Consider
\begin{equation*}
L =
\begin{bmatrix}
\mybxsm{1} & 2 & 0 & 0 & 3 \\
0 & 0 & \mybxsm{1} & 0 & 4 \\
0 & 0 & 0 & \mybxsm{1} & 5
\end{bmatrix} .
\end{equation*}
This matrix is in reduced row echelon form, the pivots are marked. There are two non-pivot columns, so the kernel has dimension 2, that is, it is the span of 2 vectors. Let us find the first vector. We look at the first non-pivot column, the \(2^{\text{nd}}\) column, and we put a \(-1\) in the \(2^{\text{nd}}\) entry of our vector. We put a \(0\) in the \(5^{\text{th}}\) entry as the \(5^{\text{th}}\) column is also a non-pivot column:
\begin{equation*}
\begin{bmatrix}
? \\ -1 \\ ? \\ ? \\ 0
\end{bmatrix} .
\end{equation*}
Let us fill the rest. When this vector hits the first row, we get a \(-2\) and \(1\) times whatever the first question mark is. So make the first question mark \(2\text{.}\) For the second and third rows, it is sufficient to make it the question marks zero. We are really filling in the non-pivot column into the remaining entries. Let us check while marking which numbers went where:
\begin{equation*}
\begin{bmatrix}
1 & \mybxsm{2} & 0 & 0 & 3 \\
0 & \mybxsm{0} & 1 & 0 & 4 \\
0 & \mybxsm{0} & 0 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
\mybxsm{2} \\ -1 \\ \mybxsm{0} \\ \mybxsm{0} \\ 0
\end{bmatrix}
=
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
.
\end{equation*}
Yay! How about the second vector. We start with
\begin{equation*}
\begin{bmatrix}
? \\ 0 \\ ? \\ ? \\ -1 .
\end{bmatrix}
\end{equation*}
We set the first question mark to 3, the second to 4, and the third to 5. Let us check, marking things as previously,
\begin{equation*}
\begin{bmatrix}
1 & 2 & 0 & 0 & \mybxsm{3} \\
0 & 0 & 1 & 0 & \mybxsm{4} \\
0 & 0 & 0 & 1 & \mybxsm{5}
\end{bmatrix}
\begin{bmatrix}
\mybxsm{3} \\ 0 \\ \mybxsm{4} \\ \mybxsm{5} \\ -1
\end{bmatrix}
=
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
.
\end{equation*}
There are two non-pivot columns, so we only need two vectors. We have found a basis of the kernel. So,
\begin{equation*}
\text{kernel of $L$} =
\operatorname{span} \left\{
\begin{bmatrix}
2 \\ -1 \\ 0 \\ 0 \\ 0
\end{bmatrix}
,
\begin{bmatrix}
3 \\ 0 \\ 4 \\ 5 \\ -1
\end{bmatrix}
\right\}
\end{equation*}