
Secure Programming for the Desktop

Jiri (George) Lebl

Abstract

While desktop applications are usually not thought
to be on the “front lines” in terms of security, they
can in fact pose just as much of a security threat as
a server application. In fact this threat can be even
greater as desktop computers are usually not as well
managed as servers and thus malicious activity can
go undetected much more easily. Furthermore as re-
cent Windows worms have shown, the fact that there
are a lot more desktop computers than servers makes
them a much more interesting target for many ma-
licious activities. When we put the filesystems on
the network and perhaps even have multiuser ma-
chines, then we even start facing the same problems
that servers are facing. While this threat is very real,
desktop applications tend to be relatively lax about
various potential problems. In this paper I will de-
scribe several different issues that tend to arise and
that I’ve encountered and how to avoid them. These
issues range from simple denial of service (DoS) at-
tacks (which waste productivity and IT budget when
we start moving onto corporate desktop), through in-
formation leaks, to actual break ins. Focus will be
given to GNOME and C related issues, but in gen-
eral these ideas can be applied to any desktop and
programming language.

1 Introduction

As GNOME gains wider acceptance on the desk-
top, the issue of security will start to be more cru-
cial. One of the reasons why people are moving to
a Linux/GNOME desktop is the security as com-
pared to Windows. We have now a greater chance
of “getting it right” before GNOME becomes widely
accepted instead of then fixing things as large scale
“attacks” happen such as is the norm in the Windows
world currently.

So what are the potential issues that arise in desk-
top software? Firstly there is the distinction of re-
mote versus local issue. If a problem can be exploited
remotely then it is a far greater threat. Fortunately
this is not usually a case for desktop software as desk-
top software usually does not present any remote in-

terface. Unfortunately because of email and easy file
sharing, a local problem can quickly be turned into a
remote problem with perhaps just a tiny bit of coop-
eration of the local user.

The “attacks” on desktop software could then be
classified as escallation of privilages, data loss, de-
nial of service and information leaks. Escallation of
privilages is when a user is able to either do some-
thing they do not have privilages for or when a user
is able to execute a command as another user. We can
also consider a remote break in (perhaps gaining shell
as a user without having an account) as an escalla-
tion of privilage attack. Data loss is when the “at-
tacker” manages to destroy some valuable data, per-
haps making the user inadvertently overwrite some
data. Denial of service is an attack where the “at-
tacker” somehow manages to force an application to
refuse to work, thus effectively rendering the applica-
tion useless for the user. Information leaks are when
an application divulges some private information in
some way. Information leaks can then be used to
mount other attacks, for example if the attacker is
able to find a password or a cookie that would be
needed to log in as a user.

2 Two Guiding Principles

This paper is more of a series of issues that I en-
countered or seen rather than a well thought out and
self-contained step by step guide to making secure ap-
plications. One of the reasons for this is that security
of any application is case by case. I will give what I
consider are the two main principles behind safe and
secure code. Obviously these should be taken with a
grain of salt as they are subjective, and requirements
vary from application to application.

The main guiding principle in writing secure soft-
ware is to expect the unexpected. That is the number
one thing you should take away from this paper is:

Principle #1: Paranoia is good.
And here I don’t mean paranoia in the sense of

testing if the martians landed after every function
call. What I mean here is that you should always
think about any error conditions that may arise even

1



Secure Programming for the Desktop

if they seem unlikely, and further that you should not
blindly assume certain things are true. Paranoid code
is not necessarily more complex code. Simplifying
code is often also the “paranoid” approach. That
is, if you can do something in a simpler, easier to
understand, but perhaps not as optimized fashion,
then it is less likely that there will be a bug. This
leads to the second principle.

Principle #2: Simplicity is good.

By this I don’t mean that you should not check
error conditions. Doing that obviously makes your
code shorter, but not more secure. What you should
take this to read is that unnecessary optimizations
or unneeded features or unneeded complexity leads
to more security problems. This is really sort of a
subprinciple of principle #1 in my view as striving
for simplicity is really a “paranoid” way to code.

Security issues are usually not found by testing the
software, but by looking at the code. The less code
that there is, the less code to verify, and the simpler
the code is to read the simpler it is to verify it (note
that simpler code to understand need not necessarily
be less code).

If your coding style is more paranoid than neces-
sary, then most likely nothing bad will happen. On
the other hand if you are not paranoid at all, then
it is likely nothing bad in terms of security will hap-
pen either, most issues will not be exploitable in any
meaningful way on any sort of standard installation.
But if you take this view, then security issues will
eventually arise. Somebody at some point will figure
out how to exploit some overlooked issue in a way
that hasn’t been thought of before, where paranoid
code might have avoided this. If we knew all the pos-
sible security issues that might arise, then we would
not need to be as paranoid in coding to produce se-
cure applications.

Simplicity should really translate into all parts of
the application. It is better to have a smaller amount
of well tested, well behaved code that checks for all
possible errors than to have thousands of options and
features translating to thousands of different code
paths which will likely never be tested or verified
in all the possible ways that the application is used.
Obviously an application that doesn’t do absolutely
anything is the most secure one. But also not a very
useful one. You should however concentrate on what
the application is supposed to achieve for the user.
Since this is already somewhat of the guiding princi-
ple of usability, you should not find too many conflicts
between usability and security.

3 Security vs. User Friendli-
ness

There is a common misconception that security
equals applications that are not user friendly and vice
versa. To some extent this can be true, but in vast
majority of the cases it is not. Just the opposite.
Dealing with security problems in a non-user friendly
manner can introduce new security problems such as
denial of service. If the user cannot get out of a prob-
lem without help, it’s just as if the program was not
working at all.

Biggest problem here is making things too compli-
cated to do correctly. If the “correct” (read: secure)
way of doing something is hard to do, users will not
do it the “correct” way. One example of this is email
encryption. Currently solutions such as pgp are so in-
credibly hard to use that only people who wear pocket
protectors, thick glasses and run debian actually en-
crypt or sign their emails (I also assume that NSA
people use encryption). Unless you know how all this
stuff works it is currently very hard to use and so no
one does it. Another example of this idea is ftp. It
is far easier to use ftp than scp/sftp for reasons of all
the scp/sftp GUI methods sucking very badly (all the
ones I’ve seen, Nautilus is semi-there, but not quite).
So people will tend to use ftp to transfer files. Peo-
ple underestimate security risks, so they will pick the
solution that’s easiest to use and not necessarily the
most secure. Education doesn’t work, what works is
making it easier to do things securely.

Some people writing security software are incredi-
bly paranoid. To these people, maximum security is
more important than the fact that most of the world
will not use their software and will instead use some
insecure garbage. For the desktop to be secure we
must have users that actually use secure software. If
an insecure program happens to be more convenient,
it is likely people will use it. We don’t need to care
about NSA being able to break into people’s comput-
ers. We want to care about Bob from down the street
sending your mom a virus that makes her computer
into a spam relay and puts lots of kiddie porn on her
hard drive.

An example of unfriendly paranoia is ssh. If some-
thing goes wrong, such as a host key changes it tells
you to do stuff such as edit a text file. This obvi-
ously makes ssh unusable from the GUI even though
it can be used for remote execution of GUI apps, it is
only useful for that if set up correctly and other less
secure methods are easier to use. Another example
from the ssh camp was an ssh application for the mac,
“Nifty Telnet” I believe or some such name. It had a

2



Secure Programming for the Desktop

GUI, but by default it wanted to use telnet. It obvi-
ously had ssh capability, but for some reason I could
not make it connect by ssh in several minutes of GUI
twiddling. So the easy mode of operation was un-
encrypted telnet and that’s what most people would
then use. And since the tag line for the application
was something like “secure communications for the
mac” (again paraphrasing, I don’t remember it ex-
actly), the user would be fooled into thinking that
it’s actually secure, making matters even worse.

4 General Paranoia

Firstly let’s look at using external code to your ap-
plication. It is usually better if you can use some
library which already implements some functionality
than reimplementing it yourself since the library has
most likely already been tested and verified by its au-
thors and other users of the library. But on the other
hand this only holds for well used libraries. If the li-
brary has only a few users it is a lot less likely that it
is well tested and you may be better off writing your
own code if you don’t need too much of the function-
ality. There’s always a tradeoff here. It also depends
on your application and on what the library does.

If you do use an external library it is always good
to look at either the documentation or the source
code carefully and note all the semantics, especially
all the things that could go wrong. Many times as-
suming that some call succeeded without checking
leads to bad security problems. For example recent
KDM/XDM had a problem of not checking the error
result of a pam (library for authentication) function
and that led to a possibility of gaining root privilages.
A thing to keep in mind as well is that a function
could also be broken (for the user may be using a dif-
ferent version of the library than you are where there
is a bug). It is not terribly important but if you keep
this in mind and code defensively, either by putting
assert calls in your code or taking other precautions
you can minimize the effects of a bug in the library.

Another general paranoia issue is avoiding global
variables or global states or such. It is best if your
functions are as self contained as possible as that will
make them far easier to verify. An example of this is
caching. Sometimes it may be useful to cache a result
of a certain calculation if you ask for this calculation
many times. However this is an optimization that
may lead to very subtle bugs. The problem is when
something happens that would affect the result of the
calculation, you must forget about the cache. This
means that the code will not be self contained, but
parts of this functionality will be sprinkled about all

around the application wherever things may change.
This for example bit me in GDM where I had an
integer that counted the number of active sessions.
A bug in the code allowed for this number to not
reflect reality resulting in a possible denial of service
attack. The fix was to replace the global integer with
a function which just recounts the number of active
sessions. Now we do this several times right after each
other in places, but it’s never an actual problem of
performance and it’s always correct. Further there’s
no need to both update the list of active sessions and
the number of sessions. The moral of this story is thus
to avoid caching anything unless you really positively
know that not doing so will very adversely impact
performance.

5 Input Checking

A prevailing theme behind secure software software
is to never trust any information coming from the
outside of the software. Or at least don’t trust it as
far as not trusting it is reasonable. That is, informa-
tion coming either from the user, from configuration,
from other programs, from files, etc... should always
be checked before used.

The reason for checking what comes from files is
made obvious by the mail virii so prevalent recently.
This means that you should not assume that a file
in a format that you understand was created by your
software. It could have been hand crafted precisely
to break your software.

The reasons for carefully checking what the user
gives you through the GUI are several. You may ar-
gue that the user will never input anything malicious
into the software since at most they’d be “cracking”
their own account. But if the malicious input is com-
plex enough such as a long URL, the user may be
fooled into cutting and pasting that into an input.
And of course if the computer is perhaps a public
terminal, and the user sitting at the keyboard may
be the malicious user.

Now sometimes it would be “legal” to have some
part of the input be either arbitrarily large or arbi-
trarily complex. But perhaps it would not be reason-
able for actual use of the software. It is best to set up
some reasonable limits. These should be larger than
anything that a user would use in an actual usage,
but such that for example we don’t unnecessarily ex-
haust memory. As an example I will give a bug that
crept into the GDM socket protocol code. I was very
careful about checking for buffer overruns (see section
6) but I forgot about one thing. I read input line at a
time into a resizable string (which would resize itself

3



Secure Programming for the Desktop

according to the size of the input). But I forgot to
give a limit on the size of each line which led to a
possible denial of service attack by forcing GDM to
fill up the memory and perhaps crash. Now given the
protocol it is unreasonable to expect more than say
256 characters of input, so we can just read at most
that much and discard the rest of the line or give an
error or something similar.

Similar issue can come up with reading any file.
For example if you keep putting stuff from a file into
a GtkLabel because you don’t expect the file to be
long or some field in the file to be long, I can send you
a long file with a lot of text in that field and you will
be very surprised at how quickly GtkLabel eats mem-
ory when you display an entire play from Shakespeare
in it. Now the user may not realize what’s happening
and by the time they do they have a heavily swapping
system that may be hard to regain control of. Per-
haps the “leak” causes some other piece of software
to crash or possibly exploits a security hole some-
place else. Or if I, as an evil person, can somehow
manage to convince some other (non-evil) person to
open such a file in some way such that it is opened
every time the program is run, I’ve got a successful
denial of service attack (see section 10). Another way
to deal with this, instead of a hard limit, is to allow
easy cancellation of a long operation.

Similarly as filling memory, I could also hog the
CPU. It is conceivable that I could cause some sort
of long or infinite loop in the application by specifying
some unreasonably large parameter as input. For a
long time for example Windows had this nasty habit
of taking up all your CPU if you connected to the
right port and typed some garbage. Similarly one
could annoy the admin of a terminal lab by typing
some unreasonable number into some application on
all the terminals and rendering them slow or useless.

6 Buffer Overruns

The most famous security related bug is the buffer
overrun. The basic idea of this is that the program
at some point is forced to unwittingly write in some
area which it did not reserve. Usually this happens
when you perhaps allocate an array of some many
bytes but the code then writes some input into this
array without properly checking if it will fit. So what
will happen is that this input will overwrite other
things in memory which may have different uses. An
example is the following code

char buf2[] = "DEF";

char buf1[] = "ABC";

puts (buf2);

strcpy (buf1, "123.456");

puts (buf2);

When you run this, it will first print out “DEF”
and later “456”, even though both times we print
buf2 and we only modify buf1. So if buf2 was a
command to execute that you thought was safe to ex-
ecute we could perhaps write rm -fR / instead of 456
into it. Other things can be modified as well other
than strings. For example we could modify where the
function returns when it’s done if the string or array
is on the stack as it is above. The most vulnerable
is therefore stack itself, but things allocated on the
heap can also be vulnerable.

This is of course an issue only in languages that
allow you this low level access to memory such as C
or C++. So one way to avoid this problem completely
is to just use a language such as Java, C#, Python or
other such languages. But of course that’s not always
an option so let’s see what you can do in C to avoid
such problems.

Firstly you should try to use dynamic arrays and
strings when possible (GString and GArray in glib),
or the helper string functions of glib. One such
useful call is g_strdup_printf, as a replacement of
sprintf. It will always allocate a large enough string
before “printing” into it and so you will never have to
worry about having to allocate enough space and get-
ting it potentially wrong. Also it is a good idea to just
avoid any pointer arithmetic or fiddling with strings
“by hand.” Best to always allocate a new strings and
use one of the string helper functions from glib. While
allocating and reallocating strings all the time may
be more time and memory consuming, it is generally
preferable to have simpler, correct code rather than
fast code. Also allocating things on the heap rather
than using the stack makes certain attacks not pos-
sible (the stack smashing attacks where we overwrite
the return pointer for example). You pay the price of
a little slower code but in most cases this won’t make
one bit of difference to the user.

It is also a good idea to standardize on a single
way of handing memory allocation in your application
and stick to it. I will give you my own guidelines for
strings that I use that are in my opinion the best way
to handle the situation.

Firstly when passing a string to a function I always
consider this string as a constant inside and never
modify it. If I need to modify it I will make a local
copy of it inside. If I need to return a modified string
I returned a newly allocated copy. For example here
is some pseudocode to give you an idea:

4



Secure Programming for the Desktop

char *

a_function (const char *str)

{

char *str_copy = g_strdup (str);

...

return g_strdup (...);

}

The function never messes with anything in the
data owned by the calling code and vice versa. If
the function does some fiddling with memory and
strings, then both the allocation code and the code
that does the “fiddling” is right there together and
can be checked much more easily than if the memory
allocation is at one place and the “fiddling” in an-
other. And since we return a newly allocated string
the calling code will now be able to decide on the
lifetime of this, so there is no need to make sure that
the calling code doesn’t touch it for some time. There
are many examples in GTK+ itself which don’t follow
this practice so it’s important to know these. Here’s
an example of a very subtle bug where we will have
an invalid pointer (this exact case is not a buffer over-
run and something much harder to exploit, but pretty
subtle and still an issue). Imagine you have a dialog,
say dlg, and a GtkEntry inside the dialog say entry,
and you wish to look at the text:

GtkWidget *dlg, *entry;

const char *str;

...

str = gtk_entry_get_text (GTK_ENTRY (entry));

gtk_widget_destroy (dlg);

...

foo (str);

The function foo gets a pointer to freed memory,
which could by now be allocated for some other pur-
pose and thus contain something different. The fix
would be to use g_strdup on the string before the
dialog is destroyed as we don’t want to have pointers
into the dialog object that is just about to die.

Thus it is good to have clearly defined “rules of
engagement” for your application, whatever they are.
It should be clear which code “owns” a particular
piece of data (memory) and what is the lifetime of
this memory. A good practice I use is to zero pointers
on initialization and after freeing them especially if
there is perhaps some code after the g_free code that
could perhaps use the pointer. Here’s an example:

char *str = NULL;

...

str = g_strdup (...);

...

g_free (str);

str = NULL;

...

Trying to dereference a null pointer is a crash that
is not exploitable, trying to dereference a pointer to
freed data (or a pointer to some random place) is not
always a crash and can lead to security issues under
some circumstances. Similarly if I’m freeing a GList
I try to set the data field to NULL for the same reason.

7 Shells, Options and Execut-
ing Other Programs

One of the more subtle ways of how to break secu-
rity is to use the shell to execute something. Best
rule of thumb is to never ever invoke anything that
executes the shell, especially if any part of the exe-
cuted string comes from external sources (configura-
tion, user, document file, dnd data). For example the
following code is very unsafe:

const char *s;

char *cmd;

s = gtk_entry_get_text (GTK_ENTRY (entry));

cmd = g_string_printf ("frobator %s", s);

system (cmd);

g_free (cmd);

Now the if the string turns out to be something like
“blah > ~/important.file”, then the frobator
command will only get “blah” as an argument, and
~/important.file will be overwritten.

The simplest (and least paranoid, and furthermore
still wrong) way to solve this is to use g_shell_quote
which quotes the string for the shell such that when
the shell sees this it will not interpret the string at all.
Internally it will quote the string with single quotes
and make sure to properly escape any single quotes
that may appear in the string. So the code may look
like:

const char *s;

char *cmd, q;

s = gtk_entry_get_text (GTK_ENTRY (entry));

q = g_string_quote (s);

cmd = g_string_printf ("frobator %s", q);

system (cmd);

g_free (cmd);

g_free (q);

Now suppose that the frobator command can take
an option such as -o=some.file to redirect output to
some.file. So now the string happens to be guarded
from the shell, but the frobator application can still
interpret it wrongly and do damage. The solutions
are several. Firstly, if it never makes sense for the

5



Secure Programming for the Desktop

string to be passed to frobator to begin with a dash
(such as if it is a uri which then begins with the
scheme string which is never a dash), then perhaps
you should check for the initial character being a dash
and in that case report an error to the user. Alterna-
tively if such strings make sense and the frobator
command has the -- option which makes it treat
all following arguments and non-options, then you
should use that and replace the command as follows

...

cmd = g_string_printf ("frobator -- %s", q);

...

But here you need to make sure that all implemen-
tations of the frobator command support support
this option. If not you have to use some other method
or perhaps disallow such strings. If the string is to be
a filename a safe way to do this is to prepend a ./,
though here you should really use not a slash but the
G_DIR_SEPARATOR constant for sake of portability.

But note that in the above we aren’t re-
ally using the shell for anything. So the
safest and most paranoid way would be to
use g_spawn_command_line_sync or directly use
g_spawn_sync (see the documentation on those two).
For example replace the system call with

...

g_spawn_command_line_sync (cmd, NULL, NULL,

NULL, NULL);

...

Obviously in the above we should also check for
errors and behave accordingly. It is always the most
paranoid and safest route to avoid shell if you possibly
can. At least avoid it where it is not used anyway such
as above.

Further thought should be given to actually execut-
ing commands synchronously or not. This is because
if you do this synchronously, then your application
will hang until the command completes which is not
very good if the command could hang or if it could
take a long time. It may perhaps be good to execute
it asynchronously. But with that you are opening a
whole bag of further possible bugs that could turn out
to be security issues. You suddenly need to manage
this process (figure out when it completed and such),
and you need to make sure usually not to execute
it again while an old incarnation is still running (this
depends on the nature of the command). Further you
are getting into the land of possible races, so it is a
tradeoff.

8 Temporary Files

Problems with temporary files got a lot of coverage
a few years ago. Basically the problem is when you
are writing to an area where other people have per-
missions for writing. Those other people could be
malicious and if they know what filename you are go-
ing to use, they may redirect your application with a
symbolic link to a file that they want to destroy that
only you have write-permission to. So the first rule is
to have non-predictable names in /tmp, and second is
to only use atomic, non-destructive functions. Only
root would be able to move other files there, so you
cannot expect a certain filename or directory name
to be available to you.

The best way to avoid problems with /tmp is to
avoid using /tmp if you can. Sometimes you can
use the home directory instead, perhaps ~/tmp, but
be aware that home directory can be non-writable
on certain occasions, so you need to provide a
workaround for that.

If you must use temporary files or directories in the
/tmp directory, use g_mkstemp or g_file_open_tmp
(or mkstemp if you don’t use glib) for creating files.
This function will create a unique name for the file,
open it and give you a file handle that you can use
for writing. This must be done in one step, if you’d
only check that the file doesn’t exist and later open it
for writing, someone might beat you to it and create
the malicious link.

To create directories, you could use code like

GRand *r = g_rand_new ();

char buf[256];

errno = 0;

do {

g_snprintf (buf, sizeof (buf), "/tmp/foo-%x",

(guint) g_rand_int (r));

} while (mkdir (buf, 0700) != 0 &&

errno == EEXIST);

g_rand_free (r);

if (errno == 0) {

/* only here can we use the new directory */

}

There are several things to note about this snip-
pet. Firstly mkdir will check the name and create
the directory all in one go, atomically, and is thus
safe (it will not overwrite something if the name ex-
ists). The reason why we use a separate GRand object
rather than just using g_random_int is general para-
noia. Someone could have gotten hold of the global
random buffer in some other way, or maybe they can
use this to figure out the global random buffer. Third

6



Secure Programming for the Desktop

thing to note is that we don’t just check for failure
of mkdir, but also for the type of failure. If for ex-
ample the system is badly set up and we don’t have
write permission to the /tmp directory we’d go into
an infinite loop instead of catching this if we didn’t
check for the proper errno value. Finally, since it is
possible to drop out of the loop without having the
directory ready, we should handle the possibility of
an error. Later in the lifetime of the program, you
should always assume that the directory may have
disappeared, perhaps by the sysadmin or some auto-
mated cleanup script, so don’t store anything critical
there for any long period of time (note that a program
could be running on some users desktop for months
at a time, so this is a real issue). To avoid auto-
mated scripts removing the directory, you can touch
the directory using the utime library call say once
a day (just make a timeout in your app that does
that). Then automated scripts will notice the times-
tamp and leave the directory alone.

You should always create a directory for yourself
if you will use temporary files a lot, it saves on code
later and there will be less chances to screw up. Once
you have a directory that only your user can read,
write and execute, then you no longer have to be
careful about filenames inside this directory.

Final thing to note about temporary files is one of
their positive qualities. The /tmp directory is pretty
much always on the local filesystem (sometimes as
a ramdisk). This means that data written to it are
never transferred over the net with say NFS etc... So
for example cookies for various things might find a
much better home in /tmp than in the home directory
for this very reason, though the caveat about /tmp
not being a place to store permanent data still applies
here. Furthermore the /tmp is always pretty fast and
the home directory may be very slow if remote.

Final note of caution is to avoid the use of
the TMPDIR environment variable. Historically this
pointed to the place that you should use instead of
/tmp. However this becomes a problem for setuid
or setgid applications where the environment is con-
trolled by a different user than what the application
runs under, and this could be abused. Also since so
many applications don’t use it, it’s not practical to
use anyway. It’s just better policy to hardcode /tmp
which leads to simpler code and avoids the potential
for problems.

9 Opening Files for Writing

Now let’s look at a related issue of opening files for
writing. A similar thing that is happening with the

/tmp directory may happen. If the user is saving a
file in a location that is not owned by him (say for
example /tmp or some shared directory) then another
evil user could yet again set up a symbolic link and
mess with our good user if he (the evil user) can guess
what the filename may be. This may be easier than
you think; humans are bad at making up random
filenames, and plus may be fooled into saving to an
existing filename that the malicious user has created
(he created a malicious link).

Thus to protect against such things it is best to
avoid doing stuff such as just opening a file for writ-
ing, but instead may be advantageous to first unlink
the file (which is still OK to do if the file doesn’t
exist) and then create a new file in exclusive mode.
With open call, use the O_CREAT|O_EXCL flags. If
you are using gnome-vfs as you should for a GNOME
application, you can use

GnomeVFSHandle *handle;

GnomeVFSResult result;

gnome_vfs_unlink (uri);

/* Can ignore errors from unlink */

result = gnome_vfs_create (&handle, uri,

GNOME_VFS_OPEN_WRITE,

TRUE /* exclusive */,

0644);

if (result == GNOME_VFS_OK) {

g_assert (handle != NULL);

/* File is opened successfully */

}

The exclusive flag will basically make the call fail if
the file already exists. So if someone is playing tricks
with us and causing a race condition to occur, it will
be caught by the exclusive flag. Obviously then you
need to handle this error and alert the user.

10 Denial of Service

This is the least destructive security issue, but it is
also the easiest to suffer from. When we move onto
the desktop of people that are not UNIX experts and
cannot “fix” the issue without use of the GUI which
is being DoSed, then it can be potentially destruc-
tive for such users, either having them lose time and
money to have it fixed by someone, or even losing
data if they just reinstall the system carelessly per-
haps.

The most evil denial of service problem is usually
being done in the good name of security paranoia,
and that is to just die, print something to stderr
and let the user figure it out. For example suppose
that some permissions are bad, then broken software

7



Secure Programming for the Desktop

would just die (there are such issues in gnome-session
for example, see bugzilla). Sometimes these issues
come from external libraries such as libX11 and li-
bICE, which obviously come from the time when all
the users were UNIX gurus and launched GUI pro-
grams from the command line.

If the program can work in even some limited way
without some prerequisite, it should at least run in
this limited way. This is especially true for things one
would need in the GUI to repair the issue, for example
gnome-session, Nautilus, the panel or GDM (or the
equivalents in any desktop). The user should always
be able to log in and do some basic things such as
file management and editing and whatnot even in an
extremely broken state. This is because we’re trying
to make sure that people don’t log in as root, then a
system or user account should be repairable by GUI
from a user login.

In the case that the error can be repaired automat-
ically, perhaps there’s not even a reason to bother the
user with it and just repair it. For example Netscape
used to require you to remove a lock file whenever it
crashed. Since that is something that the software
can repair itself, it should not force the user to suffer
for its own bugs.

Second type of DoS problem is a bug in the soft-
ware that causes a crash on some set of settings, or
on loading a certain file. This is especially true if the
offending file or data or whatnot is then loaded au-
tomatically for some reason. The attacker can then
just somehow make the user either load that data or
use that setting. An obvious example is when a mail
reader crashes when displaying the subject line of an
email, then the user can’t ever check his email again.
But other problems can be abused as well. For ex-
ample if I don’t like the IT guys in some company
I could mass mail the employees with “if you want
your desktop to be even cooler, check the frobinator
setting in the control panel,” given I know the frobi-
nator setting makes the session crash on startup. The
simplest way to solve this is to write a temporary file
to disk (in the home directory say) and remove it on
exit. Then next time you run and find this file (you
have to check that it’s not another instance that owns
it) you tell that to the user and offer to start with a
clean slate, perhaps offering to reset the configura-
tion to some default set, which being the most tested
configuration, most likely works.

Such a denial of service attack was (and perhaps
still is) with plugins for Nautilus. I was actually hit
once with a bug like this. Some sort of plugin was
trying to make a preview or thumbnail or whatnot of
a flash file I put in my home directory. Unfortunately

it crashed whenever it tried. Which meant that Nau-
tilus crashed whenever I moved into my home direc-
tory. It took quite some time to figure out what was
happening. Obviously this is the fault of both the
plugin and Nautilus. Nautilus needs to be more care-
ful and robust with respect to buggy plugins (they
will always exist) and the plugin needs some way of
perhaps remembering that it crashed on this file (with
the method described above). That way it can tell me
next time I try to look into the directory and I could
fix my system and file the appropriate bug. The way
it was, all I saw was a fairly random crash in Nautilus
with a useless stack trace and had no way of knowing
what went wrong. Furthermore since the standard
way of starting Nautilus opens the home directory I
couldn’t really launch Nautilus at all.

So the moral of the story is to expect crashes. It
is to expect that your code can crash with certain
settings and allowing the user to reset settings or an-
other way to recover without making him or her find
the problem and fix it. For example it took me a long
time to figure out what was wrong with Nautilus in
the story mentioned above, even a seasoned admin
person would have trouble figuring it out quickly.

Finally there are denials of service which take over
CPU, fill up the memory or the hard disk. For CPU
and memory, the idea is to put sanity limits on both
the amount of work or memory you use especially in
response to data coming from the outside (including
even such things as configuration). We have talked
about this in the input checking section (see section
5). So let’s look at filling up the disk. Sometimes
this may not look like you are doing something dan-
gerous. For example just printing something to the
standard output. But note that most of the time
this is redirected to some file. Newer GDM in de-
fault configuration will intercept this output and has
a sanity cap on this of a few hundered kilobytes, but
unfortunately some distributions may ignore the de-
fault GDM session setup and just re-redirect it to a
file again reintroducing this problem. The idea is to
force a program to repeatedly print some error. For
example imagine the web browser finding an error in
a web page and printing out such on the standard
output (or standard error), now suppose I’d be my
malicious self and create a web page with lots and
lots of these errors, then anyone coming to my web
page would have his home directory filled up with ran-
dom garbage and would have to relogin to continue
working (note that removing such a file does not work
since it’s still open and will thus exist on disk even
after being deleted until the session is over). Now
suppose that either the login manager is not GDM or

8



Secure Programming for the Desktop

some other login manager that knows of these issues
or the session decided to log it to some file that the lo-
gin manager does not know about. It is then possible
that the user will not be able to log in. The problem
is not restricted to web browsers. It can be found in
any document driven application that is told to open
some document (which may come from a malicious
source possibly through email). The best way to deal
with this is to put a sanity limit on the number of
errors or warning you report for any document. No-
body is likely to read them anyway if there is more
than a couple of thousand of those. Another way
to deal with this is to throttle these messages rather
than just capping them, say only print 20 inside any
minute or some such other limit.

Similar holds for any log files you create, be careful
not to overrun those. Most likely these are going into
the users home directory for a desktop application
and a full home partition (or filled up quota) could
lead to anything from not being to log in to data
loss (automated script deleting files from over quota
account).

11 Information, Cookies, Au-
thentication and Random
Numbers

What would a security paper be without at least
mentioning random numbers, encryption, authenti-
cation and related issues. Most desktop applications
don’t have to deal with this, but a few do, such as
networked games, web browsers, mail readers, etc...
Let’s first talk about encryption. Any application
that talks over the network should attempt to use
an encrypted channel. It should also never be the
default to use an unencrypted channel if that is pos-
sible. With modern cryptographic techniques, there
is no need for the user to have to fiddle with anything
to have an encrypted channel. No need to set up keys,
no need to set up anything, a secure channel can be
set up by a public key cryptosystem or by one of the
variants of Diffie-Hellman or similar. Using the ellip-
tic curve techniques this can be done very efficiently
so there’s no excuse of this affecting performance. If
you find that there needs to be an extra step done by
the user to simply get encryption, then something is
wrong with the design.

For authentication it is a different story. The user
must be somehow authenticated by the remote side.
Or the user might want to verify that the remote side
is really what it claims to be. So both sides must
take some step to authenticate themselves, either by

setting up an account somewhere or having some cer-
tificate signed or something of the sort.

But the most important rule about encryp-
tion/authentication is to never, ever, never ever ever,
home cook new protocols for this. Use one of the al-
ready developed layers such as OpenSSL, and build
on top of that. There are many subtleties that arise
here, and having to change a protocol once deployed
is very tough. Things such as OpenSSL already went
through a very rigorous analysis in real life use, so
it should be the safest option to use some already
developed technology like that.

If you really need to get random numbers for any
sort of authentication, you can again use a library
like OpenSSL which has facilities for getting good
random numbers. Alternatively read directly from
/dev/urandom. Never use a pseudorandom number
generator such as g_random_int and friends, and god
forbid rand. g_random_int does have 128 bits of
theoretical entropy (randomness) but it gets that by
just reading the seed from /dev/urandom. You will
however never get more than 128 bits of randomness
no matter how many times you call g_random_int.
You can fill 10 kilobytes using g_random_int and I
will be able to reproduce it exactly just after I guess
the 128 bit seed value. So if you’d hope that using
g_random_int (or rand) several times would give you
longer and thus harder to guess password or cookie,
you’d be wrong.

The algorithm used by g_random_int and friends
is very fast, seems to produce nice random numbers,
but is not well tested and scrutinized. For example it
could very well give output of a lower entropy than
128 bits even though it used 128 random bits as a
seed. In any case you’d just be inserting a middleman
into the equation. /dev/urandom should give you
quite a bit of good entropy. Note that /dev/urandom
is also pseudorandom but seeded with actually ran-
dom data as often as random events happen on the
computer, so as long as you don’t want way too much
random data at one go, you get very good results.

Further note that taking something that is not too
random, such as the current time in seconds, using
it as a seed in a pseudorandom number generator
doesn’t get you anything more random. It may just
give you a more “random looking” answer, but not
something more random, it would just give you a false
sense of security. If you are on a system that doesn’t
have /dev/urandom or any equivalent and you can’t
use any other method and you need a random cookie,
then the following code may get you some level of
randomness

GTimeVal now;

guint32 cookie[2];

9



Secure Programming for the Desktop

g_get_current_time (&now);

cookie[0] = now.tv_sec;

cookie[1] = now.tv_usec;

Now the cookie may be 64 bits long, but you only
get about 32 bits of actual randomness and that only
if you can’t guess the time to within 68 minutes. If
you can guess the right second you only get about
20 bits of randomness (the microseconds). You will
never get 64 bits randomness like this, you can only
get 51 bits of randomness and that only if you can’t
guess the time at all (that’s over 60+ years span since
the time is an integer). No need to use GRand or
any other random number generator to make it look
“more random” unless it makes you feel warm and
fuzzy. If you actually need a 32bit number and want
as much entropy as possible then use the following
expression

(now.tv_sec << 20) ^ now.tv_usec

That gets you just under 32 bits of en-
tropy if you can’t guess the time to within
those 68 minutes. Never use something like
now.tv_sec ^ now.tv_usec, it looks correct, but
you only get 20 bits of entropy for the first 11 days.
The thing is that the microsecond field has about 20
bits that change very rapidly, so we’ll consider all
those random. But the seconds field has the more
random bits as the least significant bits. So we want
to shift those bits to occupy the place where the mi-
crosecond field has all zeros.

If the “attacker” wouldn’t have access to the lo-
cal machine and thus can’t figure out the process id
and the parent process id, you also get a slight bit
of randomness from the getpid and getppid calls.
The amount of entropy you get from these depends
on how and when your application gets started and
on the number of other processes on the system. Now
if you need a smaller number of “bits” and you have
a whole bunch of numbers which have some entropy
but are not exactly random (such as the time values
or the pid and the ppid) you could concievably use
these to seed a GRand object using the array seeding
function and that would act as a sort of “compres-
sion” function. The caveat here again is that the
algorithm that GRand uses has not been well tested,
MD5 or SHA1 might be better for such a purpose.
In fact if you are going to use the current time up to
microseconds and the pid and ppid you might as well
just use the standard initialization of a GRand object
as that is what it will use. If you are going to write
something to a file try to put the file in a directory
that is not readable by the attacker. That way they
cannot check the timestamp on the file to figure out
the seed.

However do note that 32 bits just may not be
enough nowdays to prevent a brute force attack (de-
pending on the application of course). The XDM
(and old KDM) X cookie has 32 bits of entropy
(they used gettimeofday badly, needing 18 hours to
achieve 32 bits of entropy as seed and then rand to
fill 128 bits, really, I’m not kidding). After testing I
found one could break the key to the X session in a
day or two and that was assuming they would truly
get 32 bits of entropy. If you could guess the time the
session started to within an hour you could break it
within about 2-3 minutes.

The time for brute forcing certain keys is only go-
ing to get shorter as things get faster, but note that
complexity here grows exponentially. Using 128 bits
will most likely always be safe (for most reasonable
definitions of “always”). Use 192 or 256 if you are
really paranoid. Anything more and you’re just wast-
ing space. On my box an optimized loop that does
nothing but counts from 1 to 232 takes 5 seconds
to run, so 2.5 seconds is our lower bound on brute
force attacks. So for 128 bits it would take at this
speed 6280771381458042997966 years. Now if speeds
of computers keep doubling every 18 months, we will
be able to run this in the time of 1 year in about 108
years or so and in 2.5 seconds in 144 years. And that’s
only the lower bound. So we have at least around 150
years to go before 128 bits have any chance to become
what 32 bits are now. And note that network band-
width has not grown at such a rate anyway. Thus in
conclusion, unless new medical breakthroughs hap-
pen, you are unlikely to be around when 128 bits
could become a problem.

12 Summary

In summary, security problems can arise in all parts
of the desktop. It is important to always have the
main problems in mind when writing any software.
It is also important about the major use cases for
your application and what could be the threats in
that situation. It is also important for a desktop ap-
plication that problems are “fixable” either automat-
ically or through the GUI, without having to resort to
the command line or hand editing the configuration
database.

10


