[Go to the Tasty Bits of Several Complex Variables home page]

Tasty Bits of Several Complex Variables: Changes

October 11th 2018 edition (version 2.4):

  1. Change definition of holomorphic to be the more standard one ($f$ locally bounded and complex differentiable in each variable, giving the Cauchy-Riemann definition only for continuously differentiable functions as an alternative) this doesn't require a deeper one-variable result (that would not appear in a basic one-variable book). Also now Exercise 1.1.4 makes more sense with this definition.
  2. Be a bit more formal with the definition of one-variable holomorphic function, and define it with the complex derivative to make the one variable section aligned with the new definition in the first chapter.
  3. Be more explicit and careful with "uniformly absolute" convergence of series and when meaning "uniformly absolute convergence" always state it that way (even though we say that the only type of convergence in several variables is absolute, so it can't mean anything else).
  4. Add definition of $O(\ell)$ when first used.
  5. All links are https now.
  6. Minor clarifications and style fixes throughout.
  7. Fix errata.

June 27th 2018 edition (version 2.3):

  1. Fix Exercise 1.2.11, and add part c).
  2. Fix Exercise 1.4.1, and add part c).
  3. As people have different opinions about what "strongly (pseudo)convex" means for unbounded domains, only define the term for bounded.
  4. Improve exposition very slightly throughout.
  5. Fix errata.

November 29th 2017 edition (version 2.2):

  1. Reword the hypotheses of proposition 6.2.5, 6.2.6 and theorem 6.2.7
  2. Move exercise 4.3.4 to section 4.2 so renumbered to 4.2.4. It makes a lot more sense right after 4.2.3. (Thanks to John Treuer for the suggestion)
  3. Improvements and fixes in language and style in a number of places.
  4. Fix errata.

March 21st 2017 edition (version 2.1):

  1. Add exercise 6.4.21
  2. Fix wording of exercise 6.4.16, $\ell_j$ are not needed
  3. Fix definition of meromorphic functions to be the standard one, noting the deep result of Oka that shows what localy a quotient means globally a quotient on domains in ${\mathbb C}^n$.
  4. Very minor improvements in style and exposition in a few places
  5. License changed to dual CC-BY-SA and CC-BY-NC-SA
  6. Fix errata.
  7. Fix few minor typos

May 5th 2016 edition (version 2.0):

November 24th 2015 edition:

August 21st 2015 edition:

November 19th 2014 edition:

Improvements in exposition in a bunch of places and also fix errata.

September 2nd 2014 edition:

May 1st 2014 edition:

First version

Valid HTML 5 Valid CSS!