 𝑥𝑛,𝑚 exist. So neither lim
𝑛→∞ lim

𝑚→∞ 𝑥𝑛,𝑚
nor lim

𝑚→∞ lim
𝑛→∞ 𝑥𝑛,𝑚 makes any sense at all.

b) Show that the joint limit of {𝑥𝑛,𝑚}∞𝑛,𝑚=1 exists and equals 0.

Exercise 6.2.15: We say that a sequence of functions 𝑓𝑛 : ℝ → ℝ converges uniformly on compact
subsets if for every 𝑘 ∈ ℕ, the sequence { 𝑓𝑛}∞𝑛=1 converges uniformly on [−𝑘, 𝑘].
a) Prove that if 𝑓𝑛 : ℝ → ℝ is a sequence of continuous functions converging uniformly on compact subsets,

then the limit is continuous.

b) Prove that if 𝑓𝑛 : ℝ → ℝ is a sequence of functions Riemann integrable on every closed and bounded
interval [𝑎, 𝑏], and converging uniformly on compact subsets to an 𝑓 : ℝ → ℝ, then for every interval
[𝑎, 𝑏], we have 𝑓 ∈ R

([𝑎, 𝑏]) , and
∫ 𝑏
𝑎 𝑓 = lim

𝑛→∞
∫ 𝑏
𝑎 𝑓𝑛 .

Exercise 6.2.16 (Challenging): Find a sequence of continuous functions 𝑓𝑛 : [0, 1] → ℝ that converge to
the popcorn function 𝑓 : [0, 1] → ℝ, that is the function such that 𝑓 (𝑝/𝑞) B 1/𝑞 (if 𝑝/𝑞 is in lowest terms)
and 𝑓 (𝑥) B 0 if 𝑥 is not rational (note that 𝑓 (0) = 𝑓 (1) = 1), see  Example 3.2.12 . So a pointwise limit of
continuous functions can have a dense set of discontinuities. See also the next exercise.
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Exercise 6.2.17 (Challenging): The Dirichlet function 𝑓 : [0, 1] → ℝ, that is the function such that
𝑓 (𝑥) B 1 if 𝑥 ∈ ℚ and 𝑓 (𝑥) B 0 if 𝑥 ∉ ℚ, is not the pointwise limit of continuous functions, although this
is difficult to show. Prove, however, that 𝑓 is a pointwise limit of functions that are themselves pointwise
limits of continuous functions themselves.

Exercise 6.2.18:

a) Find a sequence of Lipschitz continuous functions on [0, 1] whose uniform limit is
√
𝑥, which is a

non-Lipschitz function.

b) On the other hand, show that if 𝑓𝑛 : 𝑆 → ℝ are Lipschitz with a uniform constant 𝐾 (meaning all of them
satisfy the definition with the same constant) and { 𝑓𝑛}∞𝑛=1 converges pointwise to 𝑓 : 𝑆 → ℝ, then the
limit 𝑓 is a Lipschitz continuous function with Lipschitz constant 𝐾.

Exercise 6.2.19 (requires  §2.6 ): If
∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 has radius of convergence 𝜌, show that the term by term

integral
∑∞
𝑛=1

𝑐𝑛−1
𝑛 (𝑥 − 𝑎)𝑛 has radius of convergence 𝜌. Note that we only proved above that the radius of

convergence was at least 𝜌.

Exercise 6.2.20 (requires  §2.6 and  §4.3 ): Suppose 𝑓 (𝑥) B ∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑎)𝑛 converges in (𝑎 − 𝜌, 𝑎 + 𝜌).

a) Suppose that 𝑓 (𝑘)(𝑎) = 0 for all 𝑘 = 0, 1, 2, 3, . . .. Prove that 𝑐𝑛 = 0 for all 𝑛, or in other words, 𝑓 (𝑥) = 0
for all 𝑥 ∈ (𝑎 − 𝜌, 𝑎 + 𝜌).

b) Using part a) prove a version of the so-called “identity theorem for analytic functions”: If there exists an
𝜖 > 0 such that 𝑓 (𝑥) = 0 for all 𝑥 ∈ (𝑎 − 𝜖, 𝑎 + 𝜖), then 𝑓 (𝑥) = 0 for all 𝑥 ∈ (𝑎 − 𝜌, 𝑎 + 𝜌).

Exercise 6.2.21: Let 𝑓𝑛(𝑥) B 𝑥
1+(𝑛𝑥)2 . Notice that 𝑓𝑛 are differentiable functions.

a) Show that { 𝑓𝑛}∞𝑛=1 converges uniformly to 0.

b) Show that | 𝑓 ′𝑛(𝑥)| ≤ 1 for all 𝑥 and all 𝑛.

c) Show that { 𝑓 ′𝑛}∞𝑛=1 converges pointwise to a function discontinuous at the origin.

d) Let {𝑎𝑛}∞𝑛=1 be an enumeration of the rational numbers. Define

𝑔𝑛(𝑥) B
𝑛∑
𝑘=1

2−𝑘 𝑓𝑛(𝑥 − 𝑎𝑘).

Show that {𝑔𝑛}∞𝑛=1 converges uniformly to 0.

e) Show that {𝑔′𝑛}∞𝑛=1 converges pointwise to a function 𝜓 that is discontinuous at every rational number
and continuous at every irrational number. In particular, lim

𝑛→∞ 𝑔
′
𝑛(𝑥) ≠ 0 for every rational number 𝑥.

Exercise 6.2.22 (requires  §5.5 ): Show that uniform convergence is not enough to pass the limit through
improper integrals over infinite intervals. That is, find a sequence of functions 𝑓𝑛 : ℝ → ℝ Riemann
integrable on every bounded interval, converging uniformly to zero, and such that

∫ ∞
−∞ 𝑓𝑛 = 1 for every 𝑛.
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6.3 Picard’s theorem
Note: 1–2 lectures (can be safely skipped)

A first semester course in analysis should have a pièce de résistance caliber theorem. We
pick a theorem whose proof combines everything we have learned. It is more sophisticated
than the fundamental theorem of calculus, the first highlight theorem of this course.
The theorem we are talking about is Picard’s theorem 

‗
 on existence and uniqueness of

a solution to an ordinary differential equation. Both the statement and the proof are
beautiful examples of what one can do with the material we mastered so far. It is also a
good example of how analysis is applied, as differential equations are indispensable in
science of every stripe.

6.3.1 First order ordinary differential equation
Modern science is described in the language of differential equations. That is, equations
involving not only the unknown, but also its derivatives. The simplest nontrivial form of a
differential equation is the so-called first order ordinary differential equation

𝑦′ = 𝐹(𝑥, 𝑦).
Generally, we also specify an initial condition 𝑦(𝑥0) = 𝑦0. The solution of the equation is a
function 𝑦(𝑥) such that 𝑦(𝑥0) = 𝑦0 and 𝑦′(𝑥) = 𝐹

(
𝑥, 𝑦(𝑥)) . See  Figure 6.8  for a graphical

representation as a so-called slope field.

(G0 , H0)

Figure 6.8: A slope field giving the slope 𝐹(𝑥, 𝑦) at each point, in this case 𝐹(𝑥, 𝑦) = 𝑥(1 − 𝑦). A
solution is drawn going through the point (𝑥0 , 𝑦0) = (1, 0.3), notice how it follows the slopes.

When 𝐹 involves only the 𝑥 variable, the solution is given by the fundamental theorem of
calculus. On the other hand, when 𝐹 depends on both 𝑥 and 𝑦, we need far more firepower.
It is not always true that a solution exists, and if it does, that it is the unique solution.
Picard’s theorem gives us certain sufficient conditions for existence and uniqueness.

‗Named for the French mathematician  Charles Émile Picard (1856–1941).

https://en.wikipedia.org/wiki/%C3%89mile_Picard
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6.3.2 The theorem
We need a definition of continuity in two variables. A point in the plane ℝ2 = ℝ × ℝ

is denoted by an ordered pair (𝑥, 𝑦). For simplicity, we give the following sequential
definition of continuity.

Definition 6.3.1. Let 𝑈 ⊂ ℝ2 be a set, 𝐹 : 𝑈 → ℝ a function, and (𝑥, 𝑦) ∈ 𝑈 a point. The
function 𝐹 is continuous at (𝑥, 𝑦) if for every sequence

{(𝑥𝑛 , 𝑦𝑛)}∞𝑛=1 of points in𝑈 such that
lim𝑛→∞ 𝑥𝑛 = 𝑥 and lim𝑛→∞ 𝑦𝑛 = 𝑦, we have

lim
𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛) = 𝐹(𝑥, 𝑦).

We say 𝐹 is continuous if it is continuous at all points in𝑈 .

Theorem 6.3.2 (Picard’s theorem on existence and uniqueness). Let 𝐼 , 𝐽 ⊂ ℝ be closed bounded
intervals, let 𝐼◦ and 𝐽◦ be their interiors 

‗
 , and let (𝑥0, 𝑦0) ∈ 𝐼◦ × 𝐽◦. Suppose 𝐹 : 𝐼 × 𝐽 → ℝ is

continuous and Lipschitz in the second variable, that is, there exists an 𝐿 ∈ ℝ such that��𝐹(𝑥, 𝑦) − 𝐹(𝑥, 𝑧)�� ≤ 𝐿
��𝑦 − 𝑧�� for all 𝑦, 𝑧 ∈ 𝐽 , 𝑥 ∈ 𝐼.

Then there exists an ℎ > 0 such that [𝑥0 − ℎ, 𝑥0 + ℎ] ⊂ 𝐼 and a unique differentiable function
𝑓 : [𝑥0 − ℎ, 𝑥0 + ℎ] → 𝐽 ⊂ ℝ such that

𝑓 ′(𝑥) = 𝐹
(
𝑥, 𝑓 (𝑥)) and 𝑓 (𝑥0) = 𝑦0. (6.1)

Proof. Suppose we could find a solution 𝑓 . Using the fundamental theorem of calculus
we integrate the equation 𝑓 ′(𝑥) = 𝐹

(
𝑥, 𝑓 (𝑥)) , 𝑓 (𝑥0) = 𝑦0, and write ( 6.1 ) as the integral

equation

𝑓 (𝑥) = 𝑦0 +
∫ 𝑥

𝑥0

𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡. (6.2)

The idea of our proof is that we try to plug in approximations to a solution to the right-hand
side of ( 6.2 ) to get better approximations on the left-hand side of ( 6.2 ). We hope that in the
end the sequence converges and solves ( 6.2 ) and hence ( 6.1 ). The technique below is called
Picard iteration, and the individual functions 𝑓𝑘 are called the Picard iterates.

Without loss of generality, suppose 𝑥0 = 0 (exercise below). Another exercise tells us
that 𝐹 is bounded as it is continuous. Therefore pick some 𝑀 > 0 so that

��𝐹(𝑥, 𝑦)�� ≤ 𝑀 for
all (𝑥, 𝑦) ∈ 𝐼 × 𝐽. Pick 𝛼 > 0 such that [−𝛼, 𝛼] ⊂ 𝐼 and [𝑦0 − 𝛼, 𝑦0 + 𝛼] ⊂ 𝐽. Define

ℎ B min
{
𝛼,

𝛼
𝑀 + 𝐿𝛼

}
.

Observe [−ℎ, ℎ] ⊂ 𝐼.
Set 𝑓0(𝑥) B 𝑦0. We define 𝑓𝑘 inductively. Assuming 𝑓𝑘−1([−ℎ, ℎ]) ⊂ [𝑦0 − 𝛼, 𝑦0 + 𝛼], we

see 𝐹
(
𝑡 , 𝑓𝑘−1(𝑡)

)
is a well-defined function of 𝑡 for 𝑡 ∈ [−ℎ, ℎ]. Further if 𝑓𝑘−1 is continuous

‗By interior of [𝑎, 𝑏], we mean (𝑎, 𝑏).
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on [−ℎ, ℎ], then 𝐹
(
𝑡 , 𝑓𝑘−1(𝑡)

)
is continuous as a function of 𝑡 on [−ℎ, ℎ] (left as an exercise).

Define
𝑓𝑘(𝑥) B 𝑦0 +

∫ 𝑥

0
𝐹
(
𝑡 , 𝑓𝑘−1(𝑡)

)
𝑑𝑡,

and 𝑓𝑘 is continuous on [−ℎ, ℎ] by the fundamental theorem of calculus. To see that 𝑓𝑘
maps [−ℎ, ℎ] to [𝑦0 − 𝛼, 𝑦0 + 𝛼], we compute for 𝑥 ∈ [−ℎ, ℎ]�� 𝑓𝑘(𝑥) − 𝑦0

�� = ����∫ 𝑥

0
𝐹
(
𝑡 , 𝑓𝑘−1(𝑡)

)
𝑑𝑡

���� ≤ 𝑀 |𝑥| ≤ 𝑀ℎ ≤ 𝑀
𝛼

𝑀 + 𝐿𝛼 ≤ 𝛼.

We next define 𝑓𝑘+1 using 𝑓𝑘 and so on. Thus we have inductively defined a sequence
{ 𝑓𝑘}∞𝑘=1 of functions. We need to show that it converges to a function 𝑓 that solves the
equation ( 6.2 ) and therefore ( 6.1 ).

We wish to show that the sequence { 𝑓𝑘}∞𝑘=1 converges uniformly to some function on
[−ℎ, ℎ]. First, for 𝑡 ∈ [−ℎ, ℎ], we have the following useful bound��𝐹 (

𝑡 , 𝑓𝑛(𝑡)
) − 𝐹 (

𝑡 , 𝑓𝑘(𝑡)
) �� ≤ 𝐿

�� 𝑓𝑛(𝑡) − 𝑓𝑘(𝑡)
�� ≤ 𝐿

 𝑓𝑛 − 𝑓𝑘
[−ℎ,ℎ] ,

where
 𝑓𝑛 − 𝑓𝑘

[−ℎ,ℎ] is the uniform norm, that is the supremum of
�� 𝑓𝑛(𝑡) − 𝑓𝑘(𝑡)

�� for
𝑡 ∈ [−ℎ, ℎ]. Now note that |𝑥| ≤ ℎ ≤ 𝛼

𝑀+𝐿𝛼 . Therefore�� 𝑓𝑛(𝑥) − 𝑓𝑘(𝑥)
�� = ����∫ 𝑥

0
𝐹
(
𝑡 , 𝑓𝑛−1(𝑡)

)
𝑑𝑡 −

∫ 𝑥

0
𝐹
(
𝑡 , 𝑓𝑘−1(𝑡)

)
𝑑𝑡

����
=

����∫ 𝑥

0

(
𝐹
(
𝑡 , 𝑓𝑛−1(𝑡)

) − 𝐹 (
𝑡 , 𝑓𝑘−1(𝑡)

) )
𝑑𝑡

����
≤ 𝐿

 𝑓𝑛−1 − 𝑓𝑘−1
[−ℎ,ℎ] |𝑥|

≤ 𝐿𝛼
𝑀 + 𝐿𝛼

 𝑓𝑛−1 − 𝑓𝑘−1
[−ℎ,ℎ] .

Let 𝐶 B 𝐿𝛼
𝑀+𝐿𝛼 and note that 𝐶 < 1. Taking supremum on the left-hand side we get 𝑓𝑛 − 𝑓𝑘

[−ℎ,ℎ] ≤ 𝐶
 𝑓𝑛−1 − 𝑓𝑘−1

[−ℎ,ℎ] .
Without loss of generality, suppose 𝑛 ≥ 𝑘. Then by  induction we can show 𝑓𝑛 − 𝑓𝑘

[−ℎ,ℎ] ≤ 𝐶𝑘
 𝑓𝑛−𝑘 − 𝑓0

[−ℎ,ℎ] .
For 𝑥 ∈ [−ℎ, ℎ], we have �� 𝑓𝑛−𝑘(𝑥) − 𝑓0(𝑥)

�� = �� 𝑓𝑛−𝑘(𝑥) − 𝑦0
�� ≤ 𝛼.

Therefore,  𝑓𝑛 − 𝑓𝑘
[−ℎ,ℎ] ≤ 𝐶𝑘

 𝑓𝑛−𝑘 − 𝑓0
[−ℎ,ℎ] ≤ 𝐶𝑘𝛼.

As 𝐶 < 1, { 𝑓𝑛}∞𝑛=1 is uniformly Cauchy and by  Proposition 6.1.13 we obtain that { 𝑓𝑛}∞𝑛=1
converges uniformly on [−ℎ, ℎ] to some function 𝑓 : [−ℎ, ℎ] → ℝ. The function 𝑓 is the
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uniform limit of continuous functions and therefore continuous. Furthermore, since
𝑓𝑛

([−ℎ, ℎ]) ⊂ [𝑦0 − 𝛼, 𝑦0 + 𝛼] for all 𝑛, then 𝑓
([−ℎ, ℎ]) ⊂ [𝑦0 − 𝛼, 𝑦0 + 𝛼] (why?).

We now need to show that 𝑓 solves ( 6.2 ). First, as before we notice��𝐹 (
𝑡 , 𝑓𝑛(𝑡)

) − 𝐹 (
𝑡 , 𝑓 (𝑡)) �� ≤ 𝐿

�� 𝑓𝑛(𝑡) − 𝑓 (𝑡)�� ≤ 𝐿
 𝑓𝑛 − 𝑓

[−ℎ,ℎ] .
As

 𝑓𝑛 − 𝑓
[−ℎ,ℎ] converges to 0, then 𝐹

(
𝑡 , 𝑓𝑛(𝑡)

)
converges uniformly to 𝐹

(
𝑡 , 𝑓 (𝑡)) for

𝑡 ∈ [−ℎ, ℎ]. Hence, for 𝑥 ∈ [−ℎ, ℎ] the convergence is uniform for 𝑡 ∈ [0, 𝑥] (or [𝑥, 0] if
𝑥 < 0). Therefore,

𝑦0 +
∫ 𝑥

0
𝐹(𝑡 , 𝑓 (𝑡)) 𝑑𝑡 = 𝑦0 +

∫ 𝑥

0
𝐹
(
𝑡 , lim
𝑛→∞ 𝑓𝑛(𝑡)

)
𝑑𝑡

= 𝑦0 +
∫ 𝑥

0
lim
𝑛→∞ 𝐹

(
𝑡 , 𝑓𝑛(𝑡)

)
𝑑𝑡 (by continuity of 𝐹)

= lim
𝑛→∞

(
𝑦0 +

∫ 𝑥

0
𝐹
(
𝑡 , 𝑓𝑛(𝑡)

)
𝑑𝑡

)
(by uniform convergence)

= lim
𝑛→∞ 𝑓𝑛+1(𝑥) = 𝑓 (𝑥).

We apply the fundamental theorem of calculus ( Theorem 5.3.3  ) to show that 𝑓 is differen-
tiable and its derivative is 𝐹

(
𝑥, 𝑓 (𝑥)) . It is obvious that 𝑓 (0) = 𝑦0.

Finally, what is left to do is to show uniqueness. Suppose 𝑔 : [−ℎ, ℎ] → 𝐽 ⊂ ℝ is another
solution. As before we use the fact that

��𝐹 (
𝑡 , 𝑓 (𝑡)) − 𝐹 (

𝑡 , 𝑔(𝑡)) �� ≤ 𝐿
 𝑓 − 𝑔

[−ℎ,ℎ]. Then�� 𝑓 (𝑥) − 𝑔(𝑥)�� = ����𝑦0 +
∫ 𝑥

0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡 − (

𝑦0 +
∫ 𝑥

0
𝐹
(
𝑡 , 𝑔(𝑡)) 𝑑𝑡)����

=

����∫ 𝑥

0

(
𝐹
(
𝑡 , 𝑓 (𝑡)) − 𝐹 (

𝑡 , 𝑔(𝑡)) ) 𝑑𝑡����
≤ 𝐿

 𝑓 − 𝑔
[−ℎ,ℎ] |𝑥| ≤ 𝐿ℎ

 𝑓 − 𝑔
[−ℎ,ℎ] ≤ 𝐿𝛼

𝑀 + 𝐿𝛼
 𝑓 − 𝑔

[−ℎ,ℎ] .
As before, 𝐶 = 𝐿𝛼

𝑀+𝐿𝛼 < 1. By taking supremum over 𝑥 ∈ [−ℎ, ℎ] on the left-hand side we
obtain  𝑓 − 𝑔

[−ℎ,ℎ] ≤ 𝐶
 𝑓 − 𝑔

[−ℎ,ℎ] .
This is only possible if

 𝑓 − 𝑔
[−ℎ,ℎ] = 0. Therefore, 𝑓 = 𝑔, and the solution is unique. □

6.3.3 Examples
Let us look at some examples. The proof of the theorem gives us an explicit way to find an
ℎ that works. It does not, however, give us the best ℎ. It is often possible to find a much
larger ℎ for which the conclusion of the theorem holds.

The proof also gives us the Picard iterates as approximations to the solution. So the
proof actually tells us how to obtain the solution, not just that the solution exists.
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Example 6.3.3: Consider
𝑓 ′(𝑥) = 𝑓 (𝑥), 𝑓 (0) = 1.

That is, we suppose 𝐹(𝑥, 𝑦) = 𝑦, and we are looking for a function 𝑓 such that 𝑓 ′(𝑥) = 𝑓 (𝑥).
Let us forget for the moment that we solved this equation in  §5.4 . See also  Figure 5.7 for a
plot of both the equation, showing the slope 𝐹(𝑥, 𝑦) = 𝑦 at each point, and the solution, the
exponential, that satisfies 𝑓 (0) = 1.

We pick any 𝐼 that contains 0 in the interior. We pick an arbitrary 𝐽 that contains 1 in
its interior. We can use 𝐿 = 1. The theorem guarantees an ℎ > 0 such that there exists a
unique solution 𝑓 : [−ℎ, ℎ] → ℝ. This solution is usually denoted by

𝑒𝑥 B 𝑓 (𝑥).

We leave it to the reader to verify that by picking 𝐼 and 𝐽 large enough the proof of the
theorem guarantees that we are able to pick 𝛼 such that we get any ℎ we want as long as
ℎ < 1/2. We omit the calculation. Of course, we know this function exists as a function for
all 𝑥, so an arbitrary ℎ ought to work, but the theorem only provides ℎ < 1/2.

By same reasoning as above, no matter what 𝑥0 and 𝑦0 are, the proof guarantees
an arbitrary ℎ as long as ℎ < 1/2. Fix such an ℎ. We get a unique function defined on
[𝑥0 − ℎ, 𝑥0 + ℎ]. After defining the function on [−ℎ, ℎ] we find a solution on the interval
[0, 2ℎ] and notice that the two functions must coincide on [0, ℎ] by uniqueness. We thus
iteratively construct the exponential for all 𝑥 ∈ ℝ. Therefore, Picard’s theorem could be
used to prove the existence and uniqueness of the exponential.

Let us compute the Picard iterates. We start with the constant function 𝑓0(𝑥) B 1. Then

𝑓1(𝑥) = 1 +
∫ 𝑥

0
𝑓0(𝑠) 𝑑𝑠 = 1 + 𝑥,

𝑓2(𝑥) = 1 +
∫ 𝑥

0
𝑓1(𝑠) 𝑑𝑠 = 1 +

∫ 𝑥

0
(1 + 𝑠) 𝑑𝑠 = 1 + 𝑥 + 𝑥2

2 ,

𝑓3(𝑥) = 1 +
∫ 𝑥

0
𝑓2(𝑠) 𝑑𝑠 = 1 +

∫ 𝑥

0

(
1 + 𝑠 + 𝑠2

2

)
𝑑𝑠 = 1 + 𝑥 + 𝑥2

2 + 𝑥3

6 .

We recognize the beginning of the Taylor series for the exponential. See  Figure 6.9 .

Example 6.3.4: Consider the equation

𝑓 ′(𝑥) = (
𝑓 (𝑥))2 and 𝑓 (0) = 1.

From elementary differential equations we know

𝑓 (𝑥) = 1
1 − 𝑥

is the solution. The solution is only defined on (−∞, 1). That is, we are able to use ℎ < 1,
but never a larger ℎ. The function that takes 𝑦 to 𝑦2 is not Lipschitz as a function on all
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Figure 6.9: The exponential (solid line) together with 𝑓0, 𝑓1, 𝑓2, 𝑓3 (dashed).

of ℝ. As we approach 𝑥 = 1 from the left, the solution becomes larger and larger. The
derivative of the solution grows as 𝑦2, and so the 𝐿 required has to be larger and larger as
𝑦0 grows. If we apply the theorem with 𝑥0 close to 1 and 𝑦0 = 1

1−𝑥0
we find that the ℎ that

the proof guarantees is smaller and smaller as 𝑥0 approaches 1.
The ℎ from the proof is not the best ℎ. By picking 𝛼 correctly, the proof of the theorem

guarantees ℎ = 1−√
3/2 ≈ 0.134 (we omit the calculation) for 𝑥0 = 0 and 𝑦0 = 1, even though

we saw above that any ℎ < 1 should work.

Example 6.3.5: Consider the equation

𝑓 ′(𝑥) = 2
√�� 𝑓 (𝑥)��, 𝑓 (0) = 0.

The function 𝐹(𝑥, 𝑦) = 2
√��𝑦�� is continuous, but not Lipschitz in 𝑦 (why?). The equation

does not satisfy the hypotheses of the theorem. The function

𝑓 (𝑥) =
{
𝑥2 if 𝑥 ≥ 0,
−𝑥2 if 𝑥 < 0,

is a solution, but 𝑓 (𝑥) = 0 is also a solution. A solution exists, but is not unique.

Example 6.3.6: Consider 𝑦′ = 𝜑(𝑥) where 𝜑(𝑥) B 0 if 𝑥 ∈ ℚ and 𝜑(𝑥) B 1 if 𝑥 ∉ ℚ. In
other words, the 𝐹(𝑥, 𝑦) = 𝜑(𝑥) is discontinuous. The equation has no solution regardless
of the initial conditions. A solution would have derivative 𝜑, but 𝜑 does not have the
intermediate value property at any point (why?). No solution exists by  Darboux’s theorem .

The examples show that without the Lipschitz condition, a solution might exist but not
be unique, and without continuity of 𝐹, we may not have a solution at all. It is in fact a
theorem, the Peano existence theorem, that if 𝐹 is continuous a solution exists (but may not
be unique).
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Remark 6.3.7. It is possible to weaken what we mean by “solution to 𝑦′ = 𝐹(𝑥, 𝑦)” by
focusing on the integral equation 𝑓 (𝑥) = 𝑦0 +

∫ 𝑥
𝑥0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡. For example, let 𝐻 be the

Heaviside function  

‗
 , that is 𝐻(𝑥) B 0 for 𝑥 < 0 and 𝐻(𝑥) B 1 for 𝑥 ≥ 0. Then 𝑦′ = 𝐻(𝑥),

𝑦(0) = 0, is a common equation. The “solution” is the ramp function 𝑓 (𝑥) B 0 if 𝑥 < 0
and 𝑓 (𝑥) B 𝑥 if 𝑥 ≥ 0, since this function satisfies 𝑓 (𝑥) =

∫ 𝑥
0 𝐻(𝑡) 𝑑𝑡. Notice, however, that

𝑓 ′(0) does not exist, so 𝑓 is only a so-called weak solution to the differential equation.

6.3.4 Exercises
Exercise 6.3.1: Let 𝐼 , 𝐽 ⊂ ℝ be intervals. Let 𝐹 : 𝐼 × 𝐽 → ℝ be a continuous function of two variables and
suppose 𝑓 : 𝐼 → 𝐽 be a continuous function. Show that 𝐹

(
𝑥, 𝑓 (𝑥)) is a continuous function on 𝐼.

Exercise 6.3.2: Let 𝐼 , 𝐽 ⊂ ℝ be closed bounded intervals. Show that if 𝐹 : 𝐼 × 𝐽 → ℝ is continuous, then 𝐹
is bounded.

Exercise 6.3.3: We proved Picard’s theorem under the assumption that 𝑥0 = 0. Prove the full statement of
Picard’s theorem for an arbitrary 𝑥0.

Exercise 6.3.4: Let 𝑓 ′(𝑥) = 𝑥 𝑓 (𝑥) be our equation. Start with the initial condition 𝑓 (0) = 2 and find the
Picard iterates 𝑓0 , 𝑓1 , 𝑓2 , 𝑓3 , 𝑓4.

Exercise 6.3.5: Suppose 𝐹 : 𝐼 × 𝐽 → ℝ is a function that is continuous in the first variable, that is, for every
fixed 𝑦 the function that takes 𝑥 to 𝐹(𝑥, 𝑦) is continuous. Further, suppose 𝐹 is Lipschitz in the second
variable, that is, there exists a number 𝐿 such that��𝐹(𝑥, 𝑦) − 𝐹(𝑥, 𝑧)�� ≤ 𝐿

��𝑦 − 𝑧�� for all 𝑦, 𝑧 ∈ 𝐽 , 𝑥 ∈ 𝐼.

Show that 𝐹 is continuous as a function of two variables. Therefore, the hypotheses in the theorem could be
made even weaker.

Exercise 6.3.6: A common type of equation one encounters are linear first order differential equations,
that is equations of the form

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥), 𝑦(𝑥0) = 𝑦0.

Prove Picard’s theorem for linear equations. Suppose 𝐼 is an interval, 𝑥0 ∈ 𝐼, and 𝑝 : 𝐼 → ℝ and 𝑞 : 𝐼 → ℝ

are continuous. Show that there exists a unique differentiable 𝑓 : 𝐼 → ℝ, such that 𝑦 = 𝑓 (𝑥) satisfies the
equation and the initial condition. Hint: Assume existence of the exponential function and use the integrating
factor formula for existence of 𝑓 (prove that it works and then that it is unique):

𝑓 (𝑥) B 𝑒
−

∫ 𝑥
𝑥0
𝑝(𝑠) 𝑑𝑠

(∫ 𝑥

𝑥0

𝑒
∫ 𝑡
𝑥0
𝑝(𝑠) 𝑑𝑠

𝑞(𝑡) 𝑑𝑡 + 𝑦0

)
.

Exercise 6.3.7: Consider the equation 𝑓 ′(𝑥) = 𝑓 (𝑥), from  Example 6.3.3 . Show that given any 𝑥0, any 𝑦0,
and any positive ℎ < 1/2, we can pick 𝛼 > 0 large enough that the proof of Picard’s theorem guarantees a
solution for the initial condition 𝑓 (𝑥0) = 𝑦0 in the interval [𝑥0 − ℎ, 𝑥0 + ℎ].

‗Named for the English engineer, mathematician, and physicist  Oliver Heaviside (1850–1825).

https://en.wikipedia.org/wiki/Oliver_Heaviside
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Exercise 6.3.8: Consider the equation 𝑦′ = 𝑦1/3𝑥.

a) Show that for the initial condition 𝑦(1) = 1, Picard’s theorem applies. Find an 𝛼 > 0, 𝑀, 𝐿, and ℎ that
would work in the proof.

b) Show that for the initial condition 𝑦(1) = 0, Picard’s theorem does not apply.

c) Find a solution for 𝑦(1) = 0 anyway.

Exercise 6.3.9: Consider the equation 𝑥𝑦′ = 2𝑦.

a) Show that 𝑦 = 𝐶𝑥2 is a solution for every constant 𝐶.

b) Show that for every 𝑥0 ≠ 0 and every 𝑦0, Picard’s theorem applies for the initial condition 𝑦(𝑥0) = 𝑦0.

c) Show that 𝑦(0) = 𝑦0 is solvable if and only if 𝑦0 = 0.
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Chapter 7

Metric Spaces

7.1 Metric spaces
Note: 1.5 lectures

As mentioned in the introduction, the main idea in analysis is to take limits. In  chapter 2 

we learned to take limits of sequences of real numbers. And in  chapter 3  we learned to
take limits of functions as a real number approached some other real number.

We want to take limits in more complicated contexts. For example, we want to have
sequences of points in 3-dimensional space. We wish to define continuous functions of
several variables. We even want to define functions on spaces that are a little harder to
describe, such as the surface of the earth. We still want to talk about limits there.

Finally, we have seen the limit of a sequence of functions in  chapter 6  . We wish to unify
all these notions so that we do not have to reprove theorems over and over again in each
context. The concept of a metric space is an elementary yet powerful tool in analysis. And
while it is not sufficient to describe every type of limit we find in modern analysis, it gets
us very far indeed.

Definition 7.1.1. Let 𝑋 be a set, and let 𝑑 : 𝑋 × 𝑋 → ℝ be a function such that for all
𝑥, 𝑦, 𝑧 ∈ 𝑋

(i) 𝑑(𝑥, 𝑦) ≥ 0. (nonnegativity)
(ii) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. (identity of indiscernibles)

(iii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). (symmetry)
(iv) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). (triangle inequality)

The pair (𝑋, 𝑑) is called a metric space. The function 𝑑 is called the metric or the distance
function. Sometimes we write just 𝑋 as the metric space instead of (𝑋, 𝑑) if the metric is
clear from context.

The geometric idea is that 𝑑 is the distance between two points. Items  (i) – (iii) have
obvious geometric interpretation: Distance is always nonnegative, the only point that is
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distance 0 away from 𝑥 is 𝑥 itself, and finally that the distance from 𝑥 to 𝑦 is the same as the
distance from 𝑦 to 𝑥. The triangle inequality  (iv) has the interpretation given in  Figure 7.1 .

𝑥
𝑦

𝑧

𝑑(𝑥, 𝑦)

𝑑(𝑦, 𝑧)𝑑(𝑥, 𝑧)

longer

shorter

Figure 7.1: Diagram of the triangle inequality in metric spaces.

For the purposes of drawing, it is convenient to draw figures and diagrams in the plane
with the metric being the euclidean distance. However, that is only one particular metric
space. Just because a certain fact seems to be clear from drawing a picture does not mean it
is true in every metric space. You might be getting sidetracked by intuition from euclidean
geometry, whereas the concept of a metric space is a lot more general.

Let us give some examples of metric spaces.

Example 7.1.2: The set of real numbers ℝ is a metric space with the metric

𝑑(𝑥, 𝑦) B ��𝑥 − 𝑦�� .
Items  (i) – (iii) of the definition are easy to verify. The triangle inequality  (iv) follows
immediately from the standard triangle inequality for real numbers:

𝑑(𝑥, 𝑧) = |𝑥 − 𝑧| = ��𝑥 − 𝑦 + 𝑦 − 𝑧�� ≤ ��𝑥 − 𝑦�� + ��𝑦 − 𝑧�� = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

This metric is the standard metric on ℝ. If we talk about ℝ as a metric space without
mentioning a specific metric, we mean this particular metric.

Example 7.1.3: We can also put a different metric on the set of real numbers. For example,
take the set of real numbers ℝ together with the metric

𝑑(𝑥, 𝑦) B
��𝑥 − 𝑦����𝑥 − 𝑦�� + 1

.

Items  (i) – (iii) are again easy to verify. The triangle inequality  (iv) is a little bit more difficult.
Note that 𝑑(𝑥, 𝑦) = 𝜑(��𝑥 − 𝑦��) where 𝜑(𝑡) = 𝑡

𝑡+1 and 𝜑 is an increasing function (positive
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derivative, see  Figure 7.2 ). Hence

𝑑(𝑥, 𝑧) = 𝜑(|𝑥 − 𝑧|) = 𝜑(��𝑥 − 𝑦 + 𝑦 − 𝑧��)
≤ 𝜑(��𝑥 − 𝑦�� + ��𝑦 − 𝑧��)
=

��𝑥 − 𝑦�� + ��𝑦 − 𝑧����𝑥 − 𝑦�� + ��𝑦 − 𝑧�� + 1

=

��𝑥 − 𝑦����𝑥 − 𝑦�� + ��𝑦 − 𝑧�� + 1
+

��𝑦 − 𝑧����𝑥 − 𝑦�� + ��𝑦 − 𝑧�� + 1

≤
��𝑥 − 𝑦����𝑥 − 𝑦�� + 1

+
��𝑦 − 𝑧����𝑦 − 𝑧�� + 1

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

The function 𝑑 is thus a metric, and gives an example of a nonstandard metric on ℝ. With
this metric, 𝑑(𝑥, 𝑦) < 1 for all 𝑥, 𝑦 ∈ ℝ. That is, every two points are less than 1 unit apart.

Figure 7.2: Graph of 𝑡
𝑡+1 for positive 𝑡 with an asymptote at 1.

An important metric space is the 𝑛-dimensional euclidean space ℝ𝑛 = ℝ ×ℝ × · · · ×ℝ.
We use the following notation for points: 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 . We will not write ®𝑥
nor x for a point in ℝ𝑛 as is common in multivariable calculus, we simply give it a name
such as 𝑥 and we will remember that 𝑥 is an element of ℝ𝑛 . We also write simply 0 ∈ ℝ𝑛

to mean the point (0, 0, . . . , 0). Before making ℝ𝑛 a metric space, we prove an important
inequality, the so-called Cauchy–Schwarz inequality.

Lemma 7.1.4 (Cauchy–Schwarz inequality  

‗
 ). Suppose 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛 , 𝑦 =

(𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . Then ( 𝑛∑
𝑘=1

𝑥𝑘𝑦𝑘

)2

≤
( 𝑛∑
𝑘=1

𝑥2
𝑘

) ( 𝑛∑
𝑘=1

𝑦2
𝑘

)
.

‗Sometimes it is called the Cauchy–Bunyakovsky–Schwarz inequality.  Karl Hermann Amandus Schwarz 

(1843–1921) was a German mathematician and  Viktor Yakovlevich Bunyakovsky (1804–1889) was a Ukrainian
mathematician. What we stated should really be called the Cauchy inequality, as Bunyakovsky and Schwarz
provided proofs for infinite-dimensional versions.

https://en.wikipedia.org/wiki/Hermann_Schwarz
https://en.wikipedia.org/wiki/Viktor_Bunyakovsky
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Proof. A square of a real number is nonnegative. Hence a sum of squares is nonnegative:

0 ≤
𝑛∑
𝑘=1

𝑛∑
ℓ=1

(𝑥𝑘𝑦ℓ − 𝑥ℓ 𝑦𝑘)2

=
𝑛∑
𝑘=1

𝑛∑
ℓ=1

(
𝑥2
𝑘𝑦

2
ℓ + 𝑥2

ℓ 𝑦
2
𝑘 − 2𝑥𝑘𝑥ℓ 𝑦𝑘𝑦ℓ

)
=

( 𝑛∑
𝑘=1

𝑥2
𝑘

) ( 𝑛∑
ℓ=1

𝑦2
ℓ

)
+

( 𝑛∑
𝑘=1

𝑦2
𝑘

) ( 𝑛∑
ℓ=1

𝑥2
ℓ

)
− 2

( 𝑛∑
𝑘=1

𝑥𝑘𝑦𝑘

) ( 𝑛∑
ℓ=1

𝑥ℓ 𝑦ℓ

)
.

We relabel and divide by 2 to obtain precisely what we wanted,

0 ≤
( 𝑛∑
𝑘=1

𝑥2
𝑘

) ( 𝑛∑
𝑘=1

𝑦2
𝑘

)
−

( 𝑛∑
𝑘=1

𝑥𝑘𝑦𝑘

)2

. □

Example 7.1.5: Let us construct the standard metric for ℝ𝑛 . Define

𝑑(𝑥, 𝑦) B
√
(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2 =

√√
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)2.

For 𝑛 = 1, the real line, this metric agrees with what we defined above. For 𝑛 > 1, the
only tricky part of the definition to check, as before, is the triangle inequality. It is less
messy to work with the square of the metric. In the following estimate, note the use of the
Cauchy–Schwarz inequality.(

𝑑(𝑥, 𝑧))2 =
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑧𝑘)2

=
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘 + 𝑦𝑘 − 𝑧𝑘)2

=
𝑛∑
𝑘=1

(
(𝑥𝑘 − 𝑦𝑘)2 + (𝑦𝑘 − 𝑧𝑘)2 + 2(𝑥𝑘 − 𝑦𝑘)(𝑦𝑘 − 𝑧𝑘)

)
=

𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)2 +
𝑛∑
𝑘=1

(𝑦𝑘 − 𝑧𝑘)2 + 2
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)(𝑦𝑘 − 𝑧𝑘)

≤
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)2 +
𝑛∑
𝑘=1

(𝑦𝑘 − 𝑧𝑘)2 + 2

√√
𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)2
𝑛∑
𝑘=1

(𝑦𝑘 − 𝑧𝑘)2

= ©«
√√

𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)2 +
√√

𝑛∑
𝑘=1

(𝑦𝑘 − 𝑧𝑘)2ª®¬
2

=
(
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧))2.

Because the square root is an increasing function, the inequality is preserved when we take
the square root of both sides, and we obtain the triangle inequality.
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Example 7.1.6: The set of complex numbers ℂ is the set of numbers 𝑧 = 𝑥 + 𝑖𝑦, where 𝑥
and 𝑦 are in ℝ. By imposing 𝑖2 = −1, we make ℂ into a field. For the purposes of taking
limits, the set ℂ is regarded as the metric space ℝ2, where 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ corresponds to
(𝑥, 𝑦) ∈ ℝ2. For 𝑧 = 𝑥 + 𝑖𝑦 define the complex modulus by |𝑧| B √

𝑥2 + 𝑦2. Then for two
complex numbers 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2, the distance is

𝑑(𝑧1, 𝑧2) =
√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = |𝑧1 − 𝑧2|.

Furthermore, when working with complex numbers it is often convenient to write the
metric in terms of the so-called complex conjugate: The conjugate of 𝑧 = 𝑥 + 𝑖𝑦 is �̄� B 𝑥 − 𝑖𝑦.
Then |𝑧|2 = 𝑥2 + 𝑦2 = 𝑧�̄�, and so |𝑧1 − 𝑧2|2 = (𝑧1 − 𝑧2)(𝑧1 − 𝑧2).
Example 7.1.7: An example to keep in mind is the so-called discrete metric. For any set 𝑋,
define

𝑑(𝑥, 𝑦) B
{

1 if 𝑥 ≠ 𝑦,

0 if 𝑥 = 𝑦.

That is, all points are equally distant from each other. When 𝑋 is a finite set, we can draw a
diagram, see for example  Figure 7.3 . Of course, in the diagram the distances are not the
normal euclidean distances in the plane. Things become subtle when 𝑋 is an infinite set
such as the real numbers.

1

1 1
1 1

1

11
1

1
𝑏

𝑐

𝑑
𝑒

𝑎

Figure 7.3: Sample discrete metric space {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, the distance between any two points is 1.

While this particular example may seldom come up in practice, it gives a useful “smell
test.” If you make a statement about metric spaces, try it with the discrete metric. To show
that (𝑋, 𝑑) is indeed a metric space is left as an exercise.

Example 7.1.8: Let 𝐶
([𝑎, 𝑏],ℝ)

be the set of continuous real-valued functions on the
interval [𝑎, 𝑏]. Define the metric on 𝐶

([𝑎, 𝑏],ℝ)
as

𝑑( 𝑓 , 𝑔) B sup
𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − 𝑔(𝑥)�� .
Let us check the properties. First, 𝑑( 𝑓 , 𝑔) is finite as

�� 𝑓 (𝑥) − 𝑔(𝑥)�� is a continuous function
on a closed bounded interval [𝑎, 𝑏], and so is bounded. It is clear that 𝑑( 𝑓 , 𝑔) ≥ 0, it is the
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supremum of nonnegative numbers. If 𝑓 = 𝑔, then
�� 𝑓 (𝑥) − 𝑔(𝑥)�� = 0 for all 𝑥, and hence

𝑑( 𝑓 , 𝑔) = 0. Conversely, if 𝑑( 𝑓 , 𝑔) = 0, then for every 𝑥, we have
�� 𝑓 (𝑥) − 𝑔(𝑥)�� ≤ 𝑑( 𝑓 , 𝑔) = 0,

and hence 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥, and so 𝑓 = 𝑔. That 𝑑( 𝑓 , 𝑔) = 𝑑(𝑔, 𝑓 ) is equally trivial. To
show the triangle inequality we use the standard triangle inequality;

𝑑( 𝑓 , 𝑔) = sup
𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − 𝑔(𝑥)�� = sup
𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − ℎ(𝑥) + ℎ(𝑥) − 𝑔(𝑥)��
≤ sup

𝑥∈[𝑎,𝑏]

(�� 𝑓 (𝑥) − ℎ(𝑥)�� + ��ℎ(𝑥) − 𝑔(𝑥)��)
≤ sup

𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − ℎ(𝑥)�� + sup
𝑥∈[𝑎,𝑏]

��ℎ(𝑥) − 𝑔(𝑥)�� = 𝑑( 𝑓 , ℎ) + 𝑑(ℎ, 𝑔).

When treating 𝐶
([𝑎, 𝑏],ℝ)

as a metric space without mentioning a metric, we mean this
particular metric. Notice that 𝑑( 𝑓 , 𝑔) =  𝑓 − 𝑔

[𝑎,𝑏], the uniform norm of  Definition 6.1.9 .
This example may seem esoteric at first, but it turns out that working with spaces

such as 𝐶
([𝑎, 𝑏],ℝ)

is really the meat of a large part of modern analysis. Treating sets of
functions as metric spaces allows us to abstract away a lot of the grubby detail and prove
powerful results such as  Picard’s theorem with less work.

Example 7.1.9: Another useful example of a metric space is the sphere with a metric
usually called the great circle distance. Let 𝑆2 be the unit sphere in ℝ3, that is 𝑆2 B {𝑥 ∈
ℝ3 : 𝑥2

1 + 𝑥2
2 + 𝑥2

3 = 1}. Take 𝑥 and 𝑦 in 𝑆2, draw a line through the origin and 𝑥, and
another line through the origin and 𝑦, and let 𝜃 be the angle that the two lines make.
Then define 𝑑(𝑥, 𝑦) B 𝜃. See  Figure 7.4 . The law of cosines from vector calculus says
𝑑(𝑥, 𝑦) = arccos(𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3). It is relatively easy to see that this function satisfies
the first three properties of a metric. Triangle inequality is harder to prove, and requires a
bit more trigonometry and linear algebra than we wish to indulge in right now, so let us
leave it without proof.

0
𝑦

𝜃
𝑆2 𝑥

Figure 7.4: The great circle distance on the unit sphere.

This distance is the shortest distance between points on a sphere if we are allowed
to travel on the sphere only. It is easy to generalize to arbitrary diameters. If we take a
sphere of radius 𝑟, we let the distance be 𝑑(𝑥, 𝑦) B 𝑟𝜃. As an example, this is the standard
distance you would use if you compute a distance on the surface of the earth, such as
computing the distance a plane travels from London to Los Angeles.
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Oftentimes it is useful to consider a subset of a larger metric space as a metric space
itself. We obtain the following proposition, which has a trivial proof.

Proposition 7.1.10. Let (𝑋, 𝑑) be a metric space and 𝑌 ⊂ 𝑋. Then the restriction 𝑑|𝑌×𝑌 is a
metric on 𝑌.

Definition 7.1.11. If (𝑋, 𝑑) is a metric space, 𝑌 ⊂ 𝑋, and 𝑑′ B 𝑑|𝑌×𝑌 , then (𝑌, 𝑑′) is said to
be a subspace of (𝑋, 𝑑).

It is common to simply write 𝑑 for the metric on 𝑌, as it is the restriction of the metric
on 𝑋. Sometimes we say 𝑑′ is the subspace metric and 𝑌 has the subspace topology.

A subset of the real numbers is bounded whenever all its elements are at most some
fixed distance from 0. When dealing with an arbitrary metric space there may not be some
natural fixed point 0, but for the purposes of boundedness it does not matter.

Definition 7.1.12. Let (𝑋, 𝑑) be a metric space. A subset 𝑆 ⊂ 𝑋 is said to be bounded if there
exists a 𝑝 ∈ 𝑋 and a 𝐵 ∈ ℝ such that

𝑑(𝑝, 𝑥) ≤ 𝐵 for all 𝑥 ∈ 𝑆.
We say (𝑋, 𝑑) is bounded if 𝑋 itself is a bounded subset.

For example, the set of real numbers with the standard metric is not a bounded metric
space. It is not hard to see that a subset of the real numbers is bounded in the sense of

 chapter 1 if and only if it is bounded as a subset of the metric space of real numbers with
the standard metric.

On the other hand, if we take the real numbers with the discrete metric, then we obtain
a bounded metric space. In fact, any set with the discrete metric is bounded.

There are other equivalent ways we could generalize boundedness, and are left as
exercises. Suppose 𝑋 is nonempty to avoid a technicality. Then 𝑆 ⊂ 𝑋 being bounded is
equivalent to either

(i) For every 𝑝 ∈ 𝑋, there exists a 𝐵 > 0 such that 𝑑(𝑝, 𝑥) ≤ 𝐵 for all 𝑥 ∈ 𝑆.
(ii) diam(𝑆) B sup

{
𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑆} < ∞.

The quantity diam(𝑆) is called the diameter of a set and is usually only defined for a
nonempty set.

7.1.1 Exercises
Exercise 7.1.1: Show that for every set 𝑋, the discrete metric (𝑑(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦 and 𝑑(𝑥, 𝑥) = 0) does
give a metric space (𝑋, 𝑑).
Exercise 7.1.2: Let 𝑋 B {0} be a set. Can you make it into a metric space?

Exercise 7.1.3: Let 𝑋 B {𝑎, 𝑏} be a set. Can you make it into two distinct metric spaces? (define two
distinct metrics on it)
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Exercise 7.1.4: Let the set 𝑋 B {𝐴, 𝐵, 𝐶} represent 3 buildings on campus. Suppose we wish our distance
to be the time it takes to walk from one building to the other. It takes 5 minutes either way between buildings
𝐴 and 𝐵. However, building 𝐶 is on a hill and it takes 10 minutes from 𝐴 and 15 minutes from 𝐵 to get to 𝐶.
On the other hand it takes 5 minutes to go from 𝐶 to 𝐴 and 7 minutes to go from 𝐶 to 𝐵, as we are going
downhill. Do these distances define a metric? If so, prove it, if not, say why not.

Exercise 7.1.5: Suppose (𝑋, 𝑑) is a metric space and 𝜑 : [0,∞) → ℝ is an increasing function such
that 𝜑(𝑡) ≥ 0 for all 𝑡 and 𝜑(𝑡) = 0 if and only if 𝑡 = 0. Also suppose 𝜑 is subadditive, that is,
𝜑(𝑠 + 𝑡) ≤ 𝜑(𝑠) + 𝜑(𝑡). Show that with 𝑑′(𝑥, 𝑦) B 𝜑

(
𝑑(𝑥, 𝑦)) , we obtain a new metric space (𝑋, 𝑑′).

Exercise 7.1.6: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces.

a) Show that (𝑋 × 𝑌, 𝑑) with 𝑑
((𝑥1 , 𝑦1), (𝑥2 , 𝑦2)

)
B 𝑑𝑋(𝑥1 , 𝑥2) + 𝑑𝑌(𝑦1 , 𝑦2) is a metric space.

b) Show that (𝑋 × 𝑌, 𝑑) with 𝑑
((𝑥1 , 𝑦1), (𝑥2 , 𝑦2)

)
B max

{
𝑑𝑋(𝑥1 , 𝑥2), 𝑑𝑌(𝑦1 , 𝑦2)

}
is a metric space.

Exercise 7.1.7: Let 𝑋 be the set of continuous functions on [0, 1]. Let 𝜑 : [0, 1] → (0,∞) be continuous.
Define

𝑑( 𝑓 , 𝑔) B
∫ 1

0

�� 𝑓 (𝑥) − 𝑔(𝑥)��𝜑(𝑥) 𝑑𝑥.
Show that (𝑋, 𝑑) is a metric space.

Exercise 7.1.8: Let (𝑋, 𝑑) be a metric space. For nonempty bounded subsets 𝐴 and 𝐵 let

𝑑(𝑥, 𝐵) B inf
{
𝑑(𝑥, 𝑏) : 𝑏 ∈ 𝐵} and 𝑑(𝐴, 𝐵) B sup

{
𝑑(𝑎, 𝐵) : 𝑎 ∈ 𝐴}

.

Now define the Hausdorff metric as

𝑑𝐻(𝐴, 𝐵) B max
{
𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)}.

Note: 𝑑𝐻 can be defined for arbitrary nonempty subsets if we allow the extended reals.

a) Let 𝑌 ⊂ P(𝑋) be the set of bounded nonempty subsets. Prove that (𝑌, 𝑑𝐻) is a so-called pseudometric
space: 𝑑𝐻 satisfies the metric properties  (i) ,  (iii) ,  (iv) , and further 𝑑𝐻(𝐴, 𝐴) = 0 for all 𝐴 ∈ 𝑌.

b) Show by example that 𝑑 itself is not symmetric, that is 𝑑(𝐴, 𝐵) ≠ 𝑑(𝐵, 𝐴).
c) Find a metric space 𝑋 and two different nonempty bounded subsets 𝐴 and 𝐵 such that 𝑑𝐻(𝐴, 𝐵) = 0.

Exercise 7.1.9: Let (𝑋, 𝑑) be a nonempty metric space and 𝑆 ⊂ 𝑋 a subset. Prove:

a) 𝑆 is bounded if and only if for every 𝑝 ∈ 𝑋, there exists a 𝐵 > 0 such that 𝑑(𝑝, 𝑥) ≤ 𝐵 for all 𝑥 ∈ 𝑆.

b) A nonempty 𝑆 is bounded if and only if diam(𝑆) B sup{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑆} < ∞.

Exercise 7.1.10:

a) Working in ℝ, compute diam
([𝑎, 𝑏]) .

b) Working in ℝ𝑛 , for every 𝑟 > 0, let 𝐵𝑟 B {𝑥2
1 + 𝑥2

2 + · · · + 𝑥2
𝑛 < 𝑟2}. Compute diam(𝐵𝑟).

c) Suppose (𝑋, 𝑑) is a metric space with at least two points, 𝑑 is the discrete metric, and 𝑝 ∈ 𝑋. Compute
diam({𝑝}) and diam(𝑋), then conclude that (𝑋, 𝑑) is bounded.
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Exercise 7.1.11:

a) Find a metric 𝑑 on ℕ such that ℕ is an unbounded set in (ℕ, 𝑑).
b) Find a metric 𝑑 on ℕ such that ℕ is a bounded set in (ℕ, 𝑑).
c) Find a metric 𝑑 on ℕ such that for every 𝑛 ∈ ℕ and every 𝜖 > 0, there exists an 𝑚 ∈ ℕ such that
𝑑(𝑛, 𝑚) < 𝜖.

Exercise 7.1.12: Let 𝐶1 ([𝑎, 𝑏],ℝ)
be the set of once continuously differentiable functions on [𝑎, 𝑏]. Define

𝑑( 𝑓 , 𝑔) B ∥ 𝑓 − 𝑔∥[𝑎,𝑏] + ∥ 𝑓 ′ − 𝑔′∥[𝑎,𝑏] ,

where ∥·∥[𝑎,𝑏] is the uniform norm. Prove that 𝑑 is a metric.

Exercise 7.1.13: Consider ℓ 2 the set of sequences {𝑥𝑛}∞𝑛=1 of real numbers such that
∑∞
𝑛=1 𝑥

2
𝑛 < ∞.

a) Prove the Cauchy–Schwarz inequality for two sequences {𝑥𝑛}∞𝑛=1 and {𝑦𝑛}∞𝑛=1 in ℓ 2: Prove that∑∞
𝑛=1 𝑥𝑛𝑦𝑛 converges (absolutely) and( ∞∑

𝑛=1
𝑥𝑛𝑦𝑛

)2

≤
( ∞∑
𝑛=1

𝑥2
𝑛

) ( ∞∑
𝑛=1

𝑦2
𝑛

)
.

b) Prove that ℓ 2 is a metric space with the metric 𝑑(𝑥, 𝑦) B
√∑∞

𝑛=1 (𝑥𝑛 − 𝑦𝑛)2. Hint: Don’t forget to show
that the series for 𝑑(𝑥, 𝑦) always converges to some finite number.
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7.2 Open and closed sets
Note: 2 lectures

7.2.1 Topology
Before we get to convergence, we define the so-called topology. That is, we define open and
closed sets in a metric space. And before that, we define two special open and closed sets.

Definition 7.2.1. Let (𝑋, 𝑑) be a metric space, 𝑥 ∈ 𝑋, and 𝛿 > 0. Define the open ball, or
simply ball, of radius 𝛿 around 𝑥 as

𝐵(𝑥, 𝛿) B {
𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝛿

}
.

Define the closed ball as
𝐶(𝑥, 𝛿) B {

𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝛿
}
.

When dealing with different metric spaces, it is sometimes vital to emphasize which
metric space the ball is in. We do this by writing 𝐵𝑋(𝑥, 𝛿) B 𝐵(𝑥, 𝛿) or 𝐶𝑋(𝑥, 𝛿) B 𝐶(𝑥, 𝛿).
Example 7.2.2: Take the metric space ℝ with the standard metric. For 𝑥 ∈ ℝ and 𝛿 > 0,

𝐵(𝑥, 𝛿) = (𝑥 − 𝛿, 𝑥 + 𝛿) and 𝐶(𝑥, 𝛿) = [𝑥 − 𝛿, 𝑥 + 𝛿].

Example 7.2.3: Be careful when working on a subspace. Consider the metric space [0, 1] as
a subspace of ℝ. Then in [0, 1],

𝐵(0, 1/2) = 𝐵[0,1](0, 1/2) = {
𝑦 ∈ [0, 1] :

��0 − 𝑦�� < 1/2
}
= [0, 1/2).

This is different from 𝐵ℝ(0, 1/2) = (−1/2, 1/2). The important thing to keep in mind is which
metric space we are working in.

Definition 7.2.4. Let (𝑋, 𝑑) be a metric space. A subset 𝑉 ⊂ 𝑋 is open if for every 𝑥 ∈ 𝑉 ,
there exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝑉 . See  Figure 7.5 . A subset 𝐸 ⊂ 𝑋 is closed if the
complement 𝐸𝑐 = 𝑋 \ 𝐸 is open. When the ambient space 𝑋 is not clear from context, we
say 𝑉 is open in 𝑋 and 𝐸 is closed in 𝑋.

If 𝑥 ∈ 𝑉 and 𝑉 is open, then we say 𝑉 is an open neighborhood of 𝑥 (or sometimes just
neighborhood).

Intuitively, an open set 𝑉 is a set that does not include its “boundary.” Wherever we
are in 𝑉 , we are allowed to “wiggle” a little bit and stay in 𝑉 . Similarly, a set 𝐸 is closed if
everything not in 𝐸 is some distance away from 𝐸. The open and closed balls are examples
of open and closed sets (this must still be proved). But not every set is either open or closed.
Generally, most subsets are neither.
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𝑥

𝑉

𝐵(𝑥, 𝛿)

𝛿

Figure 7.5: Open set in a metric space. Note that 𝛿 depends on 𝑥.

Example 7.2.5: The set (0,∞) ⊂ ℝ is open: Given any 𝑥 ∈ (0,∞), let 𝛿 B 𝑥. Then
𝐵(𝑥, 𝛿) = (0, 2𝑥) ⊂ (0,∞).

The set [0,∞) ⊂ ℝ is closed: Given 𝑥 ∈ (−∞, 0) = [0,∞)𝑐 , let 𝛿 B −𝑥. Then 𝐵(𝑥, 𝛿) =
(−2𝑥, 0) ⊂ (−∞, 0) = [0,∞)𝑐 .

The set [0, 1) ⊂ ℝ is neither open nor closed. First, every ball in ℝ around 0, 𝐵(0, 𝛿) =
(−𝛿, 𝛿), contains negative numbers and hence is not contained in [0, 1). So [0, 1) is not open.
Second, every ball in ℝ around 1, 𝐵(1, 𝛿) = (1 − 𝛿, 1 + 𝛿), contains numbers strictly less
than 1 and greater than 0 (e.g. 1 − 𝛿/2 as long as 𝛿 < 2). Thus [0, 1)𝑐 = ℝ \ [0, 1) is not open,
and [0, 1) is not closed.

If (𝑋, 𝑑) is any metric space, and 𝑥 ∈ 𝑋 is a point, then {𝑥} is closed (exercise). On the
other hand, {𝑥} may or may not be open depending on 𝑋. The set {0} ⊂ ℝ is not open as
𝐵(0, 𝛿) contains nonzero numbers for every 𝛿 > 0. If 𝑋 = {𝑥}, then {𝑥} is open.

Proposition 7.2.6. Let (𝑋, 𝑑) be a metric space.
(i) ∅ and 𝑋 are open.
(ii) If 𝑉1, 𝑉2, . . . , 𝑉𝑘 are open subsets of 𝑋, then

𝑘⋂
𝑗=1
𝑉𝑗

is also open. That is, a finite intersection of open sets is open.
(iii) If {𝑉𝜆}𝜆∈𝐼 is an arbitrary collection of open subsets of 𝑋, then⋃

𝜆∈𝐼
𝑉𝜆

is also open. That is, a union of open sets is open.

The index set 𝐼 in  (iii) can be arbitrarily large. By
⋃

𝜆∈𝐼 𝑉𝜆, we simply mean the set of
all 𝑥 such that 𝑥 ∈ 𝑉𝜆 for at least one 𝜆 ∈ 𝐼.
Proof. The sets ∅ and 𝑋 are obviously open in 𝑋.

Let us prove  (ii) . If 𝑥 ∈ ⋂𝑘
𝑗=1𝑉𝑗 , then 𝑥 ∈ 𝑉𝑗 for all 𝑗. As 𝑉𝑗 are all open, for every 𝑗

there exists a 𝛿 𝑗 > 0 such that 𝐵(𝑥, 𝛿 𝑗) ⊂ 𝑉𝑗 . Take 𝛿 B min{𝛿1, 𝛿2, . . . , 𝛿𝑘} and notice 𝛿 > 0.
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We have 𝐵(𝑥, 𝛿) ⊂ 𝐵(𝑥, 𝛿 𝑗) ⊂ 𝑉𝑗 for every 𝑗 and so 𝐵(𝑥, 𝛿) ⊂ ⋂𝑘
𝑗=1𝑉𝑗 . Consequently the

intersection is open.
Let us prove  (iii) . If 𝑥 ∈ ⋃

𝜆∈𝐼 𝑉𝜆, then 𝑥 ∈ 𝑉𝜆 for some 𝜆 ∈ 𝐼. As 𝑉𝜆 is open, there exists
a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝑉𝜆. But then 𝐵(𝑥, 𝛿) ⊂ ⋃

𝜆∈𝐼 𝑉𝜆, and so the union is open. □

Example 7.2.7: Notice the difference between items  (ii) and  (iii) . Item  (ii) is not true for an
arbitrary intersection. For instance,

⋂∞
𝑛=1(−1/𝑛, 1/𝑛) = {0}, which is not open.

The proof of the following analogous proposition for closed sets is left as an exercise.

Proposition 7.2.8. Let (𝑋, 𝑑) be a metric space.
(i) ∅ and 𝑋 are closed.
(ii) If {𝐸𝜆}𝜆∈𝐼 is an arbitrary collection of closed subsets of 𝑋, then⋂

𝜆∈𝐼
𝐸𝜆

is also closed. That is, an intersection of closed sets is closed.
(iii) If 𝐸1, 𝐸2, . . . , 𝐸𝑘 are closed subsets of 𝑋, then

𝑘⋃
𝑗=1

𝐸 𝑗

is also closed. That is, a finite union of closed sets is closed.

Despite the naming, we have not yet shown that the open ball is open and the closed
ball is closed. Let us show these facts now to justify the terminology.

Proposition 7.2.9. Let (𝑋, 𝑑) be a metric space, 𝑥 ∈ 𝑋, and 𝛿 > 0. Then 𝐵(𝑥, 𝛿) is open and
𝐶(𝑥, 𝛿) is closed.

Proof. Let 𝑦 ∈ 𝐵(𝑥, 𝛿). Let 𝛼 B 𝛿 − 𝑑(𝑥, 𝑦). As 𝛼 > 0, consider 𝑧 ∈ 𝐵(𝑦, 𝛼). Then

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) < 𝑑(𝑥, 𝑦) + 𝛼 = 𝑑(𝑥, 𝑦) + 𝛿 − 𝑑(𝑥, 𝑦) = 𝛿.

Therefore, 𝑧 ∈ 𝐵(𝑥, 𝛿) for every 𝑧 ∈ 𝐵(𝑦, 𝛼). So 𝐵(𝑦, 𝛼) ⊂ 𝐵(𝑥, 𝛿), and so 𝐵(𝑥, 𝛿) is open.
See  Figure 7.6 .

The proof that 𝐶(𝑥, 𝛿) is closed is left as an exercise. □

Again, be careful about which metric space we are in. The set [0, 1/2) is an open ball in
[0, 1], and so [0, 1/2) is an open set in [0, 1]. On the other hand, [0, 1/2) is neither open nor
closed in ℝ.

Proposition 7.2.10. Let 𝑎, 𝑏 be two real numbers, 𝑎 < 𝑏. Then (𝑎, 𝑏), (𝑎,∞), and (−∞, 𝑏) are
open in ℝ. Also [𝑎, 𝑏], [𝑎,∞), and (−∞, 𝑏] are closed in ℝ.

The proof is left as an exercise. Keep in mind that there are many other open and closed
sets in the set of real numbers.
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𝑥
𝛿

𝑧

𝐵(𝑥, 𝛿)

𝛼
𝑦

Figure 7.6: Proof that 𝐵(𝑥, 𝛿) is open: 𝐵(𝑦, 𝛼) ⊂ 𝐵(𝑥, 𝛿) with the triangle inequality illustrated.

Proposition 7.2.11. Suppose (𝑋, 𝑑) is a metric space, and 𝑌 ⊂ 𝑋. Then 𝑈 ⊂ 𝑌 is open in 𝑌
(in the subspace topology) if and only if there exists an open set 𝑉 ⊂ 𝑋 (so open in 𝑋) such that
𝑉 ∩ 𝑌 = 𝑈 .

For example, let 𝑋 B ℝ, 𝑌 B [0, 1],𝑈 B [0, 1/2). We saw that𝑈 is an open set in 𝑌. We
may take 𝑉 B (−1/2, 1/2).

Proof. Suppose 𝑉 ⊂ 𝑋 is open and 𝑉 ∩ 𝑌 = 𝑈 . Let 𝑥 ∈ 𝑈 . As 𝑉 is open and 𝑥 ∈ 𝑉 , there
exists a 𝛿 > 0 such that 𝐵𝑋(𝑥, 𝛿) ⊂ 𝑉 . Then

𝐵𝑌(𝑥, 𝛿) = 𝐵𝑋(𝑥, 𝛿) ∩ 𝑌 ⊂ 𝑉 ∩ 𝑌 = 𝑈.

So𝑈 is open in 𝑌.
The proof of the opposite direction, that is, that if 𝑈 ⊂ 𝑌 is open in the subspace

topology there exists a 𝑉 is left as  Exercise 7.2.12 . □

A hint for finishing the proof (the exercise) is that a useful way to think about an open
set is as a union of open balls. If𝑈 is open, then for each 𝑥 ∈ 𝑈 , there is a 𝛿𝑥 > 0 (depending
on 𝑥) such that 𝐵(𝑥, 𝛿𝑥) ⊂ 𝑈 . Then𝑈 =

⋃
𝑥∈𝑈 𝐵(𝑥, 𝛿𝑥).

In the case of an open subset of an open set or a closed subset of a closed set, matters
are simpler.

Proposition 7.2.12. Suppose (𝑋, 𝑑) is a metric space, 𝑉 ⊂ 𝑋 is open, and 𝐸 ⊂ 𝑋 is closed.

(i) 𝑈 ⊂ 𝑉 is open in the subspace topology if and only if𝑈 is open in 𝑋.
(ii) 𝐹 ⊂ 𝐸 is closed in the subspace topology if and only if 𝐹 is closed in 𝑋.

Proof. We prove  (i) and leave  (ii) as an exercise.
If𝑈 ⊂ 𝑉 is open in the subspace topology, by  Proposition 7.2.11 , there is a set𝑊 ⊂ 𝑋

open in 𝑋 such that𝑈 =𝑊 ∩𝑉 . Intersection of two open sets is open so𝑈 is open in 𝑋.
Now suppose 𝑈 is open in 𝑋. Then 𝑈 = 𝑈 ∩ 𝑉 . So 𝑈 is open in 𝑉 again by

 Proposition 7.2.11 . □
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7.2.2 Connected sets
Let us generalize the idea of an interval to general metric spaces. One of the main features
of an interval in ℝ is that it is connected—that we can continuously move from one point
of it to another point without jumping. For example, in ℝ we usually study functions on
intervals, and in more general metric spaces we usually study functions on connected sets.

Definition 7.2.13. A nonempty  

‗
 metric space (𝑋, 𝑑) is connected if the only subsets of 𝑋

that are both open and closed (so-called clopen subsets) are ∅ and 𝑋 itself. If a nonempty
(𝑋, 𝑑) is not connected we say it is disconnected.

When we apply the term connected to a nonempty subset 𝐴 ⊂ 𝑋, we mean that 𝐴 with
the subspace topology is connected.

In other words, a nonempty 𝑋 is connected if whenever we write 𝑋 = 𝑋1 ∪ 𝑋2 where
𝑋1 ∩ 𝑋2 = ∅ and 𝑋1 and 𝑋2 are open, then either 𝑋1 = ∅ or 𝑋2 = ∅. So to show 𝑋 is
disconnected, we need to find nonempty disjoint open sets 𝑋1 and 𝑋2 whose union is 𝑋.
For subsets, we state this idea as a proposition. The proposition is illustrated in  Figure 7.7 .
Proposition 7.2.14. Let (𝑋, 𝑑) be a metric space. A nonempty set 𝑆 ⊂ 𝑋 is disconnected if and
only if there exist open sets𝑈1 and𝑈2 in 𝑋 such that𝑈1 ∩𝑈2 ∩ 𝑆 = ∅,𝑈1 ∩ 𝑆 ≠ ∅,𝑈2 ∩ 𝑆 ≠ ∅,
and

𝑆 =
(
𝑈1 ∩ 𝑆

) ∪ (
𝑈2 ∩ 𝑆

)
.

𝑆
𝑆

𝑈2
𝑈1

Figure 7.7: Disconnected subset. Notice that𝑈1 ∩𝑈2 need not be empty, but𝑈1 ∩𝑈2 ∩ 𝑆 = ∅.

Proof. First suppose 𝑆 is disconnected: There are nonempty disjoint 𝑆1 and 𝑆2 that are
open in 𝑆 and 𝑆 = 𝑆1 ∪ 𝑆2.  Proposition 7.2.11 says there exist𝑈1 and𝑈2 that are open in 𝑋
such that𝑈1 ∩ 𝑆 = 𝑆1 and𝑈2 ∩ 𝑆 = 𝑆2.

For the other direction start with the𝑈1 and𝑈2. Then𝑈1 ∩ 𝑆 and𝑈2 ∩ 𝑆 are open in 𝑆
by  Proposition 7.2.11 . Via the discussion before the proposition, 𝑆 is disconnected. □

Example 7.2.15: Suppose 𝑆 ⊂ ℝ and there are 𝑥, 𝑦, 𝑧 such that 𝑥 < 𝑧 < 𝑦 with 𝑥, 𝑦 ∈ 𝑆 and
𝑧 ∉ 𝑆. Claim: 𝑆 is disconnected. Proof: Notice((−∞, 𝑧) ∩ 𝑆) ∪ ((𝑧,∞) ∩ 𝑆) = 𝑆.

‗Some authors do not exclude the empty set from the definition, and the empty set would then be
connected. We avoid the empty set for essentially the same reason why 1 is neither a prime nor a composite
number: Our connected sets have exactly two clopen subsets and disconnected sets have more than two. The
empty set has exactly one.
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Proposition 7.2.16. A nonempty set 𝑆 ⊂ ℝ is connected if and only if 𝑆 is an interval or a single
point.

Proof. Suppose 𝑆 is connected. If 𝑆 is a single point, then we are done. So suppose 𝑥 < 𝑦
and 𝑥, 𝑦 ∈ 𝑆. If 𝑧 ∈ ℝ is such that 𝑥 < 𝑧 < 𝑦, then (−∞, 𝑧) ∩ 𝑆 is nonempty and (𝑧,∞) ∩ 𝑆
is nonempty. The two sets are disjoint. As 𝑆 is connected, we must have they their union is
not 𝑆, so 𝑧 ∈ 𝑆. By  Proposition 1.4.1 , 𝑆 is an interval.

If 𝑆 is a single point, it is connected. Therefore, suppose 𝑆 is an interval. Consider open
subsets𝑈1 and𝑈2 ofℝ such that𝑈1∩𝑆 and𝑈2∩𝑆 are nonempty, and 𝑆 =

(
𝑈1∩𝑆

)∪ (
𝑈2∩𝑆

)
.

We will show that 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 contain a common point, so they are not disjoint,
proving that 𝑆 is connected. Suppose 𝑥 ∈ 𝑈1 ∩ 𝑆 and 𝑦 ∈ 𝑈2 ∩ 𝑆. Without loss of
generality, assume 𝑥 < 𝑦. As 𝑆 is an interval, [𝑥, 𝑦] ⊂ 𝑆. Note that𝑈2 ∩ [𝑥, 𝑦] ≠ ∅, and let
𝑧 B inf(𝑈2 ∩ [𝑥, 𝑦]). We wish to show that 𝑧 ∈ 𝑈1. If 𝑧 = 𝑥, then 𝑧 ∈ 𝑈1. If 𝑧 > 𝑥, then
for every 𝜖 > 0, the ball 𝐵(𝑧, 𝜖) = (𝑧 − 𝜖, 𝑧 + 𝜖) contains points of [𝑥, 𝑦] not in 𝑈2, as 𝑧 is
the infimum of 𝑈2 ∩ [𝑥, 𝑦]. So 𝑧 ∉ 𝑈2 as 𝑈2 is open. Therefore, 𝑧 ∈ 𝑈1 as every point of
[𝑥, 𝑦] is in 𝑈1 or 𝑈2. As 𝑈1 is open, 𝐵(𝑧, 𝛿) ⊂ 𝑈1 for a small enough 𝛿 > 0. As 𝑧 is the
infimum of the nonempty set𝑈2 ∩ [𝑥, 𝑦], there must exist some 𝑤 ∈ 𝑈2 ∩ [𝑥, 𝑦] such that
𝑤 ∈ [𝑧, 𝑧 + 𝛿) ⊂ 𝐵(𝑧, 𝛿) ⊂ 𝑈1. Therefore, 𝑤 ∈ 𝑈1 ∩𝑈2 ∩ [𝑥, 𝑦]. So 𝑈1 ∩ 𝑆 and 𝑈2 ∩ 𝑆 are
not disjoint, and 𝑆 is connected. See  Figure 7.8 . □

𝑈2𝑈1

𝑥 𝑦
𝑧 𝑤

(𝑧 − 𝛿, 𝑧 + 𝛿)
Figure 7.8: Proof that an interval is connected.

Example 7.2.17: Oftentimes a ball 𝐵(𝑥, 𝛿) is connected, but this is not necessarily true in
every metric space. For a simplest example, take a two point space {𝑎, 𝑏} with the discrete
metric. Then 𝐵(𝑎, 2) = {𝑎, 𝑏}, which is not connected as 𝐵(𝑎, 1) = {𝑎} and 𝐵(𝑏, 1) = {𝑏} are
open and disjoint.

7.2.3 Closure and boundary
Sometimes we wish to take a set and throw in everything that we can approach from the
set. This concept is called the closure.

Definition 7.2.18. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. The closure of 𝐴 is the set

𝐴 B
⋂

{𝐸 ⊂ 𝑋 : 𝐸 is closed and 𝐴 ⊂ 𝐸}.

That is, 𝐴 is the intersection of all closed sets that contain 𝐴.
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Proposition 7.2.19. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. The closure 𝐴 is closed, and 𝐴 ⊂ 𝐴.
Furthermore, if 𝐴 is closed, then 𝐴 = 𝐴.

Proof. The closure is an intersection of closed sets, so 𝐴 is closed. There is at least one
closed set containing 𝐴, namely 𝑋 itself, so 𝐴 ⊂ 𝐴. If 𝐴 is closed, then 𝐴 is a closed set that
contains 𝐴. So 𝐴 ⊂ 𝐴, and thus 𝐴 = 𝐴. □

Example 7.2.20: The closure of (0, 1) in ℝ is [0, 1]. Proof: If 𝐸 is closed and contains (0, 1),
then 𝐸 contains 0 and 1 (why?). Thus [0, 1] ⊂ 𝐸. But [0, 1] is also closed. Hence, the closure
(0, 1) = [0, 1].
Example 7.2.21: Be careful to notice what ambient metric space you are working with.
If 𝑋 = (0,∞), then the closure of (0, 1) in (0,∞) is (0, 1]. Proof: Similarly as above, (0, 1]
is closed in (0,∞) (why?). Any closed set 𝐸 that contains (0, 1) must contain 1 (why?).
Therefore, (0, 1] ⊂ 𝐸, and hence (0, 1) = (0, 1] when working in (0,∞).

Let us justify the statement that the closure is everything that we can “approach” from
within the set.

Proposition 7.2.22. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑥 ∈ 𝐴 if and only if for every
𝛿 > 0, 𝐵(𝑥, 𝛿) ∩ 𝐴 ≠ ∅.

Proof. Let us prove the two contrapositives. Let us show that 𝑥 ∉ 𝐴 if and only if there
exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ∩ 𝐴 = ∅.

First suppose 𝑥 ∉ 𝐴. We know 𝐴 is closed. Thus there is a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝐴
𝑐
.

As 𝐴 ⊂ 𝐴 we see that 𝐵(𝑥, 𝛿) ⊂ 𝐴
𝑐 ⊂ 𝐴𝑐 and hence 𝐵(𝑥, 𝛿) ∩ 𝐴 = ∅.

On the other hand, suppose there is a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ∩ 𝐴 = ∅. In other words,
𝐴 ⊂ 𝐵(𝑥, 𝛿)𝑐 . As 𝐵(𝑥, 𝛿)𝑐 is a closed set, as 𝑥 ∉ 𝐵(𝑥, 𝛿)𝑐 , and as 𝐴 is the intersection of
closed sets containing 𝐴, we have 𝑥 ∉ 𝐴. □

We can also talk about the interior of a set (points we cannot approach from the
complement), and the boundary of a set (points we can approach both from the set and its
complement).

Definition 7.2.23. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. The interior of 𝐴 is the set

𝐴◦ B {𝑥 ∈ 𝐴 : there exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝐴}.
The boundary of 𝐴 is the set

𝜕𝐴 B 𝐴 \ 𝐴◦.

Alternatively, the interior is the union of open sets lying in 𝐴, see  Exercise 7.2.14 . By
definition, 𝐴◦ ⊂ 𝐴; however, the points of the boundary may or may not be in 𝐴.

Example 7.2.24: Suppose 𝐴 B (0, 1] and 𝑋 B ℝ. Then 𝐴 = [0, 1], 𝐴◦ = (0, 1), and
𝜕𝐴 = {0, 1}.
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Example 7.2.25: Consider 𝑋 B {𝑎, 𝑏} with the discrete metric, and let 𝐴 B {𝑎}. Then
𝐴 = 𝐴◦ = 𝐴 and 𝜕𝐴 = ∅.

Proposition 7.2.26. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝐴◦ is open and 𝜕𝐴 is closed.

Proof. Given 𝑥 ∈ 𝐴◦, there is a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊂ 𝐴. If 𝑧 ∈ 𝐵(𝑥, 𝛿), then as open
balls are open, there is an 𝜖 > 0 such that 𝐵(𝑧, 𝜖) ⊂ 𝐵(𝑥, 𝛿) ⊂ 𝐴. So 𝑧 ∈ 𝐴◦. Therefore,
𝐵(𝑥, 𝛿) ⊂ 𝐴◦, and so 𝐴◦ is open.

As 𝐴◦ is open, then 𝜕𝐴 = 𝐴 \ 𝐴◦ = 𝐴 ∩ (𝐴◦)𝑐 is closed. □

The boundary is the set of points that are close to both the set and its complement. See
 Figure 7.9 for a diagram of the next proposition.

Proposition 7.2.27. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑥 ∈ 𝜕𝐴 if and only if for every
𝛿 > 0, 𝐵(𝑥, 𝛿) ∩ 𝐴 and 𝐵(𝑥, 𝛿) ∩ 𝐴𝑐 are both nonempty.

𝑥

𝛿

𝐵(𝑥, 𝛿)

𝐴𝑐

𝐴

𝜕𝐴

Figure 7.9: Boundary is the set where every ball contains points in the set and also its
complement.

Proof. Suppose 𝑥 ∈ 𝜕𝐴 = 𝐴 \ 𝐴◦ and let 𝛿 > 0 be arbitrary. By  Proposition 7.2.22 , 𝐵(𝑥, 𝛿)
contains a point of 𝐴. If 𝐵(𝑥, 𝛿) contained no points of 𝐴𝑐 , then 𝑥 would be in 𝐴◦. Hence
𝐵(𝑥, 𝛿) contains a point of 𝐴𝑐 as well.

Let us prove the other direction by contrapositive. Suppose 𝑥 ∉ 𝜕𝐴, so 𝑥 ∉ 𝐴 or 𝑥 ∈ 𝐴◦.
If 𝑥 ∉ 𝐴, then 𝐵(𝑥, 𝛿) ⊂ 𝐴

𝑐
for some 𝛿 > 0 as 𝐴 is closed. So 𝐵(𝑥, 𝛿) ∩ 𝐴 is empty, because

𝐴
𝑐 ⊂ 𝐴𝑐 . If 𝑥 ∈ 𝐴◦, then 𝐵(𝑥, 𝛿) ⊂ 𝐴 for some 𝛿 > 0, so 𝐵(𝑥, 𝛿) ∩ 𝐴𝑐 is empty. □

We obtain the following immediate corollary about closures of 𝐴 and 𝐴𝑐 . We simply
apply  Proposition 7.2.22 .

Corollary 7.2.28. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝜕𝐴 = 𝐴 ∩ 𝐴𝑐 .
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7.2.4 Exercises
Exercise 7.2.1: Prove  Proposition 7.2.8 . Hint: Apply  Proposition 7.2.6 to the complements of the sets.

Exercise 7.2.2: Finish the proof of  Proposition 7.2.9 by proving that 𝐶(𝑥, 𝛿) is closed.

Exercise 7.2.3: Prove  Proposition 7.2.10 .

Exercise 7.2.4: Suppose (𝑋, 𝑑) is a nonempty metric space with the discrete topology. Show that 𝑋 is
connected if and only if it contains exactly one element.

Exercise 7.2.5: Take ℚ with the standard metric, 𝑑(𝑥, 𝑦) = ��𝑥 − 𝑦��, as our metric space. Prove that ℚ is
totally disconnected, that is, show that for every 𝑥, 𝑦 ∈ ℚ with 𝑥 ≠ 𝑦, there exists an two open sets𝑈 and
𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 ,𝑈 ∩𝑉 = ∅, and𝑈 ∪𝑉 = ℚ.

Exercise 7.2.6: Show that in a metric space, every open set can be written as a union of closed sets.

Exercise 7.2.7: Prove that in a metric space,

a) 𝐸 is closed if and only if 𝜕𝐸 ⊂ 𝐸.

b) 𝑈 is open if and only if 𝜕𝑈 ∩𝑈 = ∅.

Exercise 7.2.8: Prove that in a metric space,

a) 𝐴 is open if and only if 𝐴◦ = 𝐴.

b) 𝑈 ⊂ 𝐴◦ for every open set𝑈 such that𝑈 ⊂ 𝐴.

Exercise 7.2.9: Let 𝑋 be a set and 𝑑, 𝑑′ be two metrics on 𝑋. Suppose there exists an 𝛼 > 0 and 𝛽 > 0 such
that 𝛼𝑑(𝑥, 𝑦) ≤ 𝑑′(𝑥, 𝑦) ≤ 𝛽𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Show that𝑈 is open in (𝑋, 𝑑) if and only if𝑈 is open
in (𝑋, 𝑑′). That is, the topologies of (𝑋, 𝑑) and (𝑋, 𝑑′) are the same.

Exercise 7.2.10: Suppose {𝑆𝑖}, 𝑖 ∈ ℕ, is a collection of connected subsets of a metric space (𝑋, 𝑑), and there
exists an 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝑆𝑖 for all 𝑖 ∈ ℕ. Show that

⋃∞
𝑖=1 𝑆𝑖 is connected.

Exercise 7.2.11: Let 𝐴 be a connected set in a metric space.

a) Is 𝐴 connected? Prove or find a counterexample.

b) Is 𝐴◦ connected? Prove or find a counterexample.

Hint: Think of sets in ℝ2.

Exercise 7.2.12: Finish the proof of  Proposition 7.2.11 . Suppose (𝑋, 𝑑) is a metric space and 𝑌 ⊂ 𝑋. Show
that with the subspace metric on 𝑌, if a set𝑈 ⊂ 𝑌 is open (in 𝑌), then there exists an open set 𝑉 ⊂ 𝑋 such
that𝑈 = 𝑉 ∩ 𝑌.

Exercise 7.2.13: Let (𝑋, 𝑑) be a metric space.

a) For every 𝑥 ∈ 𝑋 and 𝛿 > 0, show 𝐵(𝑥, 𝛿) ⊂ 𝐶(𝑥, 𝛿).
b) Is it always true that 𝐵(𝑥, 𝛿) = 𝐶(𝑥, 𝛿)? Prove or find a counterexample.

Exercise 7.2.14: Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Show that 𝐴◦ =
⋃{𝑉 : 𝑉 is open and 𝑉 ⊂ 𝐴}.

Exercise 7.2.15: Finish the proof of  Proposition 7.2.12 .
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Exercise 7.2.16: Let (𝑋, 𝑑) be a metric space. Show that there exists a bounded metric 𝑑′ such that (𝑋, 𝑑′)
has the same open sets, that is, the topology is the same.

Exercise 7.2.17: Let (𝑋, 𝑑) be a metric space.

a) Prove that for every 𝑥 ∈ 𝑋, there either exists a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) = {𝑥}, or 𝐵(𝑥, 𝛿) is infinite for
every 𝛿 > 0.

b) Find an explicit example of (𝑋, 𝑑), 𝑋 infinite, where for every 𝛿 > 0 and every 𝑥 ∈ 𝑋, the ball 𝐵(𝑥, 𝛿) is
finite.

c) Find an explicit example of (𝑋, 𝑑) where for every 𝛿 > 0 and every 𝑥 ∈ 𝑋, the ball 𝐵(𝑥, 𝛿) is countably
infinite.

d) Prove that if 𝑋 is uncountable, then there exists an 𝑥 ∈ 𝑋 and a 𝛿 > 0 such that 𝐵(𝑥, 𝛿) is uncountable.

Exercise 7.2.18: For every 𝑥 ∈ ℝ𝑛 and every 𝛿 > 0 define the “rectangle” 𝑅(𝑥, 𝛿) B (𝑥1 − 𝛿, 𝑥1 + 𝛿) ×
(𝑥2 − 𝛿, 𝑥2 + 𝛿) × · · · × (𝑥𝑛 − 𝛿, 𝑥𝑛 + 𝛿). Show that these sets generate the same open sets as the balls in
standard metric. That is, show that a set𝑈 ⊂ ℝ𝑛 is open in the sense of the standard metric if and only if for
every point 𝑥 ∈ 𝑈 , there exists a 𝛿 > 0 such that 𝑅(𝑥, 𝛿) ⊂ 𝑈 .



274 CHAPTER 7. METRIC SPACES

7.3 Sequences and convergence
Note: 1 lecture

7.3.1 Sequences
The notion of a sequence in a metric space is very similar to a sequence of real numbers.
The related definitions are essentially the same as those for real numbers in the sense of

 chapter 2 , where ℝ with the standard metric 𝑑(𝑥, 𝑦) = ��𝑥 − 𝑦�� is replaced by an arbitrary
metric space (𝑋, 𝑑).
Definition 7.3.1. A sequence in a metric space (𝑋, 𝑑) is a function 𝑥 : ℕ → 𝑋. As before we
write 𝑥𝑛 for the 𝑛th element in the sequence, and for the whole sequence use the notation

{𝑥𝑛}∞𝑛=1.

A sequence {𝑥𝑛}∞𝑛=1 is bounded if there exists a point 𝑝 ∈ 𝑋 and 𝐵 ∈ ℝ such that

𝑑(𝑝, 𝑥𝑛) ≤ 𝐵 for all 𝑛 ∈ ℕ.

In other words, the sequence {𝑥𝑛}∞𝑛=1 is bounded whenever the set {𝑥𝑛 : 𝑛 ∈ ℕ} is bounded.
If {𝑛𝑘}∞𝑘=1 is a sequence of natural numbers such that 𝑛𝑘+1 > 𝑛𝑘 for all 𝑘, then the

sequence {𝑥𝑛𝑘}∞𝑘=1 is said to be a subsequence of {𝑥𝑛}∞𝑛=1.

Similarly we define convergence. See  Figure 7.10 , for an idea of the definition.

Definition 7.3.2. A sequence {𝑥𝑛}∞𝑛=1 in a metric space (𝑋, 𝑑) is said to converge to a point
𝑝 ∈ 𝑋 if for every 𝜖 > 0, there exists an 𝑀 ∈ ℕ such that 𝑑(𝑥𝑛 , 𝑝) < 𝜖 for all 𝑛 ≥ 𝑀. The
point 𝑝 is said to be a limit of {𝑥𝑛}∞𝑛=1. If the limit is unique, we write

lim
𝑛→∞ 𝑥𝑛 B 𝑝.

A sequence that converges is convergent. Otherwise, the sequence is divergent.

&

?
G1

G2

G3

G4

G5

G6
G7

G8

G9

G10

Figure 7.10: Sequence converging to 𝑝. The first 10 points are shown and 𝑀 = 7 for this 𝜖.
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The limit is unique. The proof is almost identical (word for word) to the proof of the
same fact for sequences of real numbers,  Proposition 2.1.6 . Proofs of many results we
know for sequences of real numbers can be adapted to the more general settings of metric
spaces. We must replace

��𝑥 − 𝑦�� with 𝑑(𝑥, 𝑦) in the proofs and apply the triangle inequality
correctly.

Proposition 7.3.3. A convergent sequence in a metric space has a unique limit.

Proof. Suppose {𝑥𝑛}∞𝑛=1 has limits 𝑥 and 𝑦. Take an arbitrary 𝜖 > 0. From the definition
find an 𝑀1 such that for all 𝑛 ≥ 𝑀1, 𝑑(𝑥𝑛 , 𝑥) < 𝜖/2. Similarly find an 𝑀2 such that for all
𝑛 ≥ 𝑀2, we have 𝑑(𝑥𝑛 , 𝑦) < 𝜖/2. Now take an 𝑛 such that 𝑛 ≥ 𝑀1 and also 𝑛 ≥ 𝑀2, and
estimate

𝑑(𝑦, 𝑥) ≤ 𝑑(𝑦, 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥)
<

𝜖
2 + 𝜖

2 = 𝜖.

As 𝑑(𝑦, 𝑥) < 𝜖 for all 𝜖 > 0, then 𝑑(𝑥, 𝑦) = 0 and 𝑦 = 𝑥. Hence the limit (if it exists) is
unique. □

The proofs of the following propositions are left as exercises.

Proposition 7.3.4. A convergent sequence in a metric space is bounded.

Proposition 7.3.5. A sequence {𝑥𝑛}∞𝑛=1 in a metric space (𝑋, 𝑑) converges to 𝑝 ∈ 𝑋 if and only if
there exists a sequence {𝑎𝑛}∞𝑛=1 of real numbers such that

𝑑(𝑥𝑛 , 𝑝) ≤ 𝑎𝑛 for all 𝑛 ∈ ℕ, and lim
𝑛→∞ 𝑎𝑛 = 0.

Proposition 7.3.6. Let {𝑥𝑛}∞𝑛=1 be a sequence in a metric space (𝑋, 𝑑).
(i) If {𝑥𝑛}∞𝑛=1 converges to 𝑝 ∈ 𝑋, then every subsequence {𝑥𝑛𝑘}∞𝑘=1 converges to 𝑝.
(ii) If for some 𝐾 ∈ ℕ the 𝐾-tail {𝑥𝑛}∞𝑛=𝐾+1 converges to 𝑝 ∈ 𝑋, then {𝑥𝑛}∞𝑛=1 converges to 𝑝.

Example 7.3.7: Take 𝐶
([𝑎, 𝑏],ℝ)

be the set of continuous functions with the metric being
the uniform norm. We saw that we obtain a metric space. If we look at the definition
of convergence, we notice that it is identical to uniform convergence. That is, { 𝑓𝑛}∞𝑛=1
converges uniformly if and only if it converges in the metric space sense.

Remark 7.3.8. It is perhaps surprising that on the set of functions 𝑓 : [𝑎, 𝑏] → ℝ (continuous
or not) there is no metric that gives pointwise convergence. Although the proof of this fact
is beyond the scope of this book.

7.3.2 Convergence in euclidean space
In the euclidean space ℝ𝑛 , a sequence converges if and only if every component converges:
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Proposition 7.3.9. Let {𝑥𝑚}∞𝑚=1 be a sequence in ℝ𝑛 , where 𝑥𝑚 =
(
𝑥𝑚,1, 𝑥𝑚,2, . . . , 𝑥𝑚,𝑛

) ∈ ℝ𝑛 .
Then {𝑥𝑚}∞𝑚=1 converges if and only if {𝑥𝑚,𝑘}∞𝑚=1 converges for every 𝑘 = 1, 2, . . . , 𝑛, in which
case

lim
𝑚→∞ 𝑥𝑚 =

(
lim
𝑚→∞ 𝑥𝑚,1, lim

𝑚→∞ 𝑥𝑚,2, . . . , lim
𝑚→∞ 𝑥𝑚,𝑛

)
.

Proof. Suppose {𝑥𝑚}∞𝑚=1 converges to 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . Given 𝜖 > 0, there exists
an 𝑀 such that for all 𝑚 ≥ 𝑀, we have

𝑑(𝑦, 𝑥𝑚) < 𝜖.

Fix some 𝑘 = 1, 2, . . . , 𝑛. For all 𝑚 ≥ 𝑀,

��𝑦𝑘 − 𝑥𝑚,𝑘 �� = √(
𝑦𝑘 − 𝑥𝑚,𝑘

)2 ≤
√√

𝑛∑
ℓ=1

(
𝑦ℓ − 𝑥𝑚,ℓ

)2 = 𝑑(𝑦, 𝑥𝑚) < 𝜖.

Hence the sequence {𝑥𝑚,𝑘}∞𝑚=1 converges to 𝑦𝑘 .
For the other direction, suppose {𝑥𝑚,𝑘}∞𝑚=1 converges to 𝑦𝑘 for every 𝑘 = 1, 2, . . . , 𝑛.

Given 𝜖 > 0, pick an 𝑀 such that if 𝑚 ≥ 𝑀, then
��𝑦𝑘 − 𝑥𝑚,𝑘 �� < 𝜖/√𝑛 for all 𝑘 = 1, 2, . . . , 𝑛.

Then

𝑑(𝑦, 𝑥𝑚) =
√√

𝑛∑
𝑘=1

(
𝑦𝑘 − 𝑥𝑚,𝑘

)2
<

√√
𝑛∑
𝑘=1

(
𝜖√
𝑛

)2
=

√√
𝑛∑
𝑘=1

𝜖2

𝑛
= 𝜖.

That is, the sequence {𝑥𝑚}∞𝑚=1 converges to 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . □

Example 7.3.10: As we said, the set ℂ of complex numbers 𝑧 = 𝑥 + 𝑖𝑦 is considered as the
metric space ℝ2. The proposition says that the sequence {𝑧𝑛}∞𝑛=1 = {𝑥𝑛 + 𝑖𝑦𝑛}∞𝑛=1 converges
to 𝑧 = 𝑥 + 𝑖𝑦 if and only if {𝑥𝑛}∞𝑛=1 converges to 𝑥 and {𝑦𝑛}∞𝑛=1 converges to 𝑦.

7.3.3 Convergence and topology
The topology—the set of open sets of a space—encodes which sequences converge.

Proposition 7.3.11. Let (𝑋, 𝑑) be a metric space and {𝑥𝑛}∞𝑛=1 a sequence in 𝑋. Then {𝑥𝑛}∞𝑛=1
converges to 𝑝 ∈ 𝑋 if and only if for every open neighborhood 𝑈 of 𝑝, there exists an 𝑀 ∈ ℕ such
that for all 𝑛 ≥ 𝑀, we have 𝑥𝑛 ∈ 𝑈 .

Proof. Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑝. Let 𝑈 be an open neighborhood of 𝑝, then there
exists an 𝜖 > 0 such that 𝐵(𝑝, 𝜖) ⊂ 𝑈 . As the sequence converges, find an 𝑀 ∈ ℕ such that
for all 𝑛 ≥ 𝑀, we have 𝑑(𝑝, 𝑥𝑛) < 𝜖, or in other words 𝑥𝑛 ∈ 𝐵(𝑝, 𝜖) ⊂ 𝑈 .

Let us prove the other direction. Given 𝜖 > 0, let𝑈 B 𝐵(𝑝, 𝜖) be the neighborhood of 𝑝.
Then there is an 𝑀 ∈ ℕ such that for 𝑛 ≥ 𝑀, we have 𝑥𝑛 ∈ 𝑈 = 𝐵(𝑝, 𝜖), or in other words,
𝑑(𝑝, 𝑥𝑛) < 𝜖. □

A closed set contains the limits of its convergent sequences.
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Proposition 7.3.12. Let (𝑋, 𝑑) be a metric space, 𝐸 ⊂ 𝑋 a closed set, and {𝑥𝑛}∞𝑛=1 a sequence in
𝐸 that converges to some 𝑝 ∈ 𝑋. Then 𝑝 ∈ 𝐸.

Proof. Let us prove the contrapositive. Suppose {𝑥𝑛}∞𝑛=1 is a sequence in 𝑋 that converges
to 𝑝 ∈ 𝐸𝑐 . As 𝐸𝑐 is open,  Proposition 7.3.11 says that there is an 𝑀 such that for all 𝑛 ≥ 𝑀,
𝑥𝑛 ∈ 𝐸𝑐 . So {𝑥𝑛}∞𝑛=1 is not a sequence in 𝐸. □

To take a closure of a set 𝐴, we start with 𝐴, and we throw in points that are limits of
sequences in 𝐴.

Proposition 7.3.13. Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Then 𝑝 ∈ 𝐴 if and only if there
exists a sequence {𝑥𝑛}∞𝑛=1 of elements in 𝐴 such that lim

𝑛→∞ 𝑥𝑛 = 𝑝.

Proof. Let 𝑝 ∈ 𝐴. For every 𝑛 ∈ ℕ,  Proposition 7.2.22 guarantees a point 𝑥𝑛 ∈ 𝐵(𝑝, 1/𝑛) ∩ 𝐴.
As 𝑑(𝑝, 𝑥𝑛) < 1/𝑛, we have lim𝑛→∞ 𝑥𝑛 = 𝑝.

For the other direction, see  Exercise 7.3.1 . □

7.3.4 Exercises
Exercise 7.3.1: Finish the proof of  Proposition 7.3.13  : Let (𝑋, 𝑑) be a metric space and 𝐴 ⊂ 𝑋. Let 𝑝 ∈ 𝑋
be such that there exists a sequence {𝑥𝑛}∞𝑛=1 in 𝐴 that converges to 𝑝. Prove that 𝑝 ∈ 𝐴.

Exercise 7.3.2:

a) Show that 𝑑(𝑥, 𝑦) B min
{
1,

��𝑥 − 𝑦��} defines a metric on ℝ.

b) Show that a sequence converges in (ℝ, 𝑑) if and only if it converges in the standard metric.

c) Find a bounded sequence in (ℝ, 𝑑) that contains no convergent subsequence.

Exercise 7.3.3: Prove  Proposition 7.3.4 .

Exercise 7.3.4: Prove  Proposition 7.3.5 .

Exercise 7.3.5: Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑝. Suppose 𝑓 : ℕ → ℕ is a one-to-one function. Show that
{𝑥 𝑓 (𝑛)}∞𝑛=1 converges to 𝑝.

Exercise 7.3.6: Let (𝑋, 𝑑) be a metric space where 𝑑 is the discrete metric. Suppose {𝑥𝑛}∞𝑛=1 is a convergent
sequence in 𝑋. Show that there exists a 𝐾 ∈ ℕ such that for all 𝑛 ≥ 𝐾, we have 𝑥𝑛 = 𝑥𝐾 .

Exercise 7.3.7: A set 𝑆 ⊂ 𝑋 is said to be dense in 𝑋 if 𝑋 ⊂ 𝑆 or in other words if for every 𝑝 ∈ 𝑋, there
exists a sequence {𝑥𝑛}∞𝑛=1 in 𝑆 that converges to 𝑝. Prove that ℝ𝑛 contains a countable dense subset.

Exercise 7.3.8 (Tricky): Suppose {𝑈𝑛}∞𝑛=1 is a decreasing (𝑈𝑛+1 ⊂ 𝑈𝑛 for all 𝑛) sequence of open sets in a
metric space (𝑋, 𝑑) such that

⋂∞
𝑛=1𝑈𝑛 = {𝑝} for some 𝑝 ∈ 𝑋. Suppose {𝑥𝑛}∞𝑛=1 is a sequence of points in 𝑋

such that 𝑥𝑛 ∈ 𝑈𝑛 . Does {𝑥𝑛}∞𝑛=1 necessarily converge to 𝑝? Prove or construct a counterexample.

Exercise 7.3.9: Let 𝐸 ⊂ 𝑋 be closed and let {𝑥𝑛}∞𝑛=1 be a sequence in 𝑋 converging to 𝑝 ∈ 𝑋. Suppose
𝑥𝑛 ∈ 𝐸 for infinitely many 𝑛 ∈ ℕ. Show 𝑝 ∈ 𝐸.
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Exercise 7.3.10: Take ℝ∗ = {−∞} ∪ ℝ ∪ {∞} be the extended reals. Define 𝑑(𝑥, 𝑦) B �� 𝑥
1+|𝑥| −

𝑦
1+|𝑦|

�� if

𝑥, 𝑦 ∈ ℝ, define 𝑑(∞, 𝑥) B ��1 − 𝑥
1+|𝑥|

��, 𝑑(−∞, 𝑥) B ��1 + 𝑥
1+|𝑥|

�� for all 𝑥 ∈ ℝ, and let 𝑑(∞,−∞) B 2.

a) Show that (ℝ∗ , 𝑑) is a metric space.

b) Suppose {𝑥𝑛}∞𝑛=1 is a sequence of real numbers such that for every 𝑀 ∈ ℝ, there exists an 𝑁 such that
𝑥𝑛 ≥ 𝑀 for all 𝑛 ≥ 𝑁 . Show that lim

𝑛→∞ 𝑥𝑛 = ∞ in (ℝ∗ , 𝑑).
c) Show that a sequence of real numbers converges to a real number in (ℝ∗ , 𝑑) if and only if it converges in

ℝ with the standard metric.

Exercise 7.3.11: Suppose {𝑉𝑛}∞𝑛=1 is a sequence of open sets in (𝑋, 𝑑) such that 𝑉𝑛+1 ⊃ 𝑉𝑛 for all 𝑛. Let
{𝑥𝑛}∞𝑛=1 be a sequence such that 𝑥𝑛 ∈ 𝑉𝑛+1 \ 𝑉𝑛 and suppose {𝑥𝑛}∞𝑛=1 converges to 𝑝 ∈ 𝑋. Show that
𝑝 ∈ 𝜕𝑉 where 𝑉 =

⋃∞
𝑛=1𝑉𝑛 .

Exercise 7.3.12: Prove  Proposition 7.3.6 .

Exercise 7.3.13: Let (𝑋, 𝑑) be a metric space and {𝑥𝑛}∞𝑛=1 a sequence in 𝑋. Prove that {𝑥𝑛}∞𝑛=1 converges to
𝑝 ∈ 𝑋 if and only if every subsequence of {𝑥𝑛}∞𝑛=1 has a subsequence that converges to 𝑝.

Exercise 7.3.14: Consider ℝ𝑛 , and let 𝑑 be the standard euclidean metric. Let 𝑑′(𝑥, 𝑦) B ∑𝑛
ℓ=1

��𝑥ℓ − 𝑦ℓ ��
and 𝑑′′(𝑥, 𝑦) B max{��𝑥1 − 𝑦1

�� , ��𝑥2 − 𝑦2
�� , · · · , ��𝑥𝑛 − 𝑦𝑛 ��}.

a) Use  Exercise 7.1.6 , to show that (ℝ𝑛 , 𝑑′) and (ℝ𝑛 , 𝑑′′) are metric spaces.

b) Let {𝑥𝑘}∞𝑘=1 be a sequence in ℝ𝑛 and 𝑝 ∈ ℝ𝑛 . Prove that the following statements are equivalent:

(1) {𝑥𝑘}∞𝑘=1 converges to 𝑝 in (ℝ𝑛 , 𝑑).
(2) {𝑥𝑘}∞𝑘=1 converges to 𝑝 in (ℝ𝑛 , 𝑑′).
(3) {𝑥𝑘}∞𝑘=1 converges to 𝑝 in (ℝ𝑛 , 𝑑′′).
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7.4 Completeness and compactness
Note: 2 lectures

7.4.1 Cauchy sequences and completeness
Just like with sequences of real numbers, we define Cauchy sequences.

Definition 7.4.1. Let (𝑋, 𝑑) be a metric space. A sequence {𝑥𝑛}∞𝑛=1 in 𝑋 is a Cauchy sequence
if for every 𝜖 > 0, there exists an 𝑀 ∈ ℕ such that for all 𝑛 ≥ 𝑀 and all 𝑘 ≥ 𝑀, we have

𝑑(𝑥𝑛 , 𝑥𝑘) < 𝜖.

The definition is again simply a translation of the concept from the real numbers to
metric spaces. A sequence of real numbers is Cauchy in the sense of  chapter 2 if and only
if it is Cauchy in the sense above, provided we equip the real numbers with the standard
metric 𝑑(𝑥, 𝑦) = ��𝑥 − 𝑦��.
Proposition 7.4.2. A convergent sequence in a metric space is Cauchy.

Proof. Suppose {𝑥𝑛}∞𝑛=1 converges to 𝑝. Given 𝜖 > 0, there is an 𝑀 such that for all 𝑛 ≥ 𝑀,
we have 𝑑(𝑝, 𝑥𝑛) < 𝜖/2. Hence for all 𝑛, 𝑘 ≥ 𝑀, we have 𝑑(𝑥𝑛 , 𝑥𝑘) ≤ 𝑑(𝑥𝑛 , 𝑥) + 𝑑(𝑥, 𝑥𝑘) <
𝜖/2 + 𝜖/2 = 𝜖. □

Definition 7.4.3. We say a metric space (𝑋, 𝑑) is complete or Cauchy-complete if every Cauchy
sequence {𝑥𝑛}∞𝑛=1 in 𝑋 converges to a 𝑝 ∈ 𝑋.

Proposition 7.4.4. The space ℝ𝑛 with the standard metric is a complete metric space.

For ℝ = ℝ1, completeness was proved in  chapter 2 . The proof of completeness in ℝ𝑛 is
a reduction to the one-dimensional case.

Proof. Let {𝑥𝑚}∞𝑚=1 be a Cauchy sequence in ℝ𝑛 , where 𝑥𝑚 =
(
𝑥𝑚,1, 𝑥𝑚,2, . . . , 𝑥𝑚,𝑛

) ∈ ℝ𝑛 .
As the sequence is Cauchy, given 𝜖 > 0, there exists an 𝑀 such that for all 𝑖 , 𝑗 ≥ 𝑀,

𝑑(𝑥𝑖 , 𝑥 𝑗) < 𝜖.

Fix some 𝑘 = 1, 2, . . . , 𝑛. For 𝑖 , 𝑗 ≥ 𝑀,

��𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘 �� = √(
𝑥𝑖 ,𝑘 − 𝑥 𝑗 ,𝑘

)2 ≤
√√

𝑛∑
ℓ=1

(
𝑥𝑖 ,ℓ − 𝑥 𝑗 ,ℓ

)2 = 𝑑(𝑥𝑖 , 𝑥 𝑗) < 𝜖.

Hence the sequence {𝑥𝑚,𝑘}∞𝑚=1 is Cauchy. As ℝ is complete the sequence converges;
there exists a 𝑦𝑘 ∈ ℝ such that 𝑦𝑘 = lim𝑚→∞ 𝑥𝑚,𝑘 . Write 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 . By

 Proposition 7.3.9 , {𝑥𝑚}∞𝑚=1 converges to 𝑦 ∈ ℝ𝑛 , and hence ℝ𝑛 is complete. □
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In the language of metric spaces, the results on continuity of section  §6.2 , say that the
metric space 𝐶

([𝑎, 𝑏],ℝ)
of  Example 7.1.8 is complete. The proof follows by “unrolling the

definitions,” and is left as  Exercise 7.4.7 .
Proposition 7.4.5. The space of continuous functions 𝐶

([𝑎, 𝑏],ℝ)
with the uniform norm as

metric is a complete metric space.
A subset of a complete metric space such as ℝ𝑛 with the subspace metric need not be

complete. For example, (0, 1] with the subspace metric is not complete, as {1/𝑛}∞𝑛=1 is a
Cauchy sequence in (0, 1] with no limit in (0, 1]. However, a closed subspace of a complete
metric space is complete. After all, one way to think of a closed set is that it contains all
points reachable from the set via a sequence. The proof is  Exercise 7.4.16 .
Proposition 7.4.6. Suppose (𝑋, 𝑑) is a complete metric space and 𝐸 ⊂ 𝑋 is closed. Then 𝐸 is a
complete metric space with the subspace metric.

7.4.2 Compactness
Definition 7.4.7. Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋. The set 𝐾 is said to be compact if
for every collection of open sets {𝑈𝜆}𝜆∈𝐼 such that

𝐾 ⊂
⋃
𝜆∈𝐼

𝑈𝜆 ,

there exists a finite subset {𝜆1,𝜆2, . . . ,𝜆𝑚} ⊂ 𝐼 such that

𝐾 ⊂
𝑚⋃
𝑗=1
𝑈𝜆𝑗 .

A collection of open sets {𝑈𝜆}𝜆∈𝐼 as above is said to be an open cover of 𝐾. A way to say
that 𝐾 is compact is to say that every open cover of 𝐾 has a finite subcover.

Example 7.4.8: Let ℝ be the metric space with the standard metric.
The set ℝ is not compact. Proof: For 𝑗 ∈ ℕ, let 𝑈 𝑗 B (−𝑗 , 𝑗). Any 𝑥 ∈ ℝ is in some

𝑈 𝑗 (by the  Archimedean property  ), so we have an open cover. Suppose we have a finite
subcover ℝ ⊂ 𝑈 𝑗1 ∪𝑈 𝑗2 ∪ · · · ∪𝑈 𝑗𝑚 , and suppose 𝑗1 < 𝑗2 < · · · < 𝑗𝑚 . Then ℝ ⊂ 𝑈 𝑗𝑚 , but that
is a contradiction as 𝑗𝑚 ∈ ℝ on one hand and 𝑗𝑚 ∉ 𝑈𝑗𝑚 = (−𝑗𝑚 , 𝑗𝑚) on the other.

The set (0, 1) ⊂ ℝ is also not compact. Proof: Take the sets 𝑈 𝑗 B (1/𝑗, 1 − 1/𝑗) for
𝑗 = 3, 4, 5, . . .. As above (0, 1) = ⋃∞

𝑗=3𝑈 𝑗 . And similarly as above, if there exists a finite
subcover, then there is one𝑈 𝑗 such that (0, 1) ⊂ 𝑈 𝑗 , which again leads to a contradiction.

The set {0} ⊂ ℝ is compact. Proof: Given an open cover {𝑈𝜆}𝜆∈𝐼 , there must exist a 𝜆0
such that 0 ∈ 𝑈𝜆0 as it is a cover. But then𝑈𝜆0 gives a finite subcover.

We will prove below that [0, 1], and in fact every closed and bounded interval [𝑎, 𝑏], is
compact.

Proposition 7.4.9. Let (𝑋, 𝑑) be a metric space. If 𝐾 ⊂ 𝑋 is compact, then 𝐾 is closed and
bounded.
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Proof. First, we prove that a compact set is bounded. Fix 𝑝 ∈ 𝑋. We have the open cover

𝐾 ⊂
∞⋃
𝑛=1

𝐵(𝑝, 𝑛) = 𝑋.

If 𝐾 is compact, then there exists some set of indices 𝑛1 < 𝑛2 < . . . < 𝑛𝑚 such that

𝐾 ⊂
𝑚⋃
𝑗=1

𝐵(𝑝, 𝑛 𝑗) = 𝐵(𝑝, 𝑛𝑚).

As 𝐾 is contained in a ball, 𝐾 is bounded. See the left-hand side of  Figure 7.11 .
Next, we show a set that is not closed is not compact. Suppose 𝐾 ≠ 𝐾, that is, there is a

point 𝑥 ∈ 𝐾 \ 𝐾. If 𝑦 ≠ 𝑥, then 𝑦 ∉ 𝐶(𝑥, 1/𝑛) for 𝑛 ∈ ℕ such that 1/𝑛 < 𝑑(𝑥, 𝑦). Furthermore,
𝑥 ∉ 𝐾, so

𝐾 ⊂
∞⋃
𝑛=1

𝐶(𝑥, 1/𝑛)𝑐 .

A closed ball is closed, so its complement 𝐶(𝑥, 1/𝑛)𝑐 is open, and we have an open cover. If
we take any finite collection of indices 𝑛1 < 𝑛2 < . . . < 𝑛𝑚 , then

𝑚⋃
𝑗=1

𝐶(𝑥, 1/𝑛 𝑗)𝑐 = 𝐶(𝑥, 1/𝑛𝑚)𝑐

As 𝑥 is in the closure of 𝐾, then 𝐶(𝑥, 1/𝑛𝑚) ∩ 𝐾 ≠ ∅. So there is no finite subcover and 𝐾 is
not compact. See the right-hand side of  Figure 7.11 . □

𝐾

1
2

𝐵(𝑝, 3)
𝐵(𝑝, 2)

3

𝐵(𝑝, 1)

𝑝

𝐶(𝑥, 1)

𝐶(𝑥, 1/4)

𝐶(𝑥, 1/2)

𝐶(𝑥, 1/3)
𝑥

𝐾

Figure 7.11: Proving compact set is bounded (left) and closed (right).

We prove below that in a finite-dimensional euclidean space, every closed bounded set
is compact. So closed bounded sets of ℝ𝑛 are examples of compact sets. It is not true that
in every metric space, closed and bounded is equivalent to compact. A simple example
is an incomplete metric space such as (0, 1) with the subspace metric from ℝ. There are
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many complete and very useful metric spaces where closed and bounded is not enough to
give compactness: 𝐶

([𝑎, 𝑏],ℝ)
is a complete metric space, but the closed unit ball 𝐶(0, 1) is

not compact, see  Exercise 7.4.8 . However, see also  Exercise 7.4.12 .
Not worrying about the boundedness for a moment, note further the difference between

being closed and being compact. Being closed depends on the ambient metric space: The
set (0, 1] is not closed in ℝ, but it is closed in the subspace (0,∞). However, a set 𝐾 is
compact in some metric space (𝑋, 𝑑) if and only if it is compact in the subspace metric on 𝐾.
So for a compact set, we do not have to ask what metric space it lives in. On the other hand,
every set is always closed in the subspace metric as a subset of itself. See also  Exercise 7.4.6 .

A useful property of compact sets in a metric space is that every sequence in the set has
a convergent subsequence converging to a point in the set. Such sets are called sequentially
compact. We will prove that in the context of metric spaces, a set is compact if and only if it
is sequentially compact. First we prove a lemma.

Lemma 7.4.10 (Lebesgue covering lemma  

‗
 ). Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋. Suppose

every sequence in 𝐾 has a subsequence convergent in 𝐾. Given an open cover {𝑈𝜆}𝜆∈𝐼 of 𝐾, there
exists a 𝛿 > 0 such that for every 𝑥 ∈ 𝐾, there exists a 𝜆 ∈ 𝐼 with 𝐵(𝑥, 𝛿) ⊂ 𝑈𝜆.

Proof. We prove the lemma by contrapositive. If the conclusion is not true, then there is
an open cover {𝑈𝜆}𝜆∈𝐼 of 𝐾 with the following property. For every 𝑛 ∈ ℕ, there exists an
𝑥𝑛 ∈ 𝐾 such that 𝐵(𝑥𝑛 , 1/𝑛) is not a subset of any𝑈𝜆. Take any 𝑥 ∈ 𝐾. There is a 𝜆 ∈ 𝐼 such
that 𝑥 ∈ 𝑈𝜆. As 𝑈𝜆 is open, there is an 𝜖 > 0 such that 𝐵(𝑥, 𝜖) ⊂ 𝑈𝜆. Take 𝑀 such that
1/𝑀 < 𝜖/2. If 𝑦 ∈ 𝐵(𝑥, 𝜖/2) and 𝑛 ≥ 𝑀, then

𝐵(𝑦, 1/𝑛) ⊂ 𝐵(𝑦, 1/𝑀) ⊂ 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) ⊂ 𝑈𝜆 ,

where 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) follows by triangle inequality. See  Figure 7.12 . Thus 𝑦 ≠ 𝑥𝑛 .
In other words, for all 𝑛 ≥ 𝑀, 𝑥𝑛 ∉ 𝐵(𝑥, 𝜖/2). The sequence cannot have a subsequence
converging to 𝑥. As 𝑥 ∈ 𝐾 was arbitrary we are done. □

It is important to recognize what the lemma says. It says that if 𝐾 is sequentially
compact, then given any cover there is a single 𝛿 > 0. The 𝛿 depends on the cover, but, of
course, it does not depend on 𝑥.

For example, let 𝐾 B [−10, 10] and let 𝑈𝑛 B (𝑛, 𝑛 + 2) for 𝑛 ∈ ℤ give an open cover.
Consider 𝑥 ∈ 𝐾. There is an 𝑛 ∈ ℤ, such that 𝑛 ≤ 𝑥 < 𝑛 + 1. If 𝑛 ≤ 𝑥 < 𝑛 + 1/2, then
𝐵
(
𝑥, 1/2

) ⊂ 𝑈𝑛−1. If 𝑛 + 1/2 ≤ 𝑥 < 𝑛 + 1, then 𝐵
(
𝑥, 1/2

) ⊂ 𝑈𝑛 . So 𝛿 = 1/2 will do. The sets
𝑈 ′
𝑛 B

( 𝑛
2 ,

𝑛+2
2

)
, again give an open cover, but now the largest 𝛿 that works is 1/4.

On the other hand, ℕ ⊂ ℝ is not sequentially compact. It is an exercise to find a cover
for which no 𝛿 > 0 works.

Theorem 7.4.11. Let (𝑋, 𝑑) be a metric space. Then 𝐾 ⊂ 𝑋 is compact if and only if every
sequence in 𝐾 has a subsequence converging to a point in 𝐾.

‗Named after the French mathematician  Henri Léon Lebesgue (1875–1941). The number 𝛿 is sometimes
called the Lebesgue number of the cover.

https://en.wikipedia.org/wiki/Henri_Lebesgue
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𝜖

𝐵(𝑥, 𝜖)
𝐵(𝑦, 𝜖/2)

𝑦
𝑥

𝐵(𝑥, 𝜖/2)

𝐵(𝑦, 1/𝑛)

𝜖/2
𝑈𝜆

Figure 7.12: Proof of Lebesgue covering lemma. Note that 𝐵(𝑦, 𝜖/2) ⊂ 𝐵(𝑥, 𝜖) by triangle
inequality.

Proof. Claim: Let 𝐾 ⊂ 𝑋 be a subset of 𝑋 and {𝑥𝑛}∞𝑛=1 a sequence in 𝐾. Suppose that for each
𝑥 ∈ 𝐾, there is a ball 𝐵(𝑥, 𝛼𝑥) for some 𝛼𝑥 > 0 such that 𝑥𝑛 ∈ 𝐵(𝑥, 𝛼𝑥) for only finitely many
𝑛 ∈ ℕ. Then 𝐾 is not compact.

Proof of the claim: Notice
𝐾 ⊂

⋃
𝑥∈𝐾

𝐵(𝑥, 𝛼𝑥).

Any finite collection of these balls contains at most finitely many elements of {𝑥𝑛}∞𝑛=1, and
so there must be an 𝑥𝑛 ∈ 𝐾 not in their union. Hence, 𝐾 is not compact and the claim is
proved.

So suppose that 𝐾 is compact and {𝑥𝑛}∞𝑛=1 is a sequence in 𝐾. Then there exists an
𝑥 ∈ 𝐾 such that for all 𝛿 > 0, 𝐵(𝑥, 𝛿) contains 𝑥𝑛 for infinitely many 𝑛 ∈ ℕ. We define the
subsequence inductively. The ball 𝐵(𝑥, 1) contains some 𝑥𝑘 , so let 𝑛1 B 𝑘. Suppose 𝑛 𝑗−1
is defined. There must exist a 𝑘 > 𝑛 𝑗−1 such that 𝑥𝑘 ∈ 𝐵(𝑥, 1/𝑗). Define 𝑛 𝑗 B 𝑘. We now
posses a subsequence {𝑥𝑛 𝑗}∞𝑗=1. Since 𝑑(𝑥, 𝑥𝑛 𝑗 ) < 1/𝑗,  Proposition 7.3.5 says lim𝑗→∞ 𝑥𝑛 𝑗 = 𝑥.

For the other direction, suppose every sequence in 𝐾 has a subsequence converging
in 𝐾. Take an open cover {𝑈𝜆}𝜆∈𝐼 of 𝐾. Using the Lebesgue covering lemma above, find a
𝛿 > 0 such that for every 𝑥 ∈ 𝐾, there is a 𝜆 ∈ 𝐼 with 𝐵(𝑥, 𝛿) ⊂ 𝑈𝜆.

Pick 𝑥1 ∈ 𝐾 and find 𝜆1 ∈ 𝐼 such that 𝐵(𝑥1, 𝛿) ⊂ 𝑈𝜆1 . If 𝐾 ⊂ 𝑈𝜆1 , we stop as we
have found a finite subcover. Otherwise, there must be a point 𝑥2 ∈ 𝐾 \𝑈𝜆1 . Note that
𝑑(𝑥2, 𝑥1) ≥ 𝛿. There must exist some 𝜆2 ∈ 𝐼 such that 𝐵(𝑥2, 𝛿) ⊂ 𝑈𝜆2 . We work inductively.
Suppose 𝜆𝑛−1 is defined. Either𝑈𝜆1 ∪𝑈𝜆2 ∪ · · · ∪𝑈𝜆𝑛−1 is a finite cover of 𝐾, in which case
we stop, or there must be a point 𝑥𝑛 ∈ 𝐾 \ (

𝑈𝜆1 ∪𝑈𝜆2 ∪ · · · ∪𝑈𝜆𝑛−1

)
. Note that 𝑑(𝑥𝑛 , 𝑥 𝑗) ≥ 𝛿

for all 𝑗 = 1, 2, . . . , 𝑛 − 1. Next, there must be some 𝜆𝑛 ∈ 𝐼 such that 𝐵(𝑥𝑛 , 𝛿) ⊂ 𝑈𝜆𝑛 . See
 Figure 7.13 .

Either at some point we obtain a finite subcover of 𝐾, or we obtain an infinite sequence
{𝑥𝑛}∞𝑛=1 as above. For contradiction, suppose that there is no finite subcover and we
have the sequence {𝑥𝑛}∞𝑛=1. For all 𝑛 and 𝑘, 𝑛 ≠ 𝑘, we have 𝑑(𝑥𝑛 , 𝑥𝑘) ≥ 𝛿. So no
subsequence of {𝑥𝑛}∞𝑛=1 is Cauchy. Hence, no subsequence of {𝑥𝑛}∞𝑛=1 is convergent, which
is a contradiction. □
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𝛿

𝑥1𝑈𝜆1

𝐾
𝑥2 𝑥3

𝑥4

𝑈𝜆2

𝑈𝜆3

Figure 7.13: Covering 𝐾 by 𝑈𝜆. The points 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4, the three sets 𝑈𝜆1 , 𝑈𝜆2 , 𝑈𝜆2 , and the
first three balls of radius 𝛿 are drawn.

Example 7.4.12:  Theorem 2.3.8 , the Bolzano–Weierstrass theorem for sequences of real
numbers, says that every bounded sequence in ℝ has a convergent subsequence. Therefore,
every sequence in a closed interval [𝑎, 𝑏] ⊂ ℝ has a convergent subsequence. The limit is
also in [𝑎, 𝑏] as limits preserve non-strict inequalities. Hence a closed bounded interval
[𝑎, 𝑏] ⊂ ℝ is (sequentially) compact.

Proposition 7.4.13. Let (𝑋, 𝑑) be a metric space and let 𝐾 ⊂ 𝑋 be compact. If 𝐸 ⊂ 𝐾 is a closed
set, then 𝐸 is compact.

Because 𝐾 is closed, 𝐸 is closed in 𝐾 if and only if it is closed in 𝑋. See  Proposition 7.2.12 .

Proof. Let {𝑥𝑛}∞𝑛=1 be a sequence in 𝐸. It is also a sequence in 𝐾. Therefore, it has a
convergent subsequence {𝑥𝑛 𝑗}∞𝑗=1 that converges to some 𝑥 ∈ 𝐾. As 𝐸 is closed the limit of
a sequence in 𝐸 is also in 𝐸 and so 𝑥 ∈ 𝐸. Thus 𝐸 must be compact. □

Theorem 7.4.14 (Heine–Borel 

‗
 ). A closed bounded subset 𝐾 ⊂ ℝ𝑛 is compact.

So subsets of ℝ𝑛 are compact if and only if they are closed and bounded, a condition
that is much easier to check. Let us reiterate that the Heine–Borel theorem only holds for
ℝ𝑛 and not for metric spaces in general. The theorem does not hold even for subspaces of
ℝ𝑛 , just in ℝ𝑛 itself. In general, compact implies closed and bounded, but not vice versa.

Proof. For ℝ = ℝ1, suppose 𝐾 ⊂ ℝ is closed and bounded. Then 𝐾 ⊂ [𝑎, 𝑏] for some closed
and bounded interval, which is compact by  Example 7.4.12 . As 𝐾 is a closed subset of a
compact set, it is compact by  Proposition 7.4.13 .

We carry out the proof for 𝑛 = 2 and leave arbitrary 𝑛 as an exercise. As 𝐾 ⊂ ℝ2 is
bounded, there exists a set 𝐵 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2 such that 𝐾 ⊂ 𝐵. We will show that 𝐵 is
compact. Then 𝐾, being a closed subset of a compact 𝐵, is also compact.

Let
{(𝑥𝑘 , 𝑦𝑘)}∞𝑘=1 be a sequence in 𝐵. That is, 𝑎 ≤ 𝑥𝑘 ≤ 𝑏 and 𝑐 ≤ 𝑦𝑘 ≤ 𝑑 for all 𝑘. A

bounded sequence of real numbers has a convergent subsequence so there is a subsequence
‗Named after the German mathematician  Heinrich Eduard Heine (1821–1881), and the French mathe-

matician  Félix Édouard Justin Émile Borel (1871–1956).

https://en.wikipedia.org/wiki/Eduard_Heine
https://en.wikipedia.org/wiki/%C3%89mile_Borel
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{𝑥𝑘 𝑗}∞𝑗=1 that is convergent. The subsequence {𝑦𝑘 𝑗}∞𝑗=1 is also a bounded sequence so there
exists a subsequence {𝑦𝑘 𝑗𝑖 }∞𝑖=1 that is convergent. A subsequence of a convergent sequence
is still convergent, so {𝑥𝑘 𝑗𝑖 }∞𝑖=1 is convergent. Let

𝑥 B lim
𝑖→∞

𝑥𝑘 𝑗𝑖 and 𝑦 B lim
𝑖→∞

𝑦𝑘 𝑗𝑖 .

By  Proposition 7.3.9  ,
{(𝑥𝑘 𝑗𝑖 , 𝑦𝑘 𝑗𝑖 )}∞𝑖=1 converges to (𝑥, 𝑦). Furthermore, as 𝑎 ≤ 𝑥𝑘 ≤ 𝑏 and

𝑐 ≤ 𝑦𝑘 ≤ 𝑑 for all 𝑘, we know that (𝑥, 𝑦) ∈ 𝐵. □

Example 7.4.15: The discrete metric provides interesting counterexamples again. Let (𝑋, 𝑑)
be a metric space with the discrete metric, that is, 𝑑(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦. Suppose 𝑋 is an
infinite set. Then

(i) (𝑋, 𝑑) is a complete metric space.
(ii) Any subset 𝐾 ⊂ 𝑋 is closed and bounded.

(iii) A subset 𝐾 ⊂ 𝑋 is compact if and only if it is a finite set.
(iv) The conclusion of the Lebesgue covering lemma is always satisfied, e.g. with 𝛿 = 1/2,

even for noncompact 𝐾 ⊂ 𝑋.
The proofs of the statements above are either trivial or are relegated to the exercises below.

Remark 7.4.16. A subtle issue with Cauchy sequences, completeness, compactness, and
convergence is that compactness and convergence only depend on the topology, that is,
on which sets are the open sets. On the other hand, Cauchy sequences and completeness
depend on the actual metric. See  Exercise 7.4.19 .

7.4.3 Exercises
Exercise 7.4.1: Let (𝑋, 𝑑) be a metric space and 𝐴 a finite subset of 𝑋. Show that 𝐴 is compact.

Exercise 7.4.2: Let 𝐴 B {1/𝑛 : 𝑛 ∈ ℕ} ⊂ ℝ.

a) Show that 𝐴 is not compact directly using the definition.

b) Show that 𝐴 ∪ {0} is compact directly using the definition.

Exercise 7.4.3: Let (𝑋, 𝑑) be a metric space with the discrete metric.

a) Prove that 𝑋 is complete.

b) Prove that 𝑋 is compact if and only if 𝑋 is a finite set.

Exercise 7.4.4:

a) Show that the union of finitely many compact sets is a compact set.

b) Find an example where the union of infinitely many compact sets is not compact.

Exercise 7.4.5: Prove  Theorem 7.4.14 for arbitrary dimension. Hint: The trick is to use the correct notation.
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Exercise 7.4.6: Show that a compact set 𝐾 (in any metric space) is itself a complete metric space (using the
subspace metric).
Exercise 7.4.7: Let 𝐶

([𝑎, 𝑏],ℝ)
be the metric space as in  Example 7.1.8  . Show that 𝐶

([𝑎, 𝑏],ℝ)
is a

complete metric space.
Exercise 7.4.8 (Challenging): Let 𝐶

([0, 1],ℝ)
be the metric space of  Example 7.1.8 . Let 0 denote the zero

function. Then show that the closed ball 𝐶(0, 1) is not compact (even though it is closed and bounded). Hints:
Construct a sequence of distinct continuous functions { 𝑓𝑛}∞𝑛=1 such that 𝑑( 𝑓𝑛 , 0) = 1 and 𝑑( 𝑓𝑛 , 𝑓𝑘) = 1 for
all 𝑛 ≠ 𝑘. Show that the set { 𝑓𝑛 : 𝑛 ∈ ℕ} ⊂ 𝐶(0, 1) is closed but not compact. See  chapter 6 for inspiration.
Exercise 7.4.9 (Challenging): Show that there exists a metric on ℝ that makes ℝ into a compact set.
Exercise 7.4.10: Suppose (𝑋, 𝑑) is complete and suppose we have a countably infinite collection of nonempty
compact sets 𝐸1 ⊃ 𝐸2 ⊃ 𝐸3 ⊃ · · · . Prove

⋂∞
𝑗=1 𝐸 𝑗 ≠ ∅.

Exercise 7.4.11 (Challenging): Let 𝐶
([0, 1],ℝ)

be the metric space of  Example 7.1.8 . Let 𝐾 be the set of
𝑓 ∈ 𝐶 ([0, 1],ℝ)

such that 𝑓 is equal to a quadratic polynomial, i.e. 𝑓 (𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2, and such that�� 𝑓 (𝑥)�� ≤ 1 for all 𝑥 ∈ [0, 1], that is 𝑓 ∈ 𝐶(0, 1). Show that 𝐾 is compact.
Exercise 7.4.12 (Challenging): Let (𝑋, 𝑑) be a complete metric space. Show that 𝐾 ⊂ 𝑋 is compact if
and only if 𝐾 is closed and such that for every 𝜖 > 0 there exists a finite set of points 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 with
𝐾 ⊂ ⋃𝑛

𝑗=1 𝐵(𝑥 𝑗 , 𝜖). Note: Such a set 𝐾 is said to be totally bounded, so in a complete metric space a set is
compact if and only if it is closed and totally bounded.
Exercise 7.4.13: Take ℕ ⊂ ℝ using the standard metric. Find an open cover of ℕ such that the conclusion of
the Lebesgue covering lemma does not hold.
Exercise 7.4.14: Prove the general Bolzano–Weierstrass theorem: Any bounded sequence {𝑥𝑘}∞𝑘=1 in ℝ𝑛 has
a convergent subsequence.
Exercise 7.4.15: Let 𝑋 be a metric space and 𝐶 ⊂ P(𝑋) the set of nonempty compact subsets of 𝑋. Using
the Hausdorff metric from  Exercise 7.1.8  , show that (𝐶, 𝑑𝐻) is a metric space. That is, show that if 𝐿 and 𝐾
are nonempty compact subsets, then 𝑑𝐻(𝐿, 𝐾) = 0 if and only if 𝐿 = 𝐾.
Exercise 7.4.16: Prove  Proposition 7.4.6  . That is, let (𝑋, 𝑑) be a complete metric space and 𝐸 ⊂ 𝑋 a closed
set. Show that 𝐸 with the subspace metric is a complete metric space.
Exercise 7.4.17: Let (𝑋, 𝑑) be an incomplete metric space. Show that there exists a closed and bounded set
𝐸 ⊂ 𝑋 that is not compact.
Exercise 7.4.18: Let (𝑋, 𝑑) be a metric space and 𝐾 ⊂ 𝑋. Prove that 𝐾 is compact as a subset of (𝑋, 𝑑) if
and only if 𝐾 is compact as a subset of itself with the subspace metric.
Exercise 7.4.19: Consider two metrics on ℝ. Let 𝑑(𝑥, 𝑦) B ��𝑥 − 𝑦�� be the standard metric, and let
𝑑′(𝑥, 𝑦) B �� 𝑥

1+|𝑥| −
𝑦

1+|𝑦|
��.

a) Show that (ℝ, 𝑑′) is a metric space (if you have done  Exercise 7.3.10 , the computation is the same).

b) Show that the topology is the same, that is, a set is open in (ℝ, 𝑑) if and only if it is open in (ℝ, 𝑑′).
c) Show that a set is compact in (ℝ, 𝑑) if and only if it is compact in (ℝ, 𝑑′).
d) Show that a sequence converges in (ℝ, 𝑑) if and only if it converges in (ℝ, 𝑑′).
e) Find a sequence of real numbers that is Cauchy in (ℝ, 𝑑′) but not Cauchy in (ℝ, 𝑑).
f) While (ℝ, 𝑑) is complete, show that (ℝ, 𝑑′) is not complete.
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Exercise 7.4.20: Let (𝑋, 𝑑) be a complete metric space. We say a set 𝑆 ⊂ 𝑋 is relatively compact if the
closure 𝑆 is compact. Prove that 𝑆 ⊂ 𝑋 is relatively compact if and only if given any sequence {𝑥𝑛}∞𝑛=1 in 𝑆,
there exists a subsequence {𝑥𝑛𝑘}∞𝑘=1 that converges (in 𝑋).
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7.5 Continuous functions
Note: 1.5–2 lectures

7.5.1 Continuity
Definition 7.5.1. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑐 ∈ 𝑋. Then 𝑓 : 𝑋 → 𝑌 is
continuous at 𝑐 if for every 𝜖 > 0 there is a 𝛿 > 0 such that whenever 𝑥 ∈ 𝑋 and 𝑑𝑋(𝑥, 𝑐) < 𝛿,
then 𝑑𝑌

(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖.

When 𝑓 : 𝑋 → 𝑌 is continuous at all 𝑐 ∈ 𝑋, we simply say that 𝑓 is a continuous function.

The definition agrees with the definition from  chapter 3 when 𝑓 is a real-valued function
on the real line—as long as we take the standard metric on ℝ, of course.
Proposition 7.5.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Then 𝑓 : 𝑋 → 𝑌 is continuous at
𝑐 ∈ 𝑋 if and only if for every sequence {𝑥𝑛}∞𝑛=1 in 𝑋 converging to 𝑐, the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1

converges to 𝑓 (𝑐).
Proof. Suppose 𝑓 is continuous at 𝑐. Let {𝑥𝑛}∞𝑛=1 be a sequence in 𝑋 converging to 𝑐. Given
𝜖 > 0, there is a 𝛿 > 0 such that 𝑑𝑋(𝑥, 𝑐) < 𝛿 implies 𝑑𝑌

(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖. So take 𝑀 such

that for all 𝑛 ≥ 𝑀, we have 𝑑𝑋(𝑥𝑛 , 𝑐) < 𝛿, then 𝑑𝑌
(
𝑓 (𝑥𝑛), 𝑓 (𝑐)

)
< 𝜖. Hence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1

converges to 𝑓 (𝑐).
On the other hand, suppose 𝑓 is not continuous at 𝑐. Then there exists an 𝜖 > 0, such that

for every 𝑛 ∈ ℕ there exists an 𝑥𝑛 ∈ 𝑋, with 𝑑𝑋(𝑥𝑛 , 𝑐) < 1/𝑛 such that 𝑑𝑌
(
𝑓 (𝑥𝑛), 𝑓 (𝑐)

) ≥ 𝜖.
Then {𝑥𝑛}∞𝑛=1 converges to 𝑐, but

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 does not converge to 𝑓 (𝑐). □

Example 7.5.3: Suppose 𝑓 : ℝ2 → ℝ is a polynomial. That is,

𝑓 (𝑥, 𝑦) =
𝑑∑
𝑗=0

𝑑−𝑗∑
𝑘=0

𝑎 𝑗𝑘 𝑥 𝑗𝑦𝑘 = 𝑎0 0 + 𝑎1 0 𝑥 + 𝑎0 1 𝑦 + 𝑎2 0 𝑥2 + 𝑎1 1 𝑥𝑦 + 𝑎0 2 𝑦2 + · · · + 𝑎0 𝑑 𝑦𝑑 ,

for some 𝑑 ∈ ℕ (the degree) and 𝑎 𝑗𝑘 ∈ ℝ. We claim 𝑓 is continuous. Let
{(𝑥𝑛 , 𝑦𝑛)}∞𝑛=1 be a

sequence in ℝ2 that converges to (𝑥, 𝑦) ∈ ℝ2. We proved that this means lim𝑛→∞ 𝑥𝑛 = 𝑥
and lim𝑛→∞ 𝑦𝑛 = 𝑦. By  Proposition 2.2.5 ,

lim
𝑛→∞ 𝑓 (𝑥𝑛 , 𝑦𝑛) = lim

𝑛→∞

𝑑∑
𝑗=0

𝑑−𝑗∑
𝑘=0

𝑎 𝑗𝑘 𝑥
𝑗
𝑛𝑦

𝑘
𝑛 =

𝑑∑
𝑗=0

𝑑−𝑗∑
𝑘=0

𝑎 𝑗𝑘 𝑥 𝑗𝑦𝑘 = 𝑓 (𝑥, 𝑦).

So 𝑓 is continuous at (𝑥, 𝑦), and as (𝑥, 𝑦) was arbitrary 𝑓 is continuous everywhere.
Similarly, a polynomial in 𝑛 variables is continuous.

Be careful about taking limits separately. Consider 𝑓 : ℝ2 → ℝ defined by 𝑓 (𝑥, 𝑦) B
𝑥𝑦

𝑥2+𝑦2 outside the origin and 𝑓 (0, 0) B 0. See  Figure 7.14  . In  Exercise 7.5.2 , you are
asked to prove that 𝑓 is not continuous at the origin. However, for every 𝑦, the function
𝑔(𝑥) B 𝑓 (𝑥, 𝑦) is continuous, and for every 𝑥, the function ℎ(𝑦) B 𝑓 (𝑥, 𝑦) is continuous.
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G

H

I

Figure 7.14: Graph of 𝑥𝑦
𝑥2+𝑦2 .

Example 7.5.4: Let 𝑋 be a metric space and 𝑓 : 𝑋 → ℂ a complex-valued function. Write
𝑓 (𝑝) = 𝑔(𝑝) + 𝑖 ℎ(𝑝), where 𝑔 : 𝑋 → ℝ and ℎ : 𝑋 → ℝ are the real and imaginary parts of 𝑓 .
Then 𝑓 is continuous at 𝑐 ∈ 𝑋 if and only if its real and imaginary parts are continuous at 𝑐.
This fact follows because

{
𝑓 (𝑝𝑛) = 𝑔(𝑝𝑛) + 𝑖 ℎ(𝑝𝑛)

}∞
𝑛=1 converges to 𝑓 (𝑝) = 𝑔(𝑝) + 𝑖 ℎ(𝑝) if

and only if
{
𝑔(𝑝𝑛)

}∞
𝑛=1 converges to 𝑔(𝑝) and

{
ℎ(𝑝𝑛)

}∞
𝑛=1 converges to ℎ(𝑝).

7.5.2 Compactness and continuity
Continuous maps do not map closed sets to closed sets. For example, 𝑓 : (0, 1) → ℝ defined
by 𝑓 (𝑥) B 𝑥 takes the set (0, 1), which is closed in (0, 1), to the set (0, 1), which is not closed
in ℝ. On the other hand, continuous maps do preserve compact sets.

Lemma 7.5.5. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑓 : 𝑋 → 𝑌 a continuous function. If
𝐾 ⊂ 𝑋 is a compact set, then 𝑓 (𝐾) is a compact set.

Proof. A sequence in 𝑓 (𝐾) can be written as
{
𝑓 (𝑥𝑛)

}∞
𝑛=1, where {𝑥𝑛}∞𝑛=1 is a sequence in 𝐾.

The set 𝐾 is compact and therefore there is a subsequence {𝑥𝑛 𝑗}∞𝑗=1 that converges to some
𝑥 ∈ 𝐾. By continuity,

lim
𝑗→∞

𝑓 (𝑥𝑛 𝑗 ) = 𝑓 (𝑥) ∈ 𝑓 (𝐾).

So every sequence in 𝑓 (𝐾) has a subsequence convergent to a point in 𝑓 (𝐾), and 𝑓 (𝐾) is
compact by  Theorem 7.4.11 . □

As before, 𝑓 : 𝑋 → ℝ achieves an absolute minimum at 𝑐 ∈ 𝑋 if

𝑓 (𝑥) ≥ 𝑓 (𝑐) for all 𝑥 ∈ 𝑋.

On the other hand, 𝑓 achieves an absolute maximum at 𝑐 ∈ 𝑋 if

𝑓 (𝑥) ≤ 𝑓 (𝑐) for all 𝑥 ∈ 𝑋.
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Theorem 7.5.6. Let (𝑋, 𝑑) be a nonempty compact metric space and let 𝑓 : 𝑋 → ℝ be continuous.
Then 𝑓 is bounded and in fact 𝑓 achieves an absolute minimum and an absolute maximum on 𝑋.

Proof. As 𝑋 is compact and 𝑓 is continuous, 𝑓 (𝑋) ⊂ ℝ is compact. Hence 𝑓 (𝑋) is closed
and bounded. In particular, sup 𝑓 (𝑋) ∈ 𝑓 (𝑋) and inf 𝑓 (𝑋) ∈ 𝑓 (𝑋), because both the sup
and the inf can be achieved by sequences in 𝑓 (𝑋) and 𝑓 (𝑋) is closed. Therefore, there is
some 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = sup 𝑓 (𝑋) and some 𝑦 ∈ 𝑋 such that 𝑓 (𝑦) = inf 𝑓 (𝑋). □

7.5.3 Continuity and topology
Let us see how to define continuity in terms of the topology, that is, the open sets. We have
already seen that topology determines which sequences converge, and so it is no wonder
that the topology also determines continuity of functions.

Lemma 7.5.7. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A function 𝑓 : 𝑋 → 𝑌 is continuous at
𝑐 ∈ 𝑋 if and only if for every open neighborhood 𝑈 of 𝑓 (𝑐) in 𝑌, the set 𝑓 −1(𝑈) contains an open
neighborhood of 𝑐 in 𝑋. See  Figure 7.15 .

𝑓
𝑈

𝑊

𝑓 (𝑐)

𝑓 −1(𝑈)

𝑐

Figure 7.15: For every neighborhood𝑈 of 𝑓 (𝑐), the set 𝑓 −1(𝑈) contains an open neighborhood
𝑊 of 𝑐.

Proof. First suppose that 𝑓 is continuous at 𝑐. Let𝑈 be an open neighborhood of 𝑓 (𝑐) in
𝑌, then 𝐵𝑌

(
𝑓 (𝑐), 𝜖) ⊂ 𝑈 for some 𝜖 > 0. By continuity of 𝑓 , there exists a 𝛿 > 0 such that

whenever 𝑥 is such that 𝑑𝑋(𝑥, 𝑐) < 𝛿, then 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖. In other words,

𝐵𝑋(𝑐, 𝛿) ⊂ 𝑓 −1 (𝐵𝑌 (
𝑓 (𝑐), 𝜖) ) ⊂ 𝑓 −1(𝑈),

and 𝐵𝑋(𝑐, 𝛿) is an open neighborhood of 𝑐.
For the other direction, let 𝜖 > 0 be given. If 𝑓 −1 (𝐵𝑌 (

𝑓 (𝑐), 𝜖) ) contains an open
neighborhood𝑊 of 𝑐, it contains a ball. That is, there is some 𝛿 > 0 such that

𝐵𝑋(𝑐, 𝛿) ⊂ 𝑊 ⊂ 𝑓 −1 (𝐵𝑌 (
𝑓 (𝑐), 𝜖) ) .

That means precisely that if 𝑑𝑋(𝑥, 𝑐) < 𝛿, then 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖. So 𝑓 is continuous

at 𝑐. □
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Theorem 7.5.8. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A function 𝑓 : 𝑋 → 𝑌 is continuous if
and only if for every open𝑈 ⊂ 𝑌, 𝑓 −1(𝑈) is open in 𝑋.

The proof follows from  Lemma 7.5.7 and is left as an exercise.

Example 7.5.9: Let 𝑓 : 𝑋 → 𝑌 be a continuous function.  Theorem 7.5.8 tells us that if 𝐸 ⊂ 𝑌
is closed, then 𝑓 −1(𝐸) = 𝑋 \ 𝑓 −1(𝐸𝑐) is also closed. Therefore, if we have a continuous
function 𝑓 : 𝑋 → ℝ, then the zero set of 𝑓 , that is, 𝑓 −1(0) = {

𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 0
}
, is closed.

We have just proved the most basic result in algebraic geometry, the study of zero sets of
polynomials: The zero set of a polynomial is closed.

Similarly, the set where 𝑓 is nonnegative, 𝑓 −1 ([0,∞)) = {
𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≥ 0

}
, is closed.

On the other hand, the set where 𝑓 is positive, 𝑓 −1 ((0,∞)) = {
𝑥 ∈ 𝑋 : 𝑓 (𝑥) > 0

}
, is open.

7.5.4 Uniform continuity
As for continuous functions on the real line, in the definition of continuity it is sometimes
convenient to be able to pick one 𝛿 for all points.

Definition 7.5.10. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Then 𝑓 : 𝑋 → 𝑌 is uniformly
continuous if for every 𝜖 > 0 there is a 𝛿 > 0 such that whenever 𝑝, 𝑞 ∈ 𝑋 and 𝑑𝑋(𝑝, 𝑞) < 𝛿,
we have 𝑑𝑌

(
𝑓 (𝑝), 𝑓 (𝑞)) < 𝜖.

A uniformly continuous function is continuous, but not necessarily vice versa as we
have seen.

Theorem 7.5.11. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. Suppose 𝑓 : 𝑋 → 𝑌 is continuous
and 𝑋 is compact. Then 𝑓 is uniformly continuous.

Proof. Let 𝜖 > 0 be given. For each 𝑐 ∈ 𝑋, pick 𝛿𝑐 > 0 such that 𝑑𝑌
(
𝑓 (𝑥), 𝑓 (𝑐)) < 𝜖/2

whenever 𝑥 ∈ 𝐵(𝑐, 𝛿𝑐). The balls 𝐵(𝑐, 𝛿𝑐) cover 𝑋, and the space 𝑋 is compact. Apply the
 Lebesgue covering lemma to obtain a 𝛿 > 0 such that for every 𝑥 ∈ 𝑋, there is a 𝑐 ∈ 𝑋 for
which 𝐵(𝑥, 𝛿) ⊂ 𝐵(𝑐, 𝛿𝑐).

Suppose 𝑝, 𝑞 ∈ 𝑋 where 𝑑𝑋(𝑝, 𝑞) < 𝛿. Find a 𝑐 ∈ 𝑋 such that 𝐵(𝑝, 𝛿) ⊂ 𝐵(𝑐, 𝛿𝑐). Then
𝑞 ∈ 𝐵(𝑐, 𝛿𝑐). By the triangle inequality and the definition of 𝛿𝑐 ,

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝑑𝑌

(
𝑓 (𝑝), 𝑓 (𝑐)) + 𝑑𝑌 (

𝑓 (𝑐), 𝑓 (𝑞)) < 𝜖/2 + 𝜖/2 = 𝜖. □

As an application of uniform continuity, we prove a useful criterion for continuity of
functions defined by integrals. Let 𝑓 (𝑥, 𝑦) be a function of two variables and define

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥.

Question is, is 𝑔 is continuous? We are really asking when do two limiting operations
commute, which is not always possible, so some extra hypothesis is necessary. A useful
sufficient (but not necessary) condition is that 𝑓 is continuous on a closed rectangle.
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Proposition 7.5.12. If 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → ℝ is continuous, then 𝑔 : [𝑐, 𝑑] → ℝ defined by

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥 is continuous.

Proof. Fix 𝑦 ∈ [𝑐, 𝑑] and let 𝜖 > 0 be given. As 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑], which is
compact, 𝑓 is uniformly continuous. In particular, there exists a 𝛿 > 0 such that whenever
𝑧 ∈ [𝑐, 𝑑] and

��𝑧 − 𝑦�� < 𝛿, we have
�� 𝑓 (𝑥, 𝑧) − 𝑓 (𝑥, 𝑦)�� < 𝜖

𝑏−𝑎 for all 𝑥 ∈ [𝑎, 𝑏]. So suppose��𝑧 − 𝑦�� < 𝛿. Then

��𝑔(𝑧) − 𝑔(𝑦)�� = �����∫ 𝑏

𝑎
𝑓 (𝑥, 𝑧) 𝑑𝑥 −

∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

�����
=

�����∫ 𝑏

𝑎

(
𝑓 (𝑥, 𝑧) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥����� ≤ (𝑏 − 𝑎) 𝜖

𝑏 − 𝑎 = 𝜖. □

In applications, if we are interested in continuity at 𝑦0, we just need to apply the
proposition in [𝑎, 𝑏] × [𝑦0 − 𝜖, 𝑦0 + 𝜖] for some small 𝜖 > 0. For example, if 𝑓 is continuous
in [𝑎, 𝑏] ×ℝ, then 𝑔 is continuous on ℝ.

Example 7.5.13: Useful examples of uniformly continuous functions are again the so-
called Lipschitz continuous functions. That is, if (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) are metric spaces, then
𝑓 : 𝑋 → 𝑌 is called Lipschitz or 𝐾-Lipschitz if there exists a 𝐾 ∈ ℝ such that

𝑑𝑌
(
𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝐾 𝑑𝑋(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ 𝑋.

A Lipschitz function is uniformly continuous: Take 𝛿 = 𝜖/𝐾. A function can be uniformly
continuous but not Lipschitz, as we already saw:

√
𝑥 on [0, 1] is uniformly continuous but

not Lipschitz.
It is worth mentioning that, if a function is Lipschitz, it tends to be easiest to simply

show it is Lipschitz even if we are only interested in knowing continuity.

7.5.5 Cluster points and limits of functions

While we have not started the discussion of continuity with them and we will not need
them until volume II, let us also translate the idea of a limit of a function from the real line
to metric spaces. Again we need to start with cluster points.

Definition 7.5.14. Let (𝑋, 𝑑) be a metric space and 𝑆 ⊂ 𝑋. A point 𝑝 ∈ 𝑋 is called a cluster
point of 𝑆 if for every 𝜖 > 0, the set 𝐵(𝑝, 𝜖) ∩ 𝑆 \ {𝑝} is not empty.

It is not enough that 𝑝 is in the closure of 𝑆, it must be in the closure of 𝑆 \ {𝑝} (exercise).
So, 𝑝 is a cluster point if and only if there exists a sequence in 𝑆 \ {𝑝} that converges to 𝑝.
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Definition 7.5.15. Let (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point of 𝑆,
and 𝑓 : 𝑆 → 𝑌 a function. Suppose there exists an 𝐿 ∈ 𝑌 and for every 𝜖 > 0, there exists a
𝛿 > 0 such that whenever 𝑥 ∈ 𝑆 \ {𝑝} and 𝑑𝑋(𝑥, 𝑝) < 𝛿, then

𝑑𝑌
(
𝑓 (𝑥), 𝐿) < 𝜖.

Then we say 𝑓 (𝑥) converges to 𝐿 as 𝑥 goes to 𝑝, and 𝐿 is a limit of 𝑓 (𝑥) as 𝑥 goes to 𝑝. If 𝐿 is
unique, we write

lim
𝑥→𝑝

𝑓 (𝑥) B 𝐿.

If 𝑓 (𝑥) does not converge as 𝑥 goes to 𝑝, we say 𝑓 diverges at 𝑝.

As usual, we prove that the limit, if it exists, is unique. The proof is a direct translation
of the proof from  chapter 3 , so we leave it as an exercise.

Proposition 7.5.16. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point of 𝑆,
and let 𝑓 : 𝑆 → 𝑌 be a function such that 𝑓 (𝑥) converges as 𝑥 goes to 𝑝. Then the limit of 𝑓 (𝑥) as
𝑥 goes to 𝑝 is unique.

In any metric space, just like in ℝ, continuous limits may be replaced by sequential
limits. The proof is again a direct translation of the proof from  chapter 3  , and we leave it as
an exercise. The upshot is that we really only need to prove things for sequential limits.

Lemma 7.5.17. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point of 𝑆, and
let 𝑓 : 𝑆 → 𝑌 be a function.

Then 𝑓 (𝑥) converges to 𝐿 ∈ 𝑌 as 𝑥 goes to 𝑝 if and only if for every sequence {𝑥𝑛}∞𝑛=1 in 𝑆 \{𝑝}
such that lim𝑛→∞ 𝑥𝑛 = 𝑝, the sequence

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 converges to 𝐿.

By applying  Proposition 7.5.2 or the definition directly we find (exercise) as in  chapter 3 ,
that for cluster points 𝑝 of 𝑆 ⊂ 𝑋, the function 𝑓 : 𝑆 → 𝑌 is continuous at 𝑝 if and only if

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑓 (𝑝).

7.5.6 Exercises
Exercise 7.5.1: Consider ℕ ⊂ ℝ with the standard metric. Let (𝑋, 𝑑) be a metric space and 𝑓 : 𝑋 → ℕ a
continuous function.

a) Prove that if 𝑋 is connected, then 𝑓 is constant (the range of 𝑓 is a single value).

b) Find an example where 𝑋 is disconnected and 𝑓 is not constant.

Exercise 7.5.2: Define 𝑓 : ℝ2 → ℝ by 𝑓 (0, 0) B 0, and 𝑓 (𝑥, 𝑦) B 𝑥𝑦
𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0). See  Figure 7.14 .

a) Show that for every fixed 𝑥, the function that takes 𝑦 to 𝑓 (𝑥, 𝑦) is continuous. Similarly for every fixed 𝑦,
the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is continuous.

b) Show that 𝑓 is not continuous.
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Exercise 7.5.3: Suppose (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌) are metric spaces and 𝑓 : 𝑋 → 𝑌 is continuous. Let 𝐴 ⊂ 𝑋.

a) Show that 𝑓 (𝐴) ⊂ 𝑓 (𝐴).
b) Show that the subset can be proper.

Exercise 7.5.4: Prove  Theorem 7.5.8 . Hint: Use  Lemma 7.5.7 .

Exercise 7.5.5: Suppose 𝑓 : 𝑋 → 𝑌 is continuous for metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌). Show that if 𝑋 is
connected, then 𝑓 (𝑋) is connected.

Exercise 7.5.6: Prove the following version of the  intermediate value theorem . Let (𝑋, 𝑑) be a connected
metric space and 𝑓 : 𝑋 → ℝ a continuous function. Suppose 𝑥0 , 𝑥1 ∈ 𝑋 and 𝑦 ∈ ℝ are such that
𝑓 (𝑥0) < 𝑦 < 𝑓 (𝑥1). Then prove that there exists a 𝑧 ∈ 𝑋 such that 𝑓 (𝑧) = 𝑦. Hint: See  Exercise 7.5.5 .

Exercise 7.5.7: A continuous 𝑓 : 𝑋 → 𝑌 between metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) is said to be proper
if for every compact set 𝐾 ⊂ 𝑌, the set 𝑓 −1(𝐾) is compact. Suppose a continuous 𝑓 : (0, 1) → (0, 1) is
proper and {𝑥𝑛}∞𝑛=1 is a sequence in (0, 1) converging to 0. Show that

{
𝑓 (𝑥𝑛)

}∞
𝑛=1 has no subsequence that

converges in (0, 1).

Exercise 7.5.8: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces and 𝑓 : 𝑋 → 𝑌 be a one-to-one and onto continuous
function. Suppose 𝑋 is compact. Prove that the inverse 𝑓 −1 : 𝑌 → 𝑋 is continuous.

Exercise 7.5.9: Take the metric space of continuous functions 𝐶
([0, 1],ℝ)

. Let 𝑘 : [0, 1] × [0, 1] → ℝ be a
continuous function. Given 𝑓 ∈ 𝐶 ([0, 1],ℝ)

define

𝜑 𝑓 (𝑥) B
∫ 1

0
𝑘(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦.

a) Show that 𝑇( 𝑓 ) B 𝜑 𝑓 defines a function 𝑇 : 𝐶
([0, 1],ℝ) → 𝐶

([0, 1],ℝ)
.

b) Show that 𝑇 is continuous.

Exercise 7.5.10: Let (𝑋, 𝑑) be a metric space.

a) If 𝑝 ∈ 𝑋, show that 𝑓 : 𝑋 → ℝ defined by 𝑓 (𝑥) B 𝑑(𝑥, 𝑝) is continuous.

b) Define a metric on 𝑋 × 𝑋 as in  Exercise 7.1.6 part b, and show that 𝑔 : 𝑋 × 𝑋 → ℝ defined by
𝑔(𝑥, 𝑦) B 𝑑(𝑥, 𝑦) is continuous.

c) Show that if 𝐾1 and 𝐾2 are compact subsets of 𝑋, then there exists a 𝑝 ∈ 𝐾1 and 𝑞 ∈ 𝐾2 such that 𝑑(𝑝, 𝑞)
is minimal, that is, 𝑑(𝑝, 𝑞) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐾1 , 𝑦 ∈ 𝐾2}.

Exercise 7.5.11: Let (𝑋, 𝑑) be a compact metric space, let 𝐶(𝑋,ℝ) be the set of real-valued continuous
functions. Define

𝑑( 𝑓 , 𝑔) B ∥ 𝑓 − 𝑔∥𝑋 = sup
𝑥∈𝑋

�� 𝑓 (𝑥) − 𝑔(𝑥)�� .
a) Show that 𝑑 makes 𝐶(𝑋,ℝ) into a metric space.

b) Show that for every 𝑥 ∈ 𝑋, the evaluation function 𝐸𝑥 : 𝐶(𝑋,ℝ) → ℝ defined by 𝐸𝑥( 𝑓 ) B 𝑓 (𝑥) is a
continuous function.
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Exercise 7.5.12: Let 𝐶
([𝑎, 𝑏],ℝ)

be the set of continuous functions and 𝐶1 ([𝑎, 𝑏],ℝ)
the set of once

continuously differentiable functions on [𝑎, 𝑏]. Define

𝑑𝐶( 𝑓 , 𝑔) B ∥ 𝑓 − 𝑔∥[𝑎,𝑏] and 𝑑𝐶1( 𝑓 , 𝑔) B ∥ 𝑓 − 𝑔∥[𝑎,𝑏] + ∥ 𝑓 ′ − 𝑔′∥[𝑎,𝑏] ,

where ∥·∥[𝑎,𝑏] is the uniform norm. By  Example 7.1.8 and  Exercise 7.1.12 , we know that 𝐶
([𝑎, 𝑏],ℝ)

with
𝑑𝐶 is a metric space and so is 𝐶1 ([𝑎, 𝑏],ℝ)

with 𝑑𝐶1 .

a) Prove that the derivative operator𝐷 : 𝐶1 ([𝑎, 𝑏],ℝ) → 𝐶
([𝑎, 𝑏],ℝ)

defined by𝐷( 𝑓 ) B 𝑓 ′ is continuous.

b) On the other hand if we consider the metric 𝑑𝐶 on 𝐶1 ([𝑎, 𝑏],ℝ)
, then prove the derivative operator is no

longer continuous. Hint: Consider sin(𝑛𝑥).
Exercise 7.5.13: Let (𝑋, 𝑑) be a metric space, 𝑆 ⊂ 𝑋, and 𝑝 ∈ 𝑋. Prove that 𝑝 is a cluster point of 𝑆 if and
only if 𝑝 ∈ 𝑆 \ {𝑝}.

Exercise 7.5.14: Prove  Proposition 7.5.16 .

Exercise 7.5.15: Prove  Lemma 7.5.17 .

Exercise 7.5.16: Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces, 𝑆 ⊂ 𝑋, 𝑝 ∈ 𝑋 a cluster point of 𝑆, and let
𝑓 : 𝑆 → 𝑌 be a function. Prove that 𝑓 : 𝑆 → 𝑌 is continuous at 𝑝 if and only if

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑓 (𝑝).

Exercise 7.5.17: Define

𝑓 (𝑥, 𝑦) B
{ 2𝑥𝑦
𝑥4+𝑦2 if (𝑥, 𝑦) ≠ (0, 0),
0 if (𝑥, 𝑦) = (0, 0).

a) Show that for every fixed 𝑦 the function that takes 𝑥 to 𝑓 (𝑥, 𝑦) is continuous and hence Riemann
integrable.

b) For every fixed 𝑥, the function that takes 𝑦 to 𝑓 (𝑥, 𝑦) is continuous.

c) Show that 𝑓 is not continuous at (0, 0).
d) Now show that 𝑔(𝑦) B

∫ 1
0 𝑓 (𝑥, 𝑦) 𝑑𝑥 is not continuous at 𝑦 = 0.

Note: Feel free to use what you know about arctan from calculus, in particular that 𝑑
𝑑𝑠

[
arctan(𝑠)] = 1

1+𝑠2 .

Exercise 7.5.18: Prove a stronger version of  Proposition 7.5.12 : If 𝑓 : (𝑎, 𝑏) × (𝑐, 𝑑) → ℝ is a bounded
continuous function, then 𝑔 : (𝑐, 𝑑) → ℝ defined by

𝑔(𝑦) B
∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥 is continuous.

Hint: First integrate over [𝑎 + 1/𝑛, 𝑏 − 1/𝑛].
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7.6 Fixed point theorem and Picard’s theorem again
Note: 1 lecture (optional, does not require  §6.3 )

In this section we prove the fixed point theorem for contraction mappings. As an
application we prove Picard’s theorem, which we proved without metric spaces in  §6.3 .
The proof presented here is similar, but the proof goes a lot smoother with metric spaces
and the fixed point theorem.

7.6.1 Fixed point theorem
Definition 7.6.1. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. A map 𝜑 : 𝑋 → 𝑌 is a contraction
(or a contractive map) if it is a 𝑘-Lipschitz map for some 𝑘 < 1, i.e. if there exists a 𝑘 < 1
such that

𝑑𝑌
(
𝜑(𝑝), 𝜑(𝑞)) ≤ 𝑘 𝑑𝑋(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ 𝑋.

Given a map 𝜑 : 𝑋 → 𝑋, a point 𝑥 ∈ 𝑋 is called a fixed point if 𝜑(𝑥) = 𝑥.

Theorem 7.6.2 (Contraction mapping principle or Banach fixed point theorem 

‗
 ). Let (𝑋, 𝑑)

be a nonempty complete metric space and 𝜑 : 𝑋 → 𝑋 a contraction. Then 𝜑 has a unique fixed
point.

The words complete and contraction are necessary. See  Exercise 7.6.6 .

Proof. Pick 𝑥0 ∈ 𝑋. Define a sequence {𝑥𝑛}∞𝑛=1 by 𝑥𝑛+1 B 𝜑(𝑥𝑛). Then

𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑
(
𝜑(𝑥𝑛), 𝜑(𝑥𝑛−1)

) ≤ 𝑘𝑑(𝑥𝑛 , 𝑥𝑛−1).

Repeating 𝑛 times, we get 𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝑘𝑛𝑑(𝑥1, 𝑥0). For 𝑚 > 𝑛,

𝑑(𝑥𝑚 , 𝑥𝑛) ≤
𝑚−1∑
𝑖=𝑛

𝑑(𝑥𝑖+1, 𝑥𝑖)

≤
𝑚−1∑
𝑖=𝑛

𝑘 𝑖𝑑(𝑥1, 𝑥0)

= 𝑘𝑛𝑑(𝑥1, 𝑥0)
𝑚−𝑛−1∑
𝑖=0

𝑘 𝑖

≤ 𝑘𝑛𝑑(𝑥1, 𝑥0)
∞∑
𝑖=0

𝑘 𝑖 = 𝑘𝑛𝑑(𝑥1, 𝑥0) 1
1 − 𝑘 .

In particular, the sequence is Cauchy (why?). Since 𝑋 is complete, we let 𝑥 B lim𝑛→∞ 𝑥𝑛 ,
and we claim that 𝑥 is our unique fixed point.

‗Named after the Polish mathematician  Stefan Banach (1892–1945) who first stated the theorem in 1922.

https://en.wikipedia.org/wiki/Stefan_Banach
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Fixed point? The function 𝜑 is a contraction, so it is Lipschitz continuous:

𝜑(𝑥) = 𝜑
(

lim
𝑛→∞ 𝑥𝑛

)
= lim
𝑛→∞𝜑(𝑥𝑛) = lim

𝑛→∞ 𝑥𝑛+1 = 𝑥.

Unique? Let 𝑥 and 𝑦 be fixed points.

𝑑(𝑥, 𝑦) = 𝑑
(
𝜑(𝑥), 𝜑(𝑦)) ≤ 𝑘 𝑑(𝑥, 𝑦).

As 𝑘 < 1, the inequality means that 𝑑(𝑥, 𝑦) = 0, and hence 𝑥 = 𝑦. The theorem is proved. □

The proof is constructive. Not only do we know a unique fixed point exists, we know
how to find it. Start with any point 𝑥0 ∈ 𝑋, then iterate 𝜑(𝑥0), 𝜑(𝜑(𝑥0)), 𝜑(𝜑(𝜑(𝑥0))), etc.
to find better and better approximations. We can even find how far away from the fixed
point we are, see the exercises. The idea of the proof is therefore useful in real-world
applications.

7.6.2 Picard’s theorem
We start with the metric space where we will apply the fixed point theorem: the space
𝐶

([𝑎, 𝑏],ℝ)
of  Example 7.1.8 , the space of continuous functions 𝑓 : [𝑎, 𝑏] → ℝ with the

metric
𝑑( 𝑓 , 𝑔) B ∥ 𝑓 − 𝑔∥[𝑎,𝑏] = sup

𝑥∈[𝑎,𝑏]

�� 𝑓 (𝑥) − 𝑔(𝑥)�� .
Convergence in this metric is convergence in uniform norm, or in other words, uniform
convergence. Therefore, 𝐶

([𝑎, 𝑏],ℝ)
is a complete metric space, see  Proposition 7.4.5 .

Consider now the ordinary differential equation

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥, 𝑦).

Given some 𝑥0, 𝑦0, we desire a function 𝑦 = 𝑓 (𝑥) such that 𝑓 (𝑥0) = 𝑦0 and such that

𝑓 ′(𝑥) = 𝐹
(
𝑥, 𝑓 (𝑥)) .

To avoid having to come up with many names, we often simply write 𝑦′ = 𝐹(𝑥, 𝑦) for the
equation and 𝑦(𝑥) for the solution.

The simplest example is the equation 𝑦′ = 𝑦, 𝑦(0) = 1. The solution is the exponential
𝑦(𝑥) = 𝑒𝑥 . A somewhat more complicated example is 𝑦′ = −2𝑥𝑦, 𝑦(0) = 1, whose solution
is the Gaussian 𝑦(𝑥) = 𝑒−𝑥2 .

A subtle issue is how long does the solution exist. Consider the equation 𝑦′ = 𝑦2,
𝑦(0) = 1. Then 𝑦(𝑥) = 1

1−𝑥 is a solution. While 𝐹 is a reasonably “nice” function and in
particular it exists for all 𝑥 and 𝑦, the solution “blows up” at 𝑥 = 1. For more examples
related to Picard’s theorem, see  §6.3 .



298 CHAPTER 7. METRIC SPACES

We will look for the solution in 𝐶
([𝑎, 𝑏],ℝ)

, which may feel strange at first as we
are searching for a differentiable function. The explanation is that we consider the
corresponding integral equation

𝑓 (𝑥) = 𝑦0 +
∫ 𝑥

𝑥0

𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡.

To solve this integral equation, we only need a continuous function, so in some sense our
task should be easier—we have more candidate functions to try. This way of thinking is
quite typical when solving differential equations.
Theorem 7.6.3 (Picard’s theorem on existence and uniqueness). Let 𝐼 , 𝐽 ⊂ ℝ be closed and
bounded intervals, let 𝐼◦ and 𝐽◦ be their interiors, and let (𝑥0, 𝑦0) ∈ 𝐼◦× 𝐽◦. Suppose 𝐹 : 𝐼× 𝐽 → ℝ

is continuous and Lipschitz in the second variable, that is, there exists an 𝐿 ∈ ℝ such that��𝐹(𝑥, 𝑦) − 𝐹(𝑥, 𝑧)�� ≤ 𝐿
��𝑦 − 𝑧�� for all 𝑦, 𝑧 ∈ 𝐽 , 𝑥 ∈ 𝐼.

Then there exists an ℎ > 0 such that [𝑥0 − ℎ, 𝑥0 + ℎ] ⊂ 𝐼 and a unique differentiable function
𝑓 : [𝑥0 − ℎ, 𝑥0 + ℎ] → 𝐽 ⊂ ℝ such that

𝑓 ′(𝑥) = 𝐹
(
𝑥, 𝑓 (𝑥)) and 𝑓 (𝑥0) = 𝑦0.

Proof. Without loss of generality, assume 𝑥0 = 0 (exercise). As 𝐼 × 𝐽 is compact and 𝐹 is
continuous, 𝐹 is bounded. So find an 𝑀 > 0 such that

��𝐹(𝑥, 𝑦)�� ≤ 𝑀 for all (𝑥, 𝑦) ∈ 𝐼 × 𝐽.
Pick 𝛼 > 0 such that [−𝛼, 𝛼] ⊂ 𝐼 and [𝑦0 − 𝛼, 𝑦0 + 𝛼] ⊂ 𝐽. Let

ℎ B min
{
𝛼,

𝛼
𝑀 + 𝐿𝛼

}
.

Note [−ℎ, ℎ] ⊂ 𝐼. Let

𝑌 B
{
𝑓 ∈ 𝐶 ([−ℎ, ℎ],ℝ)

: 𝑓
([−ℎ, ℎ]) ⊂ 𝐽

}
.

That is, 𝑌 is the set of continuous functions on [−ℎ, ℎ] with values in 𝐽, in other words,
exactly those functions where 𝐹

(
𝑥, 𝑓 (𝑥)) makes sense. It is left as an exercise to show

that 𝑌 is a closed subset of 𝐶
([−ℎ, ℎ],ℝ)

(because 𝐽 is closed). The space 𝐶
([−ℎ, ℎ],ℝ)

is
complete, and a closed subset of a complete metric space is a complete metric space with
the subspace metric, see  Proposition 7.4.6  . So 𝑌 with the subspace metric is a complete
metric space. We will write 𝑑( 𝑓 , 𝑔) = ∥ 𝑓 − 𝑔∥[−ℎ,ℎ] for this metric.

Define a mapping 𝑇 : 𝑌 → 𝐶
([−ℎ, ℎ],ℝ)

by

𝑇( 𝑓 )(𝑥) B 𝑦0 +
∫ 𝑥

0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡.

It is an exercise to check that 𝑇 is well-defined, and that for 𝑓 ∈ 𝑌, 𝑇( 𝑓 ) really is in
𝐶

([−ℎ, ℎ],ℝ)
. Let 𝑓 ∈ 𝑌 and |𝑥| ≤ ℎ. As 𝐹 is bounded by 𝑀, we have��𝑇( 𝑓 )(𝑥) − 𝑦0

�� = ����∫ 𝑥

0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡����

≤ |𝑥|𝑀 ≤ ℎ𝑀 ≤ 𝛼𝑀
𝑀 + 𝐿𝛼 ≤ 𝛼.
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So 𝑇( 𝑓 )([−ℎ, ℎ]) ⊂ [𝑦0 − 𝛼, 𝑦0 + 𝛼] ⊂ 𝐽, and 𝑇( 𝑓 ) ∈ 𝑌. In other words, 𝑇(𝑌) ⊂ 𝑌. From now
on, we consider 𝑇 as a mapping of 𝑌 to 𝑌.

We claim 𝑇 : 𝑌 → 𝑌 is a contraction. First, for 𝑥 ∈ [−ℎ, ℎ] and 𝑓 , 𝑔 ∈ 𝑌, we have��𝐹 (
𝑥, 𝑓 (𝑥)) − 𝐹 (

𝑥, 𝑔(𝑥)) �� ≤ 𝐿
�� 𝑓 (𝑥) − 𝑔(𝑥)�� ≤ 𝐿 𝑑( 𝑓 , 𝑔).

Therefore, ��𝑇( 𝑓 )(𝑥) − 𝑇(𝑔)(𝑥)�� = ����∫ 𝑥

0

(
𝐹
(
𝑡 , 𝑓 (𝑡)) − 𝐹 (

𝑡 , 𝑔(𝑡)) ) 𝑑𝑡����
≤ |𝑥| 𝐿 𝑑( 𝑓 , 𝑔) ≤ ℎ𝐿 𝑑( 𝑓 , 𝑔) ≤ 𝐿𝛼

𝑀 + 𝐿𝛼 𝑑( 𝑓 , 𝑔).

We chose 𝑀 > 0 and so 𝐿𝛼
𝑀+𝐿𝛼 < 1. Take supremum over 𝑥 ∈ [−ℎ, ℎ] of the left-hand side

above to obtain 𝑑
(
𝑇( 𝑓 ), 𝑇(𝑔)) ≤ 𝐿𝛼

𝑀+𝐿𝛼 𝑑( 𝑓 , 𝑔), that is, 𝑇 is a contraction.
The fixed point theorem ( Theorem 7.6.2 ) gives a unique 𝑓 ∈ 𝑌 such that 𝑇( 𝑓 ) = 𝑓 . In

other words,

𝑓 (𝑥) = 𝑦0 +
∫ 𝑥

0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡.

Clearly, 𝑓 (0) = 𝑦0. By the fundamental theorem of calculus ( Theorem 5.3.3 ), 𝑓 is differen-
tiable and its derivative is 𝐹

(
𝑥, 𝑓 (𝑥)) . Differentiable functions are continuous, so 𝑓 is the

unique differentiable 𝑓 : [−ℎ, ℎ] → 𝐽 such that 𝑓 ′(𝑥) = 𝐹
(
𝑥, 𝑓 (𝑥)) and 𝑓 (0) = 𝑦0. □

7.6.3 Exercises
For more exercises related to Picard’s theorem see  §6.3 .

Exercise 7.6.1: Let 𝐽 be a closed and bounded interval and 𝑌 B
{
𝑓 ∈ 𝐶 ([−ℎ, ℎ],ℝ)

: 𝑓
([−ℎ, ℎ]) ⊂ 𝐽

}
.

Show that 𝑌 ⊂ 𝐶
([−ℎ, ℎ],ℝ)

is closed. Hint: 𝐽 is closed.

Exercise 7.6.2: In the proof of Picard’s theorem, show that if 𝑓 : [−ℎ, ℎ] → 𝐽 is continuous, then 𝐹
(
𝑡 , 𝑓 (𝑡))

is continuous on [−ℎ, ℎ] as a function of 𝑡. Use this to show that

𝑇( 𝑓 )(𝑥) B 𝑦0 +
∫ 𝑥

0
𝐹
(
𝑡 , 𝑓 (𝑡)) 𝑑𝑡

is well-defined and that 𝑇( 𝑓 ) ∈ 𝐶 ([−ℎ, ℎ],ℝ)
.

Exercise 7.6.3: Prove that in the proof of Picard’s theorem, the statement “Without loss of generality assume
𝑥0 = 0” is justified. That is, prove that if we know the theorem with 𝑥0 = 0, the theorem is true as stated.

Exercise 7.6.4: Let 𝐹 : ℝ → ℝ be defined by 𝐹(𝑥) B 𝑘𝑥 + 𝑏 where 0 < 𝑘 < 1, 𝑏 ∈ ℝ.

a) Show that 𝐹 is a contraction.

b) Find the fixed point and show directly that it is unique.
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Exercise 7.6.5: Let 𝑓 : [0, 1/4] → [0, 1/4] be defined by 𝑓 (𝑥) B 𝑥2.

a) Show that 𝑓 is a contraction, and find the best (smallest) 𝑘 from the definition that works.

b) Find the fixed point and show directly that it is unique.

Exercise 7.6.6:

a) Find an example of a contraction 𝑓 : 𝑋 → 𝑋 of a non-complete metric space 𝑋 with no fixed point.

b) Find a 1-Lipschitz map 𝑓 : 𝑋 → 𝑋 of a complete metric space 𝑋 with no fixed point.

Exercise 7.6.7: Consider 𝑦′ = 𝑦2, 𝑦(0) = 1. Use the iteration scheme from the proof of the contraction
mapping principle. Start with 𝑓0(𝑥) = 1. Find a few iterates (at least up to 𝑓2). Prove that the pointwise limit
of 𝑓𝑛 is 1

1−𝑥 , that is, for every 𝑥 with |𝑥| < ℎ for some ℎ > 0, prove that lim
𝑛→∞ 𝑓𝑛(𝑥) = 1

1−𝑥 .

Exercise 7.6.8: Suppose 𝑓 : 𝑋 → 𝑋 is a contraction for 𝑘 < 1. Suppose you use the iteration procedure with
𝑥𝑛+1 B 𝑓 (𝑥𝑛) as in the proof of the fixed point theorem. Suppose 𝑥 is the fixed point of 𝑓 .

a) Show that 𝑑(𝑥, 𝑥𝑛) ≤ 𝑘𝑛𝑑(𝑥1 , 𝑥0) 1
1−𝑘 for all 𝑛 ∈ ℕ.

b) Suppose 𝑑(𝑦1 , 𝑦2) ≤ 16 for all 𝑦1 , 𝑦2 ∈ 𝑋, and 𝑘 = 1/2. Find an 𝑁 such that starting at any given point
𝑥0 ∈ 𝑋, 𝑑(𝑥, 𝑥𝑛) ≤ 2−16 for all 𝑛 ≥ 𝑁 .

Exercise 7.6.9: Let 𝑓 (𝑥) B 𝑥 − 𝑥2−2
2𝑥 (you may recognize Newton’s method for

√
2).

a) Prove 𝑓
([1,∞)) ⊂ [1,∞).

b) Prove that 𝑓 : [1,∞) → [1,∞) is a contraction.

c) Show that the fixed point theorem applies, find the unique 𝑥 ≥ 1 such that 𝑓 (𝑥) = 𝑥, and show that
𝑥 =

√
2. Note: In particular, the technique from the proof of the theorem can be used to approximate

√
2.

Exercise 7.6.10: Suppose 𝑓 : 𝑋 → 𝑋 is a contraction, and (𝑋, 𝑑) is a metric space with the discrete metric,
that is, 𝑑(𝑥, 𝑦) = 1 whenever 𝑥 ≠ 𝑦. Show that 𝑓 is constant, that is, there exists a 𝑐 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑐
for all 𝑥 ∈ 𝑋.

Exercise 7.6.11: Suppose (𝑋, 𝑑) is a nonempty complete metric space, 𝑓 : 𝑋 → 𝑋 is a mapping, and denote
by 𝑓 𝑛 the 𝑛th iterate of 𝑓 . Suppose for every 𝑛 there exists a 𝑘𝑛 > 0 such that 𝑑

(
𝑓 𝑛(𝑥), 𝑓 𝑛(𝑦)) ≤ 𝑘𝑛 𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋, where
∑∞
𝑛=1 𝑘𝑛 < ∞. Prove that 𝑓 has a unique fixed point in 𝑋.
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binary relation,  16 

bisection method,  133 

Bolzano’s intermediate value theorem,
 133 

Bolzano’s theorem,  133 

Bolzano–Weierstrass theorem,  78 ,  286 

boundary,  270 

bounded above,  23 

sequence,  51 

bounded below,  23 

sequence,  51 

bounded function,  38 ,  130 

bounded interval,  41 

bounded sequence,  51 ,  274 

bounded set,  24 ,  261 

bounded variation,  199 

Cantor diagonalization,  46 

Cantor’s theorem,  19 ,  42 

Cantor–Bernstein–Schröder,  18 

cardinality,  17 

Cartesian product,  14 

Cauchy condensation principle,  99 

Cauchy in the uniform norm,  231 

Cauchy principal value,  225 

Cauchy product,  104 

Cauchy sequence,  84 ,  279 

Cauchy series,  89 

Cauchy’s mean value theorem,  165 
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inequality,  257 

Cauchy–Schwarz inequality,  257 ,  263 

Cauchy-complete,  85 ,  279 

Cesàro summability,  111 

chain rule,  159 

change of variables theorem,  204 

clopen,  268 

closed ball,  264 

closed interval,  41 

closed set,  264 

closure,  269 

cluster point,  81 ,  113 ,  145 

in a metric space,  292 

codomain,  14 
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compact,  280 

comparison test for improper integrals,
 216 

comparison test for series,  93 

complement,  10 

complement relative to,  10 

complete,  85 ,  279 

completeness property,  24 

complex conjugate,  259 

complex modulus,  259 

complex numbers,  27 

composition of functions,  16 

conditional convergence,  92 

connected,  268 

constant sequence,  51 

continuous at 𝑐,  122 ,  288 

continuous function,  122 

in a metric space,  288 

continuous function of two variables,  247 

continuously differentiable,  169 

contraction,  296 

contraction mapping principle,  296 

convergent
improper integral,  214 

power series,  106 

sequence,  52 

sequence in a metric space,  274 

series,  87 

converges
function,  114 ,  145 

function in a metric space,  293 

converges absolutely,  92 

converges conditionally,  92 

converges in uniform norm,  231 

converges pointwise,  227 

converges to infinity,  147 

converges uniformly,  229 

converges uniformly on compact subsets,
 244 

convex,  129 ,  212 

convolution,  225 

countable,  18 

countably infinite,  18 

critical point,  163 

Darboux integral,  182 

Darboux sum,  181 

Darboux’s theorem,  167 

decimal digit,  44 

decimal representation,  44 

decreasing,  149 ,  165 

Dedekind completeness property,  24 

Dedekind cut,  35 

DeMorgan’s theorem,  11 

dense,  277 

density of rational numbers,  31 

derivative,  155 

diagonalization,  46 

diameter,  261 

difference quotient,  155 

differentiable,  155 

continuously,  169 

infinitely,  173 ,  213 

𝑛 times,  171 

differential equation,  246 

digit,  44 

Dini’s theorem,  244 

direct image,  14 

Dirichlet function,  126 ,  154 ,  183 ,  238 ,  245 

disconnected,  268 

discontinuity,  125 

discontinuous,  125 

discrete metric,  259 

disjoint,  10 

distance function,  255 

divergent
improper integral,  214 

power series,  106 

sequence,  52 

sequence in a metric space,  274 

series,  87 

diverges,  114 

function in a metric space,  293 

diverges to infinity,  79 ,  146 

diverges to minus infinity,  79 
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domain,  14 

element,  8 

elementary step function,  198 

empty set,  8 

equal,  9 

equivalence class,  17 

equivalence relation,  16 

euclidean space,  257 

Euler’s number,  211 

Euler–Mascheroni constant,  212 

even function,  205 

existence and uniqueness theorem,  247 ,
 298 

exponential,  209 ,  210 

extended real numbers,  34 

extreme value theorem,  130 

field,  25 

finite,  17 

finitely many discontinuities,  196 

first derivative,  171 

first derivative test,  166 

first order ordinary differential equation,
 246 

fixed point,  296 

fixed point theorem,  296 

Fourier sine and cosine transforms,  224 

Fubini for sums,  112 

function,  13 

bounded,  130 

continuous,  122 ,  288 

differentiable,  155 

Lipschitz,  141 ,  292 

fundamental theorem of calculus,  200 

geometric series,  88 ,  109 

graph,  14 

great circle distance,  260 

greatest lower bound,  24 

half-open interval,  41 

harmonic series,  90 

Hausdorff metric,  262 

Heine–Borel theorem,  284 

identity of indiscernibles,  255 

image,  14 

improper integrals,  214 

increasing,  149 ,  165 

induction,  12 

induction hypothesis,  12 

induction step,  12 ,  13 

infimum,  24 

infinite,  17 

infinite limit
of a function,  146 

of a sequence,  79 

infinitely differentiable,  173 ,  213 

infinity norm,  230 

initial condition,  246 

injection,  15 

injective,  15 

integers,  9 

integral test for series,  222 

integration by parts,  205 

interior,  270 

intermediate value theorem,  133 

intersection,  10 

interval,  41 

inverse function,  16 

inverse function theorem,  177 

inverse image,  14 

irrational,  30 

joint limit,  244 

L’Hôpital’s rule,  161 ,  169 

L’Hospital’s rule,  161 ,  169 

𝐿1-convergence,  243 

𝐿1-norm,  243 

Lagrange form,  172 

Laplace transform,  224 

least element,  12 

least upper bound,  24 

least-upper-bound property,  24 

Lebesgue covering lemma,  282 
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Lebesgue number,  282 

Leibniz rule,  158 

liminf,  73 ,  80 

limit
infinite,  79 ,  146 

of a function,  114 

of a function at infinity,  145 

of a function in a metric space,  293 

of a sequence in a metric space,  274 

limit comparison test,  98 

limit inferior,  73 ,  80 

limit superior,  73 ,  80 

limsup,  73 ,  80 

linear first order differential equations,
 252 

linearity of series,  91 

linearity of the derivative,  157 

linearity of the integral,  193 

Lipschitz continuous,  141 

in a metric space,  292 

logarithm,  207 ,  208 

logarithm base 𝑏,  211 

lower bound,  23 

lower Darboux integral,  182 

lower Darboux sum,  181 

map,  14 

mapping,  14 

maximum,  34 

absolute,  130 

relative,  162 

strict relative,  174 

maximum-minimum theorem,  130 

mean value theorem,  164 

mean value theorem for integrals,  197 

member,  8 

Mertens’ theorem,  104 

metric,  255 

metric space,  255 

minimum,  34 

absolute,  130 

relative,  162 

strict relative,  174 

minimum-maximum theorem,  130 

modulus,  259 

monic polynomial,  134 ,  148 

monotone convergence theorem,  55 

monotone decreasing sequence,  55 

monotone function,  149 

monotone increasing sequence,  55 

monotone sequence,  55 

monotonic sequence,  55 

monotonicity of the integral,  194 

𝑛 times differentiable,  171 

naïve set theory,  8 

natural logarithm,  208 

natural numbers,  9 

negative,  25 

neighborhood,  264 

nondecreasing,  149 

nonincreasing,  149 

nonnegative,  25 

nonnegativity of a metric,  255 

nonpositive,  25 

𝑛th derivative,  171 

𝑛th derivative test,  175 

𝑛th order Taylor polynomial,  171 

odd function,  205 

one-sided limit,  119 

one-to-one,  15 

onto,  15 

open ball,  264 

open cover,  280 

open interval,  41 

open neighborhood,  264 

open set,  264 

ordered field,  25 

ordered set,  23 

ordinary differential equation,  246 

𝑝-series,  94 

𝑝-test,  94 

𝑝-test for integrals,  214 

partial sums,  87 
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partition,  181 

Picard iterate,  247 

Picard iteration,  247 

Picard’s theorem,  247 ,  298 

pointwise convergence,  227 

polynomial,  123 

popcorn function,  126 ,  198 

positive,  25 

power series,  106 

power set,  19 

principle of induction,  12 

principle of strong induction,  13 

product rule,  158 

proper,  294 

proper subset,  9 

pseudometric space,  262 

quotient rule,  159 

radius of convergence,  107 

range,  14 

range of a sequence,  51 

ratio test for sequences,  69 

ratio test for series,  96 

rational functions,  109 

rational numbers,  9 

real numbers,  23 

rearrangement of a series,  102 

refinement of a partition,  183 

reflexive relation,  16 

relation,  16 

relative maximum,  162 

relative minimum,  162 

relatively compact,  287 

remainder term in Taylor’s formula,  172 

removable discontinuity,  127 

removable singularity,  140 

restriction,  118 

reverse triangle inequality,  37 

Riemann integrable,  185 

Riemann integral,  185 

Riemann–Lebesgue Lemma,  199 

Rolle’s theorem,  163 

root test,  100 

secant line,  141 ,  155 

second derivative,  171 

second derivative test,  174 

sequence,  51 ,  274 

sequentially compact,  282 

series,  87 

set,  8 

set building notation,  9 

set theory,  8 

set-theoretic difference,  10 

set-theoretic function,  13 

sinc function,  220 

slope field,  246 

sphere,  260 

squeeze lemma,  61 

standard metric on ℝ𝑛 ,  258 

standard metric on ℝ,  256 

step function,  198 

strict relative maximum,  174 

strict relative minimum,  174 

strictly decreasing,  149 ,  165 

strictly increasing,  149 ,  165 

strictly monotone function,  149 

strong induction,  13 

subadditive,  262 

subcover,  280 

subsequence,  58 ,  274 

subset,  9 

subspace,  261 

subspace metric,  261 

subspace topology,  261 

sup norm,  230 

supremum,  24 

surjection,  15 

surjective,  15 

symmetric difference,  20 

symmetric relation,  16 

symmetry of a metric,  255 

tail of a sequence,  57 

tail of a series,  89 
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Taylor polynomial,  171 

Taylor series,  173 

Taylor’s theorem,  172 

Thomae function,  126 ,  198 

Tonelli for sums,  112 

topology,  264 

totally bounded,  286 

totally disconnected,  272 

transitive relation,  16 

triangle inequality,  36 ,  255 

trichotomy,  23 

unbounded closed intervals,  41 

unbounded interval,  41 

unbounded open intervals,  41 

uncountable,  18 

uniform convergence,  229 

uniform convergence on compact subsets,

 244 

uniform norm,  230 

uniform norm convergence,  231 

uniformly Cauchy,  231 

uniformly continuous,  138 

in a metric space,  291 

union,  10 

unit sphere,  260 

universe,  8 

upper bound,  23 

upper Darboux integral,  182 

upper Darboux sum,  181 

Venn diagram,  10 

weak solution,  252 

well ordering property,  12 

zero set,  291 
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